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Abstract: We provide an algorithm to efficiently compute bisimulation for probabilistic labeled
transition systems, featuring non-deterministic choice as well as discrete probabilistic choice.
The algorithm is linear in the number of transitions and logarithmic in the number of states,
distinguishing both action states and probabilistic states, and the transitions between them.
The algorithm improves upon the proposed complexity bounds of the best algorithm addressing the
same purpose so far by Baier, Engelen and Majster-Cederbaum (Journal of Computer and System
Sciences 60:187–231, 2000). In addition, experimentally, on various benchmarks, our algorithm
performs rather well; even on relatively small transition systems, a performance gain of a factor
10,000 can be achieved.

Keywords: probabilistic system with nondeterminism; probabilistic labeled transition system;
probabilistic bisimulation; partition-refinement algorithm

1. Introduction

In [1], Larsen and Skou proposed the notion of probabilistic bisimulation. Although described
for deterministic transition systems, the same notion is also very suitable for probabilistic transition
systems with nondeterminism [2,3], i.e. so-called PLTSs. It expresses that two states are equivalent
exactly when the following condition holds: if one state can perform an action ending up in a set of
states, each with a certain probability, and then the other state can do the same step ending up in an
equivalent set of states with the same distribution of probabilities. Two characteristic nondeterministic
transition systems of which the initial states are probabilistically bisimilar are given in Figure 1.
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Figure 1. Two probabilistically bisimilar nondeterministic transition systems.

In [4], Baier et al. gave an algorithm for probabilistic bisimulation for PLTSs, thus dealing both
with probabilistic and nondeterministic choice, of time complexity O (mn(log m + log n)) and space
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complexity O (mn), where n is the number of states and m is the number of transitions (from states
to distributions over states; there is no separate measure for the size of the distributions). As far as
we know, it is the only practical algorithm for bisimulation à la Larsen-Skou for PLTSs. In essence,
other algorithms for probabilistic systems typically target Markov chains without nondeterminism.
The algorithm in [4] performs an iterative refinement of a partition of states and a partition of transitions
per action label. The crucial point is splitting the groups of states based on probabilities. For this,
a specific data structure is used, called augmented ordered balanced trees, to support efficient storage,
retrieval and ordering of states indexed by probabilities.

In this paper, we provide a new algorithm for probabilistic bisimulation for PLTSs of time
complexity O

(
(ma + mp) log np + mp log na)

)
and space complexity O

(
ma + mp

)
, where na is the

number of states, ma the number of transitions labelled with actions, np the number of distributions
and mp the cumulative support of the distributions. Our na coincides with the n of Baier et al. We prefer
to use ma, np, and mp over m as the former support a more refined analysis. A detailed comparison
between the algorithms reveals that, if the distributions have a positive probability for all states,
the complexities of the algorithms are similar. However, when distributions only touch a limited
number of states, as is often the common situation, the implementation of our algorithm outperforms
our implementation of the algorithm in [4], both in time as well as in space complexity.

Similar to the algorithm of Baier et al., our algorithm keeps track of a partition of states and of
distributions (referred to as action states and probabilistic states below) but in line with the classical
Paige–Tarjan approach [5] it also maintains a courser partition of so-called constellations. The treatment
of distributions in our algorithm is strongly inspired by the work for Markov Chain lumping by
Valmari and Franceschinis, but our algorithm applies to the richer setting of non-deterministic labelled
probabilistic transition systems. Using a brilliant, yet simple argument, taken from [6], the number
of times a probabilistic transition is sorted can be limited by the fan-out of the source state of the
transition. This leads to the observation that we can use straightforward sorting without the need of
any tailored data structure such as augmented ordered balanced trees or similar as in [4,7]. Actually,
our algorithm uses a simplification of the algorithm in [6] since the calculation of so-called majority
candidates can be avoided, too.

We implemented both the new algorithm and the algorithm from [4]. We spent quite some
effort to establish that both implementations are free from programming flaws. To this end, we ran
them side-by-side and compared the outcomes on a vast amount of randomly generated probabilistic
transition systems (in the order of millions). Furthermore, we took a number of examples from the
field, among others from the PRISM toolset [8], and ran both implementations on the probabilistic
transition systems that were obtained in this way. Time-wise, all benchmarks indicated better results
for our algorithm compared to the algorithm from [4]. Even for rather small transition systems of about
100,000 states, performance gains of a factor 10,000 can be achieved. Memory-wise the implementation
of our algorithm also outperforms the implementation in [4] when the sizes of the probabilistic state
space are larger. Both findings are in line with the theoretical complexity analyses of both algorithms.
Both implementations have been incorporated in the open source mCRL2 toolset [9,10].

1.1. Related Work

Probabilistic bisimulation preserves logic equivalence for PCTL [11]. In [12], Katoen c.s. reported
up to logarithmic state space reduction obtained by probabilistic bisimulation minimisation for DTMCs.
Quotienting modulo probabilistic bisimulation is based on the algorithm in [7]. In the same vein,
Dehnert et al. proposed symbolic probabilistic bisimulation minimisation to reduce computation time
for model checking PCTL in a setting for DTMCs [13], where an SMT solver is exploited to do the
splitting of blocks. Partition reduction modulo probabilistic bisimulation is also used as an ingredient
in a counter-example guided abstraction refinement approach (CEGAR) for model checking for PCTL
by Lei Song et al. in [14].
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For CTMCs, Hillston et al. proposed the notion of contextual lumpability based on lumpable
bisimulation in [15]. Their reduction technique uses the Valmari–Franceschinis algorithm for Markov
chain lumping mentioned earlier. Crafa and Renzato [16] characterised probabilistic bisimulation
of PLTSs as a partition shell in the setting of abstract interpretation. The algorithm for probabilistic
bisimulation that comes with such a characterisation turns out to coincide with that in [4]. A similar
result applies to the coalgebraic approach to partition refinement in [17] that yields a general
bisimulation decision procedure, which can be instantiated with probabilistic system types.

Probabilistic simulation for PLTSs has been treated in [4], too. In [18], maximum flow techniques
are proposed to improve the complexity. Zhang and Jansen [19] presented a space-efficient algorithm
based on partition refinement for simulation between probabilistic automata, which improves upon
the algorithm for simulation by Crafa and Renzato [16] for concrete experiments taken from the
PRISM benchmark suite. A polynomial algorithm, essentially cubic, for deciding weak and branching
probabilistic bisimulation by Turrini and Hermanns, recasting the algorithm in [20], is presented
in [21].

1.2. Synopsis

The structure of this article is as follows. In Section 2, we provide the notions of a probabilistic
transition system as well as that of probabilistic bisimulation. In Section 3, the outline of our algorithm
is provided and it is proven that it correctly calculates probabilistic bisimulation. This section ends
with an elaborate example. In Section 4 we provide a detailed version the algorithm with a focus
on the implementation details necessary to achieve the complexity. In Section 5, we provide some
benchmarking results and a few concluding remarks are made in Section 6.

2. Preliminaries

Let S be a finite set. A distribution f over S is a function f : S → [0, 1] such that ∑ s∈S f (s) = 1.
For each distribution f , its support is the set { s ∈ S | f (s) > 0 }. The size of f is defined as the number
of elements in its support, written as | f |. The set of all distributions over a set S is denoted by D(S).
Distributions are lifted to act on subsets T ⊆ S by f [T] = ∑ s∈T f (s).

For an equivalence relation R on S, we use S/R to denote the set of equivalence classes of R.
We define s/R = { t ∈ S | sRt } and, for a subset T of S, we define T/R = { s ∈ S | ∃t ∈ T : sRt }.
A partition π = { Bi ⊆ S | i ∈ I } is a set of non-empty subsets such that Bi ∩ Bj = ∅ for all i, j ∈ I and⋃

i∈I Bi = S. Each Bi is called a block of the partition. Slightly ambiguously, we use S/R to denote the
set of equivalence classes of R with respect to S. Clearly, the set of equivalence classes of R forms a
partition of S. Reversely, a partition π of S induces an equivalence relation Rπ on S, by sRπt iff s, t ∈ B
for some block B of π. A partition π is called a refinement of a partition $ iff each block of π is a subset
of a block of $. Hence, each block in $ is a disjoint union of blocks from π.

We use probabilistic labeled transition systems as the canonical way to represent the behaviour
of systems.

Definition 1. (Probabilistic Labeled Transition System). A probabilistic labeled transition system (PLTS)
for a set of actions Act is a pair A = ( S, →) where

• S is a finite set of states, and
• →⊆ S×Act×D(S) is a finite transition relation relating states and actions to distributions.

It is common to write s a→ f for 〈 s, a, f 〉 ∈ →. For s ∈ S, a ∈ Act, and a set F ⊆ D(S) of
distributions, we write s a→ F if s a→ f for some f ∈ F. Similarly, we write a9 F if there is no
distribution f ∈ F such that s a→ f . For the presentation below, we associate a so-called probabilistic
state u f with each distribution f provided there is some transition s a→ f of A. We write U for

{ u f | ∃s ∈ S, a ∈ Act : s a→ f }, with typical element u. Note that, since→ is finite, U is also finite.
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We also use the notation s a→ u f if s a→ f for some f ∈ D(S). As a matter of notation, we write
u f [T] for f [T] if probabilistic state u f corresponds to the distribution f . We sometimes use a so-called
probabilistic transition u f 7→p s for 0 < p 6 1 and s ∈ S iff u f (s) = p. To stress S ∩U = ∅, we refer to
states s ∈ S as action states.

Below, in particular in the complexity analysis, we use na = |S| as the number of action states,
np = |U| as the number of probabilistic states, ma = |→| as the number of action transitions and
mp = ∑ u f∈U | f | as the cumulative size of the support of the distributions corresponding to all
probabilistic states. Note that mp > np as every distribution has support of at least size 1.

The following definition for probabilistic bisimulation stems from [1].

Definition 2. (Probabilistic Bisimulation).
Consider a PLTSA = ( S, →). An equivalence relation R ⊆ S× S is called a probabilistic bisimulation

for A iff for all states s, t ∈ S such that sR t and s a→ f , for some action a ∈ Act and distribution f ∈ D(S), it
holds that t a→ g for some distribution g ∈ D(S), and f [B] = g[B] for each B ∈ S/R.

Two states s, t ∈ S are probabilistically bisimilar iff a probabilistic bisimulation R for A exists such
that sR t, which we write as s 'p t. Two distributions f , g ∈ D(S), and similarly two probabilistic states
u f , ug ∈ U, are probabilistically bisimilar iff for all B ∈ S/'p it holds that f [B] = g[B], which we also
denote by f 'p g and u f 'p ug, respectively.

By definition, probabilistic bisimilarity is the union of all probabilistic bisimulations. To be able to
speak of probabilistically bisimilar distributions (or of probabilistically bisimilar probabilistic states),
probabilistic bisimilarity needs to be an equivalence relation. In fact, probabilistic bisimilarity is a
probabilistic bisimulation. See [22] for a proof.

3. A Partition Refinement Algorithm for Probabilistic Bisimulation (Outline)

Many efficient algorithms for standard bisimulation calculate partitions of states [5,23,24]. Here,
we consider the construction of a partition B of the sets of action states S and of probabilistic states U
for some fixed PLTS A over a set of actions Act. Below blocks of the partition always contain either
action states or probabilistic states.

3.1. Stability of Blocks and Partitions

An important notion underlying the algorithm introduced below is that of the stability of a block
of a partition. If a block is not stable, it contains states that are not bisimilar. These states either have
different transitions or different distributions. We first define the notion of stability more generically
on sets instead of on blocks. Then, we lift it to partitions.

Definition 3. (Stable Sets and Partitions).

1. A set of action states B ⊆ S is called stable under a set of probabilistic states C ⊆ U with respect to an
action a ∈ Act iff s a→C whenever t a→C and vice versa for all s, t ∈ B. The set B is called stable under C
iff B is stable under C with respect to all actions a ∈ Act.

2. A set of probabilistic states B ⊆ U is called stable under a set of action states C ⊆ S iff u[C] = v[C] for all
u, v ∈ B.

3. A set of states B with B ⊆ S, respectively B ⊆ U, is called stable under a partition C of S ∪U, with C ⊆ S
or C ⊆ U for all C ∈ C, iff B is stable under each C ∈ C with C ⊆ U, respectively C ⊆ S.

4. A partition B is called stable under a partition C iff all blocks B of B are stable under C.

There are two simple but important properties stating that stability is preserved when splitting
sets. The first one says that subsets of stable sets are also stable.
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Lemma 1. Let B ⊆ S be a set of action states and C ⊆ U a set of probabilistic states. If B is stable under C,
then any B′ ⊆ B is also stable under C. Similarly, if C is stable under B, then any C′ ⊆ C is also stable under B.

Proof. We only prove the first part as the argument for the second part is essentially the same. If
s, t ∈ B′, then also s, t ∈ B. As B is stable under C, it holds that for every action a ∈ Act either both
satisfy s a→C and t a→C, or neither does. Thus, B′ is stable under C.

The second property says that splitting a set in two parts can only influence the stability of an
other set if there is a transition or a positive probability from this other set to one of the parts of the
split set.

Lemma 2. Let B ⊆ S be a set of action states and C ⊆ U a set of probabilistic states.

1. Suppose B is stable under C with respect to an action a, C′ ⊆ C, and there is no s ∈ B such that s a→C′.
Then, B is stable under C′ and C\C′ with respect to a.

2. Suppose C is stable under B, B′ ⊆ B, and u[B′] = 0 for all u ∈ C. Then, C is stable under B′ and B\B′.

Proof. We only provide the proof for the first part of this lemma. If s, t ∈ B, then both s a9 C′ and
t a9 C′ by assumption. Thus, B is stable under C′ with respect to a. Furthermore, B is stable under C\C′:
Suppose s, t ∈ B and s a→C\C′. Thus, s a→C. As B is stable under C, t a→C, and by assumption t a9 C′.
Therefore, t a→C\C′. Suppose s a9 C\C′. Then, also s a9 C. As B is stable under C, t a9 C and hence,
t a9 C\C′.

The following property, called the stability property, says that a partition stable under itself induces
a probabilistic bisimulation. In general, partition based algorithms for bisimulation search for such a
stable partition.

Lemma 3. Stability Property. Let A = ( S, →) be a PLTS. If a partition B for A is stable under itself, then
the corresponding equivalence relation B on S is a probabilistic bisimulation.

Proof. By the first condition of Definition 3 and stability of all blocks in B we have that either B ⊆ S
or B ⊆ U, for each block B ∈ B. We write sBt iff s, t ∈ B for some B ∈ B. Note that used in this way B
is an equivalence relation on S.

Suppose sBt for some s, t ∈ S and s a→ f . Let u ∈ U correspond to f . Say s, t ∈ B and u ∈ B′ for
some blocks B, B′ ∈ B. Then, s a→ B′. By stability of B for B′, it follows that t a→ B′. Hence, v ∈ B′

and g ∈ D(S) exist such that v corresponds to g and s a→ g. Therefore, for any block B′′ ∈ B we have
f [B′′] = u[B′′] = v[B′′] = g[B′′] since the block B′ of u and v is stable under each block B′′ of B.

Thus, the stable partition B induces an equivalence relation that satisfies the conditions for a
probabilistic bisimulation of Definition 2, as was to be shown.

3.2. Outline of the Algorithm

We present our algorithm in two stages. An abstract description of the algorithm is presented as
Algorithm 1; the detailed algorithm is provided as Algorithm 2. The set-up of Algorithm 1 is a fairly
standard, iterative refinement of a partition B, in this particular case containing both action states and
probabilistic states, which are treated differently. In addition, following the approach of Paige and
Tarjan [5], we maintain a coarser partition C, which we call the set of constellations. Each constellation
in partition C is a union of one or more blocks of B, thus B is a refinement of C. A constellation C ∈ C
that consists of exactly one block in B is called trivial. We refine partitions B and C until C only contains
trivial constellations (see Line 5 of Algorithm 1).
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Algorithm 1 Abstract Partition Refinement Algorithm for Probabilistic Bisimulation.

1: function PARTITION-REFINEMENT

2: C := { S, U }
3: B := {U } ∪ { SA | A ⊆ Act }
4: where SA = { s ∈ S | ∀a ∈ A ∃u ∈ U : s a→ u }
5: while C contains a non-trivial constellation C do
6: choose block BC from B in C
7: replace in C constellation C by BC and C\BC
8: if C contains probabilistic states then
9: for all blocks B of action states in B unstable under BC or C\BC do

10: refine B by splitting B into blocks of states with the same actions into BC and C\BC
11: end for
12: else
13: for all blocks B of probabilistic states in B unstable under BC do
14: refine B by splitting B into blocks of states with equal probabilities into BC
15: end for
16: end if
17: end while
18: return B

Algorithm 2 Partition Refinement Algorithm for Probabilistic Bisimulation
1: function PARTITION-REFINEMENT ( S, U, →)

2: C := { S, U } O
(
na+np

)
3: B := {U } ∪ { SA | A ⊆ Act }

O
(
np+na+ma

)
where SA = { s ∈ S | ∀a ∈ A ∃u ∈ U : s a→ u }

4: group the incoming action transitions in each block per label O (ma)

5: initialise state_to_constellation_cnt for each transition O (ma)

6: while C contains a non-trivial constellation C do 6 n iterations
7: choose a block BC from B in C such that |BC| 6 1

2 |C|
O (1)8: split constellation C into BC and C\BC in C

9: if C contains probabilistic states then
10: for all incoming actions a of states in BC do 6 |Act| iterations
11: 〈 Ba, lefta, mida, righta, largea 〉 := aMark(B, C, BC, a) O (nr of incoming a transitions in BC)

12: for all blocks B ∈ Ba do
O (nr of incoming a transitions in BC)13: for all non-empty subsets B′ ⊆ B, different from

largea(B) in {left(B)a, mida(B), righta(B)} do
14: move B′ out of B and add B′ as new block to B O (nr of incoming transitions in B′ )
15: else O (nr of incoming prob. transitions in BC)

plus a sorting penalty16: 〈 Bp, leftp, midp, rightp, largep 〉 := pMark(B, C, BC)

17: for all blocks B ∈ Bp do
O (nr of incoming prob. transitions in BC)18: for all non-empty sets of states B′ ⊆ B not equal to

largep(B) in {leftp(B)}∪midp(B)∪{right(B)p} do
19: move B′ out of B and add B′ as a new block to B O (nr of incoming transitions in B′ )
20: return B

Among others, we preserve the invariant that the blocks in partition B are always stable under
partition C. If all constellations in C are trivial, then the partitions B and C coincide. Hence, the blocks
in B are stable under itself, and according to Lemma 3 we have found a probabilistic bisimulation.
Our algorithm works by iteratively refining the set of constellations C. When refining C, we must also
refine B to preserve the above mentioned invariant.

Since the set of states of a PLTS is finite (cf. Definition 1) refinement of the partitions B and C
cannot be repeated indefinitely. Thus, termination of the algorithm is guaranteed. The partition
consisting of singletons of action states and of probabilistic states is the finest that can be obtained, but
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this is only possible if all states are not bisimilar. In practice, the main loop of the algorithm stops well
before reaching that point.

The algorithm maintains the following three invariants:

Invariant 1. Probabilistic bisimilarity 'p is a refinement of B.

Invariant 2. Partition B is a refinement of partition C.

Invariant 3. Partition B is stable under the set of constellations C (mentioned already above).

Invariant 1 states that if two action states or two probabilistic states are probabilistically bisimilar,
then they are in the same block of partition B. Thus, the partition-refinement algorithm will not
separate states if they are bisimilar. By Invariant 2, we have that, at the end and at the start of each
iteration, each constellation in C is a union of blocks in B. Invariant 3 says that blocks in partition B
cannot be split by blocks in constellation C.

In Lines 2 and 3 of Algorithm 1, the set of constellation and the initial partition are set such that the
invariants hold. All probabilistic states are put in one block, and all action states with exactly the same
actions labelling outgoing transitions are also put together in blocks. (Note the universal quantification
over all actions a in A for the set comprehension at Line 4 to ensure that only maximal blocks are
included in B for it being a partition indeed.) The set of constellations contains two constellations
namely one with all action states, and one with all probabilistic states. It is straightforward to see that
Invariants 1 and 2 hold. Invariant 3 is valid because all transitions from action states go to probabilistic
states and vice versa.

Invariants 1–3 guarantee correctness of Algorithm 1. That is, from the invariants, it follows that,
upon termination, when all constellations have become trivial, the computed partition B identifies
probabilistically bisimilar action states and probabilistically bisimilar probabilistic states.

Theorem 1. Consider the partition B resulting from Algorithm 1. We find that (i) two action states are in the
same block of B iff they are probabilistically bisimilar, and (ii) two probabilistic states are in the same block of B
iff they are probabilistically bisimilar.

Proof. Upon termination, because of the while loop of Algorithm 1, all constellations of C are trivial,
i.e. each constellation in C consists of exactly one block of B. Hence, by Invariant 2, the partitions B
and C coincide. Thus, by Invariant 3, each block of B is stable under each block in B. In other words,
partition B is stable under itself.

By the Stability Property of Lemma 3, we have that B is a probabilistic bisimulation on S. It follows
that two action states in the same block of B are probabilistically bisimilar. Reversely, by Invariant 1,
probabilistically bisimilar action states are in the same block of B. Thus, 'p and B coincide on S.
In other words, two action states are in the same block of B iff they are probabilistically bisimilar.

To compare 'p and the relation B on U, choose probabilistic states u, v ∈ U such that uB v. Thus,
u and v are in the same block of B. By stability of block B for B it follows that u[B′] = v[B′], for each
block B′ ⊆ S. Since 'p and B coincide on S this implies u[B′] = v[B′] for all B′ ∈ S/'p. Thus, we
have u 'p v. Reversely, if u 'p v, we have u, v ∈ B for some block B of B by Invariant 1. Thus, two
probabilistic states are in the same block of B iff they are probabilistically bisimilar.

It is worth noting that in Line 5 of Algorithm 1 an arbitrary non-trivial constellation is chosen
and in Line 6 an arbitrary block BC is selected from C (we later put a constraint on the choice of BC).
In general, there are many possible choices and this influences the way the final partition is calculated.
The previous theorem indicates that the final partition is not affected by this choice, neither is the
complexity upper-bound, see Section 4.6. However, it is conceivable that practical runtimes can be
improved by choosing the non-trivial constellation C and the block BC optimally.
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3.3. Refining the Set of Constellations and Restoring the Invariants

As we see from the high-level description of the partition refinement Algorithm 1, a non-trivial
constellation C and a constituent block BC are chosen (Lines 5 and 6) and C is replaced in C by the
smaller constellations BC and C\BC (Line 7). This preserves Invariants 1 and 2, but Invariant 3 may
be violated as stability under BC or C\BC (or both) may be lost: On the one hand, it may be the case
that two actions states s and t both have an a-transition into C, but s may have one to BC but t to C\BC

only or vice versa. On the other hand, it may be the case that two probabilistic states u and v yield the
same value for C as a whole, i.e. u[C] = v[C], but by no means this needs to hold for BC or C\BC, i.e.
u[BC] 6= v[BC] and u[C\BC] 6= v[C\BC]. Therefore, in the remainder of the body of Algorithm 1, the
blocks that are unstable under BC and C\BC are split such that Invariant 3 is restored, both for blocks
of actions states (Lines 9 and 10) and for blocks of probabilistic states (Lines 13 and 14). In the next
section, the detailed Algorithm 2 describes how this is done precisely.

The general situation when splitting a block B for a constellation C containing a block BC is
depicted in Figure 2, at the left where B contains action states and at the right where B consists of
probabilistic states. We first consider the case at the left.

a a a a

BC C \ BC
C

B

lefta(B) mida(B) righta(B)

1 1
4

3
4

1
8

1
8

3
4

1
2

1
2

3
8

3
8

1
4

3
4

1
4 1

BC C \ BC
C

B

leftp(B)

midp(B)

rightp(B)

Figure 2. Splitting a non-stable block B into left, middle and right.

In this case, block B ⊆ S is stable under constellation C ⊆ U and C is non-trivial. Thus, C properly
contains a block BC of B, and we distinguish two non-empty subsets of C, the block BC on its own and
the remaining blocks together in C\BC. As B is stable under C, the block B can only be unstable under
BC or C\BC if there is an action a ∈ Act and a state s ∈ B such that s a→ BC (Lemma 2.1). Thus, we only
investigate and split blocks, for which such a transition s a→ BC exists.

We can restore stability by splitting B into the following three subsets:

lefta(B) = { s ∈ B | s a→ BC ∧ s a9 C\BC },
mida(B) = { s ∈ B | s a→ BC ∧ s a→C\BC }, and

righta(B) = { s ∈ B | s a9 BC ∧ s a→C\BC }.

Note that the remaining set { s ∈ B | s a9 BC ∧ s a9 C\BC } must be empty; if not, this would
imply that there is some action state t such that t a9 C. However, due to the existence of state s such
that s a→ BC, this would mean that block B is unstable under C, contradicting Invariant 3.
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Checking that the sets lefta(B), mida(B), righta(B) are stable under C is immediate. As subsets
of stable sets are also stable (Lemma 1) and B is stable all other configurations of C, the sets lefta(B),
mida(B), and righta(B) are stable under all other configurations of C too.

Note that, due to the existence of state s with s a→ BC, it is not possible that both lefta(B) and
mida(B) are equal to the empty set. It is however possible that lefta(B) = B or mida(B) = B, leaving
the other two sets empty.

Lines 9 and 10 can now be read as follows. For all a ∈ Act, investigate all blocks B such that there
is an action state s ∈ B with s a→ BC as these blocks are the only candidates to be unstable. Replace
each such block B in B by {lefta(B), mida(B), righta(B)} \∅ to restore stability under BC and C\BC.

Invariants 1 and 2 are preserved by splitting B. For Invariant 2, this is trivial by construction.
For Invariant 1, note that the states in different blocks among lefta(B), mida(B), righta(B) cannot be
probabilistically bisimilar as they have unique transitions to states BC and C\BC and these target states
cannot be bisimilar by Invariant 1. Thus, if two states of B are probabilistically bisimilar then both are
in the same subset lefta(B), mida(B), or righta(B) of B.

We next turn to the case of a set of probabilistic states B, see the right-side of Figure 2. Again,
we assume that the non-trivial constellation C is replaced by its two non-empty subsets BC and C\BC.
As in the previous case, although the block B is stable under the constellation C, this may not be the
case under the subsets BC and C\BC.

To restore stability, we now consider for all q, 0 6 q 6 1, the sets

Bq = { u ∈ B | u[BC] = q }.

Note that, for finitely many q ∈ [0, 1], we have Bq 6= ∅. Observe that each set Bq is stable under
BC as by construction u[BC] = v[BC] = q for any u, v ∈ Bq. The set Bq is also stable under C\BC. To see
this consider two states u, v ∈ Bq. As block B ⊆ U is stable under constellation C ⊆ S, u[C] = v[C].
Hence, u[C\BC] = u[C]− u[BC] = v[C]− v[BC] = v[C\BC]. By Lemma 1, the new blocks Bq are also
stable under the other constellations in C.

According to Lemma 2.2, only those blocks B that contain a probabilistic state u ∈ B such that
u[BC] > 0 can be unstable under BC and C\BC. Thus, at Line 13 of Algorithm 1 we consider all those
blocks B and replace each of them by the non-empty subsets Bq, 0 6 q 6 1 at Line 14 in B. This makes
the partition stable again under all constellations in C, in particular under the new constellations BC

and C\BC.
Again, it is straightforward to see that Invariants 1 and 2 are not violated by replacing the block B

by the blocks Bq. For Invariant 1, if states are probabilistically bisimilar in B, they remain in the same
block Bq. For Invariant 2, as B is refined, partition B remains a refinement of partition C.

For the detailed algorithm in Section 4, it is required to group the sets Bq as follows: leftp(B) := B0,
rightp(B) := B1, and midp(B) = { Bq | 0<q<1 }. This does not play a role here, but leftp(B), midp(B),
and rightp(B) are already indicated in Figure 2, in particular midp(B) = {B 1

4
, B 1

2
, B 3

4
}.

3.4. An Example

We provide an example to illustrate how Algorithm 1 calculates partitions.

Example 1. Consider the PLTS given in Figure 3. We provide a detailed account of the partitions that are
obtained when calculating probabilistic bisimulation. The obtained partitions are listed in Table 1. In the lower
table, nine partitions together with their constellations are listed that are generated for a run of Algorithm 1.
In the upper table the blocks that occur in these partitions are defined. Observe that we put the blocks and
constellations with action states and probabilistic states in different columns. This is only for clarity, as in the
current partition and the current set of constellations they are joined.
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Table 1. The generated partitions for the PLTS of Example 1.

Blocks of Actions States Blocks of Probabilistic States

S0 = {t1, t3, t4, t6, t7, r1−5} U0 = {u1−6, v1−5}
S1 = {s1−4} U1 = {u1, u3, v1−5}
S2 = {t2, t5, t8, t9} U2 = {u2, u4}
S3 = {t10} U3 = {u5, u6}
S4 = {s1, s2} U4 = {u5}
S5 = {s3, s4} U5 = {u6}
S6 = {s3}
S7 = {s4}

B C

0 S0, S1, S2, S3 U0 S0 ∪ S1 ∪ S2 ∪ S3 U0
1 S0, S1, S2, S3 U1, U2, U3 S0, S1 ∪ S2 ∪ S3 U1 ∪U2 ∪U3
2 S0, S1, S2, S3 U1, U2, U3 S0, S1, S2 ∪ S3 U1 ∪U2 ∪U3
3 S0, S1, S2, S3 U1, U2, U4, U5 S0, S1, S2, S3 U1 ∪U2 ∪U4 ∪U5
4 S0, S2, S3, S4, S5 U1, U2, U4, U5 S0, S2, S3, S4 ∪ S5 U1, U2 ∪U4 ∪U5
5 S0, S2, S3, S4, S5 U1, U2, U4, U5 S0, S2, S3, S4 ∪ S5 U1, U2, U4 ∪U5
6 S0, S2, S3, S4, S6, S7 U1, U2, U4, U5 S0, S2, S3, S4 ∪ S6 ∪ S7 U1, U2, U4, U5
7 S0, S2, S3, S4, S6, S7 U1, U2, U4, U5 S0, S2, S3, S4, S6 ∪ S7 U1, U2, U4, U5
8 S0, S2, S3, S4, S6, S7 U1, U2, U4, U5 S0, S2, S3, S4, S6, S7 U1, U2, U4, U5

Algorithm 1 starts with four blocks of action states, S0 to S3, which contain the action states with
no outgoing transitions and those with an outgoing transition labelled with a, with b, and with c,
respectively. In the algorithm, all probabilistic states are initially collected in block U0. There are two
constellations, viz. S0 ∪ S1 ∪ S2 ∪ S3 and U0. These initial partitions are listed in R0w 0 of the lower
part of Table 1.

Since the constellation with action states is non-trivial we split it, rather arbitrarily, in S0 and
S1 ∪ S2 ∪ S3. The block U0 is not stable under S0 and S1 ∪ S2 ∪ S3 and is split in U1 = {u1, u3, v1−5},
U2 = {u2, u4} and U3 = {u5, u6}. This is because we have u[S0] = 1 for u equal to u1, u3, and v1

to v5; we have u[S0] =
1
2 for u equal to u2 and u4; we have u5[S0] = 0 and u6[S0] = 0. The resulting

partitions are listed at Row 1 in Table 1.
For the second iteration, we consider the non-trivial constellation S1 ∪ S2 ∪ S3 and split it into

S1 and S2 ∪ S3. Note, the action states s1 to s4 in S1 do not have incoming transitions. Consequently,
for all u ∈ U1, we have u[S1] = 0; for all u ∈ U2 we have u[S1] = 0; for all u ∈ U3 we have u[S1] = 0.
Thus, all blocks of probabilistic states are stable under S1 and S2 ∪ S3. Hence, no block is split.

In the third iteration, we split the non-trivial constellation S2 ∪ S3 into S2 and S3. For all, u ∈ U1

we have u[S2] = 0. Thus, U1 is stable under S2 and S3. For U2, the probabilistic states u2 and u4 agree
on the value 1

2 for S2, hence for S3 too. Thus, U2 is stable as well. However, for u5 and u6 in U3 we
have u5[S2] = 1 and u6[S2] =

1
3 . Therefore, U1 needs to be split in U4 = {u5} and U5 = {u6}.

At this point, all constellations with actions states are trivial, so at iteration 4 we turn to the
non-trivial constellation of probabilistic states U1 ∪U2 ∪U4 ∪U5 and split it into U1 and U2 ∪U4 ∪U5.
Block S0 is stable since each of its states has no transitions at all. Block S1 is not stable: s1, s2

a→ U1

and s1, s2
a→ U2 ∪ U4 ∪ U5, but s3, s4

a9 U1 and s3, s4
a→ U2 ∪ U4 ∪ U5. Thus, S1 needs to be split

into S4 = {s1, s2} and S5 = {s3, s4}. Block S2 is stable since its states have only b-transitions into U1.
Block S3 is a singleton and therefore cannot be split.

The following iteration, Iteration 5, sets U2 and U4 ∪U5 apart as constellations. Again, in absence
of transitions, block S0 is stable under U2 and U4 ∪U5. The same holds for S2 that has only b-transitions
into U0. Block S3 can be ignored. For S4, both s1 and s2 have an a-transition into U2 as their only
transition. Hence, block S4 is stable. Similarly, S5 is stable, as its states s3 and s4 both have an
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a-transition into U4 ∪U5 and no other transitions. Overall, in this iteration, no blocks require splitting
to restore Invariant 3.

Next, at Iteration 6, we split non-trivial constellation U4 ∪ U5 into U4 and U5. For S0, S2, S3

and S4 we conclude stability in the same way as in the previous iteration. However, now we have for
s3, s4 ∈ S5 on the one hand s3

a→U4 and s3
a9 U5, but on the other hand s4

a9 U4 and s4
a→U5. Hence,

S5 needs to be split, yielding the singletons S6 = {s3} and S7 = {s4}.
Returning to constellations of actions states, at Iteration 7, we split S4 ∪ S6 ∪ S7 over S4 and S6 ∪ S7.

All probabilistic states have value 0 for both S4 and S6 ∪ S7, hence no split of probabilistic blocks
is needed.

This is similar in Iteration 8, where the non-trivial constellation S6 ∪ S7 is split, and none
of the blocks become unstable. Now, all constellations are trivial and the algorithm terminates.
According to the Stability Property, Lemma 3, the corresponding equivalence relation is a probabilistic
bisimulation. Thus, the final partition is {S0, S2, S3, S4, S6, S7, U1, U2, U4, U5}. Moreover, the deadlock
states t1, t3, t4, t6, t7 and r1 to r5 are probabilistically bisimilar, the states t2, t5, t8, t9 that have only a
b-transition into a Dirac distribution to deadlock are probabilistically bisimilar, the states s1 and s2 are
probabilistically bisimilar (which is clear when identifying states t7 and t8), whereas the remaining
action states s3, s4 and t10 have no probabilistically bisimilar counterpart. For the probabilistic states
the states u1, u3 and v1 to v5 are identified by probabilistic bisimulation. This also holds for the
probabilistic states u2 and u4. Probabilistic states u5 and u6 each have no probabilistically bisimilar
counterpart.

4. A Partition-Refinement Algorithm for Probabilistic Bisimulation (Detailed)

Algorithm 1 gives an outline but leaves many details implicit. The detailed refinement-partition
algorithm is presented in this section as Algorithm 2. It has the same structure as Algorithm 1, but in
this section we focus on how to efficiently calculate whether and how blocks must be split, and how
this split is actually carried out. We first explain grouping of action transitions per action, next we
introduce various data structures that are used by the algorithm, subsequently we explain how the
algorithm is working line-by-line, and finally we give an account of its complexity.

4.1. Grouping Action Transitions per Action Label

To obtain the complexity bound of our algorithm, it is essential that we can group action transitions
by actions linearly in the number of transitions. Grouping means that the action transitions with the
same action occur consecutively in this ordering. It is not necessary that the transitions are ordered
according to some overall ordering.

We assume that |Act| 6 ma and that the actions in Act are consecutively numbered. Recall,
ma denotes the number of transitions s a→ u. These assumptions are easily satisfied, by removing those
actions in Act that are not used in transitions and by sorting and numbering the remaining action
labels. Sorting these actions adds a negligible O(|Act| log |Act|) 6 O(ma log ma).

Grouping transitions is performed by an array of buckets indexed with actions. All transitions
are put in the appropriate bucket in constant time exploiting actions being numbered. Furthermore,
all buckets that contain transitions are linked together. When all transitions are in the buckets,
a straightforward traversal of all linked buckets provides the transitions in a grouped order.
This requires time linear in the number of considered action transitions. Note that the number
of buckets is equal to |Act| 6 ma and, therefore, the buckets do not require more than linear memory.

4.2. Data Structures

We give a concise overview of the concrete data structures in the algorithm for states, transitions,
blocks, and constellations. We list the names of the fields in these data structures in a programming
vein to keep a close link with the actual implementation.
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The chosen data structures are not particularly optimised. Exploiting ideas from [6,24,25] to
store states, blocks, and constellations, usage of time and memory can be further reduced. All data
structures come in two flavours, one related to actions and the other related to probabilities. We treat
them simultaneously and only mention their differences when appropriate.

4.2.1. Global

In the detailed algorithm, there are arrays containing transitions, actions, blocks and constellations.
There is a stack of non-trivial constellations to identify in constant time which constellation
must be investigated in the main loop. Furthermore, there is an array containing the variables
state_to_constellation_cnt, which are explained below.

For all action transitions s a→ u, it is maintained how many action transitions there are labelled
with the same action a, and that go from s to the constellation C containing u. This value is called
state_to_constellation_cnt for this transition. The value is required to efficiently split probabilistic blocks
(the idea of using such variables stems from [5]). For each state s, constellation C, and action a there
is one instance of state_to_constellation_cnt stored in a global array. Each transition s a→ u contains a
reference called state_to_constellation_cnt_ptr to the appropriate value in this array. See Figure 3 for a
graphical illustration with a constellation C of probabilistic states and blocks B1 and B2 of action states.
The purpose of this construction is that state_to_constellation_cnt can be changed by one operation for
all transitions from the same state with the same action to the same constellation, simultaneously.

a
a

a

b
a

a
C

B1

B2

...

3

1

2

...

Figure 3. Transitions with state_to_constellation_cnt stored in a global array.

4.2.2. Transition

Each transition consists of the fields from, label and to. Here, from and to refer to an
action/probabilistic state, and label is the action label or probabilistic label of the transition. The action
labels are consecutive numbers; the probabilistic labels are exact fractions. Action transitions also
contain a reference state_to_constellation_cnt_ptr to the variable state_to_constellation_cnt as indicated
above.

4.2.3. State

Each action state and probabilistic state contains a list of incoming transitions and a reference
to the block in which the state resides. For intermediate calculations, each state contains a boolean
mark_state which is used to indicate that a state has been marked. Each action state also contains
two more variables for temporary use. When deciding whether blocks need to be split, the
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variable residual_transition_cnt indicates how many residual transitions there are to blocks C\BC

when splitting takes place by a block BC. The variable transition_cnt_ptr is used to let the variable
state_to_constellation_cnt_ptr for an action transition point to a new instance of state_to_constellation_cnt
when this transitions is moved to a new block. In probabilistic states, there is the temporary variable
cumulative_prob used to calculate the total probability to reach a block under splitting.

4.2.4. Block

Blocks contain an indication of the constellation in which it occurs, a list of the states contained
in the block including the size of this list, and a list of transitions ending in this block. For blocks of
action states, this list of transitions is grouped by action label, i.e., transitions with the same action
label are a consecutive sublist. For temporary use, there is also a variable to indicate that the block is
marked. This marking contains exactly the information that the functions aMark and pMark, discussed
below, provide for blocks of action states and blocks of probabilistic states, respectively.

4.2.5. Constellation

Finally, constellations contain a list of the blocks in the constellation as well as the cumulative
number of states contained in all blocks in this constellation.

4.3. Explanation of the Detailed Algorithm

Algorithm 1 focuses on how, by refining partitions and sets of constellations, probabilistic
bisimulation can be calculated. In Algorithm 2, we stress the details of carrying out concrete refinement
steps to realise the required time bound. As already indicated, the overall structure of both algorithms
is the same.

The initial Lines 2 and 3 of Algorithm 2 are the same as those of Algorithm 1. In Line 3,
the partition B is set to contain one block with all probabilistic states and a number of blocks of
action states, grouped per common outgoing action labels. Thus, two action states are in the same
block initially if their menu, i.e., the set of actions for which there is a transition, is identical. This
initial partition B is calculated using a simple partition refinement algorithm on outgoing transitions
of states. This operation is linear in the number of outgoing action transitions when using grouping of
transitions as explained in Section 4.1.

At Line 4, the incoming transitions are ordered on actions as indicated in Section 4.1. At Line
5, an array with one instance of state_to_constellation_cnt for each action label is made where each
instance contains the number of action transitions that contain that action label. The reference
state_to_constellation_cnt for each action transition is set to refer to the appropriate instance in this array.
This is done by simply traversing all transitions s a→ u grouped by action labels and incrementing
the appropriate entry in the array containing all state_to_constellation_cnt variables. The appropriate
entry can be found using the temporary variable transition_cnt_ptr associated to state s. If no entry
for state_to_constellation_cnt exists yet, the variable transition_cnt_ptr belonging to s is null and an
appropriate entry must be created.

In Line 6, selecting a non-trivial constellation is straightforward, as a stack of non-trivial
constellations is maintained. Initially, this stack contains C = {S ,U}. To obtain the required time
complexity, we select BC such that |BC| 6 1

2 |C| in Line 7. This is done in constant time as we know
the number of states in C. Hence, either the first or second block B of constellation C satisfies that
|B| 6 1

2 |C| (for if the first block contains more than half the states the second one cannot). We replace
the constellation C by BC and C\BC in C, see Line 8, and put the constellation C\BC on the stack of
non-trivial constellations if it is non-trivial.

From Line 9 to Line 19, the partition B is refined to restore the invariants, especially Invariant
3. This is done by first marking the blocks (Line 11 and Line 16) such that it is clear how they must
be split, and by subsequently splitting the blocks (Lines 12–14, and Lines 17–19). Both operations are
described in the next two subsections.
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4.4. Marking

Given a constellation C that contains a block BC and in the case of an action transition, an action a,
we need to know which blocks need to be split in what way. This is calculated using the functions
aMark(B, C, BC, a) and pMark(B, C, BC). The first one is for marking blocks with respect to action
transitions, the second for marking blocks with respect to probabilities.

Both functions yield a five-tuple 〈B, left, mid, right, and large〉. Here, B ⊆ B is a set of blocks that
may have to be split and left, mid, and right are functions that together for each block B ∈ B provide the
sets into which B must be partitioned. The set large(B) is the largest set among them. For every set B′

in which B must be partitioned, except for large(B), it holds that |B′| 6 1
2 |B|. To obtain the complexity

bound, we only move such small blocks out of B, i.e., those blocks not equal to large(B).
We note that sets in left(B), mid(B) and right(B) can be empty. Such sets can be ignored. It is also

possible that there is only one non-empty set being equal to B itself. In this case, B is stable under BC

and C\BC. Furthermore, it is equal to large(B) and therefore B is kept intact.
We now concentrate on the function aMark(B, C, BC, a) with a partition B, a constellation C,

a block BC contained in C, and an action a. In this situation, C is a non-trivial constellation of
probabilistic states. Since C contains probabilistic states only, incoming transitions for states in BC are
action transitions. The situation is depicted in Figure 2, at the left. The call aMark(B, C, BC, a) returns
the tuple 〈Ba, lefta, mida, righta, largea〉 defined as follows.

Ba = { B ∈ B | ∃s ∈ B : s a→ BC }
and, for each B ∈ Ba,

lefta(B) = { s ∈ B | s a→ BC ∧ s a9 C\BC },
mida(B) = { s ∈ B | s a→ BC ∧ s a→C\BC },

righta(B) = { s ∈ B | s a9 BC ∧ s a→C\BC }, and

largea(B) : the largest set among lefta(B), mida(B), and righta(B).

We calculate Ba by traversing the list of all transitions with action a going into BC and adding
each block containing any source state of these transitions to Ba. The blocks in Ba are the only blocks
that may be unstable under BC and C\BC with respect to a (Lemma 2).

The for loop at Line 10 iterates over all actions. As the incoming transitions into block BC are
grouped per action, all incoming transitions with the same action can easily be processed together,
while the total processing time is linear in the number of incoming transitions. However, note that
calculating Ba is based on partition B, while B is refined at Line 14. Thus, the calculation of Ba for
different actions a can be based on repeatedly refined partitions B.

Next, we discuss how to construct the blocks lefta(B), mida(B), and righta(B). While traversing
a-labelled transitions into BC, all action states in a block B with an a-transition into BC are marked and
(temporarily) moved into lefta(B). The remaining states in block B form the subset righta(B). We keep
track of the number of states in a block. Thus, we can easily maintain the size of righta(B).

To find out which states now in lefta(B) must be transferred to mida(B), the variables
state_to_constellation_cnt are used. Recall that these variables record for each transition s a→ u, with
u ∈ S, how many transitions s a→ v there are to states v ∈ C. These variables are initialised in Line 5 of
Algorithm 2. When the first state is moved to lefta(B), we copy the value of state_to_constellation_cnt of
transition s a→ u to the variable residual_transition_cnt belonging to state s of the transition, subtracted
by one. The number residual_transition_cnt indicates how many unvisited a-transitions are left from
the state s into C. Every time an a-transition is visited of which the source state is already in lefta(B),
we decrease residual_transition_cnt of the source state by one again. If all a-transitions into BC have
been visited, the number residual_transition_cnt of a state s indicates how many transitions labelled a
go from s into C\BC.
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Subsequently, we traverse the states in lefta(B). If a state s has a non-zero residual_transition_cnt,
we know that there are a-transitions from s to both BC and C\BC. Therefore, we move state s into
mida(B). Otherwise, all transitions from s with action a go to BC and s must remain in lefta(B).

While moving states into lefta(B) and mida(B), we also keep track of the sizes of these sets. Hence,
it is easy to indicate in largea(B) which set is the largest.

We calculate pMark(B, C, BC) in a slightly different manner than aMark. In particular, we have
midp : B → 22U

, i.e., midp(B) is a set of blocks. This indicates that the block B can be partitioned in
many sets, contrary to the situation with action blocks where B could be split in at most three blocks.
The situation is depicted in Figure 2 at the right. The five-tuple that pMark returns has the following
components:

Bp = { B ∈ B | ∃u ∈ B : u[BC] > 0 }
and, for each B ∈ Bp,

leftp(B) = { u ∈ B | u[BC] = 1 },
midp(B) =

{
{ u ∈ B | u[BC] = q }

∣∣ q ∈ 〈0, 1〉
}

,

rightp(B) = { u ∈ B | u[BC] = 0 }, and

largep(B) : the largest set from {leftp(B)} ∪midp(B) ∪ {rightp(B)}.

The above is obtained by traversing through all incoming probabilistic transitions in BC. Whenever
there is a state u in a block B such that u 7→p BC, one of the following cases applies:

• If B is not in Bp yet, it is added now. The variable cumulative_prob in state u is set to p, and u is
(temporarily) moved from B to leftp(B).

• If B is already in Bp, then the probability p is added to cumulative_prob of state u.

After the traversal of all incoming probabilistic transitions into BC, the variable cumulative_prob of u
contains u[BC], i.e., the probability to reach BC from the state u.

Those states that are left in B form the set rightp(B). We know the number of states in rightp(B) by
keeping track how many states were moved to leftp(B). Next, the states temporarily stored in leftp(B)
must be distributed over leftp(B) and midp(B). First, all states with cumulative_prob < 1 are moved
into some set M such that leftp(B) contains exactly the states with cumulative_prob = 1. Then, the states
in M are sorted on their value for cumulative_prob such that it is easy to move all states with the same
cumulative_prob into separate sets in midp(B). In Figure 2, at the right, the set midp(B) consists of three
sets, corresponding to the probabilities q = 1

4 , q = 1
2 and q = 3

4 to reach BC. Note that all processing
steps mentioned require time proportional to the number of incoming probabilistic transitions in BC,
except for the time to sort. In the complexity analysis below, it is explained that the cumulative sorting
time is bounded by O

(
mp log np

)
.

By traversing the sets of states in leftp(B) and midp(B) once more, we can determine which set
among leftp(B), rightp(B), and the set of sets midp(B) contains the largest number of probabilistic states.
This set is reported in largep(B).

4.5. Splitting

In Lines 14 and 19 of Algorithm 2, a block B′ is moved out of the existing block B. By the marking
procedure, either aMark or pMark, the states involved are already put in separate lists and are moved
in constant time to the new block B’.

Blocks contain lists of incoming transitions. When moving the states to a new block, the incoming
transitions are moved by traversing the incoming transitions of each moved state, removing them
from the list of incoming transitions of the old block and inserting them in the same list for the new
block. There is a complication, namely that incoming action transitions must be grouped by action
labels. This is done separately for the transitions moved to B′ as explained in Section 4.1 and this is
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linear in the number of transitions being moved. When removing incoming action transitions from
the old block B, the ordering of the transitions is maintained. Thus, the grouping of incoming action
transitions into B remains intact without requiring extra work.

When moving action states to a new block we also need to adapt the variable
state_to_constellation_cnt for each action transition s a→ C with state s ∈ B. Observe that this only
needs to be done if there are some a-transitions to BC and some to C\BC, which means that s ∈ mida(B).
In that case residual_transition_cnt for state s is larger than 0.

This is accomplished by traversing all incoming transitions s a→ u into BC one extra time.
If residual_transition_cnt for s is larger than 0 we need to replace the state_to_constellation_cnt for
this transition s a→ u by the value of state_to_constellation_cnt− residual_transition_cnt of s. For all
non-visited transitions s a→ u′ where u′ ∈ C\BC, the value of state_to_constellation_cnt must be set to
residual_transition_cnt of s.

This is where we use that state_to_constellation_cnt is actually referred to by the pointer
state_to_constellation_cnt_ptr (see Figure 3). When traversing the first transition of the form s a→ u
with u ∈ BC such that residual_transition_cnt for s is larger than 0, a new entry in the array containing
the variables state_to_constellation_cnt is constructed containing the value state_to_constellation_cnt−
residual_transition_cnt and the auxiliary variable transition_cnt_ptr is used to point to this entry. At the
same time, the value in old entry in this array for state_to_constellation_cnt is replaced by the value
residual_transition_cnt of state s. In this way, the values of state_to_constellation_cnt of all transitions
labelled with a from s to C\BC are updated in constant time, i.e., without visiting the transitions that
are not moved. For all transitions s a→ u′ with u′ ∈ BC, the variable state_to_constellation_cnt_ptr is
made to refer the new entry in the array.

4.6. Complexity Analysis

The complexity of the algorithm is determined below. Recall that na and np are the number of
action states and probabilistic states, respectively, while ma is the number of action transitions and mp

is the cumulative size of the supports of the distributions.

Theorem 2. The total time complexity of the algorithm is O
(
(ma + mp) log np + (mp + na) log na

)
and the

space complexity is O
(
ma + mp + na

)
.

Proof. In Algorithm 2, the cost of each computation step is indicated. The initialisation of the algorithm
at Lines 2–5 is linear in na, np and ma. At Line 3, calculating {SA | A ⊆ Act} can be done by iteratively
splitting S using the outgoing transitions grouped per action label. This is linear in the number of
action transitions. At Line 4, grouping the incoming transitions per action is also linear as argued in
Section 4.1.

The while loop at Line 6 is executed for each BC ⊆ C where |BC| 6 1
2 |C|. As BC becomes

a constellation itself, each state can only be part of this splitting step log2(na) times and log2(np)

times, respectively. The steps in Lines 10–13 and Lines 16–18 require steps proportional to the
number of incoming action transitions and probabilistic transitions, respectively, in BC, apart from a
sorting penalty which we treat separately below. The cumulative complexity of this part is therefore
O
(
ma log np + mp log na

)
.

At Lines 14 and 19, the states in B′ are moved to a new block. This requires to group the incoming
action transitions in a block B′ per action, which can be done in time linear in the number of these
transitions. Block B′ is not the largest block of B considered and therefore |B′| 6 1

2 |B|. Hence, each
state can only be log2(np) or log2(na) times be involved in the operation to move to a new block.
Hence, the total time to be attributed to moving is O

(
(ma + np) log np + (mp + na) log na

)
.

While marking, probabilistic states in midp(B) need to be sorted. An ingenious argument by
Valmari and Franceschinis [6] shows that this will at most contribute O

(
mp log np

)
to the total

complexity: Let K be the total number of times sorting takes place. Assume, for 1 6 i 6 K, that
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the total number of distributions in midp(B) when sorting it for the i-th time is ki. Clearly, ki 6 np.
Each time a distribution in midp(B) is involved in sorting, the number of reachable constellations with
non-zero probability from this distribution is increased by one. Before sorting it could reach C, and
after sorting it can reach both new constellations BC and C\BC with non-zero probability. Note that
this does not hold for the states in leftp(B) and rightp(B), and this is the reason why we have to treat
them separately. In particular, to obtain complexity O(mp log np), it is not allowed to involve the states
in leftp(B) and rightp(B) in the sorting process as shown by an example in [6]. Due to the increased
number of reachable constellations, the total number of times a probabilistic state can be involved in
sorting is bounded by the size of the distribution. In other words, ∑K

i=1 ki 6 mp. Hence, the total time
that is required by sorting is bounded as follows:

O
(

∑K
i=1 ki log ki

)
6 O

(
∑K

i=1 ki log np

)
6 O

(
mp log np

)
.

Adding up the complexities leads to the conclusion that the total complexity of the algorithm is
O
(
(ma + mp + np) log np + (mp + na) log na

)
. As mp > np, the stated time complexity in the theorem

follows.
The space complexity follows as all data structures are linear in the number of transitions and

states. As np 6 mp, this complexity can be stated as O
(
ma + mp + na

)
.

Note that it is reasonable that the number of probabilistic transitions mp is at least equal to the
number of action states na− 1 as otherwise there are unreachable action states. This allows formulating
our complexity more compactly.

Corollary 1. Algorithm 2 has time complexity O
(
(ma + mp) log np + mp log na)

)
and space complexity

O
(
ma + mp

)
if all action states are reachable.

The only other algorithm to determine probabilistic bisimilarity for PLTS is by Baier, Engelen and
Majster-Cederbaum [4]. The algorithm uses extended ordered binary trees and is claimed to have a
complexity of O (mn(log m + log n)) where m is the number of transitions (including distributions)
and n the number of action states. For a fair comparison, we reconstructed their complexity in
terms of na, np, ma and mp. Their space complexity is O

(
nanp|Act|

)
and the time complexity is

O
(
mana log na + nanp log np + n2

anp
)
. The last part n2

anp is not mentioned in the analysis in [4]. It is
due to taking the time into account for “inserting Pre(α, µi) into v.states” (see page 208 of [4]) for the
version of ordered balanced trees used, and we believe it to be forgotten [26].

This complexity is not easily comparable to ours. We make two reasonable assumptions to
facilitate comparison. The first assumption is that the number of action transitions is equal to the
number of distributions: ma = np. As second assumption, we use that log np and log na only differ by
a constant.

In the rare case that the support of distributions is large, i.e., if all or nearly all action states
have a positive probability in each distribution, then mp is equal or close to nanp. In this case our
space complexity becomes O

(
nanp

)
and our time complexity is O

(
nanp log np

)
, which is comparable

mutatis mutandis to the complexity in [4]. However, in the more common case where the support
of distributions is limited by some constant c, i.e., mp 6 cnp, we can simplify the space and time
complexities to those in the following Table 2.

Table 2. Space and time complexity of the GRV algorithm and the BEM algorithm.

GRV (this article) BEM [4]

Space complexity O
(
np
)

O
(
nanp|Act|

)
Time complexity O

(
np log na

)
O
(

nanp log na + n2
anp

)
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In the table the underlined part stems from the extra time needed for insertions. It is clear tha,t if
the assumptions mentioned are satisfied, the complexity of the present algorithm stands out well. This
is confirmed in the next section where we report on the performance on a number of benchmarks of
implementations of both algorithms.

5. Benchmarks

Both our algorithm, below referred to as GRV, and the reference algorithm by Baier, Engelen and
Majster-Cederbaum [4], for which we use the abbreviation BEM, have been implemented in C++ as
part of the mCRL2 toolset [9,10] (www.mcrl2.org). This toolset is available under a Boost license which
means that the source code is open and available without restriction to be inspected or used. In the
implementation of BEM, some of the operations are not carried out exactly as prescribed in [4] for
reasons of practicality.

We have extensively tested the correctness of the implementation of the new algorithm by applying
it to millions of randomly generated PLTSs, and comparing the results to those of the implementation
of the BEM algorithm. This is not done because we doubt the correctness of the algorithm, but because
we want to be sure that all the details of our implementation are right.

We experimentally compared the performance of both implementations. All experiments have
been performed on a relatively dated machine running Fedora 12 with INTEL XEON E5520 2.27 GHz
CPUs and 1TB RAM. For the probabilities exact rational number arithmetic is used which is much
more time consuming than floating point arithmetic. The reported runtimes do not include the time to
read the input PLTS and write the output.

Our first experimental question regards the growth of the practical complexity of the BEM and
GRV algorithm when concrete probabilistic transition systems grow in size. To get an impression of
this, we considered the so-called “ant on a grid” puzzle published in the New York Times [27,28]. In
this puzzle, an ant sits on a square grid. When it reaches the leftmost or rightmost position on the grid
it dies. When it reaches the upper or lower position of the grid it is free and lives happily ever after.
On any remaining position, the ant chooses with equal probability to go to a neighbouring position on
the grid. The question is what the probabilities for the ant are to die and stay alive, given an initial
position on the grid.

The specification in probabilistic mCRL2 of the ant-on-a-grid is given in Figure 4, where the
dimensions of the grid are maxx and maxy, and the initial position is given by ix and iy.

sort Direction = struct up | down | right | left ;

proc X(x, y : N) =
(x ≈ 1∨ x ≈ maxx)→ dead·X(x, y) �
(y ≈ 1∨ y ≈ maxy)→ live.X(x, y) �
( dist d : Direction[1/4] .

((d ≈ up)→ step·X(x + 1, y) +
(d ≈ down)→ step·X(x− 1, y) +
(d ≈ right)→ step·X(x, y + 1) +
(d ≈ left)→ step·X(x, y− 1)) ) ;

init X(ix, iy) ;

Figure 4. The specification of ant-on-a-grid in mCRL2.

The actions dead, live and step indicate that the ant is dead, stays alive and makes a step. The
process expression p·q stands for sequential composition and p + q represents the choice in behaviour.
The notations c→p and c→p � q are the if-then and if-then-else of mCRL2. The curly equal sign (≈) in
conditions stands for equality applied to data expressions. The expression dist d:Direction[1/4] means
that each direction d is chosen with probability 1

4 . From this description, PLTSs are generated that are
used as input for the probabilistic bisimulation reduction tools.

www.mcrl2.org
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Figure 5 depicts the runtime results of a set of experiments when increasing the total number
of states of the ant on the grid model. At the left are the results when running the BEM algorithm,
whereas the results for the GRV algorithm are shown at the right. Note that the x-axis only depicts the
number of action states. This figure indicates that the practical running times of both algorithms are
pretty much in line with the theoretical complexity. This is in agreement with our findings on other
examples as well. Furthermore, it should be noted that the difference in performance is dramatic. The
largest example that our implementation of the BEM algorithm can handle within a timeout of 5 h
requires approximately 10,000 s compared to 2 s for GRV. The particular example regards a PLTS of
6.4×105 action states. The graphs clearly indicate that the difference grows when the probabilistic
transition systems get larger.

Figure 5. Scaling of runtime results for the ant-on-a-grid puzzle

To further understand the practical usability of the GRV algorithm, we applied it to a number of
benchmarks taken from the PRISM Benchmark Suite (www.prismmodelchecker.org/benchmarks/)
and the mCRL2 toolset (www.mcrl2.org/). The tests taken from PRISM were first translated into
mCRL2 code to generate the corresponding PLTSs.

Table 3 collects the results for the experiments conducted. The ant_N_M_grid examples refer to the
ant-on-a-grid puzzle for an N by M grid with the ant initially placed at the approximate center of the
grid. The models airplane_N are instances of an airplane ticket problem using N seats. In the airplane
ticket problem, N passengers enter a plane. The first passenger lost his boarding pass and therefore
takes a random seat. Each subsequent passenger will take his own seat unless it is already taken, in
which case he randomly selects an empty seat as well. The intriguing question is to determine the
probability that the last passenger will have his or her own seat (see [28] for a more detailed account).

The following three benchmarks stem from PRISM: The brp_N_MAX models are instances of
the bounded retransmission protocol when transmitting N packages and bounding the number of
retransmissions to MAX. The self_stab_N and shared_coin_N_K are extensions of the self stabilisation
protocol and the shared coin protocol, respectively. For the self stabilisation protocol, N processes are
involved in the protocol, each holding a token initially. The shared coin protocol is modelled using N
processes and setting the threshold to decide head or tail to K.

Finally, the random_N tests are randomly generated PLTSs with N action states. All the models
are available in the mCRL2 toolset.

At the left of Table 3, the characteristics for each PLTS are given: the number of action states (na),
the number of action transitions (ma), the number of distributions (np), and the cumulative support
of the distributions (mp). The symbol “K” is an indicator for 1000 states. The same characteristics for
the minimised PLTS are also provided. Furthermore, the runtime for minimising the probabilistic
transition system in seconds as well as the required memory in megabytes are indicated for both
algorithms. As mentioned earlier, we limited the runtime to 5 h.

www.prismmodelchecker.org/benchmarks/
www.mcrl2.org/
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Table 3. Runtime (in s) and memory use (in MB) results for the reference algorithm (BEM) and the GRV algorithm.

Model na ma np mp min. na min. ma min. np min. mp time BEM me. BEM time GRV me. GRV Speed-up Memory

shared_coin_2_5 14,096 28,192 12,891 14,801 998 1995 1163 1479 5.45 53.57 0.08 51.34 68 1.04
brp_100_20 15,003 15,003 10,803 15,003 8504 8504 8504 12,704 37.27 82.51 0.06 55.79 621 1.48
self_stab_7 16,130 56,462 14,337 57,346 2060 9324 2836 5672 14.08 71.54 0.17 66.35 83 1.08
brp_100_40 29,003 29,003 20,803 29,003 16,504 16,504 16,504 24,704 368.67 176.34 0.22 65.41 1676 2.70
airplane_4000 31,991 31,990 15,998 31,991 23,995 23,994 15,998 23,995 491.75 219.01 0.15 66.88 3278 3.27
ant_100_100_grid 39,984 39,984 9997 39,988 2405 2405 2404 9608 18.52 78.08 0.14 61.85 132 1.26
random_40 40,000 63,981 54,123 86,231 29,610 60,864 45,092 73,861 1766.80 546.21 0.50 111.70 3534 4.89
shared_coin_2_10 53,736 107K 48,131 551K 1978 3955 2303 2939 65.41 107.85 0.36 81.34 182 1.33
self_stab_8 65,026 260K 65,537 262K 6306 32,960 9721 19,442 401.17 294.44 0.69 157.17 581 1.87
brp_200_50 72,003 72,003 51,603 72,003 41,004 41,004 41,004 61,404 1674.53 814.89 0.38 101.86 4407 8.00
ant_200_100_grid 79,984 79,984 19,997 79,988 4855 4855 4854 19,408 105.78 164.55 0.20 82.85 529 1.99
airplane_10000 79,991 79,990 39,998 79,991 59,995 59,994 39,998 59,995 2805.12 1073.63 0.37 113.83 7581 9.43
random_100 100K 160K 134K 215K 73,607 151K 112K 183K 15,439.18 2975.38 1.14 213.08 13,534 13.96
ant_200_200_grid 160K 160K 39,997 160K 9805 9805 9804 39,208 760.17 484.78 0.41 124.84 1854 3.88
shared_coin_2_20 210K 419K 185K 212K 3938 7875 4583 5859 654.94 440.18 1.19 198.80 550 2.21
self_stab_9 262K 1175K 294K 1180K 19,172 113K 32,806 65,612 4015.53 2809.32 3.24 598.14 1239 4.70
shared_coin_3_2 280K 837K 274K 318K 5841 17,347 7722 10,068 1781.64 974.92 1.78 294.68 1001 3.31
ant_400_200_grid 320K 320K 79,997 320K 19,705 19,705 19,704 78,808 3026.02 1703.80 0.88 218.95 3439 7.78
airplane_40000 320K 320K 160K 320K 240K 240K 160K 240K - - 1.34 333.17 - -
random_400 400K 638K 540K 859K 293K 605K 446K 730K - - 5.11 729.84 - -
shared_coin_2_30 468K 936K 413K 472K 5898 11,795 6863 8779 2427.55 1248.44 2.95 389.13 823 3.21
ant_400_400_grid 640K 640K 160K 640K 39,605 39,605 39,604 158K 9917.64 6477.75 2.09 397.23 4745 16.31
airplane_100000 800K 800K 400K 800K 600K 600K 400K 600K - - 4.22 755.948 - -
random_800 800K 1277K 1079K 1718K 587K 1210K 893K 1462K - - 11.98 1418.79 - -
brp_600_200 846K 846K 604K 846K 483K 483K 483K 724K - - 4.94 789.05 - -
self_stab_10 1046K 5232K 1311K 5242K 58,026 383K 109K 218K - - 16.53 2369.75 - -
shared_coin_2_60 1858K 3716K 1632K 1866K 11,778 23,555 13,703 17,539 - - 12.25 1416.92 - -
ant_800_800_grid 2560K 2560K 640K 2560K 159K 159K 159K 636K - - 8.27 1466.44 - -
shared_coin_3_5 3222K 9665K 2984K 3437K 14,085 41,863 18,630 24,432 - - 26.97 2809.88 - -
brp_1000_500 3510K 3510K 2508K 3510K 2005K 2005K 2005K 3007K - - 24.85 3122.14 - -
ant_1600_1600_grid 10,240K 10,240K 2560K 10,240K 638K 638K 638K 2553K - - 35.64 5743.74 - -
brp_2000_1000 14,020K 14,020K 10,016K 14,020K 8010K 8010K 8010K 12,015K - - 115.95 12,351.47 - -
brp_4000_2000 56,040K 56,040K 40,032K 56,040K 32,020K 32,020K 32,020K 48,030K - - 652.78 49,253.50 - -
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The experiments show that the GRV algorithm outperforms the reference algorithm quite
substantially in all studied cases. In the case of “random_100” the difference is four orders of magnitude,
despite the fact that this state space has only 100 K action states. The second last column of Table 3
lists the relative speed-up, i.e. the quotient of the time needed by BEM over the time needed by GRV,
when applicable. Memory usage is comparable for both algorithms for small cases, whereas for larger
examples the BEM algorithm requires up to one order of magnitude more memory than the GRV
algorithm. The right-most column of Table 3 contains the relative efficiency in memory, i.e. the quotient
of the memory used by BEM over the memory used by GRV, for the cases where BEM terminated
before the deadline.

6. Concluding Remarks

We believe we have formulated a very efficient algorithm to determine probabilistic bisimulation.
As the algorithm restricts the handling of distributions to the states in the support of the distributions,
the running time of the algorithm compares favourably when the fan-out is low in the PLTS under
consideration, a situation occurring frequently in practice.

Apart from deciding strong probabilistic bisimilarity, our algorithm is instrumental in the mCRL2
toolset for minimising PLTSs modulo probabilistic bisimulation. Such a reduction can be useful as a
preprocessing step before applying other forms of analysis on the PLTS. Occasionally, minimisation
can even simplify PLTSs such that they become suitable for visual inspection. See for example the
discussion the airplane ticket problem, also known as the problem of the lost boarding pass, in [28].
However, having smaller state spaces will be beneficial regardless, as this reduces the processing time
for other tools further down the analysis chain.

To fine tune the algorithm, it will be interesting in future work to investigate how to choose the
non-trivial constellations C and its sub-blocks BC optimally; their choice is now non-deterministic.
Furthermore, it is interesting to refine the algorithm to probabilistic bisimulation with combined
transitions [29] as this appears to be required to extend this algorithm to weaker notions of
equivalence [21], such as probabilistic branching bisimulation.
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