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Abstract: Based on the probabilistic interval-valued hesitant fuzzy information aggregation operators,
this paper investigates a novel multi-attribute group decision making (MAGDM) model to address
the serious loss of information in a hesitant fuzzy information environment. Firstly, the definition of
probabilistic interval-valued hesitant fuzzy set will be introduced, and then, using Archimedean norm,
some new probabilistic interval-valued hesitant fuzzy operations are defined. Secondly, based on
these operations, the generalized probabilistic interval-valued hesitant fuzzy ordered weighted
averaging (GPIVHFOWA) operator, and the generalized probabilistic interval-valued hesitant fuzzy
ordered weighted geometric (GPIVHFOWG) operator are proposed, and their desirable properties
are discussed. We further study their common forms and analyze the relationship among these
proposed operators. Finally, a new probabilistic interval-valued hesitant fuzzy MAGDM model
is constructed, and the feasibility and effectiveness of the proposed model are verified by using
an example of supplier selection.

Keywords: multi-attribute group decision making; probabilistic interval-valued hesitant fuzzy sets;
Archimedean norm; information aggregation operators; supplier selection

1. Introduction

Since Zadeh [1] put forward the theory of the fuzzy set (FSs), the decision making problem of
fuzziness and uncertainty existing in real life has been dealt with better. Then, several extensions of
fuzzy sets were proposed. On the basis of membership degree, the membership degree and hesitant
degree were added, and the concept of intuitionistic fuzzy sets (IFSs) was introduced by Atanassov [2],
which is used to process decision information. Torra [3] proposed the concept of hesitant fuzzy set,
which effectively solves the hesitation of experts in group decision making and is better used to express
decision information.

In real life, many decision making problems are difficult to represented by an accurate value,
and a relatively reasonable interval-value is chosen to describe them. On the basis of intuitionistic
fuzzy sets, Atanassov [4] introduced interval-valued concept, and put forward interval-valued
intuitionistic fuzzy sets to solve decision problems. With the concept of interval-valued intuitionistic
fuzzy sets, some scholars have studied the basic operations and basic properties of interval-valued
intuitionistic fuzzy sets. In the context of interval-valued intuitionistic fuzzy sets, Garg [5] defined
a new score function by adding weighted average of hesitant degree in membership function to deal
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with the decision process. Subsequently, Zhang [6] reviewed the literature [5] and commented on
the shortcomings of Garg’s paper. Under interval-valued intuitionistic fuzzy sets, entropy measures
have been studied by different researchers, which can describe the uncertainty information more
fully [7–10]. Chen [11] proposed a new multi attribute decision making (MADM) method based on the
interval-valued intuitionistic fuzzy weighted geometric average (IIFWGA) operator of interval-valued
intuitionistic fuzzy values (IVIFVs), the accuracy function of IVIFVs and Particle Swarm Optimization
techniques, which can overcome the drawbacks of the existing MADM methods for MADM in
interval-valued intuitionistic fuzzy (IVIF) environments. The decision making process of actual
problems has certain uncertainty. In order to depict the uncertainty in decision process more effectively,
a new interval-valued hesitant fuzzy sets is defined by Chen [12], which is based on the properties
of hesitant fuzzy sets and the situation where the evaluation values are interval values. Under the
interval-valued hesitant fuzzy sets, based on the continuous ordered weighted averaging (COWA)
operator, Jin [13] constructed several information measure formulas for interval-valued hesitant fuzzy
elements (IVHFEs) and discussed the relationship among these information measures for IVHFEs.
Liu [14] studied the multi attribute group decision making (MAGDM) method which combines the
improved Hamacher aggregation operators and continuous entropy. To address the lack of flexibility
in decision making and lack of original information, Lan [15] proposed some priority formulas of
interval-valued hesitant fuzzy sets. Simultaneously, the expectation property of priority degree is also
studied. In the multi attribute group decision making analysis of interval valued intuitionistic fuzzy
information, the determination of attribute weight has a direct impact on the choice of the optimal
scheme [16]. In view of complex group decision making problem, a multi-criteria weighting and
ranking model is introduced with interval-valued hesitant fuzzy sets by Gitinavard [17], which operates
properly under uncertainties. Furthermore, the attribute weights of interval numbers are discussed
by both Shang [18] and Li [19] to solve the MAGDM problem. Jin et al. [20] constructed a new group
decision making model for interval-valued hesitant fuzzy MAGDM problems with priority relations
among attributes.

The uncertainty of individual decision making is an important factor that ultimately affects the
consistency of group decision making. Although hesitant fuzzy sets can better express the ideas of
experts, there is the problem of information loss, and it cannot fully reflect the decision information.
To cope with this issue, some researchers have introduced the concept of probability. For example,
Hang and Xu [21] introduced probability into hesitant fuzzy sets, and put forward the concept of
probabilistic hesitant fuzzy sets, and gave its operation rules. Wang [22] introduced a MAGDM
method based on correlation coefficient to use probabilistic hesitant fuzzy information. It is undeniable
that researchers have effectively improved and extended the hesitant fuzzy sets to make it more
comprehensive to express decision information. Zhai et al. [23] defined a probabilistic interval-valued
intuitionistic hesitant fuzzy set (PIVIHFS) as an extended mathematical expression of fuzzy sets and
established some new measure models deduced by the axiomatic concepts of PIVIHFSs. Liu [24]
proposed the probabilistic linguistic term sets (PLTSs), in which each provided linguistic term has
a probability. Farhadinia [25] defined the modified-PLTS (M-PLTS) and transformed it to the ordered
weighted hesitant fuzzy element (OWHFE). Li [26] built a consensus among the decision makers
for probabilistic hesitant fuzzy preference relations (PHFPRs) with expected additive consistency.
Zhou [27] proposed the uncertain probabilistic hesitant fuzzy element (UPHFE) and extended it to the
uncertain probabilistic hesitant fuzzy preference relations (UPHFPRs).

On the one hand, the aggregation of decision attribute information is an important research topic
in MAGDM problems. From the above analysis, we can find that the most of current interval-valued
information aggregation operators are put forward under interval-valued hesitant fuzzy information
and interval-valued intuitionistic fuzzy information environment. However, there is no research on the
probabilistic interval-valued hesitant fuzzy information aggregation operators at present. On the other
hand, although there exist some useful algorithms, there are still some problems such as loss of decision
information and inaccuracy of decision results. In this paper, the concept of probability is added to give
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the corresponding degree of possibility for decision information value, which enhances the reliability
and effectiveness of decision results. In addition, the Archimedes norm makes the aggregation
algorithm more flexible and the decision making process more convenient. Therefore, the algorithm
model proposed in this paper is necessary.

In this paper, we apply the Archimedes norm to investigate the aggregation method for
probabilistic interval-valued hesitant fuzzy information. To do so, the rest of this paper is structured
as follows. In Section 2, we review some basic concepts and notations of the IVHFSs and define
the PIVHFSs. Then, we introduce the Archimedes norm, and (based on this) the probabilistic
interval-valued hesitant fuzzy operation rules are discussed. In Section 3, we define the probabilistic
interval-valued hesitant fuzzy information aggregation operators whose related properties are explored
in detail. Based on the additive operator g(t) which takes different functions, Section 4 studies some
common information aggregation operators and analyzes the relationship among these proposed
operators. Based on the proposed operators, a method to multiple attribute group decision making
with probabilistic interval-valued hesitant fuzzy information is provided in Section 5. An example
is given to show the effectiveness and feasibility of the proposed method in Section 6. Section 7
summarizes the full text and draws the main conclusions.

2. Preliminaries

2.1. Interval-Valued Hesitant Fuzzy Sets

Definition 1. Refs. [28,29]. Let X = {x1, x2, · · · , xn} be a given set, and D[0, 1] be the set of all closed
subintervals of [0, 1]. An IVHFS on X is

Ã = {〈xi, h̃Ã(xi)〉|xi ∈ X}, (1)

where h̃A(xi) : X → D[0, 1] denotes all possible interval-valued membership degrees of the element xi ∈ X to
the set Ã. For convenience, we call

h̃Ã(xi) = {γ̃|γ̃ ∈ h̃Ã(xi)}, (2)

an interval-valued hesitant fuzzy element (IVHFE).

Here γ̃ = [γ̃L, γ̃U ] is an interval number. Let γ̃L = infγ̃ and γ̃U = supγ̃ represent the lower and
upper limits of γ̃, respectively. An IVHFE is the basic unit of an IVHFS, and it can be considered as
a special case of the IVHFS. The relationship between IVHFE and IVHFS is similar to that between
interval-valued fuzzy number and interval-valued fuzzy set.

Definition 2. Ref. [28]. Let α =
[
αL, αU] and β = [βL, βU ], and let lα = αU − αL, lβ = βU − βL; then the

degree of possibility of α ≥ β is denoted by

p(α ≥ β) = max

{
1−max

(
βU − αL

lα + lβ

)
, 0

}
, (3)

If p(α ≥ β) ≥ 0.5, then called α is greater than β, that is α ≥ β.

Definition 3. Ref. [28]. For an IVHFE h̃, s(h̃) = 1
#h ∑γ∈h γ̃ is called the score function of h̃ with #h̃ being the

number of the interval values in h̃, and s(h̃) is an interval value belonging to [0, 1]. For two IVHFEs h̃1 and
h̃2, if s(h̃1) ≥ s(h̃2), then h̃1 ≥ h̃2.
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2.2. Probabilistic Interval-Valued Hesitant Fuzzy Sets

Example 1. Supplier selection is a very important problem in supply chain management. A network dealer
invited ten experts to evaluate the comprehensive conditions of a supplier. Among them, four experts’
satisfaction interval value of [0.8, 0.9], the satisfaction interval value given by two experts is [0.6, 0.8],
the satisfaction interval value given by three experts is [0.4, 0.6], and the remaining experts gave
a satisfaction interval value of [0.3, 0.5]. Using interval-valued hesitant fuzzy element, the above decision
information can be expressed as {[0.8, 0.9], [0.6, 0.8], [0.4, 0.9], [0.3, 0.5]}. Obviously, interval-valued hesitant
fuzzy elements can only represent all possible decision information, but cannot reflect the importance
of each decision information. However, using PIVHFE to represent the above decision information is
{([0.8, 0.9], 0.4)([0.6, 0.8], 0.3), ([0.4, 0.9], 0.2), ([0.3, 0.5], 0.1)}, which comprehensively represents all the
evaluation information given by the decision maker. In fact, the given number of real numbers in PIVHFE is
not the same, and the element arrangement is unordered in the actual decision problem, so the following rules
are made:

Note 1. The intervals in the probabilistic interval-valued hesitant fuzzy element,
let PIVHFE h = {

([
γ(k)−, γ(k)+

]
, p(k)

)
|
[
γ(k)−, γ(k)+

]
∈ h} be arranged in descending order,

which
([

γ(k)−, γ(k)+
]
, p(k)

)
represents the interval corresponding to the membership degree of the

largest K.

Note 2. Let l1 and l2 be the number of elements in probabilistic interval-valued hesitant fuzzy elements
(PIVHFE) h1 and h2 respectively. If l1 6= l2, the number of elements can be increased in the PIVHFE
with fewer original numbers, so that the number of elements in the two PIVHFE is the same. For the
convenience of computation, the number of elements in PIVHFE is assumed to be l.

Definition 4. Let X = {x1, x2, · · · , xm} be a given set. A probabilistic interval-valued hesitant fuzzy
sets (PIVHFS) H over X is an object having the form: H = {〈xi, h(xi)〉|xi ∈ X}, where h(xi) =

{([γ−i , γ+
i ], pγi )|[γ

−
i , γ+

i ] ∈ h(xi), pγi ∈ [0, 1], ∑[γ−i ,γ+
i ]∈h(xi)

pγi = 1}. here γi = [γ−i , γ+
i ] is an interval

number. Let γ−i and γ+
i represent the lower and upper limits of γi, respectively. pγi is the probability associated

with γi.

For convenience, a probabilistic interval-valued hesitant fuzzy element (PIVHFE) will be denoted
by hi = h(xi), and P is the set of all PIVHFE on X.

The score function for IVHFEs will be defined below.

Definition 5. For a PIVHFE h, the score function of h is formulated by

S(h) =
1

#h

l

∑
k=1

(γ(k))p(k), (4)

with #h being the number of the interval values in h, and S(h) is an interval value belonging to [0, 1].
For two IVHFEs h1 and h2, if S(h1) ≥ S(h2), then h1 ≥ h2. The PIVHFE’s deviation function is defined as:

φ(h) =
l

∑
k=1

[0.5(γ(k)− + γ(k)+)− S(h)]
2
p(k). (5)

Definition 6. Let h1 = {([γ(k)−
1 , γ

(k)+
1 ], p(k)1 )|k = 1, 2, · · · , l} and h2 = {([γ(k)−

2 , γ
(k)+
2 ], p(k)2 )|k =

1, 2, · · · , l} be two PIVHFEs, then:

1. If S(h1) > S(h2), then h1 > h2, that is, h1 is greater than h2.
2. If S(h1) = S(h2), then
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(a) If φ(h1) > φ(h2), then h1 < h2. That is, h1 is less than h2.
(b) If φ(h1) < φ(h2), then h1 > h2. That is, h1 is greater than h2.
(c) If φ(h1) = φ(h2), then h1 = h2. That is, h1 equals h2.

2.3. Archimedean Norm

Most of the existing information on aggregation operators are based on algebraic multiplication
and addition operations, but the algebraic multiplication and addition operations only in a form of
Archimedean norm [30,31].

Related studies show that, the strict Archimedean T-norm can be obtained by a strictly
monotone decreasing additive operator g : [0, 1]→ [0,+∞] is expressed as T(x, y) = g−1(g(x)+ g(y)),
where g(1) = 0, g(0) = 1. According to duality principle, the strict Archimedean S-norm can be
expressed as S(x, y) = f−1( f (x) + f (y)), where f (t) = g(1− t), Thus, f (t) strictly monotonically
increases, and f (0) = 0, f (1) = 1.

2.4. Probabilistic Interval-Valued Hesitant Fuzzy Operation Rules

In the probabilistic interval-valued hesitant fuzzy information environment, the following
operation laws are introduced based on the Archimedean norm.

Definition 7. Let h, h1 and h2 be three PIVHFEs, then (For convenience, let k = 1, 2, · · · , l, λ > 0 be omitted
in the following sets):

(1) hc = {([1− γ(k)−, 1− γ(k)+], p(k))}

(2) h1 ⊕ h2 = {(S([γ(k)−
1 , γ

(k)+
1 ], [γ(k)−

2 , γ
(k)+
2 ]), p(k)1 + p(k)2 )} = {([ f−1( f (γ(k)−

1 ) +

f (γ(k)−
2 )), f−1( f (γ(k)+

1 ) + f (γ(k)+
2 ))], p(k)1 + p(k)2 )}

(3) h1 ⊗ h2 = {(T([γ(k)−
1 , γ

(k)+
1 ], [γ(k)−

2 , γ
(k)+
2 ]), p(k)1 + p(k)2 )} = {([g−1(g(γ(k)−

1 ) +

g(γ(k)−
2 )), g−1(g(γ(k)+

1 ) + g(γ(k)+
2 ))], p(k)1 + p(k)2 )}

(4) λh = {([ f−1(λ f (γ(k)−)), f−1(λ f (γ(k)+))], p(k))}
(5) hλ = {([g−1(λg(γ(k)−)), g−1(λg(γ(k)+))], p(k))}

where p(k)1 + p(k)2 =
(

p(k)1 + p(k)2

)
/
(

∑l
k=1 (p(k)1 + p(k)2 )

)
, k = 1, 2, · · · , l, then ∑l

k=1

(
p(k)1 + p(k)2

)
= 1.

It is easy to prove that the above probabilistic interval-valued hesitant fuzzy operation rules
proposed satisfy the following properties.

Theorem 1. Let h, h1 and h2 be three PIVHFEs, then:

(1) h1 ⊕ h2 = h2 ⊕ h1;
(2) h1 ⊗ h2 = h2 ⊗ h1;
(3) λ(h1 ⊕ h2) = λh1 ⊕ λh2, λ > 0;

(4) (h1 ⊗ h2)
λ = hλ

1 ⊗ hλ
2 , λ > 0;

(5) λ1h⊕ λ2h = (λ1 + λ2)h, λ1, λ2 > 0;
(6) hλ1 ⊗ hλ2 = hλ1+λ2 , λ1, λ2 > 0.

3. Generalized Probabilistic Interval-Valued Hesitant Fuzzy Information Aggregation Operators

In the actual MAGDM problem, in order to comprehensively and accurately reflect the attribute
information and the importance degree of decision makers, PIVHFE will be used to represent the
decision information under the attribute of the program. Then, the information aggregation operators
will be used to fuse all the attribute values under a certain scheme to obtain the comprehensive attribute
information. Therefore, based on the new algorithms in Definition 6, the generalized probabilistic
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interval-valued hesitant fuzzy ordered weighted averaging (GPIVHFOWA) operator and the
generalized probabilistic interval-valued hesitant fuzzy ordered weighted geometric (GPIVHFOWG)
operator are proposed in this section, and then the related properties are investigated.

3.1. GPIVHFOWA Operator

Definition 8. Let hj(j = 1, 2, · · · , n) be a set of PIVHFEs, a generalized probabilistic interval-valued hesitant
fuzzy ordered weighted averaging (GPIVHFOWA) operator is a mapping GPIVHFOWA: Hn → H, such that

GPIVHFOWA(h1, h2, · · · , hn) =
n
⊕

j=1
wjhσ(j), (6)

where let w = (w1, w2, · · · , wn)
T be the related weight vectors, and satisfies the condition wj ≥ 0 and

∑n
j=1 wj = 1.

Theorem 2. Let hj(j = 1, 2, · · · , n) be a set of PIVHFEs, then the aggregated value by the GPIVHFOWA
operator is also PIVHFE, and

GPIVHFOWA(h1, h2, · · · , hn) =
n
⊕

j=1
wjhσ(j) =

{([
f−1

(
n
∑

j=1
wj f (γ(k)−

σ(j) )

)
, f−1

(
n
∑

j=1
wj f (γ(k)+

σ(j) )

)]
,

n
∑

j=1
p(k)j

)∣∣∣∣∣k = 1, 2, · · · , l

}
, (7)

where
[
γ
(k)−
σ(j) , γ

(k)+
σ(j)

]
is the j interval in descending order of [γ(k)−

1 , γ
(k)+
1 ], [γ(k)−

2 , γ
(k)+
2 ], · · · , [γ(k)−

n , γ
(k)+
n ],

and
n
∑

j=1
p(k)j =

n
∑

j=1
p(k)j /

l
∑

k=1

n
∑

j=1
p(k)j .

Proof.

(1) It is proved that the aggregation result obtained by an operator is still PIVHFE, then[
f−1

(
n

∑
j=1

wj f (γ(k)−
σ(j) )

)
, f−1

(
n

∑
j=1

wj f (γ(k)+
σ(j) )

)]
∈ [0, 1],

n

∑
j=1

p(k)j ∈ [0, 1],
l

∑
k=1

n

∑
j=1

p(k)j = 1.

According to the computational formula of
n
∑

j=1
p(k)j , we know that

n
∑

j=1
p(k)j ∈ [0, 1],

l
∑

k=1

n
∑

j=1
p(k)j = 1

are clearly established.
Since 0 ≤ γ

(k)−
σ(j) ≤ γ

(k)+
σ(j) ≤ 1 for all k = 1, 2, · · · , l, j = 1, 2, · · · , n. f (t) and f−1(t) are strictly

monotone increasing functions, then we have f (0) ≤ f (γ(k)−
σ(j) ) ≤ f (γ(k)+

σ(j) ) ≤ f (1), and then wj f (0) ≤

wj f (γ(k)−
σ(j) ) ≤ wj f (γ(k)+

σ(j) ) ≤ wj f (1).
It pointed out that

f (0) =
n

∑
j=1

wj f (0) ≤
n

∑
j=1

wj f
(

γ
(k)−
σ(j)

)
≤

n

∑
j=1

wj f
(

γ
(k)+
σ(j)

)
≤

n

∑
j=1

wj f (1) = f (1). (8)

The simultaneous acting function f−1(t) on both sides of the above formula, then

0 = f−1( f (0)) ≤ f−1

(
n
∑

j=1
wj f

(
γ
(k)−
σ(j)

))
≤ f−1

(
n
∑

j=1
wj f

(
γ
(k)+
σ(j)

))
≤ f−1( f (1)) = 1,[

f−1

(
n
∑

j=1
wj f

(
γ
(k)−
σ(j)

))
, f−1

(
n
∑

j=1
wj f

(
γ
(k)+
σ(j)

))]
∈ [0, 1].

(9)

Therefore, our proof of Theorem 2 is over.
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(2) Next, the mathematical induction will be used to prove the Equation (7). When n = 2, we have:

GPIVHFOWA(h1, h2) = w1hσ(1) ⊕ w2hσ(2)

=
{([

f−1(w1 f (γ(k)−
σ(1) )), f−1(w1 f (γ(k)+

σ(1) ))
]
, p(k)1

)∣∣∣k = 1, 2, · · · , l
}
⊕
{([

f−1(w2 f (γ(k)−
σ(2) )), f−1(w2 f (γ(k)+

σ(2) ))
]
, p(k)2

)∣∣∣k = 1, 2, · · · , l
}

=

{([
f−1( f ( f−1(w1 f (γ(k)−

σ(1) ))) + f ( f−1(w2 f (γ(k)−
σ(2) )))), f−1( f ( f−1(w1 f (γ(k)+

σ(1) ))) + f ( f−1(w2 f (γ(k)+
σ(2) ))))

]
, p(k)1 + p(k)2

)∣∣∣∣k = 1, 2, · · · , l
}

=

{([
f−1(w1 f (γ(k)−

σ(1) ) + w2 f (γ(k)−
σ(2) )), f−1(w1 f (γ(k)+

σ(1) ) + w2 f (γ(k)+
σ(2) ))

]
, p(k)1 + p(k)2

)∣∣∣∣k = 1, 2, · · · , l
}

So, when n = 2, Equation (7) is established. Suppose Equation (7) holds for n = q, that is:

GPIVHFOWA(h1, h2, · · · , hq) =
q
⊕

j=1
wjhσ(j) = {

[
f−1

(
q
∑

j=1
wj f (γ(k)−

σ(j) )

)
, f−1

(
q
∑

j=1
wj f (γ(k)+

σ(j) )

)]
,

q
∑

j=1
p(k)j

)
|k = 1, 2, · · · , l}, (10)

Then, when n = q + 1, we have

GPIVHFOWA(h1, h2, · · · , hq+1) =
q+1
⊕

j=1
wjhσ(j) =

(
q
⊕

j=1
wjhσ(j)

)
⊕ wq+1hσ(q+1)

=

{([
f−1

(
q
∑

j=1
wj f (γ(k)−

σ(j) )

)
, f−1

(
q
∑

j=1
wj f (γ(k)+

σ(j) )

)]
,

q
∑

j=1
p(k)j

)∣∣∣∣∣k = 1, 2, · · · , l

}
⊕
{([

f−1(wq+1 f (γ(k)−
σ(q+1))), f−1(wq+1 f (γ(k)+

σ(q+1)))
]
, p(k)q+1

)∣∣∣k = 1, 2, · · · , l
}

=

{([
f−1

(
f

(
f−1

(
q
∑

j=1
wj f (γ(k)−

σ(j) )

))
+ f

(
f−1(wq+1 f (γ(k)−

σ(q+1)))
))

, f−1

(
f

(
f−1

(
q
∑

j=1
wj f (γ(k)+

σ(j) )

))
+ f

(
f−1(wq+1 f (γ(k)+

σ(q+1)))
))]

,
q+1
∑

j=1
p(k)j

)∣∣∣∣∣ k = 1, 2, · · · , l

}

=

{([
f−1

(
q
∑

j=1
wj f (γ(k)−

σ(j) ) + wq+1 f (γ(k)−
σ(q+1))

)
, f−1

(
q
∑

j=1
wj f (γ(k)+

σ(j) ) + wq+1 f (γ(k)+
σ(q+1))

)]
,

q+1
∑

j=1
p(k)j

)∣∣∣∣∣k = 1, 2, · · · , l

}

=

{([
f−1

(
q+1
∑

j=1
wj f (γ(k)−

σ(j) )

)
, f−1

(
q+1
∑

j=1
wj f (γ(k)+

σ(j) )

)]
,

q+1
∑

j=1
p(k)j

)∣∣∣∣∣k = 1, 2, · · · , l

}
(11)

Therefore Equation (7) holds for all n, and our proof of Theorem 3 is over. �

3.2. The GPIVHFOWG Operator

Definition 9. Let hj(j = 1, 2, · · · , n) be a set of PIVHFEs, a generalized probabilistic interval-valued hesitant
fuzzy ordered weighted geometric (GPIVHFOWG) operator is a mapping GPIVHFOWG: Hn → H , such that

GPIVHFOWG(h1, h2, · · · , hn) =
n
⊗

j=1
wjhσ(j), (12)

where let w = (w1, w2, · · · , wn)
T be the related weight vectors, and satisfies the condition wj ≥ 0 and

∑n
j=1 wj = 1.

Theorem 3. Let hj(j = 1, 2, · · · , n) be a set of PIVHFEs, then the aggregated value by the GPIVHFOWG
operator is also an PIVHFE, and

GPIVHFOWG(h1, h2, · · · , hn) =
n
⊗

j=1
wjhσ(j) =

{[
g−1

(
n
∑

j=1
wjg(γ

(k)−
σ(j) )

)
, g−1

(
n
∑

j=1
wjg(γ

(k)+
σ(j) )

)]
,

n
∑

j=1
p(k)j

)∣∣∣∣∣k = 1, 2, · · · , l

}
, (13)

where
[
γ
(k)−
σ(j) , γ

(k)+
σ(j)

]
is the j interval in descending order of

[
γ
(k)−
1 , γ

(k)+
1

]
,
[
γ
(k)−
2 , γ

(k)+
2

]
, · · · ,

[
γ
(k)−
n , γ

(k)+
n

]
,

and
n
∑

j=1
p(k)j =

n
∑

j=1
p(k)j /

l
∑

k=1

n
∑

j=1
p(k)j .

The proof of Theorem 3 is similar to Theorem 2, therefore it is omitted.

3.3. The Properties of the GPIVHFOWA Operator and the GPIVHFOWG Operator

This section will explore some basic properties of the GPIVHFOWA operator and the
GPIVHFOWG operator, including idempotency, monotonicity and boundedness and commutativity.

Property 1 (idempotency). Let hj(j = 1, 2, · · · , n) be a set of PIVHFEs. If ∀i = 1, 2, · · · , n, hi = h, then:

GPIVHFOWA(h1, h2, · · · , hn) = h, (14)



Algorithms 2018, 11, 0120 8 of 17

GPIVHFOWG(h1, h2, · · · , hn) = h, (15)

where w = (w1, w2, · · · , wn)
T is the weighted vector of hj, with wj ≥ 0 and ∑n

j=1 wj = 1.

Proof. When h1 = h2 = · · · = hn = h = {
([

γ(k)−, γ(k)+
]
, p(k)

)
|k = 1, 2, · · · , l},

since
l

∑
k=1

p(k) = 1, l = 1, 2, · · · , n, then

[
f−1

(
n
∑

j=1
wj f (γ(k)−

σ(j) )

)
, f−1

(
n
∑

j=1
wj f (γ(k)+

σ(j) )

)]
=[

f−1

(
n
∑

j=1
wj f (γ(k)−)

)
, f−1

(
n
∑

j=1
wj f (γ(k)+)

)]

=

[
f−1

(
f (γ(k)−)

n
∑

j=1
wj

)
, f−1

(
f (γ(k)+)

n
∑

j=1
wj

)]
=
[

f−1
(

f (γ(k)−)
)

, f−1
(

f (γ(k)+)
)]

=
[
γ(k)−, γ(k)+

]
, (16)

and [
g−1

(
n
∑

j=1
wjg(γ

(k)−
σ(j) )

)
, g−1

(
n
∑

j=1
wjg(γ

(k)+
σ(j) )

)]
=

[
g−1

(
n
∑

j=1
wjg(γ(k)−)

)
, g−1

(
n
∑

j=1
wjg(γ(k)+)

)]

=

[
g−1

(
g(γ(k)−)

n
∑

j=1
wj

)
, g−1

(
g(γ(k)+)

n
∑

j=1
wj

)]
=
[

g−1
(

g(γ(k)−)
)

, g−1
(

g(γ(k)+)
)]

=
[
γ(k)−, γ(k)+

]
,

(17)

n

∑
j=1

p(k)j =
n

∑
j=1

p(k)j /
l

∑
k=1

n

∑
j=1

p(k)j =
n

∑
j=1

p(k)/
n

∑
j=1

l

∑
k=1

p(k) = np(k)/
n

∑
j=1

1 =
np(k)

n
= p(k). (18)

In summary, our proof of Property 1 is over. �

Property 2 (monotonicity). Let hj =
{([

γ
(k)−
j , γ

(k)+
j

]
, p(k)j

)∣∣∣k = 1, 2, · · · , l
}

and aj ={([
η
(k)−
j , η

(k)+
j

]
, q(k)j

)∣∣∣k = 1, 2, · · · , l
}
(j = 1, 2, · · · , n) be two sets of PIVHFEs. If ∀k = 1, 2, · · · , l,

j = 1, 2, · · · , n, then γ
(k)−
i ≤ γ

(k)+
i ≤ η

(k)−
i ≤ η

(k)+
i , p(k)i ≤ q(k)i . It follows that

GPIVHFOWA(h1, h2, · · · , hn) ≤ GPIVHFOWA(a1, a2, · · · , an), (19)

GPIVHFOWG(h1, h2, · · · , hn) ≤ GPIVHFOWG(a1, a2, · · · , an), (20)

where w = (w1, w2, · · · , wn)
T is associated weighted vector such that wj ≥ 0, ∑n

j=1 wj = 1.

Thus, the combination of Property 1 and Property 2, the following properties will be proved.

Property 3 (boundedness). Let hj = {
[
γ
(k)−
j , γ

(k)+
j

]
,p(k)j |k = 1, 2, · · · , l} be a set of PIVHFEs. If h− =

{([min
j

γ
(k)−
j , min

j
γ
(k)+
j ], min

j
p(k)j )|k = 1, 2, · · · , l} h+ = {([max

j
γ
(k)−
j , max

j
γ
(k)+
j ], max

j
p(k)j )|k =

1, 2, · · · , l}, then
h− ≤ GPIVHFOWA(h1, h2, · · · , hn) ≤ h+, (21)

h− ≤ GPIVHFOWG(h1, h2, · · · , hn) ≤ h+, (22)

where w = (w1, w2, · · · , wn)
T is the weighted vector of hj, with wj ≥ 0 and ∑n

j=1 wj = 1.

Property 4 (commutativity). Let hj(j = 1, 2, · · · , n) be a set of PIVHFEs and w = (w1, w2, · · · , wn)
T be

the weighted vector of hj, with wj ≥ 0 and ∑n
j=1 wj = 1, then

GPIVHFOWA(h1, h2, · · · , hn) = GPIVHFOWA(h̃1, h̃2, · · · , h̃n), (23)

GPIVHFOWG(h1, h2, · · · , hn) = GPIVHFOWG(h̃1, h̃2, · · · , h̃n), (24)
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where (h̃1, h̃2, · · · , h̃n) is any permutation of (h1, h2, · · · , hn).

4. Relationship among the Probabilistic Interval-Valued Hesitant Fuzzy Information
Aggregation Operators

In this section, we first study some common information aggregation operators when additive
operator g(t) take different functions. Then, the relationships among these common information
aggregation operators are discussed.

Case 1: When g(t) = − ln(t), the GPIVHFOWA operator and the GPIVHFOWG operator
are transformed into probabilistic interval-valued hesitant fuzzy ordered weighted averaging
(PIVHFOWA) operators and probabilistic interval-valued hesitant fuzzy ordered weighted geometric
(PIVHFOWG) operators respectively, as follows:

PIVHFOWA(h1, h2, · · · , hn) =

{([
1−

n
∏
j=1

(1− γ
(k)−
σ(j) )

wj
, 1−

n
∏
j=1

(1− γ
(k)+
σ(j) )

wj

]
,

n
∑

j=1
p(k)j

)∣∣∣∣∣k = 1, 2, · · · , l

}
, (25)

PIVHFOWG(h1, h2, · · · , hn) =

{([
n

∏
j=1

(γ
(k)−
σ(j) )

wj
,

n

∏
j=1

(γ
(k)+
σ(j) )

wj

]
,

n

∑
j=1

p(k)j

)∣∣∣∣∣k = 1, 2, · · · , l

}
, (26)

Similar operators are proposed in the interval-valued hesitant fuzzy environment of literature [28],
namely interval-valued hesitant fuzzy ordered weighted averaging (IVHFOWA) operator and
interval-valued hesitant fuzzy ordered weighted geometric (IVHFOWG) operator, as follows:

IVHFOWA(h̃1, h̃2, · · · , h̃n) =
n
⊕

j=1
(wj h̃σ(j))

=

{[
1−

n
∏
j=1

(1− γ̃L
σ(j))

wj , 1−
n
∏
j=1

(1− γ̃U
σ(j))

wj

]∣∣∣∣∣γ̃σ(1) ∈ h̃σ(1), γ̃σ(2) ∈ h̃σ(2), · · · , γ̃σ(n) ∈ h̃σ(n)

}
,

(27)

IVHFOWG(h̃1, h̃2, · · · , h̃n) =
n
⊗

j=1
(wj h̃σ(j))

=

{[
n
∏
j=1

(γ̃L
σ(j))

wj ,
n
∏
j=1

(γ̃U
σ(j))

wj

] ∣∣∣γ̃σ(1) ∈ h̃σ(1), γ̃σ(2) ∈ h̃σ(2), · · · , γ̃σ(n) ∈ h̃σ(n)

}
,

(28)

Case 2: When g(t) = − ln[(2− t)/t], the GPIVHFOWA operator and GPIVHFOWG operator are
transformed into probabilistic interval-valued hesitant fuzzy Einstein ordered weighted averaging
(PIVHFEOWA) operator and the probabilistic interval-valued hesitant fuzzy Einstein ordered weighted
geometric (PIVHFEOWG) operator, as follows:

PIVHFEOWA(h1, h2, · · · , hn)

=

{([
∏n

j=1 (1+γ
(k)−
σ(j) )

wj−∏n
j=1 (1−γ

(k)−
σ(j) )

wj

∏n
j=1 (1+γ

(k)−
σ(j) )

wj
+∏n

j=1 (1−γ
(k)−
σ(j) )

wj ,
∏n

j=1 (1+γ
(k)+
σ(j) )

wj−∏n
j=1 (1−γ

(k)+
σ(j) )

wj

∏n
j=1 (1+γ

(k)+
σ(j) )

wj
+∏n

j=1 (1−γ
(k)+
σ(j) )

wj

]
,

n
∑

j=1
p(k)j

)∣∣∣∣∣k = 1, 2, · · · , l

}
,

(29)

PIVHFEOWG(h1, h2, · · · , hn)

=



 2

n
∏
j=1

(
γ
(k)−
σ(j)

)wj

n
∏
j=1

(
2−γ

(k)−
σ(j)

)wj
+

n
∏
j=1

(
γ
(k)−
σ(j)

)wj
,

2
n
∏
j=1

(
γ
(k)+
σ(j)

)wj

n
∏
j=1

(
2−γ

(k)+
σ(j)

)wj
+

n
∏
j=1

(
γ
(k)+
σ(j)

)wj
,

n
∑

j=1
p(k)j

)∣∣∣∣∣k = 1, 2, · · · , l

}
,

(30)

To analyze the relationship among the PIVHFOWA operator, PIVHFOWG operator, PIVHFEOWA
operator and PIVHFEOWG operator, we introduce the following lemma:

Lemma 1. Ref. [32]. Let bj ≥ 0, µj ≥ 0, j = 1, 2, · · · , n and ∑n
j=1 µj = 1, then ∏n

j=1 b
µj
j ≤ ∑n

j=1 µjbj.

If b1 = b2 = · · · = bn, the equality is established.
Based on Lemma 1, we have the following result:
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Theorem 4. Let hj(j = 1, 2, · · · , n) be a set of PIVHFEs and w = (w1, w2, · · · , wn)
T be the weighted vector

of hj, with wj ≥ 0 and ∑n
j=1 wj = 1. As follows:

PIVHFOWG(h1, h2, · · · , hn) ≤ PIVHFEOWG(h1, h2, · · · , hn), (31)

If h1 = h2 = · · · = hn, the equality is established.

Proof. For any k = 1, 2, · · · , l, combining the Lemma 1, we have

n
∏
j=1

(
2− γ

(k)−
σ(j)

)wj
+

n
∏
j=1

(
γ
(k)−
σ(j)

)wj ≤
n
∑

j=1
wj

(
2− γ

(k)−
σ(j)

)wj
+

n
∑

j=1
wj

(
γ
(k)−
σ(j)

)wj
= 2, then

2
n
∏
j=1

(
γ
(k)−
σ(j)

)wj

n
∏
j=1

(
2−γ

(k)−
σ(j)

)wj
+

n
∏
j=1

(
γ
(k)−
σ(j)

)wj
≥

2
n
∏
j=1

(
γ
(k)−
σ(j)

)wj

2 =
n
∏
j=1

(
γ
(k)−
σ(j)

)wj
.

If γ
(1)−
σ(j) = γ

(2)−
σ(j) = · · · = γ

(l)−
σ(j) , the equality is established. Similarly, we have

2
n
∏
j=1

(
γ
(k)+
σ(j)

)wj

n
∏
j=1

(
2− γ

(k)+
σ(j)

)wj
+

n
∏
j=1

(
γ
(k)+
σ(j)

)wj
≥

2
n
∏
j=1

(
γ
(k)+
σ(j)

)wj

2
=

n

∏
j=1

(
γ
(k)+
σ(j)

)wj
. (32)

If γ
(1)+
σ(j) = γ

(2)+
σ(j) = · · · = γ

(l)+
σ(j) , the equality is established.

Then by Definition 2 and Definition 3, we know that the score function of
PIVHFOWG(h1, h2, · · · , hn) is less than the score function of PIVHFEOWG(h1, h2, · · · , hn), i.e.,

S(PIVHFOWG(h1, h2, · · · , hn) ≤ S(PIVHFEOWG(h1, h2, · · · , hn) ), (33)

The conclusion is that

PIVHFOWG(h1, h2, · · · , hn) ≤ PIVHFEOWG(h1, h2, · · · , hn) (34)

If h1 = h2 = · · · = hn, the equality is established, which completes the proof. �

To study the relationship between the PIVHFEOWA operator and the PIVHFEOWG operator, we
first introduce Lemma 2 as follows:

Lemma 2. Ref. [20]. Let aj ≥ 0, bj ≥ 0, cj ≥ 0, dj ≥ 0, j = 1, 2, · · · , n be four sets of non-negative numbers,
if aj − bj − cj − dj ≥ 0 for all j, then

n

∏
j=1

aj −
n

∏
j=1

bj −
n

∏
j=1

cj −
n

∏
j=1

dj ≥ 0 (35)

Theorem 5. Let hj(j = 1, 2, · · · , n) be a set of PIVHFEs and w = (w1, w2, · · · , wn)
T be the weighted vector

of hj, with wj ≥ 0 and ∑n
j=1 wj = 1. As follows:

PIVHFEOWG(h1, h2, · · · , hn) ≤ PIVHFEOWA(h1, h2, · · · , hn). (36)

If h1 = h2 = · · · = hn, the equality is established.
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Proof. For any k = 1, 2, · · · , l, combining the Lemma 1, we have

∏n
j=1 (1+γ

(k)−
σ(j) )

wj−∏n
j=1 (1−γ

(k)−
σ(j) )

wj

∏n
j=1 (1+γ

(k)−
σ(j) )

wj
+∏n

j=1 (1−γ
(k)−
σ(j) )

wj −
2∏n

j=1 (γ
(k)−
σ(j) )

wj

∏n
j=1 (2−γ

(k)−
σ(j) )

wj
+∏n

j=1 (γ
(k)−
σ(j) )

wj =

∏n
j=1 (2+γ

(k)−
σ(j) −(γ

(k)−
σ(j) )

2
)

wj
−∏n

j=1 (2−3γ
(k)−
σ(j) +(γ

(k)−
σ(j) )

2
)

wj
−∏n

j=1 (γ
(k)−
σ(j) +(γ

(k)−
σ(j) )

2
)

wj
−∏n

j=1 (
n√3γ

(k)−
σ(j) −

n√3(γ(k)−
σ(j) )

2
)

wj(
∏n

j=1 (1+γ
(k)−
σ(j) )

wj
+∏n

j=1 (1−γ
(k)−
σ(j) )

wj
)(

∏n
j=1 (2−γ

(k)−
σ(j) )

wj
+∏n

j=1 (γ
(k)−
σ(j) )

wj
) .

(37)

Since γ
(k)−
σ(j) ∈ [0, 1] for all k and j, then we have

2 + γ
(k)−
σ(j) − (γ

(k)−
σ(j) )

2
≥ 0, 2− 3γ

(k)−
σ(j) + (γ

(k)−
σ(j) )

2
≥ 0, γ

(k)−
σ(j) + (γ

(k)−
σ(j) )

2
≥ 0, n

√
3γ

(k)−
σ(j) −

n
√

3(γ(k)−
σ(j) )

2
≥ 0, j = 1, 2, · · · , n

and pointed out
(

2 + γ
(k)−
σ(j) − (γ

(k)−
σ(j) )

2
)
−
(

2− 3γ
(k)−
σ(j) + (γ

(k)−
σ(j) )

2
)
−
(

γ
(k)−
σ(j) + (γ

(k)−
σ(j) )

2
)
−
(

n
√

3γ
(k)−
σ(j) −

n
√

3(γ(k)−
σ(j) )

2
)
= γ

(k)−
σ(j) (3−

n
√

3)(1− γ
(k)−
σ(j) ) ≥ 0.

Combining the Lemma 2, we have

n
∏
j=1

(2 + γ
(k)−
σ(j) − (γ

(k)−
σ(j) )

2
)

wj
−

n
∏
j=1

(2− 3γ
(k)−
σ(j) + (γ

(k)−
σ(j) )

2
)

wj
−

n
∏
j=1

(γ
(k)−
σ(j) + (γ

(k)−
σ(j) )

2
)

wj
−

n
∏
j=1

( n
√

3γ
(k)−
σ(j) −

n
√

3(γ(k)−
σ(j) )

2
)

wj
≥ 0. (38)

∏n
j=1 (1 + γ

(k)−
σ(j) )

wj −∏n
j=1 (1− γ

(k)−
σ(j) )

wj

∏n
j=1 (1 + γ

(k)−
σ(j) )

wj
+ ∏n

j=1 (1− γ
(k)−
σ(j) )

wj
−

2∏n
j=1 (γ

(k)−
σ(j) )

wj

∏n
j=1 (2− γ

(k)−
σ(j) )

wj
+ ∏n

j=1 (γ
(k)−
σ(j) )

wj
≥ 0.

similarly, we have

∏n
j=1 (1 + γ

(k)+
σ(j) )

wj −∏n
j=1 (1− γ

(k)+
σ(j) )

wj

∏n
j=1 (1 + γ

(k)+
σ(j) )

wj
+ ∏n

j=1 (1− γ
(k)+
σ(j) )

wj
−

2∏n
j=1 (γ

(k)+
σ(j) )

wj

∏n
j=1 (2− γ

(k)+
σ(j) )

wj
+ ∏n

j=1 (γ
(k)+
σ(j) )

wj
≥ 0.

Therefore, our proof of Theorem 5 is over. �

Theorem 6. Let hj(j = 1, 2, · · · , n) be a set of PIVHFEs and w = (w1, w2, · · · , wn)
T be the weighted vector

of hj with wj ≥ 0 and ∑n
j=1 wj = 1. As follows:

PIVHFEOWA(h1, h2, · · · , hn) ≤ PIVHFOWA(h1, h2, · · · , hn). (39)

If h1 = h2 = · · · = hn, the equality is established.

Proof. For any k = 1, 2, · · · , l, combining the Lemma 1, we have

∏n
j=1 (1+γ

(k)−
σ(j) )

wj−∏n
j=1 (1−γ

(k)−
σ(j) )

wj

∏n
j=1 (1+γ

(k)−
σ(j) )

wj
+∏n

j=1 (1−γ
(k)−
σ(j) )

wj

= 1−
2∏n

j=1 (1−γ
(k)−
σ(j) )

wj

∏n
j=1 (1+γ

(k)−
σ(j) )

wj
+∏n

j=1 (1−γ
(k)−
σ(j) )

wj ≤ 1−
2∏n

j=1 (1−γ
(k)−
σ(j) )

wj

2 = 1−∏n
j=1 (1− γ

(k)−
σ(j) )

wj
,

similarly, we have

∏n
j=1 (1 + γ

(k)−
σ(j) )

wj −∏n
j=1 (1− γ

(k)−
σ(j) )

wj

∏n
j=1 (1 + γ

(k)−
σ(j) )

wj
+ ∏n

j=1 (1− γ
(k)−
σ(j) )

wj
≤ 1−

n

∏
j=1

(1− γ
(k)−
σ(j) )

wj
. (40)

Therefore, our proof of Theorem 6 is over. �
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Based on the above Theorems 4–6, we can obtain the size relations between the commonly used
information aggregation operators.

Theorem 7. Let hj(j = 1, 2, · · · , n) be a set of PIVHFEs and w = (w1, w2, · · · , wn)
T be the weighted vector

of hj, with wj ≥ 0 and ∑n
j=1 wj = 1. As follows:

PIVHFOWG(h1, h2, · · · , hn) ≤ PIVHFEOWG(h1, h2, · · · , hn) ≤ PIVHFEOWA(h1, h2, · · · , hn) ≤ PIVHFOWA(h1, h2, · · · , hn), (41)

with equality holds if and only if h1 = h2 = · · · = hn.

5. A Group Decision Making Model Based on the PIVHF Information Aggregation Method

This section constructs a new MAGDM method based on the proposed information aggregation
operators to solve MAGDM problems with probabilistic interval-valued hesitant fuzzy information.

Suppose that X = {x1, x2, · · · , xm} is a given set of alternatives, C = {C1, C2, · · · , Cn} is attribute
set, w = (w1, w2, · · · , wn)

T is attribute weighted vector with wj ≥ 0 and ∑n
j=1 wj = 1. A group of

experts are invited to make a comprehensive evaluation of the alternatives under the attribute set,
in order to select the most comprehensive scheme to make decisions. Secondly, in order to express the
decision information provided by the experts more comprehensively and accurately, the probabilistic
interval-valued hesitant fuzzy elements hij(i = 1, 2, · · · , m, j = 1, 2, · · · , n) will be used to express the
evaluation information of the experts under the attribute xi of the scheme Cj, and then a probabilistic
interval-valued hesitant fuzzy decision matrix is constructed.

In the following, the proposed probabilistic interval-valued hesitant fuzzy information
aggregation operators will be used to deal with the above MAGDM problems. The specific steps are
as follows:

Step 1: Standardized group decision information. If all the attributes are benefit type, the
decision matrix A should not be standardized; otherwise, the original matrix is normalized by the
following methods:

h̃ij = {
hij, Cj is bene f it type

hc
ij, Cj is cos t type

, i = 1, 2, · · · , m , j = 1, 2, · · · , n.

Step 2: Based on the obtained standard group decision matrix H̃ = (h̃ij)m×n, calculate the

comprehensive attribute information h̃i(i = 1, 2, · · · , m) of each alternative xi(i = 1, 2, · · · , m) using
the GPIVHFOWA operator:

h̃i = GPIVHFOWA(h̃i1, h̃i2, · · · , h̃in) =
n
⊕

j=1
wj h̃i,σ(j)

=

{[
f−1

(
n
∑

j=1
wj f (γ(k)−

i,σ(j))

)
, f−1

(
n
∑

j=1
wj f (γ(k)+

i,σ(j))

)]
,

n
∑

j=1
p(k)ij

)∣∣∣∣∣k = 1, 2, · · · , l

}
,

(42)

or using GPIVHFOWG operator:

h̃i = GPIVHFOWG(h1, h2, · · · , hn) =
n
⊗

j=1
h

wj
σ(j)

=

{[
g−1

(
n
∑

j=1
wjg(γ

(k)−
σ(j) )

)
, g−1

(
n
∑

j=1
wjg(γ

(k)+
σ(j) )

)]
,

n
∑

j=1
p(k)j

)∣∣∣∣∣k = 1, 2, · · · , l

}
,

(43)

Step 3: According to the calculation formula in Definition 5, the score function value S(h̃i)

and the deviation function value φ(h̃i) of each alternative comprehensive attribute information
h̃i(i = 1, 2, · · · , m) are calculated respectively.
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Step 4: Using the comparison rule of PIVHFE in Definitions 2 and 6, the alternatives are sorted
according to their advantages and disadvantages, and the best comprehensive performance scheme
is selected.

6. Illustrative Example

Nowadays, companies are paying more attention to supply chain management in order to achieve
success in the competitions and keep the customers satisfied. The supply chain is a very complex field
that involves a large number of participants. The goal of a complete supply chain is to find an optimal
solution from the point of view of all participants, which is a rather complicated task. Under the
pressure of global competition, enterprises are more inclined to improve the ability of supply chain
management to enhance the competitive advantage. The goal of the decision is to minimize the total
cost of the supply chain, and how to choose the right supplier is the key to minimize the total cost of
the supply chain. Therefore, supplier selection is of prime importance in a supply chain which has
a key role in determining the success or failure of a business [33–35].

In order to select suitable suppliers, a dealer’s investment department selects five suppliers
Xi(i = 1, 2, 3, 4, 5) in accordance with their own needs in the market. The Investment Department
invited a group of experts and scholars in related fields to evaluate the five suppliers in the following
four indicators, namely C1 : Quality, C2 : Rate of Return, C3 : Delivery ratio, C4 : Service and
Technology, and index weighted vector is w = (0.15, 0.3, 0.2, 0.35)T.

According to their own professional knowledge and experience, relevant experts give the
evaluation information hij(i = 1, 2, · · · , 5, j = 1, 2, 3, 4) of each supplier under each index. Furthermore,
the probabilistic interval-valued hesitant fuzzy decision matrix H = (hij)5×4 is shown in Table 1.

Table 1. Probabilistic interval-valued hesitant fuzzy decision matrix H = (hij)5×4.

C1 C2

X1 {([0.6,0.8],0.5),([0.4,0.6],0.2),([0.0,0.5],0.3)} {([0.6,0.8],0.4),([0.5,0.7],0.3),([0.2,0.4],0.3)}
X2 {([0.5,0.7],0.6),([0.4,0.6],0.1),([0.2,0.4],0.3)} {([0.4,0.6],0.5),([0.3,0.5],0.1),([0.1,0.3],0.4)}
X3 {([0.7,0.9],0.2),([0.4,0.6],0.4),([0.0,0.2],0.4)} {([0.6,0.8],0.3),([0.3,0.5],0.5),([0.2,0.4],0.2)}
X4 {([0.4,0.6],0.6),([0.3,0.5],0.2),([0.2,0.4],0.2)} {([0.4,0.6],0.4),([0.2,0.4],0.4),([0.0,0.2],0.2)}
X5 {([0.6,0.8],0.3),([0.2,0.4],0.4),([0.1,0.3],0.3)} {([0.7,0.9],0.6),([0.6,0.8],0.2),([0.3,0.5],0.2)}

C3 C4

X1 {([0.2,0.4],0.5),([0.1,0.3],0.4),([0.0,0.2],0.1)} {([0.7,0.9],0.3),([0.4,0.6],0.3),([0.2,0.4],0.4)}
X2 {([0.5,0.7],0.3),([0.4,0.6],0.5),([0.0,0.2],0.2)} {([0.7,0.9],0.6),([0.5,0.7],0.3),([0.0,0.2],0.1)}
X3 {([0.4,0.6],0.7),([0.1,0.3],0.2),([0.0,0.2],0.1)} {([0.7,0.9],0.4),([0.2,0.4],0.5),([0.1,0.3],0.1)}
X4 {([0.6,0.8],0.5),([0.5,0.7],0.2),([0.3,0.5],0.3)} {([0.5,0.7],0.5),([0.3,0.5],0.3),([0.2,0.4],0.2)}
X5 {([0.5,0.7],0.4),([0.4,0.6],0.4),([0.1,0.3],0.2)} {([0.7,0.9],0.5),([0.4,0.6],0.1),([0.2,0.4],0.4)}

Step 1: Since the four attribute indexes Cj(j = 1, 2, 3, 4) are all benefit indicators, it is not necessary
to standardize the original probabilistic interval-valued hesitant fuzzy decision matrix.

Step 2: The decision information of each supplier in the attribute index set is integrated by
using the GPIVHFOWA operator and the GPIVHFOWG operator (without generality, let additive
operator g(t) = − ln(t). That is, the PIVHFOWA operator and the PIVHFOWG operator, respectively,
which compute comprehensive attribute information of each supplier. The calculation results are
shown in Tables 2 and 3.
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Table 2. Comprehensive attribute values of each supplier are calculated with the probabilistic
interval-valued hesitant fuzzy ordered weighted averaging (PIVHFOWA) operator.

Suppliers Comprehensive Decision Attribute Values

X1 {([0.5845,0.8045],0.4250),([0.3840,0.5896],0.3000),([0.1350,0.3816],0.2750)}
X2 {([0.5584,0.7774],0.5000),([0.4104,0.6133],0.2500),([0.0630,0.2314],0.2500)}
X3 {([0.6243,0.8375],0.4000),([0.2463,0.4487],0.4000),([0.0986,0.2997],0.2000)}
X4 {([0.4809,0.6851],0.5000),([0.3188,0.5232],0.2750),([0.1672,0.3693],0.2250)}
X5 {([0.6531,0.8618],0.4500),([0.4453,0.6547],0.2750),([0.1991,0.4004],0.2750)}

Table 3. Comprehensive attribute values of each supplier are calculated with the probabilistic
interval-valued hesitant fuzzy ordered weighted geometric (PIVHFOWG) operator.

Suppliers Comprehensive Decision Attribute Values

X1 {([0.5083,0.7258],0.4250),([0.3241,0.5471],0.3000),([0.0000,0.3601],0.2750)}
X2 {([0.5261,0.7298],0.5000),([0.3967,0.5996],0.2500),([0.0000,0.2259],0.2500)}
X3 {([0.5976,0.8011],0.4000),([0.2182,0.4291],0.4000),([0.0000,0.2838],0.2000)}
X4 {([0.4690,0.6708],0.5000),([0.2942,0.5002],0.2750),([0.0000,0.3397],0.2250)}
X5 {([0.6395,0.8409],0.4500),([0.4071,0.6155],0.2750),([0.1772,0.3867],0.2750)}

Step 3: According to the Definition 5, the score function value of each supplier’s comprehensive
attribute information hi(i = 1, 2, 3, 4, 5) in Table 4 is calculated.

Table 4. Score functions of each supplier are calculated with different operators.

Operators X1 X2 X3 X4 X5

PIVHFOWA [0.1336,0.2079] [0.1325,0.1999] [0.1227,0.1915] [0.1219,0.1898] [0.1570,0.2260]
PIVHFOWG [0.1044,0.1905] [0.1207,0.1904] [0.1088,0.1829] [0.1051,0.1831] [0.1495,0.2180]
PIVHFEOWA [0.1313,0.2062] [0.1312,0.1989] [0.1215,0.1905] [0.1208,0.1888] [0.1560,0.2251]
PIVHFEOWG [0.1074,0.1938] [0.1218,0.1917] [0.1098,0.1842] [0.1057,0.1841] [0.1506,0.2192]

IVHFOWA [0.3678,0.5919] [0.3439,0.5407] [0.3231,0.5286] [0.3223,0.5259] [0.4325,0.6390]
IVHFOWG [0.2775,0.5443] [0.3076,0.5184] [0.2719,0.5047] [0.2544,0.5036] [0.4079,0.6144]

Step 4: The five suppliers are sorted according to the value of the score function. The greater
the score function value is, the better the supplier’s comprehensive condition is. The results of the
specific sorting are shown in Table 5. By using the PIVHFOWA operator and the PIVHFOWG operator,
the suppliers with optimal conditions are all X5.

Table 5. Ranking results of the five suppliers with different operators.

Operators Ranking Results

PIVHFOWA operator X5 � X1 � X2 � X3 � X4
PIVHFOWG operator X5 � X2 � X1 � X3 � X4

PIVHFEOWA operator X5 � X1 � X2 � X3 � X4
PIVHFEOWG operator X5 � X2 � X1 � X3 � X4

IVHFOWA operator X5 � X1 � X2 � X3 � X4
IVHFOWG operator X5 � X2 � X1 � X3 � X4

In order to explore the similarities and differences of decision results, we will use the PIVHFEOWA
operator and the PIVHFEOWG operator to deal with the above problems and get the score function
of each vendor’s attribute value, the calculation results are shown in Table 4. Then, according to the
value of the score function, five suppliers are sorted, and the results are shown in Table 5. As shown
in Table 5, after using the PIVHFEOWA operator and the PIVHFEOWG operator for information
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aggregation, the suppliers with the best comprehensive performance are X5. Therefore, the results
obtained by using the four operators proposed in this paper are the same, which shows that the
generalized probabilistic hesitant fuzzy information aggregation operators proposed in this paper has
inherent consistency.

In order to illustrate the rationality and reliability of multi attribute group decision making
method in this paper, the interval-valued hesitant fuzzy ordered weighted averaging (IVHFOWA)
operator and interval hesitant fuzzy ordered weighted geometric (IVHFOWG) operator (Equations (27)
and (28)) are compared and analyzed in [28]. Using the method of [28] to deal with the above supplier
selection problem, the steps are as follows:

• Step 1’: Same as step 1.
• Step 2’: Based on the original decision matrix H = (hij)5×4, the comprehensive attribute values

hi(i = 1, 2, 3, 4, 5) of each supplier are calculated by using Equations (27) and (28). Considering the
limitation of the length of the paper and the elements in hi can reach up to 81, then we are not list
the comprehensive attribute values h1 in details.

• Step 3’: Compute the score functions (Definition 3) S(hi)(i = 1, 2, 3, 4, 5) of the comprehensive
IVHFEs, which are shown in Table 4.

• Step 4’: According to the value of the score function, five suppliers are sorted, and the results are
shown in Table 5. The calculation results show that the supplier with the best comprehensive
performance is X5.

From the above analysis, we can see that the proposed method in this article has the same result
with that of Chen et al. [28]. That is, the optimal selection is X5, which illustrates the MAGDM method
in this paper is reasonable. Although the ranking of the five selections is slightly different, the worst
selection is X4 with different operators. Besides, the MAGDM model in this paper is based on a variety
of aggregation operators, which can reflect different decision results. Using the MAGDM model in this
paper, decision makers can choose different information aggregation operators with their subjective
attitudes. Therefore, the method proposed in this paper is convenient. Furthermore, compared with
the method developed by Chen et al. [28], we find that our proposed method has some advantages:

(1) Probabilistic interval-valued hesitant fuzzy elements can not only represent all possible decision
information, but also reflect the importance of each decision information.

(2) Comparing the numbers of interval-valued hesitant fuzzy elements, it is found that the decision
making process of the information aggregation proposed by our method is more simplified and
convenient than that of Chen et al. [28].

(3) According the overall results of PIVHFEs derived by the PIVHFOWA operator, the PIVHFOWG
operator, the PIVHFEOWA operator and the PIVHFEOWG operator, it is found that the
relationship among these probabilistic interval-valued hesitant fuzzy aggregation operators
are consistent with the Theorem 7.

In fact, the PIVHFOWA operator and the PIVHFEOWA operator pay more attention to the
influence of all attribute information, while the PIVHFOWG operator and the PIVHFEOWG operator
reflect the importance of single attribute information. Decision makers can choose aggregation
operators according to their subjective attitudes.

7. Conclusions

The aggregation operators proposed in this paper have shown some advantages over the
IVHFOWA operator and the IVHFOWG operator in reducing the loss of decision information.
In this paper, the main contribution is to put forward a method of probabilistic interval-valued
hesitant fuzzy information aggregation which combines the idea of Archimedes norm. Using the novel
method, the problem of information loss can be solved more effectively in practical MAGDM problems.
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In addition, the integration of probability makes decision results more accurate. Taking supplier
selection as an example, this paper illustrates the feasibility and effectiveness of the proposed method.

This paper only considers the equal weight of experts in the process of group decision making,
but needs further study for unequal weights. In addition, there are four different forms in Archimedes
norm, such as Algebraic, Einstein, Hamacher and Frank t-conorms and t-norms. But only two of them
are selected in this paper, and the other two forms can be discussed in the future study.
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