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Abstract: In this paper, a modification to the Polak–Ribiére–Polyak (PRP) nonlinear conjugate
gradient method is presented. The proposed method always generates a sufficient descent direction
independent of the accuracy of the line search and the convexity of the objective function. Under
appropriate conditions, the modified method is proved to possess global convergence under the Wolfe
or Armijo-type line search. Moreover, the proposed methodology is adopted in the Hestenes–Stiefel
(HS) and Liu–Storey (LS) methods. Extensive preliminary numerical experiments are used to illustrate
the efficiency of the proposed method.
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1. Introduction

Conjugate gradient methods are among the most popular methods for solving optimization
problem, especially for large-scale problems due to the simplicity and low storage of their iterative
form [1].

Consider the following unconstrained optimization problem:
min{ f (x) : x ∈ Rn}, (1)

where f : Rn → R is continuously differentiable. Let x0 be any initial point of the solution of the
problem (1), then the conjugate gradient method generates an iteration sequence as follows:

xk+1 = xk + αkdk, k = 0, 1, 2, ... (2)

where xk is the kth iterative point, αk > 0 is a steplength which is obtained by carrying out some line
search, and dk is a search direction defined by

dk =

{
−gk, if k = 0,
−gk + βkdk−1, if k ≥ 1,

(3)

where gk = g(xk) denotes the gradient of the function f (x) at xk and βk is a scalar that determines
different conjugate gradient methods [2–6]. In this paper, we focus our attention on well-known
methods such as Polak–Ribière–Polyak (PRP) [4,5], Hestenes–Stiefel (HS) [3] and Liu–Storey (LS) [6]
methods which share the same numerator gT

k yk−1 in βk. The update parameters of these methods are,
respectively, given by

βPRP
k =

gT
k yk−1

‖gk−1‖2 , βHS
k =

gT
k yk−1

dT
k−1yk−1

, βLS
k = −

gT
k yk−1

dT
k−1gk−1

, (4)
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where yk−1 = gk − gk−1, ‖ · ‖ denotes the Euclidean norm of vectors. Other nonlinear conjugate
gradient methods and their global convergence can be found in [1,7].

It is well-known that the PRP, HS and LS methods are generally regarded to be the most efficient
methods in practical computation. This can be attributed to the property (*), which was derived in
Gilbert and Nocedal [8]. Polak–Ribière [4] obtained the global convergence of the PRP method for the
strongly convex functions with exact line search. Yuan [9] also obtained the global convergence of the
PRP method under the assumption that the search direction satisfies a descent condition:

gT
k dk < 0, ∀k ≥ 0. (5)

and the following standard Wolfe line search{
f (xk + αkdk)− f (xk) ≤ δαkgT

k dk,
g(xk + αkdk)

Tdk ≥ σgT
k dk,

(6)

where 0 < δ ≤ σ < 1.
Their convergence properties are not so good in many situations. Powell [10] gave a counter

example which showed that there exist nonconvex functions on which the PRP method does not
converge globally even if the exact line search is used. Inspired by Powell’s work, Gilbert and
Nocedal [8] proved that the modified PRP method is globally convergent in which βk is given by
βPRP+

k = max{βPRP
k , 0}. The search direction prevents effectively jamming phenomena from occurring

and satisfies the descent property (5) or the following sufficient descent condition:
gT

k dk ≤ −c‖gk‖2, ∀k ≥ 0, c > 0, (7)

which is very important for establishing the global convergence of the proposed method. In [11], Hager
and Zhang proposed a modified HS formula for βk defined by

βHZ
k = βHS

k − 2
‖yk‖2gT

k dk−1

(dT
k−1yk−1)2

.

More specifically, in their proposed method, called CG-DESCENT. They showed that the method
possesses the sufficient descent property with c = 7/8. Afterwards, they also presented the following
extension of βHZ

k :

βHZ
k = βHS

k − θk
‖yk‖2gT

k dk−1

(dT
k−1yk−1)2

,

where θk is a nonnegative parameter. If θk ≥ θ > 1/4, then the method possesses the sufficient
descent property with c = 1− 1/(4θ). Cheng [12] developed a two term PRP-based descent method
satisfying (7) by use of the projection technique for unconstrained optimization problem. Yu et al. [13]
proposed a modified form of βPRP

k as follows:

βDPRP
k = βPRP

k − µ
‖yk‖2

‖gk‖4 gT
k+1dk.

It is important that if µ > 1
4 , then the condition (7) is achieved with c = 1− 1

4µ . Yuan [14] present
a new PRP formula defined by

βMPRP
k = βPRP

k −min{βPRP
k , µ

‖yk‖2

‖gk‖4 gT
k+1dk},

where µ > 1
4 guaranteeing the descent property (7) and βMPRP

k ≥ 0. Livieris and Pintelas [15] proposed
a new class of spectral conjugate gradient methods which ensures sufficient descent independent of
the accuracy of the line search.

Wei et al. [16] gave a variant of the PRP method called the VPRP method. The parameter βk in
the VPRP method is given by

βVPRP
k =

‖gk‖2 − ‖gk‖
‖gk−1‖

gT
k gk−1

‖gk−1‖2 .



Algorithms 2018, 11, 133 3 of 10

Based on the VPRP method, Zhang [17] made a little modification and obtained the NPRP method as follows,

βNPRP
k =

‖gk‖2 − ‖gk‖
‖gk−1‖

|gT
k gk−1|

‖gk−1‖2 ,

and established the sufficient descent property (7) of the NPRP method. Recently, Zhang [18] proposed
a three-term conjugate gradient method called MPRP method in which the direction dk takes the
following form:

dk = −gk + βPRP
k dk−1 −

gT
k dk−1

‖gk−1‖2 yk−1, (8)

leading to the MPRP method with the sufficient descent property. This property always holds
independent of any line search and the convexity of the objective function. Under the following
line search

f (xk + αkdk) ≤ f (xk)− δα2
k‖dk‖2, (9)

where αk = max{ρi, i = 1, 2, ...} with 0 < ρ, δ < 1, the global convergence of the MPRP method is
established. Note that the MPRP method in [18] will reduce to the standard PRP method if exact line
search is used and converges globally under the line search (9). However, it fails to converge under the
weak Wolfe line search (6). The main reason lies in the trust region property (Lemma 1 in Section 2)
that is not satisfied by the MPRP method. Based on the method in [12,18], Dong et al. [19] propose a
three-term PRP-type conjugate gradient method which always satisfies the sufficient descent condition
independently of line searches employed.

Motivated by the above observations, we propose a modified three-term PRP formula based
on (8), which possesses not only the sufficient descent property but also the trust region feature. In the
following, we first reformulate the search direction (8) into a new form, which can be written as follows:

dk = −gk + βPRP
k dk−1 − βPRP

k
gT

k dk−1

gT
k yk−1

yk−1. (10)

Then, we can consider the following general iteration form:

dk = −gk + βkdk−1 − βk
gT

k dk−1

gT
k yk−1

yk−1. (11)

with any βk, it is not difficult to deduce that the direction defined by (11) satisfies

dT
k gk = −‖gk‖2, (12)

which is independent of any line search and the convexity of the objective function.
In this paper, we further study the PRP method and suggest a new three term PRP method to

improve the numerical performance and obtain better property of the PRP method. The remaining of
this paper is organized as follows. In Section 2, we present a modified PRP method by using a new
technique and establish its global convergence. In Section 3, the new technique is extended to the HS
and LS method. In the last section, some numerical results are reported to show the modified methods
are efficient.

2. The Modified PRP Method and Its Properties

In order to have the sufficient descent condition and keep simple structure and good properties,
we take a modification to the denominator of the PRP formula, namely,

βZPRP
k =

gT
k yk−1

max{µ‖dk−1‖ ‖yk−1‖, ‖gk−1‖2} , (13)

where µ > 0. For convenience, we call the iterative form by (2), (11) and (13) a ZPRP method. It is
obvious that the ZPRP method reduces to the PRP method if µ‖dk−1‖ ‖yk−1‖ ≤ ‖gk−1‖2.

Then, we give the modified PRP type conjugate gradient method below (Algorithm 1).
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Algorithm 1 Modified PRP-type Conjugate Gradient Method

Step 0: Given an initial point x0 ∈ Rn, ε > 0, d0 = −g0, set k := 0.
Step 1: If ‖gk‖ ≤ ε, then stop. Otherwise, go to Step 2.
Step 2: Find the step size αk satisfying a suitable line search.
Step 3: Let xk+1 = xk + αkdk.
Step 4: Compute the search direction dk+1 by (11) where βk+1 = βZPRP

k+1 is given by (13).
Step 5: Set k := k + 1 and go to Step 1.

The following lemma shows that the direction dk determined by (11) satisfies a trust region property.

Lemma 1. Let dk be defined by (11) with βZPRP
k , then we have

‖dk‖ ≤ (1 +
2
µ
)‖gk‖. (14)

Proof of Lemma 1. By (13), for all k ≥ 1, we have

|βZPRP
k | ≤ ‖gk‖ ‖yk−1‖

max{µ‖dk−1‖ ‖yk−1‖, ‖gk−1‖2}

≤ ‖gk‖
µ‖dk−1‖

(15)

From (11), (13) and (15), we obtain

‖dk‖ ≤ ‖gk‖+ |βZPRP
k | ‖dk−1‖+ |βZPRP

k | ‖gk‖‖dk−1‖
|gT

k yk−1|
‖yk−1‖

≤ ‖gk‖+
1
µ
‖gk‖+

|gT
k yk−1|

µ‖dk−1‖ ‖yk−1‖
‖gk‖ ‖dk−1‖
|gT

k yk−1|
‖yk−1‖

= (1 +
2
µ
)‖gk‖. (16)

The proof is completed.

3. Global Convergence of the ZPRP Method

In this section, we come to show the global convergence of our proposed method. The following
assumptions are often used in the literature to analyze the global convergence of conjugate gradient
methods with inexact line searches.
Assumption 1
(i) The level set Ω = {x ∈ Rn| f (x) ≤ f (x0)} is bounded.
(ii) In some neighborhood N of Ω, f is continuously differentiable and its gradient is Lipschitz
continuous, that is, there exists a constant L > 0 such that ‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀x, y ∈ N.

We first prove the ZPRP method is globally convergent with Wolfe line search (6). Under
Assumption 1, we give a useful Zoutendijk condition [20].

Lemma 2. Suppose that Assumption 1 holds. Consider the method in the form of (2) and (3) where dk is a
descent direction and αk satisfies the Wolfe line search conditions (6). Then we have

∑
k≥0

(gT
k dk)

2

‖dk‖2 < +∞. (17)

Obviously, the Zoutendijk condition (17) and (12) imply that
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∑
k≥0

‖gk‖4

‖dk‖2 < +∞. (18)

Theorem 1. Suppose that Assumption 1 holds. Consider the ZPRP method, and αk is obtained by the Wolfe
conditions (6). Then we have

lim
k→∞
‖gk‖ = 0. (19)

Proof of Theorem 1. By Lemma 1, we have ‖dk‖ ≤ (1 + 2
µ )‖gk‖. Let C = 1 + 2

µ , then we get

‖dk‖2 ≤ C2‖gk‖2, (20)

which implies

∞

∑
k=0
‖gk‖2 ≤ C2

∞

∑
k=0

‖gk‖4

‖dk‖2 < +∞. (21)

Hence, (19) holds. The proof is completed.

Next, we prove the global convergence of the ZPRP method under the condition (9).

Theorem 2. Suppose that Assumption 1 holds. Consider the ZPRP method and αk satisfies the Armijo line
search (9). Then we have

lim inf
k→∞

‖gk‖ = 0. (22)

Proof of Theorem 2. Suppose that the conclusion is not true. Then there exists a constant ε > 0 such
that ∀k ≥ 0,

‖gk‖ ≥ ε. (23)

From (9) and Assumption 1 (i), we have

lim
k→∞

α2
k‖dk‖2 = 0. (24)

If lim infk→∞ αk > 0, we get from (24) that lim infk→∞ ‖dk‖ = 0. From (12), we get lim infk→∞ ‖gk‖ = 0,
which contradicts (23).
Suppose lim infk→∞ αk = 0, then there is an infinite index set K such that

lim
k∈K,k→∞

αk = 0. (25)

From (9), it follows that when k ∈ K is sufficiently large, ρ−1αk satisfies the following inequality,

f (xk + ρ−1αkdk)− f (xk) > −δρ−2α2
k‖dk‖2. (26)

By Assumption 1 (ii) and the mean value theorem, there is a ηk ∈ (0, 1) such that

f (xk + ρ−1αkdk)− f (xk) = ρ−1αkg(xk + ηkρ−1αkdk)
Tdk

= ρ−1αk(g(xk + ηkρ−1αkdk)− g(xk))
Tdk + ρ−1αkg(xk)

Tdk
≤ Lρ−2α2

k‖dk‖2 − ρ−1αkgT
k dk

= Lρ−2α2
k‖dk‖2 − ρ−1αk‖gk‖2

(27)

By (20), (26) and (27) , we can get that

‖gk‖2 ≤ ρ−1(δ + L)αkC2. (28)
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Together with (25), (28) implies limk∈K,k→∞ ‖gk‖ = 0. This also yields a contradiction. The proof
is completed.

4. Extension to the HS and LS Method

In this section, we extend the idea above to the HS and LS method. The corresponding method is
called the ZHS method and the ZLS method in which βk is respectively defined by

βZHS
k =

gT
k yk−1

max{µ‖dk−1‖ ‖yk−1‖, dT
k−1yk−1}

, βZLS
k =

gT
k yk−1

max{µ‖dk−1‖ ‖yk−1‖,−gT
k−1dk−1}

(29)

where µ > 0. It is obvious that βZLS
k = βZPRP

k since gT
k dk = −‖gk‖2. Hence, we now only need to

discuss the global convergence of the ZHS method.
The following theorem shows that the ZHS method converges globally with the Wolfe line

search (6).

Theorem 3. Let Assumption 1 hold. Consider the ZHS method and αk is obtained by the Wolfe line search (6),
then

lim
k→∞
‖gk‖ = 0. (30)

Proof of Theorem 3. Suppose by contradiction that the conclusion is not true. Then there exists a
constant ε > 0 such that ‖gk‖ > ε, ∀k ≥ 1. From (29), it follows that

|βZHS
k | ≤ ‖gk‖ ‖yk−1‖

µ‖dk−1‖ ‖yk−1‖
=
‖gk‖

µ‖dk−1‖
. (31)

By (11) with βk = βZHS
k , we can get that

‖dk‖ ≤ ‖gk‖+ |βZHS
k | ‖dk−1‖+ |βZHS

k | ‖gk‖ ‖dk−1‖
|gT

k yk−1|
‖yk−1‖

≤ ‖gk‖+
‖gk‖

µ + ‖gk‖
µ

= (1 + 2
µ )‖gk‖.

(32)

Hence, combing with (17),

∞

∑
k=0
‖gk‖2 ≤ (1 +

2
µ
)2

∞

∑
k=0

‖gk‖4

‖dk‖2 < ∞. (33)

which leads to a contradiction. The proof is completed.

The following result shows that the ZHS method with the Armijo line search (9) possesses
global convergence.

Theorem 4. Let Assumption 1 hold. Consider the ZHS method and αk is obtained by the line search (9), then

lim inf
k→∞

‖gk‖ = 0. (34)

Proof of Theorem 4. The proof is similar to the proof of the global convergent property of the ZPRP
method given in Theorem 2 in this paper. We omit it here.

5. Numerical Experiments

In this section, we report some numerical results on some of the unconstrained optimization
problems in the CUTE [21] test problem libraty. We test the ZPRP method and ZHS method, and
compare the performance of the these two methods with the MPRP method in [18]. The parameters
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δ = 10−4, ρ = 0.3 and µ = 0.001. All codes were written in MATLAB R2012a and run on PC with
3.00 GHz CPU processor and Win 7 operation system. We use the stopping iteration ‖gk‖∞ ≤ 10−6.
The detailed numerical results are listed on the web site: http://mathxiuxiu.blog.sohu.com/326066259.
html.

We first evaluate the performance of the ZPRP method with that of CG-DESCENT proposed by
Hager and Zhang (2005) and all methods with the Wolfe line search (6). Figures 1–3 show the numerical
performance of the above methods related to the total number of iterations, the number of function
and gradient evaluations, CPU time, respectively, which are evaluated using the profiles of Dolan and
Moré [22]. For each method, we plot the fraction P of problems for which the method is within a factor
t of the smallest number of iterations, or the smallest number of function evaluations or least CPU time,
respectively. The left side of the figure gives the percentage of the test problems for which a method is
the fastest; the right side gives the percentage of the test problems that are successfully solved by each
of the methods. The top curve is the method that solved the most problems in a time that was within
a factor t of the best time. Clearly, the ZPRP method has the better performance since it illustrates
the best probability of being the optimal solver, outperforming CG-DESCENT. From Figure 1, we can
obtain the ZPRP method solves about 59.5% of the test problems with the least number of function
evaluations while CG-DESCENT solve about 56.5% of the test problems. For the total number of
function and gradient evaluations, in Figure 2 illustrates that the ZPRP method solves 55.2% of the test
problems with the least number of function and gradient evaluations while CG-DESCENT solve about
52.2% of the test problems. Therefore, the ZPRP method outperforms CG-DESCENT.
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Figure 1. The number of iteration.
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Figure 2. The total number of function and gradient evaluations.
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Figure 3. The total CPU time.

In the sequel, we compare the performance of the ZPRP method with that of the ZHS method and
the MPRP method in [18] and all methods with the line search (9). Figures 4–6 list the performance
of the above methods relative to CPU time, the number of function evaluations and the number of
gradient evaluations, respectively. From Figure 4, we can observe that the ZPRP method outperforms
the MPRP and ZHS method. More analytically, the performance profile for the number of iteration
shows that ZPRP can solve 61% of the test problems with the least number while MPRP and ZHS
solve about 47.5% and 45.2% of the test problems, respectively. As regards the number of function
and gradient evaluations, Figure 5 shows that the ZPRP solves 80% of the test problems with the
least number. Hence, the performance of the ZPRP method slightly better than that of the MPRP and
ZHS methods.
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Figure 4. The number of iteration.
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Figure 5. The total number of function and gradient evaluations.
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Figure 6. The total CPU time.

6. Conclusions

In this paper, we first proposed a modified PRP formula which provides sufficient descent
directions for the objective function independent of any line search. Then we applied the technique to
HS and LS conjugate gradient methods which also ensure the sufficient descent property. The global
convergence of modified methods are established under the standard Wolfe line search or Armijo line
search. Moveover, numerical experiments show that the proposed methods are promising. Our future
work is concentrated on applying our coefficient βk with spectral conjugate gradient method [15]
which ensures sufficient descent independent of the accuracy of the line search and studying the
convergence properties of a spectral conjugate gradient method.
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