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Abstract: With the interconnection between large power grids, the issue of security and stability has
become increasingly prominent. At present, data-driven power system adaptive transient stability
assessment methods have achieved excellent performances by balancing speed and accuracy, but the
complicated construction and parameters are difficult to obtain. This paper proposes a stacked-GRU
(Gated Recurrent Unit)-based transient stability intelligent assessment method, which builds a
stacked-GRU model based on time-dependent parameter sharing and spatial stacking. By using the
time series data after power system failure, the offline training is performed to obtain the optimal
parameters of stacked-GRU. When the application is online, it is assessed by framework of confidence.
Basing on New England power system, the performance of proposed adaptive transient stability
assessment method is investigated. Simulation results show that the proposed model realizes reliable
and accurate assessment of transient stability and it has the advantages of short assessment time with
less complex model structure to leave time for emergency control.

Keywords: data-driven; adaptive transient stability assessment; stacked-GRU; time series; intelligent
assessment system

1. Introduction

With the development of the economy, load demand is increasing, and the power system is getting
closer to the transmission capacity limit. In addition, the pace of nationwide networking is gradually
advancing, the security and stability characteristics of the power grid are increasingly complex, and
the risk to get an unstable power system after a fault is higher and higher [1], so quickly and accurately
determining the stability of the power system is an urgent problem to be solved to allow for the safe
operation of the power grid.

At present, the time domain simulation [2], energy function method [3,4], machine learning
method [5,6], and dynamic security domain [7] are studied in the research of power system transient
stability assessment (TSA) methods. The time domain simulation method and the energy function
method still have great limitations after many years of development and have not effectively solved the
TSA problem; with the breakthrough of machine learning in image processing, speech processing, and
other fields [8], TSA based on data-driven methods has begun to attract the attention of many scholars.
The use of machine learning methods for TSA is also known as an intelligent system (IS) [9–11],
IS can find the relationship between power system features and stability; IS has the advantages of fast
assessment speed, strong generalization ability, and ability to estimate dynamic security domains for
control decisions compared with the time domain simulation and energy functional methods [9].
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In order to achieve rapid TSA, a large number of machine learning algorithms such as the
BP neural network [12], support vector machine [13,14], decision tree [15], random forest [16], and
K-nearest neighbor [17] are applied in intelligent systems, such algorithms mainly use the key features
of the power system after feature selection to establish functional relationship with transient stability.
Once the fault is cleared, the transient stability assessment can be performed, but there is no guarantee
of 100% accuracy of assessment. Therefore, an adaptive assessment method [9,18] has emerged in
recent years. By determining the time window of the fixed length after the fault, m data sampling
points in the time window is used for training; the assessment is performed in chronological order
until the assessment confidence meets the requirements. Such approaches guarantee the correctness of
assessment, but the assessment time is long and the construction of the model is very cumbersome:
m data sampling point means that m classifiers need to be trained. Although the authors of a past
paper have [18] considered the influence of historical information on the current time assessment in
the time series, it reduces the assessment time to a certain extent, but still needs to train a large number
of classifiers.

Aiming at solving the problems existing in the above adaptive assessment method, the main
contribution of this paper is to proposes a stacked-GRU based intelligent TSA model, which realizes
the parameter sharing at each moment through stacked-GRU and utilizes the time series data after the
power system failure to train with less complex model structure. The offline training is performed
to obtain the optimal parameters. When the application is online, it is judged whether the current
assessment result satisfies the confidence level at the time of fault clearing, otherwise measurements
will continue to be provided to the next moment for assessment until the confidence level is satisfied.

On the one hand, it can perform TSA in the current moment, and on the other hand, can provide
historical information for the assessment at the next moment when the assessment result at the current
moment is unreliable, so there is no need to train multiple classifiers, and the problem of cumbersome
training is solved. In addition, the method draws on the idea of deep learning [19] to use “stacking” to
learn representational features from the input can further improve the accuracy of the classifier.

The remainder of the paper is organized as follows. Section 2 introduces the structure of the
proposed stacked-GRU. Section 3 proposes the transient stability intelligent assessment method.
Simulations and analysis are carried out in Section 4. Finally, a conclusion is drawn in Section 5.

2. Methodology

2.1. Gated Recurrent Unit

As shown in Figure 1 [20], GRU (Gated Recurrent Unit) [21] is a kind of recurrent neural network
(RNN) used to solve the problem of gradient explosion and gradient disappearance [22]. Traditional
neural networks such as the BP neural network [23] and convolutional neural networks [19] are not
good at processing time series information, and GRU, as a variant of RNN, can combine historical
information with current time to predict further information, so it has been widely used in speech
recognition, language modeling, translation, picture description, and other issues [24].
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The forward propagation of the GRU unit is shown in the Equations (1)–(5), where “·” is matrix
multiplication and “�” represents matrix wise element multiplication:

The GRU’s update gate zt and reset gate rt are used to control the direction of the data stream at
time t. The calculation method is as follows:

zt = σ(Wz·[ht−1, xt] (1)

rt = σ(Wr·[ht−1, xt]) (2)

where xt is the input at time t, Wz is the weight of update gate, Wr is the weight of reset gate, and ht−1

is the output of hidden layer.
When calculating h̃t which is the output of candidate hidden layer at the time t, the information

of the historical time which means the output of hidden layer is retained, and the historical time
information is controlled by adjusting the value of rt, as shown by:

h̃t = tanh(W·[rt � ht−1, xt] (3)

where tan h(x) = ex−e−x

ex+e−x .
Finally, by using zt to control the information of the hidden layer that how much is forgotten and

the how much information in the candidate hidden layer is retained, the final calculated output of
hidden layer is as shown in the equation:

ht = zt � ht−1 + (1 − zt)� h̃t (4)

Then the output of GRU is:
ỹlast = σ(Wohlast + bo) (5)

where ỹlast is the output of last output layer in the time series, Wo is weight of output layer, and bo is
bias of output layer.

If the reset gate is close to 0, then the output of hidden layer at the moment will not be preserved,
and the GRU unit will discard some historical information unrelated to the future. The update gate
determines how much information the hidden layer at time t − 1 needs to be saved in the output
of hidden layer at time t. If the element is close to 1, the corresponding information of the hidden
layer at the moment will be copied to the time t. At this time, the update gate unit with long distance
dependence is active, therefore long-distance information can be learned; if the element is close to 0,
it is equivalent to the standard RNN, and the short-distance information can be processed. At this
time, the update gate unit with short-distance dependence is active. Under this mechanism, historical
information can flexibly help predict future information.

When training the model, the GRU uses the backpropagation through time (BPTT) [25] for
network optimization. The target loss function to optimize is:

L =
N

∑
i

y(i)ln(ỹ(i)last) (6)

In the formula, y(i) is the real label of i-th sample, and ỹ(i)last is predicted label at the last moment of
i-th sample, and N is the total number of samples.

2.2. Stacked-GRU

GRU is a shallow model with weak capability of feature extraction, and the stacked-GRU
is composed of several GRU units, as shown in Figure 2. Specifically, the input of first layer in
stacked-GRU is the original data, and the formulas is the same as the GRU unit in Section 2.1.
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Among them, the superscript represents the i-th GRU unit, and the subscript represents the
moment t. The hidden layer of the last layer in GRU unit adds a layer of sigmoid as the classifier to
provide output:

ỹlast = σ(Wn
o hn

o + bn
o ) (8)

In the formula, ỹ(i)last is predicted label at the last moment of i-th sample, Wn
o is weight of output

layer, and bn
o is the bias of the n-th GRU unit. The training method of stacked-GRU and the optimized

objective function are the same as a single GRU. The objective function is:

L =
N

∑
i

y(i)ln(ỹ(i)last) (9)

On the one hand, such a deep structure can efficiently discover high-level feature from limited data.
On the other hand, it can more fully utilize information in the time series, which can effectively improve
the performance of the classifier. In addition, the stacked-GRU model parameters are independent of
time, so the trade-off between time and precision in reference [18] can be avoided.

3. Transient Stability Intelligent Assessment Method

3.1. Offline Training

In order to train model effectively, the angle of generators, active power of generators, reactive
output of generators, the bus amplitude, and phase, active, and reactive of line, active and reactive of
load are selected as input features. The total dimension of the input features is 368. The feature vectors
are denoted as xt, it represents t-th sampling point in the time series after fault-clearing, then the input
of model can be denoted as X = [x1, x2, · · · , xt, · · · , xT ], T is the length of timing observation window
selected after the fault is cleared.
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In offline training, time domain simulation is used to generate a fixed time length fault sequence
data set under various operating conditions, and the labels are set as a corresponding stable state,
and the stable state is defined as:

y =

{
1 η < 0

0 η ≥ 0
(10)

where η = 360−δmax
360+δmax

[18], δmax is the maximum value of the rotor angle deviation between any two
generators in the power system at the end of the time domain simulation, “1” represents instability
and “0” represents stability. The dataset is used as input to train the stacked-GRU model. The training
model is shown in Figure 2, and the model optimal parameters are obtained by grid search.

3.2. Online Application

In the online application, the confidence framework is used to evaluate the feature data obtained
in the power system. Input xt at the time t and specify:

assessment result =


stable ỹt ⊆ [0, α]

unstable ỹt ⊆ [1 − α]

unknown others
(11)

Among them, ỹt is the output of the time t. If the intelligent method assessment result is in the
confidence interval, then the assessment result is considered to be reliable; otherwise, the input is
further evaluated until the assessment time reaches the maximum size of the observation window;
if the assessment time exceeds the length of the observation window, the transient instability is
considered and emergent control measures are taken. The model performance measurement is defined
as the average response time (ART) [9]:

ART =
∑N

i C(Xi)

N
(12)

where C(Xi) is the time that sample Xi is assessed, so the smaller the value of ART, the faster the model
is assessed. A schematic diagram of the transient stability intelligent assessment model is shown in
Figure 3. It can be found that although the model structure is roughly the same, the model proposed in
this paper is more flexible than the model proposed in reference [18] because of the form of parameter
sharing at each moment.
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4. Case Studies

4.1. Data Generation

All simulations are implemented on a laptop with Intel® Core(TM) i5-7300HQ CPU@2.50GHz,
8 GB memory and 4 GB NVIDIA GEFORCE GTX 1050 ti GPU, and the intelligent assessment model is
built on the deep learning framework Tensorflow1.4 [26].
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As shown in Figure 4, a New England power system [27] including 10 generators and 39 buses
with frequency of 60 Hz is built in the simulation. The time domain simulation is carried out
using the software of PSS/E (Power System Simulator/Engineering, Siemens PTI, Berlin, Germany).
The GENCLS models and ZIP models are used to describe the generators and the loads respectively.
The simulation step size was set to 0.0083 s. In order to construct a relatively complete sample space,
the operating conditions of the power system includes 70%, 75%, 80%, 85%, 90% ..., 115%, and 120% of
the benchmark operation. The generation level is changed according to the load level. Power flow
calculation is performed in these 11 modes of operation. If the power flow converges, a three-phase
ground short circuit fault is set at all bus bars and at 20%, 40%, 60%, and 80% of the line end. The fault
clearing time is 0.1 s and 0.3 s, and the simulation duration is 20 s. At the end of the simulation, if rotor
angle deviation between the any two generators exceeds 360◦, it is determined to be unstable, transient
stable and unstable cases are shown in Figure 5a,b, respectively. Finally, a total of 3848 valid samples
were obtained, of which 2693 samples were used as training sets and the remaining 1155 samples were
used as test sets. The first 20 cycles (40 sampling points) of the training set were input into the model
for training and the model was validated with the test set.
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4.2. Discussion

4.2.1. Different Layers of Stacked-GRU Performance Assessment

According to the deep learning theory [28], the more layers of the model, the stronger the ability to
approximate arbitrary functions, but it also causes over-fitting problems at the same time considering
that the data in a 10-machine and 39-buses power system. The amount of large data that can be
processed compared to deep learning is not huge; in addition, the more model layers, the larger
the computational resources required. Therefore, according to the amount of data utilized and the
hardware platform, it can be determined that the number of layers required by the model is not very
large. In order to determine the number of layers of the model stacked-GRU, the grid search method
is used to adjust the parameters. The number of hidden layer neurons in each layer of GRU is set to
100, and the number of model training epochs is 5000, a dropout layer after each layer of GRU [29] is
added to avoid over-fitting problems. Generally speaking, the critical stable area of the power system
is not large, so the value of α is also small. But the value of α is too small to cause misclassification,
and the number of uncertain samples will be too large, so a grid search should be implemented to find
the best α. The test results are shown in Figure 6.
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It can be seen from the Figure 6a that ART obtains the minimum value of 1.08 when the number
of layers of stacked-GRU is three, which indicates that the more layers, the faster the assessment of
the model. However, too many layers will lead to a decrease in accuracy due to the limitation of the
amount of data. Therefore, the number of layers of the model should be selected according to the
needs of the system in practical applications. In this paper, the number of stacked-GRU layers is set
to three.

δ sensitivity analysis is shown in Figure 6b when δ gets larger, ART become smaller, however, the
accuracy gets lower. This is because a larger δ means less unknown samples, which leads to higher
misjudgment rate. Accuracy can be as high as 100% when δ = 0.45, therefore, to implement reliable
and quick assessment, the value of δ is set to 0.45.

4.2.2. Performance Comparison of Different Models

Compared with long-short term memory (LSTM) [20], GRU replaces LSTM’s forget gate and
input gate with update gate which is equivalent to combining cell state and hidden layer state. Fewer
parameters and simpler structure make it easier to train GRU. Experiments show that the effect of
GRU is slightly stronger than or equivalent to LSTM on most tasks. The transient stability adaptive
assessment method constructed by using 20 LSTM classifiers in reference [18] requires more training



Algorithms 2018, 11, 121 8 of 10

parameters than 10 times the amount of model parameters built by parameter sharing in 3-layers
stacked-GRU, so the computational resources of LSTM required are very large. Therefore, the model
proposed in this paper adopts stacked-GRU.

The intelligent assessment process of single-layer GRU, 3-layer stacked-GRU, and LSTM is
compared in order to further verify that the proposed model has the advantage of high accuracy and
lower model complexity. The test conditions of the three models are set to be equal to Section 4.2.1,
the assessment results are shown in Figure 7.
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Figure 7. Comparison of different model performance.

As can be seen from the Figure 7 and Table 1, the GRU and LSTM have the same assessment
performance. The three models can correctly identify all the test sets in the fourth round of assessment,
and the stacked-GRU has reached nearly 100% assessment in the first round of assessment and it’s
assessment result is ART = 1.08, it’s assessment speed is greatly improved compared to that in a past
paper [18], ART = 1.448. Meanwhile, the simulation also shows that stacked-GRU has stronger feature
extraction capability than GRU and LSTM which results in achieving shorter assessment time.

Table 1. Assessment process of stacked-GRU.

Time Number of Unknown Samples Number of Known Samples Accuracy

1 1155 1123 100%
2 32 1 100%
3 31 30 100%
4 1 0 100%

5. Conclusions

In this paper, a stacked-GRU-based transient stability intelligent assessment method was proposed.
By using the parameter sharing method in time, the stacked-GRU classification model was trained by
using the transient time series data after the power system failure. An intelligent assessment method
was constructed and each sample was evaluated in chronological order using a confidence framework.
The simulation results of the New England power system show that some conclusions can be drawn
as follows:

(1) With the stacking of several GRU units, stacked-GRU has strong ability to extract higher
feature from data to get state-of-art effect.
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(2) The proposed model consists of less parameters compared with traditional adaptive assessment
methods, it does not need to construct so many classifiers. As a result, the model is easy to train
and use.

(3) The proposed model is a good way to do reliable and accurate assessment of transient stability,
and it realizes shorter response time to leave enough time for emergency control.

However, the real power system has the problem that the length of the time series data is not
completely equal and the instability is unbalanced, which is the focus of our future work.
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