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Abstract: One of the most recent members of the Paxos family of protocols is Generalized Paxos.
This variant of Paxos has the characteristic that it departs from the original specification of consensus,
allowing for a weaker safety condition where different processes can have a different views on
a sequence being agreed upon. However, much like the original Paxos counterpart, Generalized
Paxos does not have a simple implementation. Furthermore, with the recent practical adoption of
Byzantine fault tolerant protocols in the context of blockchain protocols, it is timely and important
to understand how Generalized Paxos can be implemented in the Byzantine model. In this paper,
we make two main contributions. First, we attempt to provide a simpler description of Generalized
Paxos, based on a simpler specification and the pseudocode for a solution that can be readily
implemented. Second, we extend the protocol to the Byzantine fault model, and provide the respective
correctness proof.
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1. Introduction

The evolution of the Paxos [1] protocol is a unique chapter in the history of Computer Science.
It was first described in 1989 through a technical report [2], and was only published a decade later [1].
Another long wait took place until the protocol started to be studied in depth and used by researchers
in various fields, namely the distributed algorithms [3] and the distributed systems [4] research
communities. In addition, finally, another decade later, the protocol made its way to the core of the
implementation of the services that are used by millions of people over the Internet, in particular since
Paxos-based state machine replication is the key component of Google’s Chubby lock service [5], or the
open source ZooKeeper project [6], used by Yahoo! among others. Arguably, the complexity of the
presentation may have stood in the way of a faster adoption of the protocol, and several attempts have
been made at writing more concise explanations of it [7,8].

More recently, several variants of Paxos have been proposed and studied. Two important lines
of research can be highlighted in this regard. First, a series of papers hardened the protocol against
malicious adversaries by solving consensus in a Byzantine fault model [9,10]. The importance of
this line of research is now being confirmed as these protocols are now in widespread use in the
context of cryptocurrencies and distributed ledger schemes such as blockchain [11]. Second, many
proposals target improving the Paxos protocol by eliminating communication costs [12], including an
important evolution of the protocol called Generalized Paxos [13], which has the noteworthy aspect
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of having lower communication costs by leveraging a specification that is weaker than traditional
consensus. In particular, instead of forcing all processes to agree on the same value, it allows processes
to pick an increasing sequence of commands that differs from process to process in that commutative
commands may appear in a different order. The practical importance of such weaker specifications
is underlined by a significant research activity on the corresponding weaker consistency models for
replicated systems [14,15].

In this paper, we draw a parallel between the evolution of the Paxos protocol and the current
status of Generalized Paxos. In particular, we argue that, much in the same way that the clarification of
the Paxos protocol contributed to its practical adoption, it is also important to simplify the description
of Generalized Paxos. Furthermore, we believe that evolving this protocol to the Byzantine model is an
important task, since it will contribute to the understanding and also open the possibility of adopting
generalized Paxos in scenarios such as a Blockchain deployment.

As such, the paper makes several contributions, which are listed next.

• We present a simplified version of the specification of Generalized Consensus, which is focused
on the most commonly used case of the solutions to this problem, which is to agree on a sequence
of commands;

• we present a simplified version of the Generalized Paxos protocol, complete with pseudocode;
• we extend the Generalized Paxos protocol to the Byzantine fault model;
• we present a description of the Byzantine Generalized Paxos protocol including the respective

pseudocode, in order to make it easier to implement;
• we prove the correctness of the Byzantine Generalize Paxos protocol;
• and we discuss several extensions to the protocol in the context of relaxed consistency models

and fault tolerance.

The remainder of the paper is organized as follows: Section 2 is a detailed overview of Paxos
and related protocols that inspired the algorithm in this paper. Section 3 introduces the model and
specification of Generalized Paxos. Section 4 presents a simplified version of the Generalized Paxos
protocol in the crash fault model. Section 5 presents the Generalized Paxos protocol that is resilient
against Byzantine failures. Section 6 presents correctness proofs, organized according to the properties
defined in the problem statement of Section 3. Section 7 discusses some optimizations and concludes
the paper. This paper is an extended version of [16], with permission from Springer Nature.

2. Background and Overview

2.1. Paxos and Its Variants

2.1.1. Classic Paxos

The Paxos protocol family solves consensus by finding an equilibrium in face of the well-known
FLP impossibility result [17]. It does this by always guaranteeing safety in an asynchronous system,
but at the same time making the observation that most of the time systems have periods during
which they can be considered synchronous, since long delays are often sporadic and temporary.
Therefore, Paxos only foregoes progress during the temporary periods of asynchrony, or if more than
f faults occur for a system of n = 2 f + 1 replicas [7]. The classic form of Paxos employs a set of
proposers, acceptors and learners, runs in a sequence of ballots, and employs two phases (numbered 1
and 2), with a similar message pattern: proposer to acceptors, acceptors to proposer (and, in phase 2,
also acceptors to learners). To ensure progress during synchronous periods, proposals are serialized by
a distinguished proposer, which is called the leader.

Paxos is most commonly deployed as Multi (Decree)-Paxos, which provides an optimization
of the basic message pattern by omitting the first phase of messages from all but the first ballot for
each leader [8]. This means that a leader only needs to send a phase 1a message once and subsequent
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proposals may be sent directly in phase 2a messages. This reduces the message pattern in the common
case from five message delays to just three (from proposal to learning). Since there are no implications
on the quorum size or guarantees provided by Paxos, the reduced latency comes at no additional cost.

2.1.2. Fast Paxos

Fast Paxos observes that it is possible to improve on the previous latency (in terms of common
case message steps) by allowing proposers to propose values directly to acceptors [12]. To this end,
the protocol distinguishes between fast and classic ballots, where fast ballots bypass the leader by
sending proposals directly to acceptors and classic ballots work as in Basic Paxos. The reduced latency
of fast ballots comes at the additional cost of using a quorum size of n− e instead of a classic majority
quorum, where e is the number of faults that can be tolerated while using fast ballots. In addition,
instead of the usual requirement that n > 2 f , to ensure that fast and classic quorums intersect, a new
requirement must be met: n > 2e + f . This means that if we wish to tolerate the same number of
faults for classic and fast ballots (i.e., e = f ), then the total number of replicas is 3 f + 1 instead of
the usual 2 f + 1 and the quorum size for fast and classic ballots is the same. The optimized commit
scenario occurs during fast ballots, in which only two messages broadcasts are necessary: phase 2a
messages between a proposer and the acceptors, and phase 2b messages between acceptors and learners.
This creates the possibility of two proposers concurrently proposing values to the acceptors and
generating a conflict, which must be resolved by falling back to a recovery protocol.

2.1.3. Generalized Paxos

Generalized Paxos addresses Fast Paxos’ shortcomings regarding collisions. More precisely,
it allows acceptors to accept different sequences of commands as long as non-commutative operations
are totally ordered [13]. Non-commutativity between operations is generically represented as an
interference relation. Generalized Paxos abstracts the traditional consensus problem of agreeing on a
single value to the problem of agreeing on an increasing set of values. C-structs provide this abstraction
of an increasing set of values and allow us to define different consensus problems. If we define the
sequence of learned commands of a learner li as a c-struct learned[li], then the consistency requirement
for consensus can be defined as:

• Consistency—learned[l1] and learned[l2] are always compatible, for all learners l1 and l2.

For two c-structs to be compatible, they must have a common upper bound. This means that, for any
two learned c-structs such as learned[l1] and learned[l2], there must exist some c-struct to which they
are both prefixes. This prohibits non-commutative commands from being concurrently accepted
because no subsequent c-struct would extend them both since it would not have a total order of
non-commutative operations. For instance, consider a set of commands {A, B, C} and an interference
relation between commands A and B (i.e., they are non-commutative with respect to each other).
If proposers propose A and C concurrently, some learners may learn one command before the other
and the resulting c-structs would be either C • A or A • C. These are compatible because there are
c-structs that extend them, namely A • C • B and C • A • B. These c-structs that extend them are valid
because the interfering commands are totally ordered. However, if two proposers propose A and B,
learners could learn either one in the first ballot and these c-structs would not be compatible because
no c-struct extends them. Any c-struct would start either by A • B or B • A, which means that an
interference relation would be violated. In the Generalized Paxos protocol, when such a collision
occurs, no value is chosen and the leader intervenes by starting a new ballot and proposing a c-struct.
Defining c-structs as command histories enables acceptors to agree on different sequences of commands
and still preserve consistency as long as dependence relationships are not violated. This means that
commutative commands can be ordered differently regarding each other but interfering commands
must preserve the same order across each sequence at any learner. This guarantees that solving the
consensus problem for histories is enough to implement a state-machine replicated system.
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2.1.4. Mencius

Mencius is also a variant of Paxos that tries to address the bottleneck of having a single leader,
through which every proposal must go through. In Mencius, the leader of each round rotates between
every process: the leader of round i is the process pk, such that k = n mod i. Leaders with nothing
to propose can skip their turn by proposing a no-op. If a leader is slow or faulty, the other replicas
can execute phase 1 to revoke the leader’s right to propose a value, but they can only propose a no-op
instead [18]. Considering that non-leader replicas can only propose no-ops, a no-op command from
the leader can be accepted in a single message delay since there is no chance of another value being
accepted. If some non-leader server revokes the leader’s right to propose and suggests a no-op, then
the leader can still suggest a value v 6= no-op, which will eventually be accepted as long as l is not
permanently suspected. Mencius also takes advantage of commutativity by allowing out-of-order
commits, where values x and y can be learned in different orders by different learners if there does not
exist a dependence relationship between them.

2.1.5. Egalitarian Paxos

Egalitarian Paxos (EPaxos) extends the goal of Mencius of achieving a better throughput than
Paxos by removing the bottleneck caused by having a leader [19]. To avoid choosing a leader,
the proposal of commands for a command slot is done in a decentralized manner, taking advantage of
the commutativity observations made by Generalized Paxos [13]. If two replicas unknowingly propose
commands concurrently, one will commit its proposal in one round trip after getting replies from a
quorum of replicas. However, some replica will see that another command was concurrently proposed
and may interfere with the already committed command. If the commands are non-commutative
then the replica must reply with a dependency between the commands, committing its command in
two rounds trips. This commit latency is achieved by using a fast-path quorum of f + b f+1

2 c replicas.
Similarly to Mencius, EPaxos achieves a substantially higher throughput than Multi-Paxos.

2.2. Byzantine Fault Tolerant Replication

The Byzantine Generals Problem is defined as a set of Byzantine generals that are camped in the
outskirts of an enemy city and have to coordinate an attack. Each general can either decide to attack
or retreat and there may be f traitors among the generals that try to prevent the loyal generals from
agreeing on the same action. The problem is solved if every loyal general agrees on what action to
take [20]. Like the traitorous generals, a process that suffers a Byzantine fault may display an arbitrary
behaviour and, in case of multiple Byzantine faults, an adversary may even coordinate multiple faulty
replicas in an attack.

Practical Byzantine Fault Tolerance (PBFT)

PBFT is a protocol that solves consensus while tolerating up to f Byzantine faults [9]. The system
moves through configurations called views in which one replica is the primary and the remaining
replicas are the backups. The safety property of the algorithm requires that operations be totally
ordered. The protocol starts when a client sends a request for an operation to the primary, which in
turn assigns a sequence number to the request and multicasts a pre-prepare message to the backups.
This message contains the timestamp, the digest of the client’s message, the view and the actual
request. If a backup replica accepts the pre-prepare message, after verifying that the view number and
timestamp are correct, it multicasts a prepare message and adds both messages to its log. The prepare
message is similar to the pre-prepare message except that it does not contain the client’s request
message. Both of these phases ensure that the requested operation is totally ordered at every correct
replica (note that the two phases described informally are not necessary for safety as demonstrated
by [21]). The protocol’s safety property requires that the replicated service must satisfy linearizability
and, therefore, operations must be totally ordered. After receiving 2 f prepare messages, a replica
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multicasts a commit message and commits the message to its log when it has received 2 f commit
messages from other replicas. The liveness property requires that clients must eventually receive
replies to their requests, provided that there are at most bN−1

3 c faults and the transmission time does
not increase continuously. This property represents a weak liveness condition but one that is enough
to circumvent the FLP impossibility result [17]. A Byzantine leader may try to prevent progress
by omitting pre-prepare messages when it receives operation requests from clients, but backups
can trigger new views after waiting for a certain period of time. The description of the Byzantine
Generalized Paxos protocol presented in this paper largely follows from the PBFT protocol.

3. Model

We consider an asynchronous system in which a set of n ∈ N processes communicate by sending
and receiving messages. Each process executes an algorithm assigned to it, but may stop executing it
by crashing. If a process does not follow the algorithm assigned to it, then it is byzantine. This paper
considers the authenticated Byzantine model: every process can produce cryptographic digital
signatures [22]. Furthermore, for clarity of exposition, we assume authenticated perfect links [23],
where a message that is sent by a non-faulty sender is eventually received and messages cannot
be forged (such links can be implemented trivially using retransmission, elimination of duplicates,
and point-to-point message authentication codes [23].) A process may be a learner, proposer or acceptor.
Informally, proposers provide input values that must be agreed upon by learners and the acceptors
help the learners agree on a value.

Problem Statement. In Generalized Paxos, each learner l maintains a monotonically increasing
sequence of commands learnedl . We define these learned sequences of commands to be equivalent (∼)
if one can be transformed into the other by permuting the elements in a way such that the order of
non-commutative pairs is preserved. A sequence x is defined to be a eq-prefix of another sequence y
(x v y), if the subsequence of y that contains all the elements in x is equivalent (∼) to x. We present
the requirements for this consensus problem, stated in terms of learned sequences of commands for a
learner l, learnedl . To simplify the original specification, instead of using C-structs (as explained in
Section 2), we specialize to agreeing on equivalent sequences of commands:

Nontriviality. learnedl can only contain proposed commands.
Stability. If learnedl = v then, at all later times, v v learnedl , for any l and v.
Consistency. At any time and for any two correct learners li and lj, learnedli and learnedlj

can
subsequently be extended to equivalent sequences.

Liveness. For any proposal s and correct learner l, eventually learnedl contains s.

4. Crash Fault Tolerant Protocol

This section describes the crash fault tolerant version of the Generalized Paxos protocol for our
simplified problem. The only modifications applied to the protocol were made to make it simpler
while still ensuring its correctness. The protocol should still be recognizable as Generalized Paxos
since its message pattern and control flow remain the same. However, we chose to describe it in detail,
both in the interest of clarity and also to showcase how the specialization to the command history
problem affects the protocol.

4.1. Agreement Protocol

The consensus protocol allows learner processes to agree on equivalent sequences of commands
(according to our previous definition of equivalence). An important conceptual distinction between
the Fast Paxos protocol and our simplified Generalized Paxos is that, in Fast Paxos [12], each instance
of consensus is called a ballot and agrees upon a single value, whereas in our protocol, much like the
original Generalized Paxos, instead of being separate instances of consensus, ballots correspond to
an extension to the sequence of learned commands of a single ongoing consensus instance. In both
protocols, ballots can either be classic or fast.



Algorithms 2018, 11, 141 6 of 26

In classic ballots, a leader proposes a single sequence of commands, such that it can be appended
to the commands learned by the learners. A classic ballot in Generalized Paxos follows a protocol that
is very similar to the one used by classic Paxos [2] (cf. Algorithms 1 and 2). This protocol comprises a
first phase where each acceptor conveys to the leader the sequences it has voted for. This allows the
protocol to preserve safety and also allows leader to resend unlearned commands. This is followed
by a second phase where the leader picks an extension to the sequence of commands relayed in
phase 1b messages and broadcasts it to the acceptors. The acceptors send their votes to the learners,
who then, after gathering enough support for a given extension to the current sequence, append the
new commands to their own sequences of learned commands and discard the already learned ones.

Algorithm 1 Generalized Paxos—Proposer p
Local variables: ballot_type = ⊥, ballot = 0

1: upon receive(BALLOT, bal, type) do
2: ballot = bal
3: ballot_type = type
4:
5: upon command_request(c) do # receive request from application
6: if ballot_type = f ast_ballot then
7: SEND(P2A_FAST, ballot, c) to acceptors
8: else
9: SEND(PROPOSE, c) to leader

Algorithm 2 Generalized Paxos—Process p

1: function MERGE_SEQUENCES(old_seq, new_seq)
2: for c in new_seq do
3: if !CONTAINS(old_seq, c) then
4: old_seq = old_seq • c
5: return old_seq
6: end function

In fast ballots, multiple proposers can concurrently propose either single commands or sequences
of commands by sending them directly to the acceptors (we use the term proposal to denote either
the command or sequence of commands that was proposed). In this case, concurrency implies that
acceptors may receive proposals in a different order. If the resulting sequences are equivalent, then
they are successfully learned in two message delays. If not, the protocol must fall back to using a
classic ballot.

Next, we present the protocol for each type of ballot in detail.

4.1.1. Classic Ballots

As previously mentioned, classic ballots work in a similar way to previous Paxos protocols.
Therefore, we will highlight the points where Generalized Paxos departs from the Classic Paxos
protocol, in particular where it is due to behaviors caused by our simplified specification of
Generalized Paxos.

In this part of the protocol, the leader continuously collects proposals by assembling commands
received from the proposers in a sequence (cf. Algorithm 3). This sequence is built by appending
arriving proposals to a sequence containing every proposal received since the previous ballot (this
differs from classic Paxos, where it suffices to keep a single proposed value that the leader attempts to
reach agreement on).

When the next ballot is triggered, the leader starts the first phase by sending phase 1a messages to
all acceptors containing just the ballot number. Similarly to classic Paxos, acceptors reply with a phase
1b message to the leader, which reports all sequences of commands they voted for. This message also
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implicitly conveys a promise not to participate in lower-numbered ballots, in order to prevent safety
violations [2].

After gathering a quorum of N − f phase 1b messages, the leader initiates phase 2a by sending
a message with a proposal to the acceptors. The procedure followed by the leader to construct this
proposal is critical to prevent conflicts between sequences proposed in different ballots as well as to
ensure liveness even when conflicts occur during fast ballots. There are two possible scenarios when
observing the quorum Q of gathered phase 1b messages: either there is one reported sequence s that
was voted for at least f + 1 acceptors in the latest ballot or there is none. If such a sequence exists then
it is guaranteed to be the only one that may have been learned. Since 2 f + 1 votes are necessary for
any sequence to be learned and at least f + 1 acceptors voted for s then any other non-commutative
sequence gathered at most 2 f votes, which is insufficient for it to be learned. If no sequence in the
quorum gathered f + 1 votes then the leader can be sure that no value was or will be learned in
that ballot. Since any sequence present in the quorum gathered at most f votes and there are only f
acceptors outside of it, any sequence gathered at most 2 f votes, which is also not enough for it to be
learned. However, even if the latest ballot didn’t result in the learning of a value, the leader still has to
pick the most up-to-date sequence in order to extend it with his proposals. Notice that, even though
the latest ballot may not have reached consensus on a sequence, some previous ballot did and the
phase 2b quorum of that ballot intersects in the current quorum of phase 1b messages in f + 1 acceptors.
Therefore, we arrive at a well-defined value picking rule: given a quorum Q of phase 1b messages,
if some sequence s has more than f votes at the highest ballot in which some acceptor voted for, then
that sequence is chosen as the prefix of the leader’s proposal. If no such sequence exists, then the
leader picks the longest prefix that is present in f + 1 sequences. It’s possible to further simplify this
rule by noting that the second case encases the first, since the longest possible prefix (v) of a sequence
is the sequence itself. More formally:

Leader rule. For a quorum Q of phase 1b messages, pick the longest prefix present in the
sequences of at least f + 1 messages in Q.

After picking the most up-to-date sequence accepted by a quorum, the leader appends the
commands present in phase 1b messages that are not in the chosen sequence. This ensures liveness
since any proposer’s command that reaches more than f acceptors before the next ballot begins will
eventually be included in an accepted proposal. After executing this rule, the leader simply appends
the proposers’ commands to the sequence and sends it to the acceptors in phase 2a messages.

The acceptors reply to phase 2a messages by sending phase 2b messages to the learners, containing
the ballot and the proposal from the leader. After receiving N− f votes for a sequence, a learner learns
it by extracting the commands that are not contained in his learned sequence and appending them in
order. Please note that for a sequence to be learned, a learner does not have to receive N − f votes
for the exact same sequence but for equivalence sequences (in accordance to our previous definition
of equivalence).
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Algorithm 3 Generalized Paxos—Leader l
Local variables: ballotl = 0, proposals = ⊥, accepted = ⊥

1: upon trigger_next_ballot(type) do
2: ballotl += 1
3: SEND(BALLOT, ballotl , type) to proposers
4:
5: if type = f ast then
6: SEND(FAST, ballotl , view) to acceptors
7: else
8: SEND(P1A, ballotl , view) to acceptors
9:

10: upon receive(PROPOSE, prop) from proposer pi do
11: if ISUNIVERSALLYCOMMUTATIVE(prop) then
12: SEND(P1A, ballot, prop) to acceptors
13: else
14: proposals = proposals • prop
15:
16: upon receive(P1B, ballot, bala, valsa) from acceptor a do
17: if ballota = ballotl then
18: accepted[ballotl ][a] = 〈bala, valsa〉
19: if #(accepted[ballotl ]) ≥ N − f then
20: PHASE_2A()
21:
22: function PHASE_2A()
23: votes = ⊥
24: k = −1
25: for a in acceptors do
26: bala = accepted[ballotl ][a][0]
27: vala = accepted[ballotl ][a][1]
28: if bala > k then
29: k = bala
30: votes = ⊥
31: else if bala = k then
32: votes[vala] += 1
33: if votes[vala] > f then
34: maxTriedl = vala
35: break
36:
37: for a in acceptors do
38: maxTriedl = MERGE_SEQUENCES(maxTriedl , accepted[ballotl ][a])
39:
40: maxTriedl = maxTriedl • proposals
41: SEND(P2A_CLASSIC, ballotl , maxTriedl) to acceptors
42: proposals = ⊥
43: maxTriedl = ⊥
44: end function

4.1.2. Fast Ballots

In contrast to classic ballots, fast ballots are able to leverage a weaker specification of generalized
consensus, in terms of command ordering at different replicas, to allow for faster execution of
commands in some cases.

The basic idea of fast ballots is that proposers contact the acceptors directly (code for acceptors in
Algorithm 4), bypassing the leader (code for leaders in Algorithm 5), and then the acceptors send their
votes on proposals to the learners. If a learner can gather N − f votes for a sequence (or an equivalent
one), then it is learned. If, however, a conflict exists between sequences then they will not be considered
equivalent and at most one of them will gather enough votes to be learned. Conflicts are dealt with
by maintaining the proposals at the acceptors so they can be sent to the leader and learned in the
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next classic ballot. This differs from Fast Paxos where recovery is performed through an additional
round-trip [12].

Algorithm 4 Generalized Paxos—Acceptor a
Local variables: leader = ⊥, bala = 0, vala = ⊥, f ast_bal = ⊥

1: upon receive(P1A, ballot) from leader do
2: PHASE_1B(ballot)
3:
4: upon receive(FAST, ballot) from leader do
5: f ast_bal[ballot] = true
6:
7: upon receive(P2A_CLASSIC, ballot, value) from leader do
8: PHASE_2B_CLASSIC(ballot, value)
9:

10: upon receive(P2A_FAST, ballot, value) from proposer p do
11: PHASE_2B_FAST(ballot, value)
12:
13: function PHASE_1B(ballot)
14: if bala < ballot then
15: SEND(P1B, ballot, bala, vala) to leader
16: bala = ballot
17: vala = ⊥
18: end function
19:
20: function PHASE_2B_CLASSIC(ballot, value)
21: if ballot ≥ bala and vala = ⊥ then
22: bala = ballot
23: if ISUNIVERSALLYCOMMUTATIVE(value) then
24: SEND(P2B, ballot, value) to learners
25: else
26: vala[ballot] = value
27: SEND(P2B, ballot, value) to learners
28: end function
29:
30: function PHASE_2B_FAST(ballot, value)
31: if ballot = bala and f ast_bal[bala] then
32: if ISUNIVERSALLYCOMMUTATIVE(value) then
33: SEND(P2B, ballot, value) to learners
34: else
35: vala[bala] = MERGE_SEQUENCES(vala[bala], value)
36: SEND(P2B, bala, vala[bala]) to learners
37: end function

Next, we explain each of these steps in more detail.
Step 1: Proposer to acceptors. To initiate a fast ballot, the leader informs both proposers and

acceptors that the proposals may be sent directly to the acceptors. Unlike classic ballots, where the
sequence proposed by the leader consists of the commands received from the proposers appended to
previously proposed commands, in a fast ballot proposals can be sent to the acceptors in the form of
either a single command or a sequence to be appended to the command history. These proposals are
sent directly from the proposers to the acceptors.
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Algorithm 5 Generalized Paxos—Learner l
Local variables: learned = ⊥, messages = ⊥

1: upon receive(P2B, ballot, value) from acceptor a do
2: messages[ballot][value][a] = true
3: if #(messages[ballot][value]) ≥ N − f or (ISUNIVERSALLYCOMMUTATIVE(value) and

#(messages[ballot][value]) > f ) then
4: learned = MERGE_SEQUENCES(learned, value)

Step 2: Acceptors to learners. Acceptors append the proposals they receive to the proposals they
have previously accepted in the current ballot and broadcast the result to the learners. Similarly to
what happens in classic ballots, a phase 2b message is sent from acceptors to learners, containing
the current ballot number and the command sequence. However, since commands (or sequences of
commands) are concurrently proposed, acceptors can receive and vote for non-commutative proposals
in different orders. To ensure safety, correct learners must learn non-commutative commands in a total
order. To this end, a learner must gather N − f votes for equivalent sequences. That is, sequences do
not necessarily have to be equal in order to be learned since commutative commands may be reordered.
Recall that a sequence is equivalent to another if it can be transformed into the second one by reordering
its elements without changing the order of any pair of non-commutative commands. Please note that,
in Algorithm 3 lines {32–33} and Algorithm 5 lines {2–3}, equivalent sequences are being treated as
belonging to the same index of the votes or messages variable, to simplify the presentation. By requiring
N− f votes for a sequence of commands, we ensure that, given two sequences where non-commutative
commands are differently ordered, only one sequence will receive enough votes. Since each acceptor
will only vote for a single sequence, there are only enough correct processes to commit one of them.
Please note that the fact that proposals are sent as extensions of previous sequences is critical to the
safety of the protocol. In particular, since the votes from acceptors can be reordered by the network
before being delivered at the learners, if these values were single commands it would be impossible to
guarantee that non-commutative commands would be learned in a total order.

Arbitrating an order after a conflict. When, in a fast ballot, non-commutative commands are
concurrently proposed, these commands may be incorporated into the sequences of various acceptors
in different orders. In that case, the sequences sent by the acceptors in phase 2b messages will not
be equivalent and will not be learned. In order to preserve liveness, the leader subsequently runs a
classic ballot and gathers the acceptors’ previous votes in phase 1b. After reaching a quorum of phase 1b
messages, it assembles a single serialization for every previously proposed command, which it will
then send to the acceptors along with new proposals. Therefore, if non-commutative commands fail to
be learned in a fast ballot, they will be included in the subsequent classic ballot and the learners will
learn them in a total order, thus preserving consistency and liveness.

The assembling of previous commands in a single serialization is done through a deterministic
procedure. In the first part of this procedure, the leader guarantees safety by picking the most recent
previously learned sequence. In the second part of the procedure, the leader extracts commands not
included in the previous chosen sequence and appends them to it. This guarantees that any proposed
command will eventually be learned, ensuring liveness. The last component of the leader’s proposal is
a sequence with new sequences sent by proposers.

5. Byzantine Fault Tolerant Protocol

This section presents our Byzantine fault tolerant Generalized Paxos Protocol (or BGP, for short)
(code for proposer in Algorithm 6). In BGP, the number of acceptor processes is a function of the
maximum number of tolerated Byzantine faults f , specifically, ≥ 3 f + 1, and quorums are any set of
N − f processes.
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Algorithm 6 Byzantine Generalized Paxos—Proposer p
Local variables: ballot_type = ⊥

1: upon receive(BALLOT, type) do
2: ballot_type = type
3:
4: upon command_request(c) do
5: if ballot_type == f ast_ballot then
6: SEND(P2A_FAST, c) to acceptors
7: else
8: SEND(PROPOSE, c) to leader

5.1. Overview

We modularize our protocol explanation according to the following main components, which are
also present in other protocols of the Paxos family:

• View Change—The goal of this subprotocol is to ensure that, at any given moment, one of the
proposers is chosen as a distinguished leader, who runs a specific version of the agreement
subprotocol. To achieve this, the view change subprotocol continuously replaces leaders,
until one is found that can ensure progress (i.e., commands are eventually appended to the
current sequence).

• Agreement—Given a fixed leader, this subprotocol extends the current sequence with a new
command or set of commands. Analogously to Fast Paxos [12] and Generalized Paxos [13],
choosing this extension can be done through two variants of the protocol: using either classic
ballots or fast ballots, with the characteristic that fast ballots complete in fewer communication
steps, but may have to fall back to using a classic ballot when there is contention among
concurrent requests.

5.2. View Change

The goal of the view change subprotocol is to elect a distinguished proposer process, called
the leader (code for leader in Algorithm 7), that carries through the agreement protocol (i.e., enables
proposed commands to eventually be learned by all the learners). The overall design of this subprotocol
is similar to the corresponding part of existing BFT state machine replication protocols [9].

In this subprotocol, the system moves through sequentially numbered views, and the leader
for each view is chosen in a rotating fashion using the simple equation leader(view) = view mod N.
The protocol works continuously by having acceptor processes monitor whether progress is being
made on adding commands to the current sequence, and, if not, by multicasting a signed SUSPICION

message for the current view to all acceptors suspecting the current leader. Then, if enough suspicions
are collected, processes can move to the subsequent view. However, the required number of suspicions
must be chosen in a way that prevents Byzantine processes from triggering view changes spuriously.
To this end, acceptor processes will multicast a view change message indicating their commitment to
starting a new view only after hearing that f + 1 processes suspect the leader to be faulty. This message
contains the new view number, the f + 1 signed suspicions, and is signed by the acceptor that sends it.
This way, if a process receives a view-change message without previously receiving f + 1 suspicions,
it can also multicast a view-change message, after verifying that the suspicions are correctly signed by
f + 1 distinct processes. This guarantees that if one correct process receives the f + 1 suspicions and
multicasts the view-change message, then all correct processes, upon receiving this message, will be
able to validate the f + 1 suspicions and also multicast the view-change message.
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Algorithm 7 Byzantine Generalized Paxos—Leader l
Local variables: ballotl = 0, proposals = ⊥, accepted = ⊥, notAccepted = ⊥, view = 0

1: upon receive(LEADER, viewa, proo f s) from acceptor a do
2: valid_proo f s = 0
3: for p in acceptors do
4: view_proo f = proo f s[p]
5: if view_proo fpubp == 〈view_change, viewa〉 then
6: valid_proo f s += 1
7: if valid_proo f s > f then
8: view = viewa
9:

10: upon trigger_next_ballot(type) do
11: ballotl += 1
12: SEND(BALLOT, type) to proposers
13: if type == f ast then
14: SEND(FAST, ballotl , view) to acceptors
15: else
16: SEND(P1A, ballotl , view) to acceptors
17:
18: upon receive(PROPOSE, prop) from proposer do
19: if ISUNIVERSALLYCOMMUTATIVE(prop) then
20: SEND(P2A_CLASSIC, ballotl , view, prop)
21: else
22: proposals = proposals • prop
23:
24: upon receive(P1B, ballot, bala, proven, vala, proo f s) from acceptor a do
25: if ballot 6= ballotl then
26: return
27:
28: valid_proo f s = 0
29: for i in acceptors do
30: proo f = proo f s[proven][i]
31: if proo fpubi

== 〈bala, proven〉 then
32: valid_proo f s += 1
33:
34: if valid_proo f s > N − f then
35: accepted[ballotl ][a] = proven
36: notAccepted[ballotl ] = notAccepted[ballotl ] • (vala \ proven)
37:
38: if #(accepted[ballotl ]) ≥ N − f then
39: PHASE_2A()
40:
41: function PHASE_2A()
42: maxTried = LARGEST_SEQ(accepted[ballotl ])
43: previousProposals = REMOVE_DUPLICATES(notAccepted[ballotl ])
44: maxTried = maxTried • previousProposals • proposals
45: SEND(P2A_CLASSIC, ballotl , view, maxTried) to acceptors
46: proposals = ⊥
47: end function

Finally, an acceptor process must wait for N − f view-change messages to start participating
in the new view (i.e., update its view number and the corresponding leader process). At this point,
the acceptor also assembles the N − f view-change messages, proving that others are committing to
the new view, and sends them to the new leader (cf. Algorithm 8). This allows the new leader to start
its leadership role in the new view once it validates the N− f signatures contained in a single message.
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5.3. Agreement Protocol

The consensus protocol allows learner processes to agree on equivalent sequences of commands
(according to the definition of equivalence presented in Section 3). An important conceptual distinction
between Fast Paxos [12] and our protocol is that ballots correspond to an extension of the sequence
of learned commands of a single ongoing consensus instance, instead of being a separate instance of
consensus. Proposers can try to extend the current sequence by either single commands or sequences
of commands. We use the term proposal to denote either the command or sequence of commands that
was proposed.

Ballots can either be classic or fast. In classic ballots, a leader proposes a single proposal to be
appended to the commands learned by the learners. The protocol is then similar to the one used
by classic Paxos [1], with a first phase where each acceptor conveys to the leader the sequences
that the acceptor has already voted for (so that the leader can resend commands that may not have
gathered enough votes), followed by a second phase where the leader instructs and gathers support for
appending the new proposal to the current sequence of learned commands. Fast ballots, in turn, allow
any proposer to contact all acceptors directly in order to extend the current sequence (in case there
are no conflicts between concurrent proposals). However, both types of ballots contain an additional
round, called the verification phase, in which acceptors broadcast proofs among each other indicating
their committal to a sequence. This additional round comes after the acceptors receive a proposal and
before they send their votes to the learners.

Next, we present the protocol for each type of ballot in detail. We start by describing fast ballots
since their structure has consequences that influence classic ballots. Figures 1 and 2 illustrate the
message pattern for fast and classic ballots, respectively. In these illustrations, arrows that are composed
of solid lines represent messages that can be sent multiple times per ballot (once per proposal) while
arrows composed of dotted lines represent messages that are sent only once per ballot.

Figure 1. BGP’s fast ballot message pattern.
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Figure 2. BGP’s classic ballot message pattern.

Algorithm 8 Byzantine Generalized Paxos—Acceptor a (view change)
Local variables: suspicions = ⊥, new_view = ⊥, leader = ⊥, view = 0, bala = 0, vala = ⊥, f ast_bal =

⊥, checkpoint = ⊥

1: upon suspect_leader do
2: if suspicions[p] 6= true then
3: suspicions[p] = true
4: proo f = 〈suspicion, view〉priva
5: SEND(SUSPICION, view, proo f )
6:
7: upon receive(SUSPICION, viewi, proo f ) from acceptor i do
8: if viewi 6= view then
9: return

10: if proo fpubi
== 〈suspicion, view〉 then

11: suspicions[i] = proo f
12: if #(suspicions) > f and new_view[view + 1][p] == ⊥ then
13: change_proo f = 〈view_change, view + 1〉priva
14: new_view[view + 1][p] = change_proo f
15: SEND(VIEW_CHANGE, view + 1, suspicions, change_proo f )
16:
17: upon receive(VIEW_CHANGE, new_viewi, suspicions, change_proo fi) from acceptor i do
18: if new_viewi ≤ view then
19: return
20:
21: valid_proo f s = 0
22: for p in acceptors do
23: proo f = suspicions[p]
24: last_view = new_viewi − 1
25: if proo fpubp == 〈suspicion, last_view〉 then
26: valid_proo f s += 1
27:
28: if valid_proo f s ≤ f then
29: return
30:
31: new_view[new_viewi][i] = change_proo fi
32: if new_view[viewi][a] == ⊥ then
33: change_proo f = 〈view_change, new_viewi〉priva
34: new_view[viewi][a] = change_proo f
35: SEND(VIEW_CHANGE, viewi, suspicions, change_proo f )
36:
37: if #(new_view[new_viewi]) ≥ N − f then
38: view = viewi
39: leader = view mod N
40: suspicions = ⊥
41: SEND(LEADER, view, new_view[viewi]) to leader
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5.3.1. Fast Ballots

Fast ballots leverage the weaker specification of generalized consensus (compared to classic
consensus) in terms of command ordering at different replicas, to allow for the faster execution of
commands in some cases. The basic idea of fast ballots is that proposers contact the acceptors directly,
bypassing the leader, and then the acceptors send their vote for the current sequence to the learners.
If a conflict exists and progress is not being made, the protocol reverts to using a classic ballot. This is
where generalized consensus allows us to avoid falling back to this slow path, namely in the case where
commands that ordered differently at different acceptors commute (code for acceptors in Algorithm 9).

However, this concurrency introduces safety problems even when a quorum is reached for some
sequence. If we keep the original Fast Paxos message pattern [12], it is possible for one sequence
s to be learned at one learner l1 while another non-commutative sequence s′ is learned before s at
another learner l2. Suppose s obtains a quorum of votes and is learned by l1 but the same votes are
delayed indefinitely before reaching l2. In the next classic ballot, when the leader gathers a quorum
of phase 1b messages it must arbitrate an order for the commands that it received from the acceptors
and it does not know the order in which they were learned. This is because, of the N − f messages it
received, f may not have participated in the quorum and another f may be Byzantine and lie about
their vote, which only leaves one correct acceptor that participated in the quorum and a single vote is
not enough to determine if the sequence was learned or not. If the leader picks the wrong sequence,
it would be proposing a sequence s′ that is non-commutative to a learned sequence s. Since the learning
of s was delayed before reaching l2, l2 could learn s′ and be in a conflicting state with respect to l1,
violating consistency. In order to prevent this, sequences accepted by a quorum of acceptors must
be monotonic extensions of previous accepted sequences. Regardless of the order in which a learner
learns a set of monotonically increasing sequences, the resulting state will be the same. The additional
verification phase is what allows acceptors to prove to the leader that some sequence was accepted
by a quorum. By gathering N − f proofs for some sequence, an acceptor can prove that at least f + 1
correct acceptors voted for that sequence. Since there are only another 2 f acceptors in the system,
no other non-commutative value may have been voted for by a quorum.

Next, we explain each of the protocol’s steps for fast ballots in greater detail.
Step 1: Proposer to acceptors. To initiate a fast ballot, the leader informs both proposers and

acceptors that the proposals may be sent directly to the acceptors. Unlike classic ballots, where the
sequence proposed by the leader consists of the commands received from the proposers appended to
previously proposed commands, in a fast ballot, proposals can be sent to the acceptors in the form of
either a single command or a sequence to be appended to the command history. These proposals are
sent directly from the proposers to the acceptors.

Step 2: Acceptors to acceptors. Acceptors append the proposals they receive to the proposals they
have previously accepted in the current ballot and broadcast the resulting sequence and the current
ballot to the other acceptors, along with a signed tuple of these two values. Intuitively, this broadcast
corresponds to a verification phase where acceptors gather proofs that a sequence gathered enough
support to be committed. These proofs will be sent to the leader in the subsequent classic ballot in
order for it to pick a sequence that preserves consistency. To ensure safety, correct learners must learn
non-commutative commands in a total order. When an acceptor gathers N − f proofs for equivalent
values, it proceeds to the next phase. That is, sequences do not necessarily have to be equal in order to
be learned since commutative commands may be reordered. Recall that a sequence is equivalent to
another if it can be transformed into the second one by reordering its elements without changing the
order of any pair of non-commutative commands (in the pseudocode, proofs for equivalent sequences
are being treated as belonging to the same index of the proofs variable, to simplify the presentation).
By requiring N − f votes for a sequence of commands, we ensure that, given two sequences where
non-commutative commands are differently ordered, only one sequence will receive enough votes
even if f Byzantine acceptors vote for both sequences. Outside the set of (up to) f Byzantine acceptors,
the remaining 2 f + 1 correct acceptors will only vote for a single sequence, which means there are
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only enough correct processes to commit one of them. As in the non-Byzantine protocol, the fact that
proposals are sent as extensions to previous sequences makes the protocol robust against the network
reordering of non-commutative commands.

Algorithm 9 Byzantine Generalized Paxos—Acceptor a (agreement)
Local variables: leader = ⊥, view = 0, bala = 0, vala = ⊥, f ast_bal = ⊥, proven = ⊥

1: upon receive(P1A, ballot, viewl) from leader l do
2: if viewl == view and bala < ballot then
3: SEND(P1B, ballot, bala, proven, vala, proo f s[bala]) to leader
4: bala = ballot
5: vala = ⊥
6:
7: upon receive(FAST, ballot, viewl) from leader do
8: if viewl == view then
9: f ast_bal[ballot] = true

10:
11: upon receive(VERIFY, viewi, balloti, vali, proo f ) from acceptor i do
12: if proo fpubi

== 〈balloti, vali〉 and view == viewi then
13: proo f s[balloti][vali][i] = proo f
14: if #(proo f s[balloti][vali]) ≥ N − f then
15: proven = vali
16: SEND(P2B, balloti, vali, proo f s[balloti][valuei]) to learners
17:
18: upon receive(P2A_CLASSIC, ballot, view, value) from leader do
19: if viewl == view then
20: PHASE_2B_CLASSIC(ballot, value)
21:
22: upon receive(P2A_FAST, value) from proposer do
23: PHASE_2B_FAST(value)
24:
25: function PHASE_2B_CLASSIC(ballot, value)
26: univ_commut = ISUNIVERSALLYCOMMUTATIVE(vala)
27: if ballot ≥ bala and vala == ⊥ and ! f ast_bal[bala] and (univ_commut or proven == ⊥ or

proven == SUBSEQUENCE(value, 0, #(proven))) then
28: bala = ballot
29: if univ_commut then
30: SEND(P2B, bala, value) to learners
31: else
32: vala = value
33: proo f = 〈ballot, vala〉priva
34: proo f s[ballot][vala][a] = proo f
35: SEND(VERIFY, view, ballot, vala, proo f ) to acceptors
36: end function
37:
38: function PHASE_2B_FAST(ballot, value)
39: if ballot == bala and f ast_bal[bala] then
40: if ISUNIVERSALLYCOMMUTATIVE(value) then
41: SEND(P2B, bala, value) to learners
42: else
43: vala = vala • value
44: proo f = 〈ballot, vala〉priva
45: proo f s[ballot][vala][a] = proo f
46: SEND(VERIFY, view, ballot, vala, proo f ) to acceptors
47: end function

Step 3: Acceptors to learners. Similarly to what happens in classic ballots, the fast ballot
equivalent of the phase 2b message, which is sent from acceptors to learners, contains the current
ballot number, the command sequence and the N − f proofs gathered in the verification round.
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One could think that, since acceptors are already gathering proofs that a value will eventually be
committed, learners are not required to gather N − f votes and they can wait for a single phase 2b
message and validate the N − f proofs contained in it. However, this is not the case due to the
possibility of learners learning sequences without the leader being aware of it. If we allowed the
learners to learn after witnessing N− f proofs for just one acceptor then that would raise the possibility
of that acceptor not being present in the quorum of phase 1b messages. Therefore, the leader wouldn’t
be aware that some value was proven and learned. The only way to guarantee that at least one correct
acceptor will relay the latest proven sequence to the leader is by forcing the learner to require N − f
phase 2b messages since only then will one correct acceptor be in the intersection of the two quorums.

Arbitrating an order after a conflict. When, in a fast ballot, non-commutative commands are
concurrently proposed, these commands may be incorporated into the sequences of various acceptors
in different orders and, therefore, the sequences sent by the acceptors in phase 2b messages will not be
equivalent and will not be learned. In this case, the leader subsequently runs a classic ballot and gathers
these unlearned sequences in phase 1b. Then, the leader will arbitrate a single serialization for every
previously proposed command, which it will then send to the acceptors. Therefore, if non-commutative
commands are concurrently proposed in a fast ballot, they will be included in the subsequent classic
ballot and the learners will learn them in a total order, thus preserving consistency.

5.3.2. Classic Ballots

Classic ballots work in a way that is very close to the original Paxos protocol [1].
Therefore, throughout our description, we will highlight the points where BGP departs from that
original protocol, either due to the Byzantine fault model, or due to behaviors that are particular to our
specification of the consensus problem.

In this part of the protocol, the leader continuously collects proposals by assembling all commands
that are received from the proposers since the previous ballot in a sequence (this differs from classic
Paxos, where it suffices to keep a single proposed value that the leader attempts to reach agreement on).
When the next ballot is triggered, the leader starts the first phase by sending phase 1a messages to
all acceptors containing just the ballot number. Similarly to classic Paxos, acceptors reply with a
phase 1b message to the leader, which reports all sequences of commands they voted for. In classic
Paxos, acceptors also promise not to participate in lower-numbered ballots, in order to prevent safety
violations [1]. However, in BGP this promise is already implicit, given (1) there is only one leader per
view and it is the only process allowed to propose in a classic ballot and (2) acceptors replying to that
message must be in the same view as that leader.

As previously mentioned, phase 1b messages contain N − f proofs for each learned sequence.
By waiting for N − f such messages, the leader is guaranteed that, for any learned sequence s, at least
one of the messages will be from a correct acceptor that, due to the quorum intersection property,
participated in the verification phase of s. Please note that waiting for N − f phase 1b messages is not
what makes the leader be sure that a certain sequence was learned in a previous ballot. The leader
can be sure that some sequence was learned because each phase 1b message contains cryptographic
proofs from 2 f + 1 acceptors stating that they would vote for that sequence. Since there are only 3 f + 1
acceptors in the system, no other non-commutative sequence could have been learned. Even though
each phase 1b message relays enough proofs to ensure the leader that some sequence was learned,
the leader still needs to wait for N − f such messages to be sure that he is aware of any sequence
that was previously learned. Please note that, since each command is signed by the proposer (this
signature and its check are not explicit in the pseudocode), a Byzantine acceptor cannot relay made-up
commands. However, it can omit commands from its phase 1b message, which is why it is necessary
for the leader to be sure that at least one correct acceptor in its quorum took part in the verification
quorum of any learned sequence.

After gathering a quorum of N − f phase 1b messages, the leader initiates phase 2a where it
assembles a proposal and sends it to the acceptors. This proposal sequence must be carefully
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constructed in order to ensure all of the intended properties. In particular, the proposal cannot
contain already learned non-commutative commands in different relative orders than the one in which
they were learned, in order to preserve consistency, and it must contain unlearned proposals from
both the current and the previous ballots, in order to preserve liveness (this differs from sending a
single value with the highest ballot number as in the classic specification). Due to the importance and
required detail of the leader’s value picking rule, it will be described next in its own subsection.

The acceptors reply to phase 2a messages by broadcasting their verification messages containing
the current ballot, the proposed sequence and proof of their committal to that sequence. After receiving
N − f verification messages, an acceptor sends its phase 2b messages to the learners, containing the
ballot, the proposal from the leader and the N − f proofs gathered in the verification phase. As is the
case in the fast ballot, when a learner receives a phase 2b vote, it validates the N − f proofs contained
in it. Waiting for a quorum of N − f messages for a sequence ensures the learners that at least one of
those messages was sent by a correct acceptor that will relay the sequence to the leader in the next
classic ballot (the learning of sequences also differs from the original protocol in the quorum size,
due to the fault model, and in that the learners would wait for a quorum of matching values instead of
equivalent sequences, due to the consensus specification).

5.3.3. Leader Value Picking Rule

Phase 2a is crucial for the correct functioning of the protocol because it requires the leader to pick a
value that allows new commands to be learned, ensuring progress, while at the same time preserving
a total order of non-commutative commands at different learners, ensuring consistency. The value
picked by the leader is composed of three pieces: (1) the subsequence that has proven to be accepted
by a majority of acceptors in the previous fast ballot, (2) the subsequence that has been proposed in the
previous fast ballot but for which a quorum hasn’t been gathered and (3) new proposals sent to the
leader in the current classic ballot.

The first part of the sequence will be the largest of the N− f proven sequences sent in the phase 1b
messages. The leader can pick such a value deterministically because, for any two proven sequences,
they are either equivalent or one can be extended to the other. The leader is sure of this because for
the quorums of any two proven sequences there is at least one correct acceptor that voted in both and
votes from correct acceptors are always extensions of previous votes from the same ballot. If there
are multiple sequences with the maximum size then they are equivalent (by same reasoning applied
previously) and any can be picked.

The second part of the sequence is simply the concatenation of unproven sequences of commands
in an arbitrary order. Since these commands are guaranteed to not have been learned at any learner,
they can be appended to the leader’s sequence in any order. Since N− f phase 2b messages are required
for a learner to learn a sequence and the intersection between the leader’s quorum and the quorum
gathered by a learner for any sequence contains at least one correct acceptor, the leader can be sure that
if a sequence of commands is unproven in all of the gathered phase 1b messages, then that sequence
wasn’t learned and can be safely appended to the leader’s sequence in any order.

The third part consists simply of commands sent by proposers to the leader with the intent of
being learned at the current ballot. These values can be appended in any order and without any
restriction since they’re being proposed for the first time.

5.3.4. Byzantine Leader

The correctness of the protocol is heavily dependent on the guarantee that the sequence accepted
by a quorum of acceptors is an extension of previous proven sequences. Otherwise, if the network
rearranges phase 2b messages such that they’re seen by different learners (cf. Algorithm 10) in different
orders, they will result in a state divergence. If, however, every vote is a prefix of all subsequent votes
then, regardless of the order in which the sequences are learned, the final state will be the same.
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Algorithm 10 Byzantine Generalized Paxos—Learner l
Local variables: learned = ⊥, messages = ⊥

1: upon receive(P2B, ballot, value, proo f s) from acceptor a do
2: valid_proo f s = 0
3: for i in acceptors do
4: proo f = proo f s[i]
5: if proo fpubi

== 〈ballot, value〉 then
6: valid_proo f s += 1
7:
8: if valid_proo f s ≥ N − f then
9: messages[ballot][value][a] = proo f s

10:
11: if #(messages[ballot][value]) ≥ N − f then
12: learned = MERGE_SEQUENCES(learned, value)
13:
14: upon receive(P2B, ballot, value) from acceptor a do
15: if ISUNIVERSALLYCOMMUTATIVE(value) then
16: messages[ballot][value][a] = true
17: if #(messages[ballot][value]) > f then
18: learned = learned • value

This state equivalence between learners is ensured by the correct execution of the protocol
since every vote in a fast ballot is equal to the previous vote with a sequence appended at the
end (Algorithm 9 lines {43–46}) and every vote in a classic ballot is equal to all the learned votes
concatenated with unlearned votes and new proposals (Algorithm 7 lines {42–45}) which means that
new votes will be extensions of previous proven sequences. However, this begs the question of how
the protocol fares when Byzantine faults occur. In particular, the worst case scenario occurs when both
f acceptors and the leader are Byzantine (remember that a process can have multiple roles, such as
leader and acceptor). In this scenario, the leader can purposely send phase 2a messages for a sequence
that is not prefixed by the previously accepted values. Coupled with an asynchronous network, this
malicious message can be delivered before the correct votes of the previous ballot, resulting in different
learners learning sequences that may not be extensible to equivalent sequences.

To prevent this scenario, the acceptors must ensure that the proposals they receive from the
leader are prefixed by the values they have previously voted for. Since an acceptor votes for its vala

sequence after receiving N − f verification votes for an equivalent sequence and stores it in its proven
variable, the acceptor can verify that it is a prefix of the leader’s proposed value (i.e., proven v value).
A practical implementation of this condition is simply to verify that the subsequence of value starting
at the index 0 up to index length(proven)− 1 is equivalent to the acceptor’s proven sequence.

5.4. Checkpointing

BGP includes an additional feature that deals with the indefinite accumulation of state at the
acceptors and learners. This is of great practical importance since it can be used to prevent the storage
of commands sequences from depleting the system’s resources. This feature is implemented by a
special command C∗, proposed by the leader, which causes both acceptors and learners to safely
discard previously stored commands. However, the reason acceptors accumulate state continuously is
because each new proven sequence must contain any previous proven sequence. This ensures that
an asynchronous network cannot reorder messages and cause learners to learn in different orders.
In order to safely discard state, we must implement a mechanism that allows us to deal with reordered
messages that do not contain the entire history of learned commands.

To this end, when a learner learns a sequence that contains a checkpointing command C∗ at the
end, it discards every command in its learned sequence except C∗ and sends a message to the acceptors
notifying them that it executed the checkpoint for some command C∗. Acceptors stop participating
in the protocol after sending phase 2b messages with checkpointing commands and wait for N − f
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notifications from learners. After gathering a quorum of notifications, the acceptors discard their state,
except for the command C∗, and resume their participation in the protocol. Please note that since the
acceptors also leave the checkpointing command in their sequence of proven commands, every valid
subsequent sequence will begin with C∗. The purpose of this command is to allow a learner to detect
when an incoming message was reordered. The learner can check the first position of an incoming
sequence against the first position of its learned and, if a mismatch is detected, it knows that either a
pre and post-checkpoint message has been reordered.

When performing this check, two possible anomalies that can occur: either (1) the first position
of the incoming sequence contains a C∗ command and the learner’s learned sequence does not,
in which case the incoming sequence was sent post-checkpoint and the learner is missing a sequence
containing the respective checkpoint command; or (2) the first position of the learned sequence contains
a checkpoint command and the incoming sequence does not, in which case the incoming sequence
was assembled pre-checkpoint and the learner has already executed the checkpoint.

In the first case, the learner can simply store the post-checkpoint sequences until it receives the
sequence containing the appropriate C∗ command at which point it can learn the stored sequences.
Please note that the order in which the post-checkpoint sequences are executed is irrelevant since
they’re extensions of each other. In the second case, the learner receives sequences sent before the
checkpoint sequence that it has already executed. In this scenario, the learner can simply discard these
sequences since it knows that it executed a subsequent sequence (i.e., the one containing the checkpoint
command) and proven sequences are guaranteed to be extensions of previous proven sequences.

To simplify the algorithm presentation, this extension to the protocol is not included in the
pseudocode description.

6. Correctness Proofs

This section argues for the correctness of the Byzantine Generalized Paxos protocol in terms of
the specified consensus properties (Table 1 summarizes the BGP proof notation).

Table 1. BGP proof notation.

Invariant/Symbol Definition

∼ Equivalence relation between sequences
X e

=⇒ Y X implies that Y is eventually true
X v Y The sequence X is a prefix of sequence Y
L Set of learner processes
P Set of proposals (commands or sequences of commands)
B Set of ballots
⊥ Empty command

learnedli
Learner li’s learned sequence of commands

learned(li, s) learnedli
contains the sequence s

maj_accepted(s, b) N − f acceptors sent phase 2b messages to the learners for sequence s in ballot b
min_accepted(s, b) f + 1 acceptors sent phase 2b messages to the learners for sequence s in ballot b

proposed(s) A correct proposer proposed s

6.1. Consistency

Theorem 1. At any time and for any two correct learners li and lj, learnedli and learnedlj
can subsequently be

extended to equivalent sequences.

Proof:
1. At any given instant, ∀s, s′ ∈ P , ∀li, lj ∈ L, learned(lj, s) ∧ learned(li, s′) =⇒ ∃σ1, σ2 ∈
P ∪ {⊥}, s • σ1 ∼ s′ • σ2

Proof:
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1.1. At any given instant, ∀s, s′ ∈ P , ∀li, lj ∈ L, learned(li, s) ∧ learned(lj, s′) =⇒
(maj_accepted(s, b) ∨ (min_accepted(s, b) ∧ s • σ1 ∼ x • σ2)) ∧ (maj_accepted(s′, b′) ∨
(min_accepted(s′, b′) ∧ s′ • σ1 ∼ x • σ2)), ∃σ1, σ2 ∈ P ∪ {⊥}, ∀x ∈ P , ∀b, b′ ∈ B

Proof: A sequence can only be learned in some ballot b if the learner gathers
N − f votes (i.e., maj_accepted(s, b)), each containing N − f valid proofs, or if
it is universally commutative (i.e., s • σ1 ∼ x • σ2, ∃σ1, σ2 ∈ P ∪ {⊥}, ∀x ∈ P)
and the learner gathers f + 1 votes (i.e., min_accepted(s, b)). The first case
requires gathering N − f votes from each acceptor and validating that each proof
corresponds to the correct ballot and value (Algorithm 10, lines {1–12}). The second
case requires that the sequence must be commutative with any other and at least
f + 1 matching values are gathered (Algorithm 10, {14–18}). This is encoded in the
logical expression s • σ1 ∼ x • σ2 which is true if the accepted sequence s and any
other sequence x can be extended to an equivalent sequence, therefore making it
impossible to result in a conflict.

1.2. At any given instant, ∀s, s′ ∈ P , ∀b, b′ ∈ B, maj_accepted(s, b) ∧
maj_accepted(s′, b′) =⇒ ∃σ1, σ2 ∈ P ∪ {⊥}, s • σ1 ∼ s′ • σ2

Proof: We divide the following proof in two main cases: (1.2.1.) sequences s and
s′ are accepted in the same ballot b and (1.2.2.) sequences s and s′ are accepted in
different ballots b and b′.

1.2.1. At any given instant, ∀s, s′ ∈ P , ∀b ∈ B, maj_accepted(s, b) ∧
maj_accepted(s′, b) =⇒ ∃σ1, σ2 ∈ P ∪ {⊥}, s • σ1 ∼ s′ • σ2

Proof: Proved by contradiction.
1.2.1.1. At any given instant, ∀s, s′ ∈ P , ∀σ1, σ2 ∈ P ∪ {⊥}, ∀b ∈
B, maj_accepted(s, b) ∧maj_accepted(s′, b) ∧ s • σ1 6∼ s′ • σ2

Proof: Contradiction assumption.
1.2.1.2. Take a pair proposals s and s′ that meet the conditions of
1.2.1 (and are certain to exist by the previous point), then s and s′

contain non-commutative commands.
Proof: The statement ∀s, s′ ∈ P , ∀σ1, σ2 ∈ P ∪ {⊥}, s •
σ1 6∼ s′ • σ2 is trivially false because it implies that, for any
combination of sequences and suffixes, the extended sequences
would never be equivalent. Since there must be some s, s′, σ1

and σ2 for which the extensions are equivalent (e.g., s = s′ and
σ1 = σ2), then the statement is false.

1.2.1.3. A contradiction is found, Q.E.D.
1.2.2. At any given instant, ∀s, s′ ∈ P , ∀b, b′ ∈ B, maj_accepted(s, b) ∧
maj_accepted(s′, b′) ∧ b 6= b′ =⇒ ∃σ1, σ2 ∈ P ∪ {⊥}, s • σ1 ∼ s′ • σ2

Proof: To prove that values accepted in different ballots are extensible to
equivalent sequences, it suffices to prove that for any sequences s and
s′ accepted at ballots b and b′, respectively, such that b < b′ then s v s′.
By Algorithm 9 lines {11–16, 35, 46}, any correct acceptor only votes for a
value in variable vala when it receives 2 f + 1 proofs for a matching value.
Therefore, we prove that a value vala that receives 2 f + 1 verification
messages is always an extension of a previous vala that received 2 f + 1
verification messages. By Algorithm 9 lines {32, 43}, vala only changes
when a leader sends a proposal in a classic ballot or when a proposer
sends a sequence in a fast ballot.
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In the first case, vala is substituted by the leader’s proposal which
means we must prove that this proposal is an extension of any vala

that previously obtained 2 f + 1 verification votes. By Algorithm 7 lines
{24–39, 41–47}, the leader’s proposal is prefixed by the largest of the
proven sequences (i.e., vala sequences that received 2 f + 1 votes in the
verification phase) relayed by a quorum of acceptors in phase 1b messages.
Please note that, the verification in Algorithm 9 line {27} prevents a
Byzantine leader from sending a sequence that is not an extension
of previous proved sequences. Since the verification phase prevents
non-commutative sequences from being accepted by a quorum, every
proven sequence in a ballot is extensible to equivalent sequences which
means that the largest proven sequence is simply the most up-to-date
sequence of the previous ballot.
To prove that the leader can only propose extensions to previous values
by picking the largest proven sequence as its proposal’s prefix, we need
to assert that a proven sequence is an extension of any previous sequence.
However, since that is the same result that we are trying to prove, we must
use induction to do so:

1. Base Case: In the first ballot, any proven sequence will be an
extension of the empty command ⊥ and, therefore, an extension of
the previous sequence.
2. Induction Hypothesis: Assume that, for some ballot b,
any sequence that gathers 2 f + 1 verification votes from acceptors is
an extension of previous proven sequences.
3. Inductive Step: By the quorum intersection property, in a classic
ballot b + 1, the phase 1b quorum will contain ballot b’s proven
sequences. Given the largest proven sequence s in the phase 1b
quorum (which, by our hypothesis, is an extension of any previous
proven sequences), by picking s as the prefix of its phase 2a proposal
(Algorithm 7, lines {41–47}), the leader will assemble a proposal that
is an extension of any previous proven sequence.

In the second case, a proposer’s proposal c is appended to an acceptor’s
vala variable. By definition of the append operation, vala v vala • c
which means that the acceptor’s new value vala • c is an extension of
previous ones.

1.3. For any pair of proposals s and s′, at any given instant, ∀x ∈ P , ∃σ1, σ2, σ3, σ4 ∈
P ∪ {⊥}, ∀b, b′ ∈ B, (maj_accepted(s, b) ∨ (min_accepted(s, b) ∧ s • σ1 ∼ x • σ2)) ∧
(maj_accepted(s′, b′) ∨ (min_accepted(s′, b′) ∧ s • σ1 ∼ x • σ2)) =⇒ s • σ3 ∼ s′ • σ4

Proof: By 1.2 and by definition of s • σ1 ∼ x • σ2.
1.4. At any given instant, ∀s, s′ ∈ P , ∀li, lj ∈ L, learned(li, s) ∧ learned(lj, s′) =⇒
∃σ1, σ2 ∈ P ∪ {⊥}, s • σ1 ∼ s′ • σ2

Proof: By 1.1 and 1.3.
1.5. Q.E.D.

2. At any given instant, ∀li, lj ∈ L, learned(lj, learnedj) ∧ learned(li, learnedi) =⇒
∃σ1, σ2 ∈ P ∪ {⊥}, learnedi • σ1 ∼ learnedj • σ2

Proof: By 1.
3. Q.E.D.
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6.2. Nontriviality

Theorem 2. If all proposers are correct, learnedl can only contain proposed commands.

Proof:
1. At any given instant, ∀li ∈ L, ∀s ∈ P , learned(li, s) =⇒ ∀x ∈ P , ∃σ ∈ P , ∀b ∈
B, maj_accepted(s, b) ∨ (min_accepted(s, b) ∧ (s ∼ x • σ ∨ x ∼ s • σ))

Proof: By Algorithm 9 lines {16, 30, 41} and Algorithm 10 lines {1–18}, if a correct learner
learned a sequence s at any given instant then either N − f or f + 1 (if s is universally
commutative) acceptors must have executed phase 2b for s.

2. At any given instant, ∀s ∈ P , ∀b ∈ B, maj_accepted(s, b) ∨min_accepted(s, b) =⇒ proposed(s)
Proof: By Algorithm 9 lines {18–23}, for either N − f or f + 1 acceptors to accept a proposal
it must have been proposed by a proposer (note that the leader is considered a distinguished
proposer).

3. At any given instant, ∀s ∈ P , ∀li ∈ L, learned(li, s) =⇒ proposed(s)
Proof: By 1 and 2.

4. Q.E.D.

6.3. Stability

Theorem 3. If learnedl = s then, at all later times, s v learnedl , for any sequence s and correct learner l.

Proof. By Algorithm 10 lines {12, 18}, a correct learner can only append new commands to its learned
command sequence.

6.4. Liveness

Theorem 4. For any proposal s from a correct proposer, and correct learner l, eventually learnedl contains s.

Proof:
1. ∀ li ∈ L, ∀s, x ∈ P , ∃σ ∈ P , ∀b ∈ B, maj_accepted(s, b) ∨ (min_accepted(s, b) ∧ (s ∼ x • σ ∨ x ∼
s • σ))

e
=⇒ learned(li, s)

Proof: By Algorithm 9 lines {10–15, 28–29, 41–42} and Algorithm 10 lines {1–18}, when either
N − f or f + 1 (if s is universally commutative) acceptors accept a sequence s (or some
equivalent sequence), eventually s will be learned by any correct learner.

2. ∀s ∈ P , proposed(s) e
=⇒ ∀x ∈ P , ∃σ ∈ P , ∀b ∈ B, maj_accepted(s, b) ∨ (min_accepted(s, b) ∧

(s ∼ x • σ ∨ x ∼ s • σ))

Proof: A proposed sequence is either conflict-free when its incorporated into every acceptor’s
current sequence or it creates conflicting sequences at different acceptors. In the first case, it
is accepted by a quorum (Algorithm 9, lines {10–15, 28–29, 41–42}) and, in the second case, it
is sent in phase 1b messages to the in leader in the next ballot (Algorithm 9, lines {1–4}) and
incorporated in the next proposal (Algorithm 7, lines {24–47}).

3. ∀li ∈ L, ∀s ∈ P , proposed(s) e
=⇒ learned(li, s)

Proof: By 1 and 2.
4. Q.E.D.

7. Conclusions and Discussion

We presented a simplified description of the Generalized Paxos specification and protocol, and an
implementation of Generalized Paxos that is resilient against Byzantine faults. We now draw some
lessons and outline some extensions to our protocol that present interesting directions for future work
and hopefully a better understanding of its practical applicability.
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7.1. Handling Faults in the Fast Case

A result that was stated in the original Generalized Paxos paper [13] is that to tolerate f crash
faults and allow for fast ballots whenever there are up to e crash faults, the total system size N must
uphold two conditions: N > 2 f and N > 2e + f . Additionally, the fast and classic quorums must be
of size N − e and N − f , respectively. This implies that there is a price to pay in terms of number of
replicas and quorum size for being able to run fast operations during faulty periods. An interesting
observation from our work is that, since Byzantine fault tolerance already requires a total system size
of 3 f + 1 and a quorum size of 2 f + 1, we are able to amortize the cost of both features, i.e., we are
able to tolerate the maximum number of faults for fast execution without paying a price in terms of
the replication factor and quorum size.

7.2. Extending the Protocol to Universally Commutative Commands

A downside of the use of commutative commands in the context of Generalized Paxos is that
the commutativity check is done at runtime, to determine if non-commutative commands have been
proposed concurrently. This raises the possibility of extending the protocol to handle commands
that are universally commutative, i.e., commute with every other command. For these commands,
it is known before executing them that they will not generate any conflicts, and therefore it is not
necessary to check them against concurrently executing commands. This allows us to optimize the
protocol by decreasing the number of phase 2b messages required to learn to a smaller f + 1 quorum.
Since, by definition, these sequences are guaranteed to never produce conflicts, the N − f quorum
is not required to prevent learners from learning conflicting sequences. Instead, a quorum of f + 1
is sufficient to ensure that a correct acceptor saw the command and will eventually propagate it to a
quorum of N − f acceptors. This optimization is particularly useful in the context of geo-replicated
systems, since it can be significantly faster to wait for the f + 1st message instead of the N − f th one.

The usefulness of this optimization is severely reduced if these sequences are processed like
any other, by being appended to previous sequences at the leader and acceptors. New proposals are
appended to previous proven sequences to maintain the invariant that subsequent proven sequences
are extensions of previous ones. Since the previous proven sequences to which a proposal will be
appended to are probably not universally commutative, the resulting sequence will not be as well.
We can increase this optimization’s applicability by sending these sequences immediately to the
learners, without appending them to previously accepted ones. This special handling has the added
benefit of bypassing the verification phase, resulting in reduced latency for the requests and less traffic
generated per sequence. This extension can also be easily implemented by adding a single check in
Algorithm 7 lines {19–20}, Algorithm 9 lines {29–30, 40–41} and Algorithm 10 lines {14–18}.

7.3. Generalized Paxos and Weak Consistency

The key distinguishing feature of the specification of Generalized Paxos [13] is allowing learners
to learn concurrent proposals in a different order, when the proposals commute. This idea is
closely related to the work on weaker consistency models like eventual or causal consistency [24],
or consistency models that mix strong and weak consistency levels like RedBlue [25], which attempt
to decrease the cost of executing operations by reducing coordination requirements between replicas.
The link between the two models becomes clearer with the introduction of universally commutative
commands in the previous paragraph. In the case of weakly consistent replication, weakly consistent
requests can be executed as if they were universally commutative, even if in practice that may not be
the case. e.g., checking the balance of a bank account and making a deposit do not commute since
the output of the former depends on their relative order. However, some systems prefer to run both
as weakly consistent operations, even though it may cause executions that are not explained by a
sequential execution, since the semantics are still acceptable given that the final state that is reached is
the same and no invariants of the application are violated [25].
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