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Abstract: Nowadays, dynamic parameter adaptation has been shown to provide a significant
improvement in several metaheuristic optimization methods, and one of the main ways to realize this
dynamic adaptation is the implementation of Fuzzy Inference Systems. The main reason for this is
because Fuzzy Inference Systems can be designed based on human knowledge, and this can provide
an intelligent dynamic adaptation of parameters in metaheuristics. In addition, with the coming
forth of Type-2 Fuzzy Logic, the capability of uncertainty handling offers an attractive improvement
for dynamic parameter adaptation in metaheuristic methods, and, in fact, the use of Interval Type-2
Fuzzy Inference Systems (IT2 FIS) has been shown to provide better results with respect to Type-1
Fuzzy Inference Systems (T1 FIS) in recent works. Based on the performance improvement exhibited
by IT2 FIS, the present paper aims to implement the Shadowed Type-2 Fuzzy Inference System (ST2
FIS) for further improvements in dynamic parameter adaptation in Harmony Search and Differential
Evolution optimization methods. The ST2 FIS is an approximation of General Type-2 Fuzzy Inference
Systems (GT2 FIS), and is based on the principles of Shadowed Fuzzy Sets. The main reason for using
ST2 FIS and not GT2 FIS is because the computational cost of GT2 FIS represents a time limitation in
this application. The paper presents a comparison of the conventional methods with static parameters
and the dynamic parameter adaptation based on ST2 FIS, and the approaches are compared in solving
mathematical functions and in controller optimization.

Keywords: Shadowed Type-2 Fuzzy Logic; differential evolution; harmony search

1. Introduction

Nowadays, metaheuristic optimization methods represent a very interesting alternative for the
optimization of complex problems without the mathematical modeling of the problem, and they have
been successfully applied in several kinds of application, for example, in control applications [1–3],
optimizing Artificial Neural Networks [4–6], optimizing a controller applied in an complex
electromechanical process [7], fuzzy controllers [8,9], etc. On the other hand, dynamic parameter
adaptation in metaheuristic methods based on fuzzy logic can improve their optimization performance
as can be observed in [10–13]. However, this dynamic adaptation based on fuzzy logic significantly
increases the computational cost of the optimization process. There are some works where the dynamic
adaptation of metaheuristic parameters is realized through Interval Type-2 Fuzzy systems, for example,
in [2,3], and in some works, this adaptation is successfully realized by General Type-2 Fuzzy Systems.
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However, the main limitation of applying Type-2 Fuzzy systems, specifically General Type-2 Fuzzy
Sets, for the dynamic adaptation of metaheuristic parameters, is the higher computational cost.

The computational cost of Interval Type-2 Fuzzy Systems is nearly double that of Type-1 Fuzzy
Systems, and the computational cost of General Type-2 Fuzzy Systems depends on the representation
used for modeling the system, for example, using the α-planes representation, the computational
cost is directly proportional to the number of α-planes used in approximating the model. In this
case, the approximation improves accuracy by increasing the number of α-planes, in other words,
the computational cost is significantly elevated.

The contribution of the present work is the application of Shadowed Type-2 Fuzzy Systems as
a method for approximating General Type-2 Fuzzy Systems modeled with the α-planes representation.
The main difference is that the Shadowed Type-2 Fuzzy Inference System (ST2 FIS) approach requires
only two α-planes to model the GT2 FIS, but the values of α are selected with the optimization criteria
for shadowed sets proposed by Pedrycz in [14], and recent examples of the ST2 FIS applied in control
problems can be found in [15]. On the other hand, the optimization of fuzzy controllers that was
previously presented, for example in [1,3,10,16], is presented. The reason for exploring this application
is because the fuzzy controllers have been proven to have good performance in complex applications,
for example, in [17].

The rest of the paper is organized as follows. Section 2 describes type-2 shadowed sets
theory, Section 3 shows metaheuristic algorithm concepts, Section 4 explains the dynamic parameter
adaptation process, Section 5 summarizes the simulation results, and finally, Section 6 offers
the conclusions.

2. Type-2 Fuzzy Systems and Shadowed Sets

With the emergence of Type-1 Fuzzy Inference Systems (T1 FIS) in 1965 [18], computational
science achieved the capability to model the vagueness in the real world and create mathematical
models that represent human knowledge. Nowadays, fuzzy sets have evolved to GT2 FIS that allows
not only a vagueness model, but, in addition, allows an uncertainty modelling approach to be used,
and the mathematical expression of the GT2 FIS is denoted in Equation (1):

˜̃A =
{(

(x, u), uÃ(x)
)
|∀x ∈ X, ∀u ∈ Ju

x ⊆ [0, 1]
}

. (1)

In order to apply the GT2 FIS to real-world applications, some alternatives exist for modeling
this system, such as the vertical slices or z-slices representation [19], the Geometric approximation [20]
and the horizontal slices or α-planes representation [21]. The present work is focused on the α-planes
representation that consists of discretizing the secondary axis of GT2 FIS in several horizontal slices
called α-planes. These α-planes are expressed by Equation (2) and can be computed as an IT2 FIS [22].
Then, with the union of every α-plane, the GT2 FIS is modeled, as described in Equation (3):

Ãα = {((x, u), α)|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (2)

˜̃A =
⋃

Ãα. (3)

In order to reduce the computational cost of the α-planes representation, the Shadowed Type-2
FIS was introduced in [23]. The proposal focused on modeling the GT2 FIS with only two optimal
α-planes, eliminating the excessive precision, and the selection of the optimal α-planes was performed
through the concepts that Pedrycz proposed for the shadowed set theory [14,24–26].

The basic concepts of shadowed sets consist of realizing two α-cuts on a Type-1 fuzzy set, with α

and β values. Based on these α-cuts, three intervals are described, as explained in Equation (4).
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SµA(x) =


1, i f µA(x) ≥ α

0, i f µA(x) ≤ β

[0, 1], i f α ≤ µA(x) ≥ β

(4)

These intervals can be interpreted as three regions: the elevated region for the membership degree
of 1, the reduced region for the membership degree of 0, and for the shadowed area, the membership
degree is in [0, 1]. Based on these regions, Pedrycz proposed that the optimal α and β values can be
obtained by the following expression shown in Equation (5):

elevated area(α,β)(µA) + reduced area(α,β)(µA) = shadowed area(α,β)(µA). (5)

The graphical interpretation of Equation (5) can be appreciated in Figure 1.
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Then, the optimal α and β values are obtained by the optimization of the V(α, β) function
described in Equation (6):

V(α, β) =

∣∣∣∣∫x∈Ar
µA(x)dx +

∫
x∈Ae

(1− µA(x))dx−
∫

x∈S
dx
∣∣∣∣. (6)

In [23], Linda and Manic proposed the use of shadowed sets in the secondary axis of the GT2
FIS, finding, in this way, the optimal α and β values and then using these values as α-planes. In this
way, the computational cost is reduced, and the implementation of GT2 FIS for dynamic parameter
adaptation in metaheuristic algorithms is allowed.

Trapezoidal ST2 MF

For the present paper, it was decided to use the TrapezoidalG (TrapG) ST2 membership function
(MF) introduced in [27] that is based on a Trapezoidal GT2 membership function with a Gaussian
membership function as a secondary membership function. The equation of this function is expressed
in Equation (7), and its illustration is found in Figure 2.

TrapG ST2 MF =


∝o

 µO =
µt(x)+µ

t
(x)

2 − 1.449| µt(x)−µ
t
(x)

10 |
µ

O
=

µt(x)+µ
t
(x)

2 + 1.449| µt(x)−µ
t
(x)

10 |

∝l

 µI =
µt(x)+µ

t
(x)

2 − 0.9282| µt(x)−µ
t
(x)

10 |
µ

I
=

µt(x)+µ
t
(x)
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t
(x)

10 |

(7)
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Figure 2. Trapezoidal Shadowed Type-2 (ST2) MF.

3. Metaheuristic Algorithms

The metaheuristic algorithms are iterative methods for general purpose search and optimization.
They are iterative procedures that intelligently guide a subordinate heuristic by combining different
concepts to properly explore and exploit the search space. This section presents two particular
metaheuristic algorithms, which are the Harmony Search algorithm [28] and the Differential Evolution
algorithm [29].

3.1. Harmony Search Algorithm

The Harmony Search algorithm (HS) was developed by Zong Woo Geem in 2001 [30].
This algorithm is based on the musical composition, specifically of jazz, and has three main components
in the improvisation process which are Harmony Memory Accepting (HMR), Pitch Adjustment (PArate)
and Random Selection. The HS includes these 5 steps and their respective equations.

Step 1: Initialize the problem and parameters:

Minimize f (x)s.t. x(j) ∈ [LB(j), UB(j)}, j = 1, 2, . . . , n]. (8)

Step 2: Initialize the Harmony Memory (HM):

HM =


x1

1 x1
2 . . . x1

N f
(
x1)

x2
1 x2

2 . . . x2
N f

(
x2)

...
...

...
...

...
xHMS

1 xHMS
2 . . . xHMS

N f
(

xHMS)

. (9)

Step 3: Improvise a new Harmony:

Xnew(j) = Xnew(j)± r × BW. (10)

Step 4: Update the Harmony Memory:
To update the HM with a new solution vector, xnew , the objective function is used to evaluate

them. A comparison is made to find out if the new vector solution is better than the worst historical
vector solution, and then the worst historical is excluded and substituted with a new one.

Step 5: Check the stopping criteria:
The process is repeated until the number of improvisations (NI) is satisfied; otherwise, the process

repeats steps 3 and 4. Finally the best solution is achieved and considered as the best result to
the problem. The Harmony Memory Accepting (HMR) parameter represents the intensification or
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exploitation, the pitch adjustment (PArate), and randomization parameters represent the diversification
or exploration of the algorithm.

These components are described in more detail in [31–33].

3.2. Differential Evolution Algorithm

Differential Evolution (DE) is a simple and fairly used algorithm that was originally proposed by
Storn and Price in 1994 [34] and is mainly composed of the following operations: initialization of the
population structure defined by Equations (11)–(16), initialization by Equation (17), mutation expressed
by Equation (18), crossover defined by Equation (19), and selection defined with Equation (20).

The way in which this algorithm works is by initializing its population within a search space
depending on the problem. Then, three individuals are selected at random and with them, the mutation
and crossover operations are performed. The best individual is selected and passes to the next
generation and so on until the stopping criterion of the algorithm is met.

3.2.1. Population Structure

The Differential Evolution algorithm maintains a pair of vector populations, both of which
contain Np D-dimensional vectors of real-valued parameters. The current population, symbolized by
Px, is composed of those vectors, xi,g, that have already been found to be acceptable either as initial
points, or by comparison with other vectors:

Px,g =
(
xi,g
)
, i = 0, 1, . . . , Np− 1, g = 0, 1, . . . , gmax (11)

xi,g =
(

xj,i,g
)
, j = 0, 1, . . . , D− 1 (12)

Pv,g =
(
vi,g
)
, i = 0, 1, . . . , Np− 1, g = 0, 1, . . . , gmax (13)

vi,g =
(
vj,i,g

)
, j = 0, 1, . . . , D− 1 (14)

Pu,g =
(
ui,g
)
, i = 0, 1, . . . , Np− 1, g = 0, 1, . . . , gmax (15)

ui,g =
(
uj,i,g

)
, j = 0, 1, . . . , D− 1. (16)

3.2.2. Initialization

Before initializing the population, the upper and lower limits for each parameter must be specified.
These 2D values can be collected by two initialized D-dimensional vectors, bL and bU, to which the
subscripts L and U indicate the lower and upper limits respectively. Once the initialization limits have
been specified, a number generator randomly assigns each parameter in every vector a value within
the set range. For example, the initial value (g = 0) of the j-th vector parameter is ith:

xj,i,0 = randj(0, 1)×
(
bj,U − bj,L

)
+ bj,L. (17)

3.2.3. Mutation

In particular, the differential mutation adds a random sample equation showing how to combine
three different vectors chosen randomly to create a mutant vector:

vi,g = xr0,g + F×
(
xr1,g − xr2,g

)
. (18)

3.2.4. Crossover

To complement the differential mutation search strategy, DE also uses uniform crossover which is
sometimes known as discrete recombination (dual). In particular, DE crosses each vector with a mutant
vector:
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ui,g = uj,i,g

{
vj,i,g i f

(
randj(0, 1) ≤ Cr or j = jrand

)
xj,i,g otherwise

. (19)

3.2.5. Selection

If the test vector, ui,g, has a value of the objective function equal to or less than its target vector,
xi,g It replaces the target vector in the next generation; otherwise, the target retains its place in the
population for at least another generation:

xi,g+1 =

{
ui,g i f f

(
ui,g
)
≤ f

(
xi,g
)

xi,g otherwise
. (20)

The operations of mutation, recombination, and selection are applied repeatedly until the optimal
solution is found, or the specified terminating pre-criteria are satisfied.

4. Dynamic Parameter Adaptation

In this section, we explain in detail the structure of the fuzzy system used for each of the HS and
DE algorithms. The fuzzy system used for both algorithms has one input and one output. In the case
of the HS algorithm, the input parameter is the iterations and for the output, the HMR parameter is
used, and for the DE algorithm, the input parameter is the generations and the output parameter is F
(mutation). Equation (21) is used to calculate the input of the fuzzy system according to the method:

Experiment =
Current Experiment

Maximum o f experiments
. (21)

In Equation (21), the experiment refers to iterations for the FHS method and generations for
the FDE method. The current experiment represents the current iterations or generations and the
maximum of experiments represents the maximum number of iterations and generations.

The parameters of the outputs mentioned above are converted into fuzzy parameters based on
the following Equations (22) and (23):

HMR =
∑rhmr

i=1 µhmr
i (hmr1i)

∑rhmr
i=1 µhmr

i
(22)

where HMR is the memory consideration; rhmr is the number of rules of the Shadowed Type-2 Fuzzy
System corresponding to hmr; hmr1i is the output result for rule i corresponding to hmr; µhmr

i is the
membership function of rule i corresponding to hmr.

F =
∑rF

i=1 µF
i (F1i)

∑rF
i=1 µF

i
(23)

where F is the mutation; rhmr is the number of rules of the Shadowed Type-2 Fuzzy System
corresponding to F; F1i is the output result for rule i corresponding to F; µF

i is the membership
function of rule i corresponding to F.

Both fuzzy systems in the input and outputs are granulated into three membership functions,
as shown in Figures 3 and 4 respectively. They are granulated into low, medium, and high, and the rules
are described in Tables 1 and 2.
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Table 1. Rules of the ST2FHS fuzzy system.

Iteration
HMR

Low Medium High

Low Low − −
Medium − Medium −

High − − High

Table 2. Rules of the ST2FDE fuzzy system.

Generation
F

Low Medium High

Low − − Low
Medium − Medium −

High High − −

The rules are based on previous experimentation as presented in [16,35], and for the ST2FDE
method are used in a decreasing fashion and for the ST2FHS method are used in an increasing
fashion, respectively.

5. Experiments

The experiments designed to evaluate the proposed approach are divided into two categories: first,
the optimization of mathematical functions and secondly the optimization of controllers. Benchmark
problems are widely used to validate the appropriate performance of algorithms and their variants.
In this case, benchmark mathematical functions and a control problem are used to validate the correct
operation of the ST2FHS and ST2FDE methods.
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5.1. Mathematical Functions

There are several types of benchmark mathematical function; in this case, the functions chosen for
the experiment are summarized in Table 3.

Table 3. Benchmark mathematical functions.

Function Search
Domain f min Equation

Sum Squares [−10, 10]n 0 f (x) =
n
∑

i=1
ix2

i

Trid [−100, 100]n −200 f (x) =
n
∑

i=1
(xi − 1)2 −

n
∑

i=2
xixi−1

Zakharov [−5, 10]n 0 f (x) =
n
∑

i=1
x2

i + (
n
∑

i+1
0.5ixi)

2
+ (

n
∑

i=1
0.5ixi)

4

Ackley [−15, 30]n 0 f (x) = a·exp

(
−b×

√
1
n

n
∑

i=1
cos(cxi)

)
+ a + exp(1)

Dixon & Price [−10, 10]n 0 f (x) = (x1 − 1)2 +
n
∑

i=2
(2x2

i − xi−1)
2

Levy [−10, 10]n 0
f (x) = sin2(πw1) +

n−1
∑

i=1
(wi − 1)2 [1 + 10 sin2(πwi + 1)]+

(wn − 1)2 [1 + sin2 (2πwn)
]
, where wi

= 1 + xi−1
4 , f or all i = 1, . . . ., n

Griewank [−600, 600]n 0 f (x) = 1
400

n
∑

i=1
X2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1

Powell [−4, 5]n 0
f (x) = ∑n/4

i=1 [(x4i−3 + 10x4i−2)
2 + 5(x4i−1 − x4i)

2+

(x4i−2 − 2x4i−1)
4 + 10(x4i−3 − x4i)

4]

Power Sum [0, 10]n 0 f (x) =
n
∑

i=1
[(

n
∑

j=1
xi

j)− bi]
2

The parameters used for the experimentation are the following: 100 individuals or harmonies,
30 executions, 2000 iterations or generations, and 10, 50 dimensions for most of the functions, except
for the Power sum function that only uses 4 dimensions.

The statistical test that is used is the Z-test that is based on Equation (24), and the parameters
used for this test are an alpha of 0.05, a level of confidence of 95%, and a sample size of 30. The main
goal is to verify that by using the methods for dynamic parameter adjustment with Shadowed Type-2,
we can obtain a better result with respect to the original methods for all values lower than −1.645:

Z =

(
X1 − X2

)
− (µ1 − µ2)

(σ1 − σ2)
. (24)

Thirty experiments were performed using the HS, DE, ST2FHS, and ST2FDE methods. Tables 4–12
summarize the results obtained for the HS and ST2FHS methods, and Tables 13–20 show the results
obtained for the DE and ST2FDE methods. In these tables, the best, worst, average, standard deviation,
and Z-values obtained for each mathematical function are presented.

Table 4. Results for the Sum Squares function.

Dimension 10 Z-Value 50 Z-Value

Method HS ST2FHS

−16.78

HS ST2FHS

−52.09
Best 3.80 × 10−1 9.76 × 10−4 5.89 × 10−1 1.90 × 10−3

Worst 1.26 × 10 3.50 × 10−3 1.02 × 10 3.00 × 10−3

Average 7.07 × 10−1 2.02 × 10−3 8.10 × 10−1 2.28 × 10−3

SD 2.30 × 10−1 5.19 × 10−4 8.48 × 10−2 2.67 × 10−4
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Table 5. Results for the Zakharov function.

Dimension 10 Z-Value 50 Z-Value

Method HS ST2FHS

−4.72

HS ST2FHS

−2.41
Best 7.34 × 10−11 4.00 × 10−13 2.04 × 10−4 3.12 × 10−4

Worst 1.35 × 10−8 2.0869 × 10−9 6.97 × 10−3 9.47 × 10−4

Average 3.27 × 10−9 3.63 × 10−10 1.42 × 10−3 6.37 × 10−4

SD 3.33 × 10−9 4.73 × 10−10 1.76 × 10−3 1.49 × 10−4

Table 6. Results for the Dixon & Price function.

Dimension 10 Z-Value 50 Z-Value

Method HS ST2FHS

−0.4

HS ST2FHS

−7.67
Best 7.30 × 10−3 1.39 × 10−3 2.56 × 10 1.53 × 10

Worst 8.64 × 10−1 8.53 × 10−1 1.50 × 10 4.99 × 10
Average 5.27 × 10−1 4.94 × 10−1 7.95 × 10 2.72 × 10

SD 3.19 × 10−1 3.07 × 10−1 3.66 × 10 7.73 × 10−1

Table 7. Results for the Levy function.

Dimension 10 Z-Value 50 Z-Value

Method HS ST2FHS

−0.23

HS ST2FHS

−8.4
Best 1.18 × 10−4 5.44 × 10−5 1.42 × 10−2 1.19 × 10−2

Worst 3.39 × 10−4 3.25 × 10−4 1.98 × 10−2 1.63 × 10−2

Average 2.25 × 10−4 1.90 × 10−4 1.66 × 10−2 1.41 × 10−2

SD 5.64 × 10−5 1.92 × 10−4 1.33 × 10−3 1.01 × 10−3

Table 8. Results for the Griewank function.

Dimension 10 Z-Value 50 Z-Value

Method HS ST2FHS

−0.29

HS ST2FHS

0.22
Best 4.57 × 10−2 1.55 × 10−1 3.65 × 10−2 9.75 × 10−1

Worst 8.49 × 10−1 2.94 × 10−1 2.15 × 10 1.02 × 10
Average 2.28 × 10−1 2.25 × 10−1 1.00 × 10 1.00 × 10

SD 4.57 × 10−2 3.65 × 10−2 1.59 × 10−2 1.02 × 10−2

Table 9. Results for the Power Sum function.

Dimension 4 Z-Value

Method HS ST2FHS

−0.59
Best 2.02 × 10−2 0.00 × 10

Worst 2.47 × 10 0.00 × 10
Average 2.23 × 10 1.71 × 10

SD 4.48 × 10 1.84 × 10

Table 10. Results for the Trid function.

Dimension 10 Z-Value 50 Z-Value

Method HS ST2FHS

−8.31

HS ST2FHS

0.49
Best −1.23 × 10+2 −1.90 × 10+2 −3.49 × 10+3 −2.98 × 10+3

Worst −1.19 × 10+2 −1.80 × 10+2 −1.33 × 10+3 −1.39 × 10+3

Average −1.21 × 10+2 −1.85 × 10+2 −2.26 × 10+3 −2.20 × 10+3

SD 9.64 × 10−1 1.99 × 10 5.19 × 10+2 4.07 × 10+2
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Table 11. Results for the Ackley function.

Dimension 10 Z-Value 50 Z-Value

Method HS ST2FHS

−0.05

HS ST2FHS

−0.6
Best 5.66 × 10−5 6.68 × 10−5 5.14 × 10−2 5.75 × 10−2

Worst 6.64 × 10−4 8.46 × 10−4 1.67 × 10 5.75 × 10−2

Average 2.76 × 10−4 2.74 × 10−4 1.66 × 10−1 1.21 × 10−1

SD 1.50 × 10−4 1.65 × 10−4 3.48 × 10−1 2.08 × 10−1

Table 12. Results for the Powell function.

Dimension 10 Z-Value 50 Z-Value

Method HS ST2FHS

−7.03

HS ST2FHS

−4.33
Best 8.20 × 10−3 3.64 × 10−4 1.23 × 10−2 4.30 × 10−3

Worst 1.70 × 10−1 2.40 × 10−3 4.32 × 10−1 1.76 × 10−2

Average 5.88 × 10−2 1.37 × 10−3 8.18 × 10−2 1.11 × 10−2

SD 4.47 × 10−2 5.17 × 10−4 8.90 × 10−2 3.43 × 10−3

The results shown in Table 4 through Table 12 using the set of functions achieve significant
evidence using 10 and 50 dimensions for the Sum Square, Zakharov, and Powell functions.

In the Dixon & Price and Levy functions, only significant evidence with 50 dimensions is obtained,
and for the Trid function, there is only evidence in 10 dimensions.

Table 13. Results for the Sum Squares function.

Dimension 10 Z-Value 50 Z-Value

Method DE ST2FDE

4.5513

DE ST2FDE

−34.1921
Best 9.48146 × 10−33 2.2026 × 10−31 3.703507 2.7471 × 10−7

Worst 3.80055 × 10−31 1.0944 × 10−29 6.582105 8.4137 × 10−7

Average 1.14269 × 10−31 1.7395 × 10−30 4.851488 4.72 × 10−7

SD 9.32651 × 10−32 1.9536 × 10−30 0.777158 1.41 × 10−7

Table 14. Results for the Zakharov function.

Dimension 10 Z-Value 50 Z-Value

Method DE ST2FDE

−10.5785

DE ST2FDE

−37.0422
Best 1.04 × 10−4 1.84 × 10−8 7.70 × 10 2.57 × 10−2

Worst 7.64 × 10−4 1.87 × 10−7 1.43 × 10+2 1.06 × 10−1

Average 3.40 × 10−4 8.13 × 10−8 1.13 × 10+2 5.87 × 10−2

SD 1.76 × 10−4 4.82 × 10−8 1.67 × 10 2.41 × 10−2

Table 15. Results for the Dixon & Price function.

Dimension 10 Z-Value 50 Z-Value

Method DE ST2FDE

0.4408

DE ST2FDE

−26.3743
Best 1.77 × 10−1 2.54 × 10−1 1.60 × 10+2 6.68 × 10−1

Worst 6.67 × 10−1 6.67 × 10−1 4.01 × 10+2 7.55 × 10−1

Average 5.98 × 10−1 6.13 × 10−1 2.66 × 10+2 6.79 × 10−1

SD 1.49 × 10−1 1.12 × 10−1 5.51 × 10 1.81 × 10−2

Table 16. Results for the Levy function.

Dimension 10 Z-Value 50 Z-Value

Method DE ST2FDE

0

DE ST2FDE

−33.7726
Best 1.50 × 10−32 1.50 × 10−32 3.20 × 10 4.74 × 10−7

Worst 1.50 × 10−32 1.50 × 10−32 5.94 × 10 1.55 × 10−6

Average 1.50 × 10−32 1.50 × 10−32 4.68 × 10 9.43 × 10−7

SD 2.78 × 10−48 8.35 × 10−48 7.59 × 10−1 2.69 × 10−7
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Table 17. Results for the Power Sum function.

Dimension 4 Z-Value

Method DE ST2FDE

−1.6605
Best 5.80 × 10−4 7.67 × 10−4

Worst 2.21 × 10−2 2.26 × 10−2

Average 9.15 × 10−3 6.65 × 10−3

SD 6.18 × 10−3 5.46 × 10−3

Table 18. Results for the Trid function.

Dimension 10 Z-Value 50 Z-Value

Method DE ST2FDE

0

DE ST2FDE

−76.9252
Best −209 −209 −861.94 −884.656

Worst −209 −209 −854.374 −884.646
Average −209 −209 −858.184 −884.651

SD 0 0 1.884478 0.002398

Table 19. Results for the Ackley function.

Dimension 10 Z-Value 50 Z-Value

Method DE ST2FDE

−5.3864

DE ST2FDE

−65.4158
Best 4.44 × 10−15 8.88 × 10−16 1.82 × 10 1.60 × 10−4

Worst 4.44 × 10−15 4.44 × 10−15 2.55 × 10 2.74 × 10−4

Average 4.44 × 10−15 2.66 × 10−15 2.15 × 10 2.16 × 10−4

SD 1.60 × 10−30 1.81 × 10−15 1.80 × 10−1 2.75 × 10−5

Table 20. Results for the Powell function.

Dimension 10 Z-Value 50 Z-Value

Method DE ST2FDE

−9.5085

DE ST2FDE

−36.7394
Best 3.30 × 10−7 3.15 × 10−8 7.59 × 10+2 3.54 × 10−2

Worst 5.76 × 10−6 3.54 × 10−7 1.32 × 10+3 1.13 × 10−1

Average 1.99 × 10−6 9.44 × 10−8 1.08 × 10+3 6.62 × 10−2

SD 1.09 × 10−6 6.50 × 10−8 1.61 × 10+2 1.94 × 10−2

The results shown in Table 13 through Table 20 using the set of functions achieve significant
evidence using 10 and 50 dimensions for the Zakharov, Dixon & Price, Ackley, and Powell functions.
In the Sum Square, Levy, and Trid functions, significant evidence is only found with 50 dimensions.

5.2. Controllers Optimization

As a benchmark control problem it was decided to deal with controlling the angular position
of a DC Motor, as this is a non-stable control problem that has been considered in the literature to
evaluate controllers, for example, in [36–39]. The plant is illustrated in Figure 5, and the space-state
equations are expressed in Equations (25) and (26), respectively. Table 21 shows the parameters of the
motor position.

d
dt

 θ
.
θ

i

 =

 0
0
0

1
− b

J
−K

L

0
K
J
− R

L


 θ

.
θ

i

+

 0
0
1
L

 (25)

y =
[

1 0 0
] θ

.
θ

i

 (26)
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Table 21. Parameters of the motor position.

Symbol Definition Value

J Moment of inertia of the rotor 3.2284 × 10−6 kg.m2

b Motor viscous friction constant 3.5077 × 10−6 Nms
Ke Electromotive force constant 0.0274 V/rad/sec
Kt Motor torque constant 0.0274 Nm/Amp
R Electric resistance 4 ohm
L Electric inductance 2.75 × 10−6 H

5.2.1. Fuzzy controller

The motor position is regulated with a Type-1 (T1) fuzzy controller, which is composed of two
inputs and one output, granulated into trapezoidal and triangular membership functions.

The mathematical expression of the trapezoidal membership function is described in Equation (27),
and the triangular membership function is described in Equation (28), and the membership functions
parameters are presented in Table 22, and the fuzzy system contains 15 fuzzy rules, which are shown
in Figure 6.

trapm f (x, a, b, c, d) =



0, x ≤ a
x−a
b−a , a ≤ x ≤ b

1, b ≤ x ≤ c
d−x
d−c , c ≤ x ≤ d

0, x ≥ d

(27)

trim f (x, a, b, c) =


0, x ≤ a

x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c

0, c ≥ x

(28)

Table 22. Type-1 membership functions.

Input Error
MF A b c d

NegV −1 −1 −0.5 0
CeroV −0.5 0 0.5 -
PosV 0 0.5 1 1

Input Error Change
ErrNeg −1 −1 −0.4 −0.1

ErrNegM −0.4 −0.2 0 -
SinErr −0.09 0 0.10 -

ErrMaxM 0 0.2 0.4 -
ErrMax 0.1 0.4 1 -
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Table 22. Cont.

Output Voltage
MDis −1 −1 −0.6 −0.09

MDism −0.4 −0.2 0 -
Man −0.1 0 0.1 -

Aumm 0 0.2 0.4 -
Aum 0.09 0.6 1 1Algorithms 2019, 12, × FOR PEER REVIEW 13 of 23 

 

Figure 6. Structure of the motor position. 

Table 22. Type-1 membership functions. 

Input Error 
MF A b c d 

NegV −1 −1 −0.5 0 
CeroV −0.5 0 0.5 - 
PosV 0 0.5 1 1 

Input Error Change 
ErrNeg −1 −1 −0.4 −0.1 

ErrNegM −0.4 −0.2 0 - 
SinErr −0.09 0 0.10 - 

ErrMaxM 0 0.2 0.4 - 
ErrMax 0.1 0.4 1 - 

Output Voltage 
MDis −1 −1 −0.6 −0.09 

MDism −0.4 −0.2 0 - 
Man −0.1 0 0.1 - 

Aumm 0 0.2 0.4 - 
Aum 0.09 0.6 1 1 

A graphic representation of Table 22 is illustrated in Figure 6. The contents of the fuzzy system 
are two inputs and one output. The first input, called Error, is composed of three membership 
functions, both of the edges are of the trapezoidal type, and the central is triangular. The second 
input, called Error Change, contains five functions of membership, two of the edges are the 
trapezoidal type, and the three central ones are the triangular type. Finally, the output, called 
Voltage, contains five functions of membership, two of the edges are the trapezoidal type, and the 
three central ones are the triangular type. 

Figure 7 represents the surface of the fuzzy system for the motor position and Table 23 
summarize the rules of the controller.  
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A graphic representation of Table 22 is illustrated in Figure 6. The contents of the fuzzy system
are two inputs and one output. The first input, called Error, is composed of three membership
functions, both of the edges are of the trapezoidal type, and the central is triangular. The second input,
called Error Change, contains five functions of membership, two of the edges are the trapezoidal type,
and the three central ones are the triangular type. Finally, the output, called Voltage, contains five
functions of membership, two of the edges are the trapezoidal type, and the three central ones are the
triangular type.

Figure 7 represents the surface of the fuzzy system for the motor position and Table 23 summarize
the rules of the controller.
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Table 23. Fuzzy rules for the controller.

Voltage Error Change

ErrNeg ErrNeg_M SinErr ErrMax_M ErrMax

Error
NegV Dis Dis Dis Dis Dis_m
CeroV Aum_m Aum_m Man Dis_m Dis_m
PosV Aum_m Aum Aum Aum Aum

The proposed ST2FHS and ST2FDE methods are used to optimize the values of the membership
functions of the motor position controller in order to minimize the RMSE error described in
Equation (29). Figure 8 shows the vector that represents the information of the individuals.

RMSE =

√√√√ 1
N

N

∑
t=1

(xt − x̂t)
2 (29)
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The vector contains the information of each individual; the latter represents each position of the
triangular or trapezoidal membership function. In total, there are 44 positions of which 25 are fixed
and 20 are optimized. The limits of the positions that are optimized are shown in Table 24.

Table 24. Boundary T1 membership functions parameters of the vector.

Input 1 Input 2 Output

MF parameters

First MF
a0 = b0 = −1
−1 < c0 < −0.5

d0 = 0

First MF
a0 = b0 = −1
−1 < c0 < −0.4

d0 = −0.1

First MF
a0 = b0 = −1
−1 < c0 < −0.6

d0 = −0.09

Second MF
−1 < a1 < −0.1

b1 = −0.2
−0.1 < c1 < 0

Second MF
−1 < a1 < −0.4

b1 = −0.2
−0.2 < c1 < 0

Second MF
−1 < a1 < 0

b1 = 0
0 < c1 < 1

Third MF
−0.09 < a2 < 0

b2 = 0
0 < c2 < 0.10

Third MF
−0.1 < a2 < 0

b2 = 0
0 < c2 < 0.1

Fourth MF
0 < a3 < 0.10

b3 = 0.2
0.1 < c3 < 1

Fourth MF
0 < a3 < 0.1

b3 = 0.2
0.09 < c3 < 1

Third MF
a2 = 0

0 < b2 < 0.5
c2 = d2 = 1

Fifth MF
a4 = 0.1

0.2 < b4 < 0.4
c4 = d4 = 1

Fifth MF
a4 = 0.09

0.2 < b4 < 0.6
c4 = d4 = 1

Tables 25 and 26 show the results obtained by optimizing the parameters of the DC Motor
controller, with the ST2FHS and ST2FDE methods, respectively. The noise applied to this controller is
0.5 (Gaussian random number).
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Table 25. Results for the ST2FHS method.

Method HS-FLC without
Noise

ST2FHS-FLC
without Noise

HS-FLC with
Noise

ST2FHS-FLC FLC
with Noise

Best 7.86 × 10−3 7.32 × 10−3 4.22 × 10−2 1.95 × 10−2

Worst 5.16 × 10−1 5.66 × 10−2 1.09 × 10 9.07 × 10−1

Average 1.65 × 10−1 9.22 × 10−3 5.90 × 10−1 4.62 × 10−1

SD 1.37 × 10−1 3.45 × 10−3 3.07 × 10−1 2.83 × 10−1

Table 26. Results for the ST2FDE method.

Method DE-FLC without
Noise

ST2FDE-FLC
without Noise

DE-FLC with
Noise

ST2FDE-FLC with
Noise

Best 7.34 × 10−3 4.35 × 10−3 2.24 × 10−2 5.89 × 10−4

Worst 2.1 × 10−2 7.43 × 10−3 4.85 × 10−1 7.47 × 10−2

Average 1.71 × 10−2 7.24 × 10−3 2.44 × 10−1 2.18 × 10−2

SD 2.81 × 10−3 5.35 × 10−4 1.36 × 10−1 1.90 × 10−2

Figures 9 and 10 illustrate the best results obtained with the HS method without noise and with
noise respectively, Figures 11 and 12 illustrate the best controller surface.
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It is noticeable in Figures 13 and 15 that the proposed approach obtains a better performance than
the conventional approach. However, in order to validate this, a statistical test is realized. Based on the
parameters of the z-test statistic presented in Section 5.1 and Equation (24), the results of the Z-values
are presented in Table 27.
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Table 27. Results for the statistical test of the DC motor.

Method µ1 µ2 Z-Value

ST2FHS
FLC without noise HS −6.23

FLC with noise HS with noise −1.67

ST2FDE
FLC without noise DE −18.8799

FLC with noise DE with noise −8.8627

The Z-values obtained for the statistical test demonstrate the improvement of the proposed
approach with respect to the original method.

5.2.2. PID Control

The PID controller (Proportional-Integral-Derivative) is a feedback control mechanism that is
widely used in industrial control systems, for example, in [40–42]. The PID control algorithm uses
three different parameters: the proportional (kp), the integral (ki), and the derivative (kd) gains.
The proportional value depends on the current error. The integral depends on past errors, and the
derivative is a prediction of future errors. The sum of these three actions is used to adjust the process
by means of a control element, such as the position of a control valve or the power supplied to a heater.
The general PID algorithm is expressed in Equation (30):

r (t) = MV (t) = Kp e(t) + Ki
∫ t

o
e (t) dt + Kd

de(t)
dt

. (30)

In this case, the PID angular position of the motor is used, the ST2FHS and ST2FDE methods are
used for the optimization of this control problem, and the control objective is to minimize the settling
time. The transfer function for this controller is expressed in Equation (31), and the structure of the
control system is shown in Figure 17:

C(s) = Kp +
Ki
s
+ Kds =

Kds2 + Kps + Ki

s
. (31)

Algorithms 2019, 12, × FOR PEER REVIEW 19 of 23 

derivative is a prediction of future errors. The sum of these three actions is used to adjust the process 
by means of a control element, such as the position of a control valve or the power supplied to a 
heater. The general PID algorithm is expressed in Equation (30): 𝑟 (𝑡) = 𝑀𝑉 (𝑡) = 𝐾𝑝 𝑒(𝑡) + 𝐾𝑖 𝑒 (𝑡)  d𝑡 + 𝐾𝑑 ( ). (30)

In this case, the PID angular position of the motor is used, the ST2FHS and ST2FDE methods are 
used for the optimization of this control problem, and the control objective is to minimize the 
settling time. The transfer function for this controller is expressed in Equation (31), and the structure 
of the control system is shown in Figure 17: 𝐶(𝑠) =  𝐾 + + 𝐾 𝑠 = . (31)

 
Figure 17. Structure of the PID (Proportional-Integral-Derivative) DC motor. 

Table 28 shows the best parameters obtained from the optimization with the HS, ST2FHS, DE, 
and ST2FDE methods and the time in which the objective of stabilizing the motor position is 
achieved. Figures 18 and 19 show the graphical representation of the simulation of these parameters 
for the HS and ST2FHS, DE, and ST2FDE methods, respectively. Table 29 shows the results for the 
statistical test. 

Table 28. Results for the experiments with PID for the DC motor. 

Method 𝑲𝒑 𝑲𝒊 𝑲𝒅 Best Settling Time 
PID 21 500 0.15 0.0338 
HS 600 12000 6 0.00029 
DE 900 18000 9 0.00020 

ST2FHS 900 30000 9 0.00020 
ST2FDE 1500 30000 15 0.00012 

Figure 17. Structure of the PID (Proportional-Integral-Derivative) DC motor.

Table 28 shows the best parameters obtained from the optimization with the HS, ST2FHS, DE,
and ST2FDE methods and the time in which the objective of stabilizing the motor position is achieved.
Figures 18 and 19 show the graphical representation of the simulation of these parameters for the HS
and ST2FHS, DE, and ST2FDE methods, respectively. Table 29 shows the results for the statistical test.
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Table 28. Results for the experiments with PID for the DC motor.

Method Kp Ki Kd Best Settling Time

PID 21 500 0.15 0.0338
HS 600 12,000 6 0.00029
DE 900 18,000 9 0.00020

ST2FHS 900 30,000 9 0.00020
ST2FDE 1500 30,000 15 0.00012Algorithms 2019, 12, × FOR PEER REVIEW 20 of 23 
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Figure 19. Best results obtained from the DE and ST2FDE methods.

Figures 18 and 19 show visually similar results, Table 27 contains the results of the values of each
PID parameter obtained when using the proposed method, and it can be noted that there is a difference
in the settling time between the two methods.

Table 29 presents the statistical test to validate the improvement of the proposed approach with
respect to the conventional method.
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Table 29. Results for the statistical test of the PID motor.

Method ST2FHS HS Z-Value

Average Std. Average SD −3.213.90 × 10−4 1.83 × 10−4 5.72 × 10−3 9.07 × 10−3

Method ST2FDE DE
−2.53Average Std. Average SD

3.03 × 10−4 2.15 × 10−4 4.22 × 10−3 8.46 × 10−3

The Z-values obtained in Table 29 demonstrate that the proposed approach obtains better
performance with respect to the conventional approach.

6. Conclusions

In this study, we present the use of a dynamic adaptation of parameters based on the Shadowed
Type-2 Fuzzy Inference System theory using the original HS and DE algorithms, which, in this paper,
we call ST2FHS and ST2FDE, respectively.

Three case studies were considered. The first was done to obtain the minimum of each benchmark
mathematical function using the ST2FHS and ST2FDE methods; the second and third case studies
optimized the membership functions of the problem of motor position plant of the engine with the
proposed methodology. The difference between the second and third case studies was the type of
controller used. For the second case, an FLC was used with noise and without noise and for the
third, a PID was used. We can conclude generally and statistically that, for both algorithms, by using
the proposed methodology, favorable results were obtained for all cases considered in this paper.
The successful implementation of ST2 FIS corresponds to an implementation of an approximation of
GT2 FIS; however, with this approach, the computational cost cannot be a limitation in the application
of this kind of method in an application that requires several executions.
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