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Abstract: In this article, we propose a succinct data structure of zero-suppressed binary decision
diagrams (ZDDs). A ZDD represents sets of combinations efficiently and we can perform various set
operations on the ZDD without explicitly extracting combinations. Thanks to these features, ZDDs
have been applied to web information retrieval, information integration, and data mining. However,
to support rich manipulation of sets of combinations and update ZDDs in the future, ZDDs need
too much space, which means that there is still room to be compressed. The paper introduces a new
succinct data structure, called DenseZDD, for further compressing a ZDD when we do not need to
conduct set operations on the ZDD but want to examine whether a given set is included in the family
represented by the ZDD, and count the number of elements in the family. We also propose a hybrid
method, which combines DenseZDDs with ordinary ZDDs. By numerical experiments, we show that
the sizes of our data structures are three times smaller than those of ordinary ZDDs, and membership
operations and random sampling on DenseZDDs are about ten times and three times faster than
those on ordinary ZDDs for some datasets, respectively.

Keywords: zero-suppressed binary decision diagram; succinct data structure; set family

1. Introduction

A Binary Decision Diagram (BDD) [1] is a graph-based representation of a Boolean function,
widely used in very-large-scale integration (VLSI) logic design, verification, and so on. A BDD is
regarded as a compressed representation that is generated by reducing a binary decision tree, which
represents a decision-making process such that each inner node means an assignment of a 0/1-value
to an input variable of a Boolean function and the terminal nodes mean its output values (0 or 1) of the
function. By fixing the order of the input variables (i.e., the order of assignments of variables), deleting
all nodes whose two children are identical, and merging all equivalent nodes (having the same variable
and the same children), we obtain a minimal and canonical form of a given Boolean function.

Although various unique canonical representations of Boolean functions such as conjunctive
normal form (CNF), disjunctive normal form (DNF), and truth tables have been proposed, BDDs are
often smaller than them for many classes of Boolean functions. Moreover, BDDs have the following
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features: (i) multiple functions are stored by sharing common substructures of BDDs compactly; and (ii)
fast logical operations of Boolean functions such as AND and OR are executed efficiently.

A Zero-suppressed Binary Decision Diagram (ZDD) [2] is a variant of traditional BDDs, used to
manipulate families of sets. As well as BDDs, ZDDs have the feature that we can efficiently perform
set operations of them such as Union and Intersection. Thanks to the feature of ZDDs, we can treat
combinatorial item sets as a form of a compressed expression without extracting them one by one.
For example, we can implicitly enumerate combinatorial item sets frequently appearing in given
data [3].

Although the size of a ZDD is exponentially smaller than the cardinality of the family of sets
represented by the ZDD in many cases, it may be still too large to be stored into a memory of a single
server computer. Since a ZDD is a directed acyclic graph whose nodes have a label representing
a variable and two outgoing arcs, we use multiple pointers to represent the structure of a ZDD,
which is unacceptable for many applications including frequent item set mining [3,4].

We classify operations on ZDDs into two types: dynamic and static. A dynamic operation is one
that constructs another ZDD when (one or more) ZDD is given. For example, given two families of
sets as two ZDDs, we can efficiently construct the ZDD representing the union of the two families [5].
On the other hand, a static operation is one that computes a value related to a given ZDD but does not
change the ZDD itself. For example, there are cases where we just want to know whether a certain
set is included in the family or not, and we want to conduct random sampling, that is, randomly pick
a set from the family. To support dynamic operations, we need to store the structure of ZDDs as
it is, which increases the size of the representation of ZDDs. Therefore, there is a possibility that
we can significantly reduce the space to store ZDDs by restricting to only static operations. To the
best of the authors’ knowledge, there has been no work on representations of ZDDs supporting only
static operations.

This paper proposes a succinct data structure of ZDDs, which we call DenseZDDs, which support
only static operations. The size of ZDDs in our representation is much smaller than an existing
representation [6], which fully supports dynamic operations. Moreover, DenseZDD supports much
faster membership operations than the representation of [6]. Experimental results show that the sizes
of our data structures are three times smaller than those of ordinary ZDDs, and membership operations
and random sampling on DenseZDDs are about ten times and three times faster than those on ordinary
ZDDs for some datasets, respectively.

This paper is an extended version of the paper published at the 13th International Symposium on
Experimental Algorithms held in 2014 [7]. The main updates of this paper from the previous version
are as follows: (i) we propose algorithms for counting and fast random sampling on DenseZDD; (ii) we
propose a static representation of a variant of ZDDs called Sequence BDD; and (iii) we conduct more
experiments on new large data sets using algorithms (including new proposed ones). Note that our
technique can be directly applied to reduce the size of traditional BDDs as well as ZDDs.

The organization of the paper is as follows. In Section 2, we introduce our notation and data
structures used throughout this paper. In Section 3, we propose our data structure DenseZDD and
show the algorithms to convert a given ZDD to a DenseZDD. In Section 4, we show how to execute
ZDD operations on a DenseZDD. In Section 5, we study the space complexities of DenseZDD and
the time complexities of operations discussed in Section 4. In Section 6, we show how to implement
dynamic operations on a DenseZDD. In Section 7, we show how to apply our technique to decision
diagrams for sets of strings. In Section 8, we show results of experiments for real and artificial data to
evaluate construction time, search time and compactness of DenseZDDs.

2. Preliminaries

Let e1, . . . , en be items such that e1 < e2 < · · · < en. Throughout this paper, we denote the set of
all n items as Un = {e1, . . . , en}. For an itemset S = {a1, . . . , ac} (⊆ Un), c ≥ 0, we denote the size of S
by |S| = c. The empty set is denoted by ∅. A family is a subset of the power set of all items. A finite
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family F of sets is referred to as a set family (In the original ZDD paper by Minato [2], a set is called
a combination, and a set family is called a combinatorial set.). The join of families F1 and F2 is defined
as F1 t F2 = { S1 ∪ S2 | S1 ∈ F1, S2 ∈ F2 }.

2.1. Succinct Data Structures for Rank/Select

Let B be a binary vector of length u, that is, B[i] ∈ {0, 1} for any 0 ≤ i < u. The rank value
rankc(B, i) is defined as the number of c’s in B[0..i], and the select value selectc(B, j) is the position of
j-th c (j ≥ 1) in B from the left, that is, the minimum k such that the cardinality of { 0 ≤ i ≤ k | B[i] = c }
is j. Note that rankc(B, selectc(B, j)) = j holds if j ≤ rankc(B, u− 1), and then the number of c’s in
B is j. The predecessor predc(B, i) is defined as the position j of the rightmost c = B[j] in B[0..i],
that is, predc(B, i) := maxj{ 0 ≤ j ≤ i | B[j] = c }. The predecessor is computed by predc(B, i) =

selectc(B, rankc(B, i)).
The Fully Indexable Dictionary (FID) is a data structure for computing rank and select on

binary vectors [8].

Proposition 1 (Raman et al. [8]). For a binary vector of length u with n ones, its FID uses dlog (u
n)e +

O(u log log u
log u ) bits of space and computes rankc(B, i) and selectc(B, i) in constant time on the Ω(log u)-bit

word RAM.

This data structure uses asymptotically optimal space because any data structure for storing the
vector uses dlog (u

n)e bits in the worst case. Such a data structure is called a succinct data structure.

2.2. Succinct Data Structures for Trees

An ordered tree is a rooted unlabeled tree such that children of each node have some order.
A succinct data structure for an ordered tree with n nodes uses 2n + o(n) bits of space and supports
various operations on the tree such as finding the parent or the i-th child, computing the depth or the
preorder of a node, and so on, in constant time [9]. An ordered tree with n nodes is represented by
a string of length 2n, called a balanced parentheses sequence (BP), defined by a depth-first traversal of
the tree in the following way: starting from the root, we write an open parenthesis ‘(’ if we arrive at
a node from above, and a close parenthesis ‘)’ if we leave from a node upward. For example, imagine
the complete binary tree that consists of three branching nodes and four leaves. When we traverse
the complete binary tree in the depth-first manner, the sequence of the transition is “down, down, up,
down, up, up, down, down, up, down, up, up”. Then, we can encode the tree as “(, (, ), (, ), ), (, (, ), (, ),
)” by replacing ‘down’ with ‘(’ and ‘up’ with ‘)’, respectively.

In this paper, we use the following operations. Let P denote the BP sequence of a tree. A node in
the tree is identified with the position of the open parenthesis in P representing the node:

• depth(P, i): the depth of the node at position i. (The depth of a root is 0.)
• preorder(P, i): the preorder of the node at position i.
• level_ancestor(P, i, d): the position of the ancestor with depth d of the node at position i.
• parent(P, i): the position of the parent of the node at position i (identical to level_ancestor(P, i,

depth(P, i)− 1)).
• degree(P, i): the number of children of the node at position i.
• child(P, i, d): the d-th child of the node at position i.

The operations take constant time.
A brief overview of the data structure is the following. The BP sequence is partitioned into

equal-length blocks. The blocks are stored in leaves of a rooted tree called range min-max tree.
In each leaf of the range min-max tree, we store the maximum and the minimum values of node
depths in the corresponding block. In each internal node, we store the maximum and the minimum
of values stored in children of the node. By using this range min-max tree, all tree operations are
implemented efficiently.
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2.3. Zero-Suppressed Binary Decision Diagrams

A zero-suppressed binary decision diagram (ZDD) [2] is a variant of a binary decision diagram [1],
customized to manipulate finite families of sets. A ZDD is a directed acyclic graph satisfying the
following. A ZDD has two types of nodes, terminal and nonterminal nodes. A terminal node v has as
an attribute a value value(v) ∈ {0, 1}, indicating whether it is the 0-terminal node or the 1-terminal node,
denoted by 0 and 1, respectively. A nonterminal node v has as attributes an integer index(v) ∈ {1, . . . , n}
called the index, and two children zero(v) and one(v), called the 0-child and 1-child. The edge from
a nonterminal to its 0-child (1-child resp.) is called the 0-edge (1-edge resp.). In the figures in the paper,
terminal and nonterminal nodes are drawn as squares and circles, respectively, and 0-edges and 1-edges
are drawn as dotted and solid arrows, respectively. We define triple(v) = 〈index(v), zero(v), one(v)〉,
called the attribute triple of v. For any nonterminal node v, index(v) is larger than the indices of its
children (In ordinary BDD or ZDD papers, the indices are in ascending order from roots to terminals.
For convenience, we employ the opposite ordering in this paper).We define the size of a ZDD G as the
number of its nonterminals and denote it by |G|.

Definition 1 (set family represented by a ZDD). A ZDD G = (V, E) rooted at a node v ∈ V represents
a finite family of sets F(v) on Un defined recursively as follows: (1) If v is a terminal node: F(v) = {∅} if
value(v) = 1, and F(v) = ∅ if value(v) = 0. (2) If v is a nonterminal node, then F(v) is the finite family of
sets F(v) = ({{eindex(v)}} t F(one(v))) ∪ F(zero(v)).

The example in Figure 1 represents a family of sets F = { {6, 5, 4, 3}, {6, 5, 4, 2}, {6, 5, 4, 1}, {6, 5, 4},
{6, 5, 2}, {6, 5, 1}, {6, 5}, {6, 4, 3, 2}, {6, 4, 3, 1}, {6, 4, 2, 1}, {6, 2, 1}, {3, 2, 1} }. A set S = {c1, . . . , c`}
describes a path in the graph G starting from the root in the following way: At each nonterminal
node with label ci, the path continues to the 0-child if ci 6∈ S and to the 1-child if ci ∈ S, and the path
eventually reaches the 1-terminal (0-terminal resp.), indicating that S is accepted (rejected resp).

6

5

3

44

1

F

2

1

0

22

1

3 3

Figure 1. Example of ZDD.

We employ the following two reduction rules, shown in Figure 2, to compress ZDDs: (a) Zero-
suppress rule: A nonterminal node whose 1-child is the 0-terminal node is deleted; (b) sharing rule:
two or more nonterminal nodes having the same attribute triple are merged. By applying the above
rules, we can reduce the size of the graph without changing its semantics. If we apply the two reduction
rules as much as possible, then we obtain the canonical form for a given family of sets. We implement
the sharing rule by using a hash table such that a key is an attribute triple and the value of the key
is the pointer to the node corresponding to the attribute triple. When we want to create a new node
with an attribute triple 〈i, v0, v1〉, we check whether such a node has already existed or not. If such
a node exists, we do not create a new node and use the node. Otherwise, we create a new node v
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with 〈i, v0, v1〉 and we register it to the hash table. After that, V and E are updated to V ∪ {v} and
E ∪ {(v, v0), (v, v1)}, respectively.

Sharing rule

0 1

Z0

i

Z1

i
01

1

Z0 Z1

i

0

merge

1

Z0

i

0

0 Z0

delete

Zero-suppress rule

Figure 2. Reduction rules of ZDDs.

We can further reduce the size of ZDDs by using a type of attributed edges [2,10], named 0-element
edges. A ZDD with 0-element edges is defined as follows. A ZDD with 0-element edges has the same
property as an ordinary ZDD, except that it does not have the 1-terminal and that the 1-edge of each
nonterminal node has as an attribute a one bit flag, called ∅-flag. The ∅-flag of the 1-edge of each
nonterminal node v is denoted by empflag(v), whose value is 0 or 1.

Definition 2 (set family represented by a ZDD with 0-element edges). A ZDD with 0-element edges
G = (V, E) rooted at a node v ∈ V represents a finite family of sets F(v) on Un defined recursively as
follows: (1) If v is the terminal node (note that this means value(v) = 0): F(v) = ∅; (2) If v is a nonterminal
node and empflag(v) = 1, then F(v) is the finite family of sets F(v) = ({{eindex(v)}} t (F(one(v)) ∪
{∅}) ∪ F(zero(v)); (3) If v is a nonterminal node and empflag(v) = 0, then F(v) is the finite family of sets
F(v) = ({{eindex(v)}} t F(one(v))) ∪ F(zero(v)).

In the figures in this paper, ∅-flags are drawn as small circles at the starting points of 1-edges.
Throughout this paper, we always use ZDDs with 0-element edges and simply call it ZDDs. We always
denote by m the number of nodes of a given ZDD. An example of a ZDD with 0-element edges is shown
in Figure 3. When we use ZDDs with 0-element edges, we employ a pair 〈v, c〉, v ∈ V, c ∈ {0, 1} to
point a node instead of only v, considering that a pair 〈v, c〉 represents the family of sets F = F(v)∪{∅}
if c = 1; otherwise F = F(v).

6

5

3

44

0

F

22

1

3 3

Figure 3. ZDD using 0-element edges that is equivalent to the ZDD in Figure 1.
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Table 1 summarizes operations of ZDDs. The upper half shows the primitive operations,
while the lower half shows other operations that can be implemented by using the primitive
operations. The operations index(v), zero(v), one(v), topset(v, i) and member(v, S) do not create new
nodes. Therefore, they are static operations. Note that the operation count(v) does not create any node;
however, we need an auxiliary array to memorize which nodes have already been visited.

Table 1. Main operations supported by ZDD. The first group are the primitive ZDD operations used to
implement the others, yet they could have other uses.

index(v) Returns the index of node v.
zero(v) Returns the 0-child of node v.
one(v) Returns the 1-child of node v.
getnode(i, v0, v1) Generates (or makes a reference to) a node v

with index i and two child nodes v0 = zero(v) and v1 = one(v).
topset(v, i) Returns a node with the index i reached by traversing only 0-edges from v.

If such a node does not exist, it returns the 0-terminal node.
member(v, S) Returns true if S ∈ F(v), and returns false otherwise.
count(v) Returns |F(v)|.
sample(v) Returns a set S ∈ F(v) uniformly and randomly.
offset(v, i) Returns u such that F(u) = { S ⊆ Un | S ∈ F, ei 6∈ S }.
onset(v, i) Returns u such that F(u) = { S\{ei} ⊆ Un | S ∈ F, ei ∈ S }.
apply�(v1, v2) Returns v such that F(v) = F(v1) � F(v2), for � ∈ {∪,∩, \,⊕}.

2.4. Problem of Existing ZDDs

Existing ZDD implementations (supporting dynamic operations) have the following problem in
addition to the size of representations discussed in Section 1. The member(v, S) operation needs Θ(n)
time in the worst case. In practice, the sizes of query sets are often much smaller than n, so an O(|S|)
time algorithm is desirable. Existing implementations need Θ(n) time for the member(v, S) operation
because it is implemented by repeatedly using the zero(v) operation.

For example, we traverse 0-edges 255 times when we search S = {e1} on the ZDD for F =

{{e1}, . . . , {e256}}. If we translate the ZDD to an equivalent automaton by using an array to store
pointers (see Figure 4), we can execute the searching in O(|S|) time. ZDD nodes correspond to labeled
edges in the automaton. However, the size of such an automaton via straightforward translation can
be Θ(n) times larger than the original ZDD [11] in the worst case. Therefore, we want to perform
member(v, S) operations in O(|S|) time on ZDDs.

4

1

3

2

3

1

2

1

2
1

Automaton

4 3 2 1 1

0 0 0 0

1 1 1 1

ZDD

Figure 4. Worst-case example of a straightforward translation.
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Minato proposed Z-Skip Links [12] to accelerate the traversal of ZDDs of large-scale sparse
datasets. Their method adds one link per node to skip nodes that are concatenated by 0-edges.
Therefore, the amount of memory requirement cannot be smaller than original ZDDs. Z-Skip-Links
make the membership operations much faster than using conventional ZDD operations when handling
large-scale sparse datasets. However, the computation time is probabilistically analyzed only for the
average case.

3. Data Structure

3.1. DenseZDD

In this subsection, we are going to show what DenseZDD is for a given ZDD Z. We define
a DenseZDD for Z as DZ(Z) = 〈U, M, I〉, which consists of the BP U of a zero-edge tree, the bit vector
M to indicate dummy nodes, and the integer array I to store one-children.

3.1.1. Zero-Edge Tree

We construct the zero-edge tree from a given ZDD G as follows. First of all, we delete all the 1-edges
of G. Then, we reverse all the 0-edges, that is, if there is a (directed) edge from v to w, we delete the
edge and create the edge from w to v. Note that the tree obtained by this procedure is known as the
left/right tree of a DAG whose nodes have two distinguishable arcs, originally used for representing a
context-free grammar [13]. We also note that the obtained tree is a spanning one whose root node is the
0-terminal node. Next, we insert dummy nodes into 0-edges so that the distance from the 0-terminal to
every node is index(v). Specifically, for each node w that is pointed by 0-edges (v1, w), . . . , (vk, w) in G,
we add c dummy nodes d1, . . . , dc and edges (w, d1), (d1, d2), . . . , (dc−1, dc) and (db1 , v1), . . . , (dbk

, vk)

to the tree (and remove (v1, w), . . . , (vk, w)), where bj = index(vj) − index(w) − 1 for j = 1, . . . , k,
c = maxv∈{v1,...,vk} index(v) − index(w) − 1 and d0 = w. If c = 0, we add no dummy node for the
0-edges pointing at w. For example, see Figure 5.

4

5

4

33

2

33

2

88

1

4

5

4

33

2

33

2

88

1

d2

d1

d3

d4

d5

d6

d0 = w

c = 8 – 1 – 1 = 6

Figure 5. Example of the construction of the zero-edge tree from a ZDD by inserting dummy nodes
and adding/deleting edges. A black and white circle represents a dummy and real node, respectively.
The number in a circle represents its index. A dotted arrow in the left figure represents a 0-edge.

We call the resulting tree the zero-edge tree of G and denote it by TZ. To avoid confusion, we call
the nodes in TZ except for dummy nodes real nodes. We construct the BP of TZ and denote it by U.
We let U be the first element of the DenseZDD triplet (described in the beginning of this section).

We define the real preorder rank of a real node v in TZ (and the corresponding node in G) as the
preorder rank of v in the tree before adding dummy nodes and edges connecting nodes.

On BP U, as we will show later, introducing dummy nodes enable to simulate the index and topset
operations in constant time by using the depth or level_ancestor operation of BP. The length of U is
O(mn) because we create at most n− 1 dummy nodes per one real node. The dummy nodes make the
length of U O(n) times larger, whereas this technique saves O(m log n) bits because we do not store
the index of each node explicitly.
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An example of a zero-edge tree and its BP are shown in Figure 6. Black circles are dummy nodes
and the number next to each node is its real preorder rank.

3.1.2. Dummy Node Vector

A bit vector of the same length as U is used to distinguish dummy nodes and real nodes. We call
it the dummy node vector of TZ and denote it by BD. The i-th bit is 1 if and only if the i-th parenthesis of
U is ‘(’ and its corresponding node is a real node in TZ. An example of a dummy node vector is also
shown in Figure 6. We construct the FID of BD and denote it by M. We let M be the second element of
the DenseZDD triplet. Using M, as we will show later, we can determine whether a node is dummy
or real, and compute real preorder ranks in constant time. Moreover, for a given real preorder rank
i, we can compute the position of ‘(’ on U that corresponds to the node with real preorder rank i in
constant time.
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0001011000100100 0100100000100011

) ) ) ( ( ( ( )( ( ( ( ( ( ) ) ( ( ) ) ( ) ) )) ) ( ) ) ) ( (

Figure 6. Zero-edge tree and a dummy node vector obtained from the ZDD in Figure 3.

3.1.3. One-Child Array

We now construct an integer array to indicate the 1-child of each nonterminal real node in G
by values of real preorder ranks. We call it the one-child array and denote it by CO. More formally,
for i = 1, . . . , m, CO[i] = v means the following: Let wT be the real node with real preorder rank
i in TZ, wG be the node corresponding to wT in G, wG1 be the 1-child of wG, and wT1 be the node
corresponding to wG1 in TZ. Then, CO[i] = v means that the real preorder rank of wT1 is the absolute
value of v and empflag(v) = 0 if v > 0; otherwise empflag(v) = 1. An example of a one-child array is
shown in Figure 7.
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Figure 7. One-child array obtained from the ZDD in Figure 3.
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As an implementation of CO, we use the fixed length array of integers (see e.g., [14]). We denote it
by I. In I, one integer is represented by dlog(m + 1)e+ 1 bits, including one bit for the ∅-flag. We let I
be the third element of the DenseZDD triplet.

DenseZDD solves the problems as described in Section 2.4. The main results of the paper are the
following two theorems.

Theorem 1. A ZDD Z with m nodes on n items can be stored in 2u + m log m + 3m + o(u) bits so that
the primitive operations except getnode(i, v0, v1) are done in constant time, where u is the number of real and
dummy nodes in the zero edge tree of DZ(Z).

Theorem 2. A ZDD with m nodes on n items can be stored in O(m(log m + log n)) bits so that the primitive
operations are done in O(log m) time except getnode(i, v0, v1).

The proofs are given in Section 5. The time complexity of getnode(i, v0, v1) is discussed in Section 6.

3.2. Convert Algorithm

We show our algorithm to construct the DenseZDD DZ from a given ZDD G in detail. The pseudo-
code of our algorithm is given in Algorithm 6. First, we describe how to build the zero-edge tree
from G.

The zero-edge tree consists of all 0-edges of the ZDD, with their directions being reversed.
For a nonterminal node v, we say that v is a 0r-child of zero(v). To make a zero-edge tree, we prepare
a list revzerov for each node v, which stores 0r-children of the node v. For all nonterminal nodes v,
we visit v by a depth-first traversal of the ZDD and add v to revzerozero(v). This is done in O(m) time
and O(m) space because each node is visited at most twice and the total size of revzerov for all v is the
same as the number of nonterminal nodes.

Let T be the zero-edge tree before introducing dummy nodes. Let us introduce an order of the
elements in revzerov for each v in T so that the getnode operation, described later, can be executed
efficiently. Note that the preorder ranks of nodes in T are determined by the order of children of every
node in T.

Here, we observe the following fact. Consider a node v in T, and suppose that v has 0r-children
v1, . . . , vk, which are ordered as v1 < · · · < vk. Let stsize(v) be the subtree size of a node v in T. Then,
if the preorder rank of v is p, that of vi is p + ∑i−1

j=1 stsize(vj) + 1 for i = 1, . . . , k. Note that, even if the
order of v1, . . . , vi−1 is not determined (it is only determined that vi is located in the i-th position),
the preorder rank of vi, p + ∑i−1

j=1 stsize(vj) + 1, can be computed (see Figure 8).

i

k prank of A: [l, r]prank(w) = l

prank of B1:

[l + 1,

l + stsize(v1)]  

prank of B2:

[l + stsize(v1) + 1,

r]

w

v1

j j
v2 v3

A

B1

B2

Figure 8. Computing real preorder ranks from the 0-terminal node to real nodes with higher indices.
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Now, we introduce an order of the elements in revzerov for each node v. First, for each node
v, we order the elements in revzerov in the descending order of their indices. If the indices of two
nodes are the same, we temporarily and arbitrarily determine their order (we will change the order
later). Then, we do the following procedure for i = 1, . . . , n. In the i-th procedure, suppose that the
preorder ranks of all the nodes with index smaller than i have already been determined. We consider
a node v. Let {v1, . . . , vp}, {vp+1, . . . , vp+q} and {vp+q+1, . . . , vp+q+r} be the sets of nodes with
index larger than i, equals to i, and smaller than i in revzerov, respectively. By our assumption,
vp+q+1, . . . , vp+q+r have already been ordered and we now determine the order of vp+1, . . . , vp+q.
We let the order of vp+1, . . . , vp+q be the descending order of the preorder ranks of their one-children.
Note that the preorder ranks of the one-children of vp+1, . . . , vp+q have already been determined. Thus,
since the positions of vp+1, . . . , vp+q in revzerov are determined, the above observation implies that the
preorder ranks of vp+1, . . . , vp+q are also determined. We do it for all nodes v. After the procedure
is finished, the preorder ranks of all the nodes (that is, the order of the children of nodes in T) are
determined. As a result, the 0r-children v′ of each node are sorted in the lexicographical order of
〈index(v′), prank(one(v′))〉. The pseudo-code is given in Algorithm 1.

Algorithm 1 Compute_Preorder: Algorithm that computes the preorder rank prank(v) of each node v.
Sets of nodes are implemented by arrays or lists in this code.

1: L0 ← {〈{0}, [0, stsize(0)− 1]〉}
2: L1, . . . , Ln are lists that are empty initially.
3: for i = 0, . . . , n do

. Li includes sets of nodes that have the same index
4: for each 〈A, [l, r]〉 ∈ Li in arbitrary order do

. A is a set of nodes that have the same index and 0-child
. Note that prank of nodes with indices less than i are already computed

5: for each v ∈ A in descending order of prank(one(v)) do
6: prank(v)← l;
7: l ← l + 1;
8: for each j ∈ { j |w ∈ revzero(v), j = index(w) } in descending order do
9: B← { w |w ∈ revzero(v), index(w) = j };

10: r ← l + sum{ stsize(w) |w ∈ B };
11: append 〈B, [l, r]〉 to Lj;

. That is, the prank of descendants of nodes in B are in [l, r].
12: l ← r + 1;
13: end for
14: end for
15: end for
16: end for
17: return;

To compute prank efficiently, we construct the temporary BP for the zero-edge tree. Using the
BP, we can compute the size of each subtree rooted by v in T in constant time and compact space.
Since we can compute the size of the subtrees in T, we can know the ranges of real preorder ranks
that are assigned to the subtrees by bottom-up processing. The whole tree, the subtree rooted by the
0-terminal node, is assigned the range of preorder rank [0, m]. Let w be a node rooting a subtree that is
assigned a range of real preorder ranks [l, l + stsize(w)− 1] and assume that the revzero(w) is sorted.
Then, the real preorder rank of w is l and the subtree rooted by vj ∈ revzero(w) is assigned the range
[lj, lj+1 − 1], where lj = lj−1 + stsize(vj) and l1 = l + 1.

The DenseZDD for the given ZDD G is composed of these three data structures. We traverse
T in depth-first search (DFS) order based on assigned real preorder ranks and construct the BP
representation U, the dummy node vector M, and the one-child array I. The BP and dummy node
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vector are constructed as if dummy nodes exist. Finally, we obtain the DenseZDD DZ(G) = 〈U, M, I〉.
The pseudo-code is given in Algorithms 2 and 3.

Algorithm 2 Convert_ZDD_BitVectors (v, paren, dummy, onechild): Algorithm for obtaining the BP
representation of the zero-edge tree, the dummy node vector, and the one-child array.
Input: ZDD node v, list of parentheses paren, list of bits dummy, list of integers onechild

1: i = index(v);
2: for each w ∈ revzero(v) in ascending order of prank(w) do
3: while i + 1 6= index(w) do
4: if i + 1 ≤ index(w) then
5: append ‘(’ to paren, and ‘0’ to dummy;
6: i← i + 1;
7: else
8: append ‘)’ to paren, and ‘0’ to dummy;
9: i← i− 1;

10: end if
11: end while
12: append ‘(’ to paren, and ‘1’ to dummy;
13: append prank(one(w)) · (−1empflag(w)) to onechild;
14: Convert_ZDD_BitVectors(w, paren, dummy, onechild);
15: append ‘)’ to paren, and ‘0’ to dummy;
16: end for
17: while i > index(v) do
18: append ‘)’ to paren, and ‘0’ to dummy;
19: i← i− 1;
20: end while
21: return;

Algorithm 3 Construct_DenseZDD (W: a set of root nodes of ZDD): Algorithm for constructing the
DenseZDD from a source ZDD.
Output: DenseZDD DZ

1: for each v ∈W compute revzero fields for all descendants of v;
2: compute stsize field for all 0r-decsendants;
3: Compute_Preorder;
4: create empty lists paren, dummy, onechild;
5: append ‘(’ to paren, and ‘0’ to dummy;
6: Convert_ZDD_BitVectors(0, paren, dummy, onechild);
7: append ‘)’ to paren, and ‘0’ to dummy;
8: make BP U from paren;
9: make FID M from dummy;

10: make compressed representation I of onechild;
11: return DZ ← 〈U, M, I〉;

4. ZDD Operations

We show how to implement primitive ZDD operations on DenseZDD DZ = 〈U, M, I〉 except
getnode. We give an algorithm for getnode in Section 6.

We identify each node with its real preorder rank. We can convert the real preorder rank i of a node
to the its position p in the BP sequence U, that is, the position of corresponding ‘(’ by p := select1(M, i)
and i := rank1(M, p), and vice versa. Algorithms in Table 1 are as follows:



Algorithms 2018, 11, 128 12 of 23

4.1. index(i)

Since the index of a node is the same as the depth, i.e., the distance from the 0-terminal node,
of the node in the zero-edge tree TZ, we can obtain index(i) := depth(U, select1(M, i)).

4.2. topset(i, d)

The node topset(i, d) is the ancestor of node i in TZ with index d. A naive solution is to iteratively
climb up TZ from node i until we reach the node with index d. However, as shown above, the index of
a node is identical to its depth. By using the power of the succinct tree data structure, we can directly
find the answer by topset(i, d) := rank1(M, level_ancestor(U, select1(M, i), d)). If such a node with the
index i is not reachable by traversing only 0-edges, the node obtained by topset(i, d) is a dummy node.
We check whether the node is a dummy node or not by using the dummy node vector. If the node is
a dummy node, we return the 0-terminal node.

4.3. zero(i)

Implementing the zero operation requires a more complicated technique. Recall the insertion
of dummy nodes when we construct TZ in Section 3.1. Consider the subtree in TZ induced by the
set of the nodes consisting of the node i, its 0-child w, the dummy nodes d1, . . . , dc between i and
w, and the real nodes v1, . . . , vk pointed by d1, . . . , dc. Note that one of v1, . . . , vk is i. Without loss
of generality, v1 has the smallest real preorder rank (highest index) among v1, . . . , vk, and there are
edges (w, d1), (d1, d2), . . . , (dc−1, dc), (dc, v1) (see Figure 5). Computing zero(i) is equivalent to finding
w. In the BP U of TZ, ’(’s corresponding to w, d1, d2, . . . , dc−1, dc, v1 continuously appear, and the values
of them in BD is 1, 0, 0, . . . , 0, 0, 1, respectively. Noticing that the parent of i is one of w, d1, . . . , dc and
that the real preorder rank of a real node is obtained by rank1(M, r) if the position of the corresponding
’(’ is r in U, we obtain zero(i) := rank1(M, parent(U, select1(M, i))).

4.4. one(i)

The operation one(i) is quite easy. The 1-child of the node i is stored in the i-th element of the
one-child array I. Note that the real preorder rank of the 1-child of i is abs(i), where abs(i) is a function
to get the absolute value of i. The ∅-flag of i is 1 if i ≤ 0. Otherwise, it is 0.

4.5. count(i)

Counting the number of sets in the family represented by the ZDD whose root is a node i,
i.e., |F(i)|, is implemented by the same algorithm as counting on ordinary ZDDs. The pseudo-code
is given in Algorithm 4. It requires an additional array C to store the cardinality of each node (for
a node i′, we call the cardinality of the family represented by the ZDD whose root is the node i′ the
cardinality of the node i′). After we execute this algorithm, C[i] equals |F(i)− {∅}|. The cardinalities
are computed recursively. The algorithm count(i′) is called for each node i′ only once in the recursion.
The time complexity of count is Θ(m), where m is the number of nodes.

4.6. sample(i)

We propose two algorithms to implement sample(i). The first one is the same algorithm as random
sampling on ordinary ZDDs. Before executing these algorithms, we have to run the counting algorithm
to prepare the array C that stores the cardinalities of nodes. The pseudo-code is given in Algorithm 5.
We begin traversal from a root node of the ZDD that represents a set family F. At each node i, we decide
whether or not the index of node i is included in the output set. We know that the number of the
sets including index(i) is C[one(i)]. We also know that the number of the sets not including index(i) is
C[zero(i)]. Then, we generate an integer r ∈ [0, C[i]) uniformly and randomly. If r < C[zero(i)], we do
not choose index(i) and go to zero(i). Otherwise, we add index(i) to the output set and go to one(i).
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We continue this process until we reach the 1-terminal node. At last, we obtain a set uniformly and
randomly chosen from F. The time complexity of this algorithm is O(n).

Algorithm 4 Count(i): Algorithm that computes the cardinality of the family of sets represented by
nodes reachable from a node i. The cardinalities are stored in an integer array C of length m, where m
is the number of ZDD nodes. The initial values of all the elements in C are 0.

1: if i = 0 then
2: return 0;
3: end if
4: if C[i] 6= 0 then
5: return C[i];
6: end if
7: i0 ← zero(i);
8: card0 ← Count(i0);
9: i1 ← one(i);

10: card1 ← Count(abs(i1));
11: card← card0 + card1;
12: if i1 ≤ 0 then
13: card← card + 1;
14: end if
15: C[i]← card;
16: return card;

Algorithm 5 Random_naive(i, empflag): Algorithm that returns a set uniformly and randomly chosen
from the family of sets that is represented by a ZDD whose root is node i. Assume that Count has
already been executed. The argument empflag ∈ {0, 1} means whether or not the current family of sets
has the empty set. If empflag = 1, this family has the empty set.

1: if i = 0 then
2: return ∅;
3: end if
4: i0 ← zero(i);
5: i1 ← one(i);
6: card← C[i] + empflag;
7: Generate an integer in r ∈ [0, card) uniformly and randomly.
8: if r < C[i0] + empflag then
9: return Random_naive(i0, empflag)

10: else
11: if i1 ≤ 0 then
12: e← 1;
13: else
14: e← 0;
15: end if
16: return {index(i)}∪ Random_naive(abs(i1), e);
17: end if

The second algorithm is based on binary search. The main idea of this algorithm is that we
consider multiple nodes at once whose indices are possibly chosen as the next element of the output
set. The pseudo-code is given in Algorithm 6. As well as the first algorithm, we begin traversal from
a root node. Note that the first element of the output set is one of the indices of the nodes that are
reachable only by 0-edges from the current node. We use topset operation to decide which index of
a node is chosen. Let the current node be i. We execute binary search on these nodes. As an initial state,
we consider the range (l = −1, h = index(i)] as candidates. Next, we divide this range by finding
a node with index less than or equal to c = bl + h + 1c/2. Such a node can be found by topset(i, c).
Recall that topset(i, d) := rank1(M, level_ancestor(U, select1(M, i), d)). It is the real preorder rank of
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a node whose index is less than c or equal to c. If the index of the found node is less than or equal
to l, we update l by l ← c and repeat the execution of topset. When a node with index x, l < x ≤ h,
is found, we choose either (l, c] or (c, h] as a next candidate range for further binary search. We know
the cardinality of nodes with indices h, c, and l. The cardinality card of the family of sets we consider
now is the cardinality of the node with index h minus the cardinality of the node with index l. Then,
generate a random integer r ∈ [0, card). If r is less than the cardinality of the node with index c, update
h by h ← c. Otherwise, update l by l ← c. We continue this procedure until l + 1 = h. After that,
we choose the index h as an element of the output set, and go to the 1-child of the node with index
h. Again, we start binary search on the next nodes connected by continuous 0-edges. This algorithm
stops when it reaches the 1-terminal node.

Algorithm 6 Random_bin(i, empflag): Algorithm that returns a set uniformly and randomly chosen
from the family of sets represented by the ZDD whose root is node i. This algorithm chooses the index
by binary search on nodes linked by 0-edges.

1: idxi ← index(i), j← −1, idxj ← −1;
2: cardj = 0;
3: while idxi 6= idxj do
4: if idxi = 0 then
5: return ∅;
6: end if
7: idxk ← b(idxi + idxj + 1)/2c;
8: k← topset(i, idxk);
9: if j = k then

10: j← k;
11: continue;
12: end if
13: Generate an integer r ∈ [0, C[i] + empflag− cardj) uniformly and randomly.
14: if r < C[j] + empflag− cardj then

. (idxj, idxk] is chosen
15: i← k;
16: idxi ← idxk;
17: else

. (idxk, idxi] is chosen
18: j← k;
19: idxj ← idxk;
20: cardj ← cardj + C[k];
21: if empflag = 1 then
22: cardj ← cardj − 1;
23: empflag← 0;
24: end if
25: end if
26: end while
27: i1 ← one(i);
28: if i1 ≤ 0 then
29: return {idxi}∪ Random_bin(abs(i1), 1);
30: else
31: return {idxi}∪ Random_bin(abs(i1), 0);
32: end if

This algorithm takes O(log n) time to choose one element of an output. The time complexity of
this algorithm isO(n log n). This looks worse than the previous algorithm. However, this can be better
for set families consisting of small sets. Let s be the size of the largest sets in the family. Then, its time
complexity is O(s log n). Therefore, this algorithm is efficient for large data sets consisting of small
sets of many items.
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5. Complexity Analysis

Let the length of balanced parentheses sequence U be 2u, where u is the number of ZDD nodes
with dummy nodes. When a ZDD has m nodes and the number of items is n, u is mn in the worst case.
Here, we show how to compress the BP sequence U.

We would like to decrease the space used by DenseZDD. However, we added extra data, dummy
nodes, to the given ZDD. We want to bound the memory usage caused by dummy nodes. From the
pseudo-code in Algorithm 2, we observe that the BP sequence U consists of at most 2m runs of identical
symbols. To see this, consider the substring of U between the positions for two real nodes. There is
a run consisting of consecutive ‘)’ followed by a run consisting of consecutive ‘(’ in the substring.
We compress U by using some integer encoding scheme such as the delta-code or the gamma-code [15].
An integer x > 0 can be encoded in O(log x) bits. Since the maximum length of a run is n, U can be
encoded in O(m log n) bits. The range min-max tree of U has 2m/ log m leaves. Each leaf of the tree
corresponds to a substring of U that contains log m runs. Then, any tree operation can be done in
O(log m) time. The range min-max tree is stored in O(m(log n + log m)/ log m) bits.

We also compress the dummy node vector BD. Since its length is 2u ≤ 2mn and there are only m
ones, it can be compressed in m(2 + log m) + o(u) bits by FID. The operations select1 and rank1 take
constant time. We can reduce the term o(u) to o(m) by using a sparse array [16]. Then, the operation
select1 is done in constant time, while rank1 takes O(log m) time. We call the DenseZDD whose
zero-edge tree and dummy node vector are compressed dummy-compressed DenseZDD.

From the discussion in the section, we can prove Theorems 1 and 2.

Proof of Theorem 1. From the above discussion, the BP U of the zero-edge tree costs 2u = O(mn)
bits, where u is the number of real nodes and dummy nodes. The one-child array needs m log m bits for
1-children and m bits for ∅-flags. Using FID, the dummy node vector is stored in m(2 + log m) + o(u)
bits. Therefore, the DenseZDD can be stored in 2u + 3m + 2m log m + o(u) bits and the primitive
operations except getnode are done in constant time because the rank1, select1, and any tree operations
take constant time by Proposition 1.

Proof of Theorem 2. When we compress U, it can be stored in O(m log n) bits and the min-max
tree is stored in O(m(log n + log m)/ log m) bits. The dummy node vector can be compressed in
m(2 + log m) + o(m) bits by FID with sparse array. The time of any tree operations and the rank1

operation is O(log m). Therefore, the DenseZDD can be stored in O(m(log m + log n)) bits and the
primitive operations except for getnode take O(log m) time because all of them use tree operations on
U or rank1 on M.

6. Hybrid Method

In this section, we show how to implement dynamic operations on DenseZDD. Namely,
we implement the getnode(i, v0, v1) operation. Our approach is to use a hybrid data structure using both
the DenseZDD and a conventional dynamic ZDD. Assume that initially all the nodes are represented
by a DenseZDD. Let m0 be the number of initial nodes. In a conventional dynamic ZDD, the operation
getnode(i, v0, v1) is implemented by a hash table indexed with the triple 〈i, v0, v1〉.

We first show how to check whether the node v := getnode(i, v0, v1) has already existed or not.
That is, we want to find a node v such that index(v) = i, zero(v) = v0, one(v) = v1. If v exists in the
zero-edge tree, v is one of the 0r-children of v0. Consider again the subtree of the zero-edge tree rooted
at v0 and the 0r-children of v0 (see the right of Figure 5). Let dp be the (possibly dummy) parent of v
in the zero edge tree. The parent of all the 0r-children of v0 with index i in the zero edge tree is also
dp. The node dp is located on the path from v0 to the first node, say vf, among the 0r-children of v0

(note that since the zero edge tree is an ordered tree, we can well-define the “first” node). That is, dp is
an ancestor of vf. Since the position of vf is the next of the position of v0 in M (in the preorder), we can
obtain the position of vf by select1(M, rank1(M, v0) + 1). Noting that the index of dp is i− 1, we obtain
the position of dp by dp = level_ancestor(U, select1(M, rank1(M, v0) + 1), i− 1). Our task is to find the
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node v such that one(v) = v1 among the children of dp. Since the 0r-children v′ of dp are sorted in the
lexicographic order of 〈index(v′), prank(one(v′))〉 values by the construction algorithms, we can find v
by a binary search. For this, we use the degree and child operations on the zero-edge tree (recall that
degree is used for obtaining the number of children of a node).

If v does not exist, we create such a node and register it to the hash table as well as a dynamic
ZDD. Note that we do not update the DenseZDD, and thus if we want to treat the ZDD, say Znew,
whose root is the new node as the DenseZDD, we need to construct the DenseZDD structure for Znew.

We obtain the following theorem on the time complexity.

Theorem 3. The existence of getnode(i, v0, v1) can be checked inO(t log m) time, where t is the time complexity
of primitive ZDD operations.

If the BP sequence is not compressed, getnode takesO(log m) time; otherwise it takesO(log2 m) time.
By discussion similar to the proofs of Theorems 1 and 2 in Section 5, we have the following theorems.

Theorem 4. A ZDD with m nodes on n items can be stored in 2u + m log m + 3m + o(u) bits so that the
getnode(i, v0, v1) operation is done in O(log m) time, where u is the number of real and dummy nodes in the
zero edge tree of DZ(Z).

Theorem 5. A ZDD with m nodes on n items can be stored in O(m(log m + log n)) bits so that the
getnode(i, v0, v1) operation is done in O(log2 m) time.

7. Other Decision Diagrams

7.1. Sets of Strings

A sequence binary decision diagram (SeqBDD) [17] is a variant of a zero-suppressed binary decision
diagram, customized to manipulate sets of strings. The terminology of SeqBDDs is almost the same
as that of ZDDs. Let c1, . . . , cn be letters such that c1 < c2 < · · · < cn and Σn = {c1, . . . , cn}
be an alphabet. Let s = x1, . . . , xl , l ≥ 0, x1, . . . , x` ∈ Σn, be a string. We denote the length of
s by |s| = `. The empty string is denoted by ε. The concatenation of strings s = x1, . . . , x`1 and
t = y1, . . . , y`2 is defined as s · t = x1, . . . , x`1 , y1, . . . , y`2 . The product of string sets L1 and L2 is defined
as L1 × L2 = { s1 · s2 | s1 ∈ L1, s2 ∈ L2 }.

A SeqBDD is a directed acyclic graph. The difference between SeqBDD and ZDD is a restriction
for indices of nodes connected by edges. For any SeqBDD nonterminal node v, the index of v’s 0-child
must be smaller than that of v, but the index of v’s 1-child can be larger than or equal to that of v.
This relaxation is required to represent string sets because a string can have the same letters at multiple
positions. The definition of SeqBDDs is the following:

Definition 3 (string set represented by a SeqBDD). A SeqBDD G = (V, E) rooted at a node v ∈ V
represents a finite sets of strings L(v) whose letters are in Σn defined recursively as follows: (1) If v is a terminal
node: L(v) = {ε} if value(v) = 1, and L(v) = ∅ if value(v) = 0; (2) If v is a nonterminal node, then L(v) is
the finite set of strings L(v) = ({{cindex(v)}} × L(one(v))) ∪ L(zero(v)).

A string s = x1, . . . , x` describes a path in the graph G starting from the root in the same way as
ZDDs. For SeqBDDs, we also employ the zero-suppress rule and the sharing rule. By applying these
rules as much as possible, we can obtain the canonical form for given sets of strings.

We can compress SeqBDDs by the same algorithm as the DenseZDD construction algorithm.
We call it DenseSeqBDD. Since the index restriction between nodes connected by 0-edges is still valid
on SeqBDDs, we can represent indices of nodes and connection by 0-edges among nodes by zero-edge
trees. The main operations of SeqBDD such as index, zero, one, topset, member, count, and sample are
also implemented by the same algorithms. Recall that a longest path on a ZDD is bounded by the



Algorithms 2018, 11, 128 17 of 23

number of items n. Therefore, the time complexities of member and sample on a ZDD are at most O(n),
which means that the benefit we can gain by skipping continuous 0-edges in topset algorithm is not
so large because the total number of nodes we can skip is less than n. However, a longest path on
a SeqBDD is not bounded by the number of letters, and thus we can gain more benefit of skipping
0-edges because indices of nodes reached after traversing 1-edges can be the largest index. The time
complexities of member and sample on a SeqBDD are O(maxlen) and O(maxlen log |Σn|), respectively,
where maxlen is the length of the longest string included in the SeqBDD.

7.2. Boolean Functions

In the above subsection, we applied our technique to decision diagrams for sets of strings. Next,
we consider another decision diagram for Boolean functions, BDD. Is it possible to compress BDDs by
the same technique, and are operations fast on such compressed BDDs? The answer to the first question
is “Yes”, but to the second question is “No”. Since a BDD is also a directed acyclic graph consisting of
two terminal nodes and nonterminal nodes with distinguishable two edges, the structure of a BDD
can be represented by the zero-edge tree, dummy node vector, and one-child array. Therefore, we can
obtain a compressed representation of a BDD. On the other hand, the membership operation on a ZDD
corresponds to the operation to determine whether or not an assignment of Boolean variables satisfies
the Boolean function represented by a BDD. Since the size of query for the assignment operation is
always the number of all Boolean variables, we cannot skip any assignment to variables. As a result,
membership operation and random sampling operation are not accelerated on a BDD even if we use
the DenseZDD technique.

8. Experimental Results

We ran experiments to evaluate the compression, construction, and operation times of DenseZDDs.
We implemented the algorithms described in Sections 3 and 3.2 in C/C++ languages on top of the
SAPPORO BDD package, which is available at https://github.com/takemaru/graphillion/tree/
master/src/SAPPOROBDD and can be found as an internal library of Graphillion [18]. The package
uses 32 bytes per ZDD node. The breakdown of 32 bytes of a ZDD node is as follows: 5 bytes as
a pointer for the 1-child, 5 bytes as a pointer for the 0-child, 2 bytes as an index. In addition, we use
a closed hash table to execute getnode operation. The size of the hash table of SAPPOROBDD is
5× 2× n bytes, and 5 bytes per each node to chain ZDD nodes that have the same key computed from
its attribute-triple. Since DenseZDD does not require such hash table to execute getnode, we consider
that the space used by the hash table should be included in the memory consumption of ZDD nodes.
The experiments are performed on a machine with 3.70 GHz Intel Core i7-8700K and 64 GB memory
running Windows Subsystem for Linux (Ubuntu) on Windows 10.

We show the characteristics of the data sets in Table 2. As artificial data sets, we use rectrxw,
which represents families of sets

⊔r−1
i=0{{iw + 1}, . . . , {iw + w}}. Data set randomjoink is a ZDD that

represents the join C1 t · · · t C4 of four ZDDs for random families C1, . . . , C4 consisting of k sets of
size one drawn from the set of n = 32768 items. Data set bddqueenk is a ZDD that stores all solutions
for k-queen problem.

As real data sets, data set filename:p is a ZDD that is constructed from itemset data (http://fimi.ua.
ac.be) by using the algorithm of all frequent itemset mining, named LCM over ZDD [3], with minimum
support p.

The other ZDDs are constructed from Boolean functions data (https://ddd.fit.cvut.cz/
prj/Benchmarks/). These data are commonly used to evaluate the size of ZDD-based data
structures [2,19,20]. These ZDDs represent Boolean functions in a conjunctive normal form as families
of sets of literals. For example, a function x1x2 + x2x3 + x3x1 is translated into the family of sets
{{x1, x2}, {x2, x3}, {x3, x1}}.

https://github.com/takemaru/graphillion/tree/master/src/SAPPOROBDD
https://github.com/takemaru/graphillion/tree/master/src/SAPPOROBDD
http://fimi.ua.ac.be
http://fimi.ua.ac.be
https://ddd.fit.cvut.cz/prj/Benchmarks/
https://ddd.fit.cvut.cz/prj/Benchmarks/
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Table 2. Detail of data sets and their ZDD size.

Data Set n |F| ‖F‖ #roots #nodes

rect1x10000 10,000 10,000 10,000 1 10,001
rect5x2000 10,000 3.2× 1016 1.6× 1017 1 10,001

rect100x100 10,000 1.0× 10200 1.0× 10202 1 10,001
rect2000x5 10,000 8.7× 101397 1.7× 101401 1 10,001

rect10000x1 10,000 1 10,000 1 10,001
randomjoin256 32,740 4.3× 109 1.7× 1010 1 25,743

randomjoin2048 32,765 1.7× 1013 7.0× 1013 1 375,959
randomjoin8192 32,768 3.6× 1015 1.4× 1016 1 1.3× 106

randomjoin16384 32,768 2.8× 1016 1.1× 1017 1 1.9× 106

bddqueen13 169 73,712 958,256 1 204,782
bddqueen14 196 365,596 5.1× 106 1 911,421
bddqueen15 225 2.3× 106 3.4× 107 1 4.8× 106

T40I10D100K:0.001 925 7.0× 107 8.2× 108 1 1.1× 106

T40I10D100K:0.0005 933 2.0× 108 2.1× 109 1 6.5× 106

T40I10D100K:0.0001 942 1.2× 1010 1.5× 1011 1 1.9× 108

accidents:0.1 76 1.1× 107 1.1× 108 1 36,324
accidents:0.05 106 8.3× 107 9.3× 108 1 183,144
accidents:0.01 167 4.1× 109 5.3× 1010 1 4.7× 106

chess:0.1 62 4.6× 109 6.4× 1010 1 1.1× 106

chess:0.05 67 4.1× 1010 6.2× 1011 1 3.1× 106

chess:0.01 72 1.6× 1012 2.9× 1013 1 5.8× 106

connect:0.05 87 4.1× 1011 6.9× 1012 1 331,829
connect:0.01 110 1.7× 1013 3.2× 1014 1 2.3× 106

connect:0.005 116 6.8× 1013 1.3× 1015 1 4.1× 106

16-adder_col 66 9.7× 106 2.7× 108 17 1.5× 106

C1908 66 3.7× 108 1.1× 1010 25 133,379
C3540 100 5.0× 106 1.3× 108 22 1.5× 106

C499 82 4.9× 1011 1.9× 1013 32 140,932
C880 120 2.4× 106 7.0× 107 26 606,310
comp 64 196,606 6.0× 106 3 589,783

my_adder 66 655,287 2.0× 107 17 884,662

In Table 3, we show the sizes of the original ZDDs, the DenseZDDs, the dummy-compressed
DenseZDDs and their compression ratios. The dummy node ratio, denoted by δ, of a DenseZDD is the
ratio of the number of dummy nodes to that of both real nodes and dummy nodes in the DenseZDD.
We compressed FID for the dummy node vector if the dummy node ratio is more than 75%. We observe
that DenseZDDs are five to eight times smaller than original ZDDs, and dummy-compressed
DenseZDDs are six to ten times smaller than original ZDDs. We also observe that dummy node
ratios highly depend on data. They ranged from about 5% to 30%. For each data set, the higher the
dummy node ratio was, the lower the compression ratio of the size of the DenseZDD to that of the
ZDD became, and the higher the compression ratio of the size of the dummy-compressed DenseZDD
to that of the DenseZDD became.
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Table 3. Comparison of performance, where δ denotes the dummy node ratio. Z, DZ, and DZdc
indicate ordinary ZDDs, DenseZDDs and dummy-compressed DenseZDDs, respectively.

Data Set
Size (byte) Comp. Ratio

δ
Z DZ DZdc DZ DZ dc

rect1x10000 320,032 14,662 10,372 0.000 0.046 0.032
rect5x2000 320,032 36,947 29,227 0.444 0.115 0.091

rect100x100 320,032 38,014 29,648 0.498 0.119 0.093
rect2000x5 320,032 38,078 32,100 0.500 0.119 0.100

rect10000x1 320,032 38,078 34,048 0.500 0.119 0.106
randomjoin256 823,760 792,703 279,719 0.978 0.962 0.340

randomjoin2048 1.2× 107 2.5× 106 1.6× 106 0.821 0.210 0.135
randomjoin8192 4.0× 107 5.6× 106 4.7× 106 0.424 0.139 0.115
randomjoin16384 6.0× 107 7.7× 106 6.8× 106 0.145 0.128 0.113

bddqueen13 6.1× 106 846,809 752,775 0.466 0.138 0.123
bddqueen14 2.7× 107 4.2× 106 3.7× 106 0.510 0.153 0.136
bddqueen15 1.4× 108 2.5× 107 2.2× 107 0.558 0.171 0.151

T40I10D100K:0.001 3.6× 107 8.0× 106 5.3× 106 0.826 0.220 0.148
T40I10D100K:0.0005 2.1× 108 4.0× 107 3.0× 107 0.748 0.191 0.141
T40I10D100K:0.0001 6.0× 109 1.2× 109 9.4× 108 0.703 0.200 0.159

accidents:0.1 1.2× 106 125,440 117,714 0.083 0.108 0.101
accidents:0.05 5.9× 106 672,553 634,169 0.079 0.115 0.108
accidents:0.01 1.5× 108 2.0× 107 1.9× 107 0.089 0.135 0.128

chess:0.1 3.7× 107 4.6× 106 4.4× 106 0.098 0.127 0.120
chess:0.05 1.0× 108 1.3× 107 1.2× 107 0.098 0.131 0.124
chess:0.01 1.8× 108 2.5× 107 2.3× 107 0.118 0.135 0.127

connect:0.05 1.1× 107 1.3× 106 1.2× 106 0.206 0.122 0.112
connect:0.01 7.3× 107 9.7× 106 9.0× 106 0.204 0.133 0.124

connect:0.005 1.3× 108 1.8× 107 1.6× 107 0.202 0.133 0.124
16-adder_col 4.9× 107 6.2× 106 5.9× 106 0.124 0.127 0.122

C1908 4.3× 106 487,434 470,422 0.027 0.114 0.110
C3540 4.6× 107 5.9× 106 5.6× 106 0.152 0.128 0.122
C499 4.5× 106 513,322 499,158 0.009 0.114 0.111
C880 1.9× 107 2.5× 106 2.3× 106 0.305 0.129 0.120
comp 1.9× 107 2.4× 106 2.2× 106 0.234 0.127 0.119

my_adder 2.8× 107 3.8× 106 3.5× 106 0.399 0.133 0.122

In Table 4, we show the conversion time from the ZDD to the DenseZDD and the getnode time on
each structure for each data set. Conversion time is composed of three parts: converting a given ZDD to
raw parentheses, bits, and integers, constructing the succinct representation of them, and compressing
the BP of the zero-edge tree. The conversion time is almost linear in the input size. This result shows
its scalability for large data. For each data set except for rectrxw, the getnode time on the DenseZDD is
almost two times larger than that on the ZDD and that on the dummy-compressed DenseZDD is five
to twenty times larger than that on the ZDD.
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Table 4. Converting time and getnode time.

Data Set
Conversion Time (s) Getnode Time (s)

convert const. comp. Z DZ DZdc

rect1x10000 0.007 0.009 0.008 0.001 0.001 0.005
rect5x2000 0.006 0.015 0.011 0.000 0.001 0.006

rect100x100 0.006 0.014 0.009 0.001 0.001 0.005
rect2000x5 0.006 0.016 0.012 0.000 0.001 0.005

rect10000x1 0.504 0.015 0.009 0.000 0.001 0.008
randomjoin256 0.025 0.105 0.005 0.001 0.002 0.013

randomjoin2048 0.254 0.263 0.001 0.036 0.037 0.189
randomjoin8192 0.946 0.526 0.000 0.156 0.164 0.710
randomjoin16384 1.463 0.692 0.010 0.235 0.278 1.123

bddqueen13 0.175 0.087 0.003 0.009 0.017 0.159
bddqueen14 0.926 0.415 0.019 0.059 0.074 0.692
bddqueen15 6.217 2.438 0.142 0.426 0.402 3.498

T40I10D100K:0.001 0.934 0.814 0.037 0.089 0.218 0.872
T40I10D100K:0.0005 6.006 3.958 0.175 0.771 1.088 4.706
T40I10D100K:0.0001 233.006 120.423 4.378 32.316 30.181 122.104

accidents:0.1 0.026 0.040 0.023 0.002 0.005 0.033
accidents:0.05 0.162 0.094 0.022 0.012 0.023 0.161
accidents:0.01 5.901 1.949 0.075 0.785 0.657 4.568

chess:0.1 1.149 0.455 0.016 0.142 0.145 1.130
chess:0.05 3.319 1.263 0.085 0.471 0.414 2.895
chess:0.01 5.829 2.408 0.098 0.847 0.729 4.662

connect:0.05 0.289 0.136 0.002 0.023 0.037 0.227
connect:0.01 2.287 0.945 0.033 0.297 0.268 1.625

connect:0.005 4.377 1.716 0.080 0.579 0.491 2.996
16-adder_col 1.318 0.585 0.010 0.119 0.137 1.821

C1908 0.085 0.070 0.016 0.006 0.011 0.147
C3540 1.319 0.563 0.017 0.098 0.119 1.488
C499 0.084 0.073 0.010 0.007 0.010 0.140
C880 0.491 0.249 0.005 0.034 0.048 0.551
comp 0.445 0.232 0.002 0.032 0.046 0.683

my_adder 0.743 0.375 0.009 0.061 0.083 0.930

In Table 5, we show the traversal time and the search time. The traverse operation uses zero(i) and
one(i), while the membership operation uses topset(i, c) and one(i). We observe that the DenseZDD
requires about three or four times longer traversal time and about 3–1500 times shorter search time than
the original ZDD for each data set except for Boolean functions. These results show the efficiency of
our algorithm of the topset(i, c) operation on DenseZDD using level ancestor operations. The traversal
times on dummy-compressed DenseZDDs are seven times slower and the search time on them are
two times slower than DenseZDDs.
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Table 5. DFS traversal time and random searching time.

Data Set
Traverse Time (s) Search Time (s)

Z DZ DZdc Z DZ DZdc

rect1x10000 0.000 0.002 0.002 4.563 0.012 0.014
rect5x2000 0.000 0.002 0.002 2.082 0.014 0.015
rect100x100 0.000 0.001 0.002 0.092 0.009 0.011
rect2000x5 0.001 0.002 0.003 0.006 0.009 0.021
rect10000x1 0.001 0.003 0.015 0.002 0.009 0.070

randomjoin256 0.001 0.004 0.005 0.470 0.013 0.013
randomjoin2048 0.021 0.057 0.065 3.772 0.014 0.015
randomjoin8192 0.088 0.176 0.201 14.568 0.019 0.020

randomjoin16384 0.144 0.269 0.306 25.244 0.016 0.016
bddqueen13 0.013 0.054 0.237 0.014 0.005 0.007
bddqueen14 0.068 0.259 0.998 0.015 0.005 0.006
bddqueen15 0.420 1.421 4.778 0.016 0.005 0.006

T40I10D100K:0.001 0.054 0.222 0.298 0.003 0.002 0.003
T40I10D100K:0.0005 0.314 1.210 1.606 0.003 0.002 0.002
T40I10D100K:0.0001 11.615 42.730 55.085 0.004 0.001 0.002

accidents:0.1 0.002 0.007 0.028 0.003 0.000 0.000
accidents:0.05 0.011 0.038 0.150 0.003 0.000 0.000
accidents:0.01 0.369 1.165 4.507 0.003 0.000 0.000

chess:0.1 0.075 0.251 1.000 0.003 0.000 0.000
chess:0.05 0.218 0.707 2.640 0.003 0.000 0.000
chess:0.01 0.394 1.276 3.911 0.003 0.000 0.000

connect:0.05 0.022 0.069 0.169 0.003 0.000 0.000
connect:0.01 0.169 0.492 1.219 0.003 0.000 0.000

connect:0.005 0.316 0.906 2.250 0.003 0.000 0.000
16-adder_col 0.090 0.340 2.054 0.053 0.002 0.018

C1908 0.007 0.030 0.174 0.169 0.221 1.851
C3540 0.085 0.358 2.162 0.072 0.123 1.017
C499 0.007 0.031 0.171 0.101 0.145 0.988
C880 0.033 0.147 0.815 0.081 0.159 1.331
comp 0.035 0.138 0.956 0.010 0.010 0.085

my_adder 0.066 0.185 0.931 0.054 0.001 0.003

In Table 6, we show the counting time and the random sampling time. For each data set,
the counting time on the DenseZDD and the random sampling time of the naive algorithm on both
the DenseZDD and the dummy-compressed DenseZDD are not so far from those on the ZDD, while
the counting time on the dummy-compressed DenseZDD is two to ten times larger than the ZDD.
For each data set, the random sampling time of the binary search-based algorithm is two to hundred
times smaller than the ZDD. For Boolean functions, the algorithm is three to six times slower. There is
not much difference between DenseZDDs and dummy-compressed DenseZDDs.

From the above results, we conclude that DenseZDDs are more compact than ordinary ZDDs
unless the dummy node ratio is extremely high, and the membership operations for DenseZDDs
are much faster if n is large or the number of 0-edges from terminal nodes to each node is large.
We observed that DenseZDD makes traversal time approximately triple, search time approximately
one-tenth, and random sampling time approximately one-third compared to the original ZDDs.
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Table 6. Counting time and random sampling time.

Data Set
Count Time (sec) Sample Time (sec)

D DZ DZdc Z DZ (naive) DZ (bin) DZdc (naive) DZdc (bin)

rect1x10000 0.002 0.002 0.003 5.375 4.813 0.014 5.527 0.014
rect5x2000 0.001 0.002 0.003 9.125 5.126 0.063 4.825 0.062

rect100x100 0.002 0.003 0.003 10.150 5.155 0.816 5.176 0.812
rect2000x5 0.004 0.005 0.007 8.250 5.765 7.142 5.773 7.171

rect10000x1 0.001 0.004 0.016 0.001 0.011 0.012 0.074 0.075
randomjoin256 0.003 0.007 0.007 1.035 0.535 0.036 0.564 0.035

randomjoin2048 0.067 0.091 0.102 7.650 4.254 0.048 4.056 0.048
randomjoin8192 0.256 0.305 0.336 22.989 16.830 0.056 15.663 0.056
randomjoin16384 0.393 0.455 0.508 31.561 24.036 0.058 23.357 0.059

bddqueen13 0.029 0.077 0.265 0.037 0.026 0.026 0.026 0.026
bddqueen14 0.149 0.380 1.146 0.042 0.029 0.031 0.030 0.031
bddqueen15 0.876 2.226 5.664 0.047 0.033 0.035 0.034 0.035

T40I10D100K:0.001 0.187 0.339 0.418 0.947 0.338 0.047 0.323 0.045
T40I10D100K:0.0005 1.153 1.925 2.338 0.954 0.479 0.049 0.495 0.047
T40I10D100K:0.0001 36.329 67.113 79.435 0.978 0.576 0.061 0.572 0.066

accidents:0.1 0.006 0.011 0.033 0.077 0.077 0.036 0.075 0.033
accidents:0.05 0.031 0.059 0.175 0.108 0.106 0.040 0.105 0.040
accidents:0.01 0.957 2.066 5.474 0.169 0.165 0.050 0.164 0.048

chess:0.1 0.208 0.413 1.181 0.062 0.061 0.050 0.061 0.050
chess:0.05 0.591 1.188 3.158 0.067 0.065 0.056 0.066 0.057
chess:0.01 1.061 2.115 4.817 0.073 0.067 0.073 0.068 0.071

connect:0.05 0.059 0.108 0.212 0.088 0.085 0.066 0.084 0.064
connect:0.01 0.435 0.828 1.575 0.111 0.105 0.076 0.105 0.075

connect:0.005 0.804 1.557 2.925 0.118 0.109 0.078 0.111 0.077
16-adder_col 0.224 0.505 2.260 0.167 0.246 0.474 0.246 0.483

C1908 0.016 0.045 0.191 0.259 0.658 1.386 0.662 1.398
C3540 0.199 0.530 2.386 0.150 0.349 0.715 0.352 0.727
C499 0.017 0.045 0.189 0.455 1.241 2.500 1.250 2.529
C880 0.079 0.214 0.904 0.084 0.233 0.480 0.238 0.485
comp 0.081 0.199 1.038 0.035 0.055 0.109 0.055 0.109

my_adder 0.135 0.278 1.043 0.081 0.232 0.416 0.234 0.424

9. Conclusions

In this paper, we have presented a compressed index for a static ZDD, named DenseZDD. We have
also proposed a hybrid method for dynamic operations on DenseZDD such that we can manipulate
a DenseZDD and a conventional ZDD together.
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