
algorithms

Article

Self-Improving Generative Artificial Neural Network
for Pseudorehearsal Incremental Class Learning

Diego Mellado 1 , Carolina Saavedra 1,2 , Steren Chabert 1,2 , Romina Torres 3

and Rodrigo Salas 1,2,*
1 Escuela de Ingeniería C. Biomédica, Universidad de Valaraíso, Valparaíso 2362905, Chile;

diego.mellado@postgrado.uv.cl (D.M.); carolina.saavedra@uv.cl (C.S.); steren.chabert@uv.cl (S.C.)
2 Centro de Investigación y Desarrollo en Ingeniería en Salud, CINGS-UV, Universidad de Valparaíso,

Valparaíso 2362905, Chile
3 Engineering Faculty, Universidad Andres Bello, Viña del Mar 2531015, Chile; romina.torres@unab.cl
* Correspondence: rodrigo.salas@uv.cl; Tel.: +56-32-2603658

Received: 4 July 2019; Accepted: 9 September 2019; Published: 1 October 2019
����������
�������

Abstract: Deep learning models are part of the family of artificial neural networks and, as such,
they suffer catastrophic interference when learning sequentially. In addition, the greater number
of these models have a rigid architecture which prevents the incremental learning of new classes.
To overcome these drawbacks, we propose the Self-Improving Generative Artificial Neural Network
(SIGANN), an end-to-end deep neural network system which can ease the catastrophic forgetting
problem when learning new classes. In this method, we introduce a novel detection model that
automatically detects samples of new classes, and an adversarial autoencoder is used to produce
samples of previous classes. This system consists of three main modules: a classifier module
implemented using a Deep Convolutional Neural Network, a generator module based on an
adversarial autoencoder, and a novelty-detection module implemented using an OpenMax activation
function. Using the EMNIST data set, the model was trained incrementally, starting with a small set
of classes. The results of the simulation show that SIGANN can retain previous knowledge while
incorporating gradual forgetfulness of each learning sequence at a rate of about 7% per training step.
Moreover, SIGANN can detect new classes that are hidden in the data with a median accuracy of 43%
and, therefore, proceed with incremental class learning.

Keywords: artificial neural networks; deep learning; generative neural networks; incremental
learning; novelty detection; catastrophic interference

1. Introduction

Deep Neural Networks (DNN) are one of the most promising and successful models of recent
times, due to their performance having become state of the art in many highly complex classification
problems. However, there is great concern on the part of the community regarding one of the
major limitations of connectionist models: these models catastrophically forget previously learned
patterns when they learn new data or classes. This limitation prevents these models from being used
in real applications which require continuous learning but gradual forgetting of past information.
The problem of incremental learning has been studied in depth by several authors [1–5], but it is still
an open issue.

One of the problems that appear with incremental learning is known as Catastrophic Interference,
referring to the inability of an Artificial Neural Network (ANN) to retain previous knowledge while
trying to learn a new and unknown task [6]. This problem is known as the Stability versus Plasticity
Dilemma [7,8] which consists of a concession between the neural network’s capacity of generalization

Algorithms 2019, 12, 206; doi:10.3390/a12100206 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-8078-253X
https://orcid.org/0000-0003-4130-0010
https://orcid.org/0000-0002-2890-5077
https://orcid.org/0000-0002-0350-6811
http://dx.doi.org/10.3390/a12100206
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/12/10/206?type=check_update&version=2

Algorithms 2019, 12, 206 2 of 17

when applied to new samples, and its ability to retain previously learned concepts. Some authors
have addressed this by using local representations from data [9], while the authors’ previous works
showed how catastrophic interference might be mitigated by giving flexibility to ANNs. This would
allow them to adapt their structure to data, improving their capability to both retain information and
reduce catastrophic interference [2,10]. Recently, Kemker et al. [11] compare five different mechanisms
designed to mitigate catastrophic forgetting in neural networks: regularization, ensembling, rehearsal,
dual-memory, and sparse-coding.

Goodfellow et al. [12] have studied the effect of catastrophic interference on deep neural networks,
suggesting using the dropout algorithm for balance between learning a new task and remembering
a previous task. On the other hand, some recent studies show how generative networks might help
with the recognition of unknown classes on multi-class classification tasks [13]. Rebuffi et al. [14] have
introduced a new training strategy known as iCaRL to learn classes incrementally. The method starts
with training data containing a small number of classes presented at the same time, and new classes
are added progressively. Z. Li et al. [15] proposed the SupportNet framework that combines Deep
Learning with stored samples that contains the essential information of the old data when learning
the new information. Z. Li et al. [16] have proposed the Learning without forgetting (LwF) approach,
which uses data samples coming from the new prediction tasks only, without accessing training data
for previously learned tasks. Although the authors do not use data from the previous training sets,
the new datasets have some representatives from the previously learned classes. Thus, the approach
used by the authors is rehearsal, i.e., they have a small set of samples that they help to retain concepts
from the classes that were previously learned. Recently, Shin et al. [17] proposed the Deep Generative
Replay, an architecture consisting of a deep generative model (generator) and a task solving model
(solver). The proposed method can sequentially train deep neural networks without referring to past
data. However, there is not much literature on methods that are able to detect the presence of new
classes hidden in the data without any supervision [18–20].

In this paper, we propose an end-to-end deep neural network system that acts both as a generator
and classifier of data that incrementally learns by generating samples from previous information,
and which is able to detect if there is new information present and to learn from it when necessary.
This system consists of three major modules: the classifier, the generator, and the novelty detector.
The classifier was instantiated with a convolutional neural network that, given an input image, assigns
it a label from a set of known categories. The generator module was instantiated with an adversarial
autoencoder, and its primary task is to generate pseudo-samples to enrich the training set. The classifier
was embedded as a detector into the encoder of the adversarial autoencoder. Finally, the novelty
detector implements an extreme-value detector allowing the network to identify whenever novel
information is presented as a new class. At the end, we measure the impact of incremental training
with generated data from previously learned information while learning a new task. Further details
can be found at D. Mellado’s Thesis [21] and the preprint [22]

The main contributions of this paper are:

• Designing a neural network model that combines a generative model with a classifier to learn
new patterns while reducing the need for storage of training data.

• Introducing a novelty-detection model that can help recognize new tasks for incremental
learning tasks.

The rest of the paper is organized as follows: we briefly explain in Section 2 the main methods used
to tackle the catastrophic interference problem. In Section 3, we explain the architecture of the proposed
model, how it works and learns. Then in Section 4, we show our results from a series of proposed
experiments using a small image dataset to measure its performance when trained incrementally.
Finally, in Section 5 we discuss how the model improves reduction of catastrophic interference, and we
propose future improvements for it in Section 6.

Algorithms 2019, 12, 206 3 of 17

2. Theoretical Framework

ANNs are affected by catastrophic interference. Therefore, they require a mechanism able
to remember both short and long-term, and they need to be able to accurately recognize if novel
information is present in the data to learn from it. Several training methods have been proposed
and used to retain previous knowledge, but some of the most common involve previous data being
presented to the network while training a new task.

2.1. Rehearsal and Pseudorehearsal Learning

Rehearsal training in ANNs involves the collection of data from the previous classes and their
incorporation into the model when new data are found, and the model needs to be retrained. One way
of doing rehearsal training involves adding a set of the most recently trained examples alongside the
new sample, known as Recency Rehearsal [23]. This mechanism reinforces what has the network has
already learned, and associates this knowledge with the new data. Another conventional method
consists of using a random subset of the previous data alongside the new sample [24]. While this
achieves better results than the previous method, there is still some loss of knowledge of most
connectionist networks when using either method. Mellado et al. [25] shows how performance
worsens even though previous samples are reused. Another point to consider is that both methods
require the storage of previous training samples. Although it is not an issue in most cases, this becomes
a considerable drawback when training vast and increasing databases, as seen in Big Data; where
storage of an increasing number of examples can become a problem. The additional storage may not
be biologically plausible (the neural network metaphor), because brains are not able to store the exact
representation of something learned. Rather, they construct meaning from information, and store it
within neural patterns, while ultimately discarding the original information [26].

Pseudorehearsal, in contrast, does not involve the use of previously trained items and instead uses
randomly generated elements that act in a way similar to the original training data [24]. These random
elements are usually added to the previously trained network to get their outputs, and added to
the new item to train the network for the new set. This method allows the training of new data
by approximating the previous information whenever needed [27]. One caveat was presented
by Ans et al. [28], where they demonstrated that using only random samples can cause problems
while generalizing in increasing data due to their noisy origin, effectively destroying what previous
knowledge was in the model. A secondary, parallel, network is needed to create pseudo-samples for
the primary network to learn from representations. This method, compared to rehearsal learning,
is more biologically plausible because it does not require the storage of all previous data directly,
and uses stochastic processes to generate them, thus giving the impression of “evoking” the concepts
that the neural network has already learned. This evoking allows for approximation of old information,
by sampling how the neural network should behave regarding these inputs, allowing the consolidation
of information while learning a new task [27].

Previous research by the authors [25] showed that pseudorehearsal has slightly lower performance
when training with pseudo-samples in comparison to a rehearsal approach. However, in both methods,
the classifier has a peak accuracy of almost 90%, when using as few as 10% of a total of 512 generated
samples per trained class, showing that this method can be useful for incremental training of DNNs
without having to store or generate a significant amount of data. Atkinson et al. [29] expanded
on this idea by using a Generative Adversarial Network to generate data in order to train a model
incrementally, whereas Besedin et al. [30] expanded this model and analyzed the impact of image
regeneration when training incrementally. Further details about the main challenges for incremental
learning and catastrophic forgetting are given in Parisi et al. [31].

Algorithms 2019, 12, 206 4 of 17

2.2. Variational Autoencoders for Image Generation

A variational autoencoder (VAE) is a neural network model capable of encoding and decoding
information onto a probabilistic distribution, commonly Gaussian or Bernoulli [32]. These models
encode the information from the input data X into a random latent vector z sampled from P(z) defined
over distribution space Z , which is then decoded onto a generated representation X̂ ∈ P(X) of the
original data Equation (1).

P(X) =
∫

P(X|z; θ)P(z)dz (1)

where P(X|z) is a set of functions, parameterized by θ or the parameters we want to optimize.
This allows sampling from P(z) with a high probability of obtaining a value from X [33].

This latent vector acts as a prior that enables the decoder to map information onto a representation,
using the maximum likelihood to the image. Both encoder and decoder network uses a similar structure
to recreate an output with features similar to the initial input as an autoencoder structure.

To optimize these networks, the Kullback–Leibler distance between latent vector z and a defined
random distribution is minimized Equation (2).

KL [Q(z)||P(z|X)] = Ez∼Q [log Q(z)− log P(z|X)] (2)

where P(z|X) ∼ Z (µ, σ + ε), µ and σ are obtained as output from the encoder, ε is stochastic noise,
and Q(z) is usually similar to a Gaussian distribution N (0, I), I being an identity matrix. Moreover,
the difference between the input and its reconstruction (usually the Mean Squared Error or the binary
cross-entropy between input and output) is reduced, allowing spatial information to be decoded from
a reduced, stochastic source with similar characteristics to a real input [33].

These types of networks are widely used for generating small images by encoding image
features and enabling the generation of new images with small variations on these features [34,35].
Newer variations try to improve encoding by making the images indistinguishable from real
information. Neural Network models such as [36,37] use a discriminator network, similar to Generative
Adversarial Network models, to create generated samples that are similar to real examples. Adversarial
models allow this through competition between the generator and a discriminator network that
identifies whether the input is generated or belongs to a real set, each balancing the other [38].

2.3. Novelty Recognition

Novel pattern recognition is the field that studies how an algorithm or system can recognize if a
pattern is unknown to it, compared to a set of previously learned patterns [39]. Some of these techniques
are commonly used for outlier detection, due to how these events deviate from what the system usually
outputs from a given input. Detection can be probabilistic, distance-based, reconstruction-based,
from domain or by measuring information content, among other methods [40].

Novelty recognition has been recently used on deep neural network (DNN) models to improve
detection of new information available on inference. Richter et al. [41] for example, developed an
autoencoder model for novelty recognition for a reinforcement learning problem. This algorithm
can identify if the environment is similar to the training environment, improving navigation in an
autonomous system when trying to identify its navigation confidence.

Novelty detection can be used as a tool for recognition of an object from a universe of different
unknown objects, considering the “unknown” category as a possibility, known as open-set recognition.
Bendale et al. [42] created a DNN for open-set recognition by measuring the activation distance of
the output layer from a classifier compared to the maximum response of a specific class and using
Extreme-Value Theory to model the probability of the input’s rejection from a perceived class.

Algorithms 2019, 12, 206 5 of 17

Extreme-Value Theory involves the study of extrema, or maximum or minimum values,
in probabilistic distributions; commonly used for rejection of outliers. A general representation
of the cumulative distribution function of an extreme-value distribution is in Equation (3).

P [X ≤ x] =
[

1 + ξ

(
x− µ

σ

)] 1
ξ

(3)

where 1 + ξ
(

x−µ
σ

)
> 0, −∞ < ξ < ∞ and σ > 0. The value of ξ defines the distribution, if ξ < 0

becomes a Weibull-type distribution, a value of ξ > 0 becomes a Fréchet-type distribution and when
ξ → −∞ or ∞, becomes a Gumbel-type distribution [43]. As activation parameters in a neural network
are bounded, their distribution reduces to a Weibull distribution [44]. The probability of rejection of an
outlier is given by the output of this distribution, in relation to how data is distributed within it.

Novelty-detection algorithms have also been used with Adversarial Autoencoders (AAE) for
measurement of the likelihood of images belonging to the training set, allowing for better sample
generation [19].

3. Proposal

Our proposed neural network system, “Self-Improving Generative Artificial Neural Network”
(SIGANN) (Available at https://github.com/dmelladoc/SIGANN), consists of 3 major sub-structures:
A classifier, a generator and a novelty detector working in conjunction in order to learn and identify
unknown data from a starting subset of a dataset, and training itself to learn new classes. For both
the classifier and generator, we implemented a semi-supervised AAE model, based on the structure
presented in [36] for semi-supervised training, and added the novelty detector.

To incrementally train SIGANN, we train the classifier and generator at the same time, as in a
standard AAE model; then fit the mean activations for each initial class on our novelty detector by
inferring from the training set at the end of the training process. On inference, the novelty detector
checks if new information belongs to a new class. If so, it temporarily stores the sample for future
training, as the generator starts sampling a set of previous knowledge representations for the next
training step. This set is used in conjunction with all newly detected samples, and the categorical
output layer from the classifier is expanded to add the new class. Finally, the network is trained for a
defined number of epochs, learning new information without loss of previous knowledge.

The complete operation of our method is presented in Algorithm 1 and the structure of the
semi-supervised AAE model used in conjunction with the novelty detector is shown in Figure 1. In the
following subsections we explain each module.

Module 2: Generator

Module 1: Classifier Module 3:Novelty DetectorInput X
EncoderClassifier Prediction

softmax(ŷ)

DistributionVector space
ẑ

DecoderGenerator

Output X̂

“3”
Output ŷ

NoveltyDetection
openmax(ŷ, ρ)

Real One-hotclass (y)[
0, 0, 0, 1, . . . , 0

]

RandomDistributionsample (z)
U(−
√
3,
√
3)

Discriminator Y

Discriminator Z

Probability ofsample beingreal or fake

Probability ofsample beingreal or fake

New data signal

Figure 1. SIGANN model, using a Semi-supervised adversarial autoencoder structure.

https://github.com/dmelladoc/SIGANN

Algorithms 2019, 12, 206 6 of 17

Algorithm 1 SIGANN Model training.

Require: Set of initial data Xtrain and output classes ytrain ∈ {1, . . . , C}
1: Uniform Distribution Generator Z = U (−

√
3,
√

3) of sample length n
2: Train Adversarial Autoencoder: X̂, ẑ, ŷ = AAE(Xtrain, ytrain, Z)
3: for c=1, . . . , C do
4: Get Mean Activation of trained samples µc = mean(ŷ ∈ c)
5: Compute distance of each output of class c: dc = |ŷc − µc|
6: Fit dc to Weibull distributionWc and get parameters ρc = (κc, λc)
7: while Receiving new data Xnew do
8: Evaluate samples of data Xnew on inference: ŷ = AAEenc(Xnew)

9: Revise OpenMax activation of data: y? = OpenMax(ŷ, ρ, ε = 0.95)
10: if y? = C + 1 then
11: Store input X? and output y?

12: Generate samples Xgen from classes ygen ∈ {1, . . . , C}
13: Evaluate generated samples: ŷgen = AAEenc(Xgen)

14: if ŷgen = ygen and P(ŷgen = c|X) > 0.9 then
15: Store Xgen, ygen

16: else
17: Discard Xgen, ygen and Re-generate
18: Update Number of classes: C = C + 1
19: Re-train Adversarial Autoencoder with new and generated data: X̂, ẑ, ŷ = AAE(Xgen +

X?, ygen + y?, Z)
20: Fit new class and samples to Weibull distribution
21:

3.1. Module 1: Classifier

The classifier module consists of an encoder unit which is shared with the generator module,
and the SoftMax function that outputs the predicted class of image X. This module also outputs the
encoded style information for the generator module.

We use a set of convolutional layers with kernel size 3× 3 and a stride size of 2 to reduce the
dimensions of the image; followed by convolutional inception layers with the same number of neurons,
ending with two 2-layered dense networks in parallel, which encode style information onto latent
vector ẑ and output the SoftMax classification probability ŷ of the input image X. The latent vector ẑ
encodes style information from the image, onto a uniform distribution z ∈ U

([
−
√

3,
√

3
])

, defined so
as to maximize unit variance between samples (Figure 2).

Encoder
Convolutional Layer <3x3x32>

Inception Layer (32)
Convolutional Layer <3x3x64-s=2>

Inception Layer (64)
Convolutional Layer <3x3x128-s=2>

Inception Layer (128)
Dense <512> Dense <512>

Ẑ Ŷ

Decoder
Concatenation [Ẑ, Ŷ]

Dense <6272> + Reshape(7x7x128)
Deconvolutional Inception Layer (128)
Deconvolutional Layer <3x3x128-s=2>
Deconvolutional Inception Layer (64)
Deconvolutional Layer <3x3x64-s=2>
Deconvolutional Inception Layer (32)

Deconvolutional Layer<3x3x1> + Sigmoid()

Figure 2. The Encoder and Decoder structures used on our training model.

Algorithms 2019, 12, 206 7 of 17

3.2. Module 2: Generator

The generator module is based on an adversarial autoencoder, whose units are the encoder
structure from the classifier, the decoder, and the distribution and categorical discriminators.
These structures allow SIGANN to learn spatial information and generate real-looking samples for use
on future training operations.

Both ẑ and ŷ output from the encoder structure from input image X, are concatenated and used as
an input for the decoder structure, which mirrors the encoding network structure using deconvolution
filters, outputting a decoded image X̃. The generator can encode information from random noise to
generate nearly real samples by training two discriminator networks Z and Y (as shown in Figure 1)
which try to differentiate between the true categorical and random uniform priors and the generated
inputs from the encoder [36]. These discriminators are built using two sets of 2-layer perceptron
networks with a binary output, to identify if the distribution sample Z and categorical sample y comes
from real or generated samples. The generator ultimately tries to fool the discriminators, by creating
encoding vectors with a distribution similar to the distribution sample Z and categorical output y,
to decode them into a real image, similar to the original.

The complete loss function L used for the training is obtained as the aggregation of the following
loss functions: (1) the reconstruction loss Lrec, obtained from the binary cross-entropy between the
original image X and the generated image X̂; (2) the discriminative losses Ldis from both the encoding
vector ẑ and the class ŷ discriminators; (3) the generative loss Lgen from the generator when fooling
the discriminators; and (4) the classification loss Lcls from the classifier.

3.3. Module 3: Novelty Detector

The novelty detector consists of the joint action of the Meta-Recognition and OpenMax algorithms.
After training the AAE for a defined number of classes, we evaluate data to classify it. Generally,
if a sample is from a new, unknown class, the classifier should not be able to identify it as such.
Therefore, we replace the activation function of the classifier in the inference stage with an OpenMax
function [42] for novelty detection. This activation function was initially designed as a replacement for
SoftMax activation in open-set recognition networks.

By using the Meta-Recognition algorithm presented by [44] as a basis, this function fits data
into a Weibull distribution to obtain the probability of each sample being on a high or low tail of
the set, selecting the η values from the tail of the distribution. The reason for selecting the Weibull
distribution is due to its versatility, where both the shape κ and the scale λ parameter, affect the shape
of the probability-density-function curve, the reliability, and the failure rate. Moreover, the Weibull
distribution becomes suitable when the conditions for strict randomness of the exponential distribution
are not satisfied. This distribution is widely used in reliability and life data analysis (For more details
see [45]).

The fitting of the Weibull distribution is done using the Euclidean distance between each training
sample’s output activation logit, or the output from the last layer of a classifier before applying the
SoftMax activation function; and the mean activation of all samples from class c, obtaining the scale
and shape parameters of the Weibull distribution for class c. By defining ρc as these parameters, we use
the Weibull CDF on the Euclidean distance between the mean activation logits of class µc from the
training set and the logits obtained on inference. We obtain this value for the top α classes, obtaining
weights ω(x) for each class of the logit output. The sum difference between the original and corrected
logits gives us the “unknown logit” which is then evaluated using the SoftMax Equation (4).

P(z)j =
ezj

∑K
k=1 ezk

j = 1, . . . , K (4)

We then reject the original predicted class and define element X as being from an unknown
class if the probability of belonging to a known class is lower than ε < 95% or if the maximum

Algorithms 2019, 12, 206 8 of 17

probability belongs to the unknown class. This value of ε was defined as such, as it allowed for the
best performance for detection. This allows the network to measure the probability of a fooling or
unknown image to be misclassified, by rejecting the probability that this data is part of a known set,
allowing us to recognize if the input data is unknown, in order to store it as new information to further
train the network with new data. The Meta-Recognition and OpenMax algorithms are presented in
Algorithm 2 and in Algorithm 3, respectively.

Algorithm 2 Meta-Recognition Algorithm.

Require: Logits from the final layer from each class vc(x) = v1(x) . . . vN(x) from training phase;

Number of extreme values to fit η

1: for c = 1 . . . N do
2: Compute Mean Activation :µc = mean (vc)

3: Fit to Weibull :ρc = (κc, λc) = FitHigh (‖ vc − µc ‖, η)
4: return µc and ρc for each class

Algorithm 3 OpenMax Algorithm.

Require: Logits from the final layer from each class vc(x) = v1(x) . . . vC(x) from evaluation; α number

of top classes to revise.
1: Execute Algorithm 2 of the Meta-Recognition to obtain the Mean µc and Weibull parameters

ρc = (κc, λc) for each class c
2: for i = 1, . . . , α do
3: s(i) = argsort (vc (x))

4: ωs(i)(x) = 1− α−i
α e
−
(‖vi(x)−µs(i)‖

λs(i)

)κs(i)

5: Revise activations: v̂(x) = v(x) ◦ω(x)
6: Define v̂new(x) = ∑i(vi(x)− v̂i(x))
7: P̂(y = j|x) = ev̂c(x)

∑N
c=0 ev̂c(x)

8: Let y? = argmaxiP(y = i|x)
9: return New class if y? = C + 1 or P(y = y?|x) < ε

With all unknown information identified, we then use the generator to create a balanced set of
generated samples from the previously learned classes, adding them to the new training set, and start
training with the new data. This allows our model to “finetune” its weights for the old data and
accommodate new features which might help to activate the corresponding output for the new class.

4. Experiments

To assess SIGANN’s learning capabilities, three experiments were proposed. First, we measure
the rate at which the method forgets previously learned classes. Second, we study the ability of the
method to detect new unknown classes. And third, we study how long the method could last without
catastrophically forgetting the former classes in a continual learning setting.

We used the EMNIST dataset (https://www.nist.gov/node/1298471/emnist-dataset) [46] as a
benchmark for our experiments. This is an extension of the original MNIST dataset for handwritten
digits, with the inclusion of handwritten characters and numbers from the NIST Special Database 19.
The EMNIST Balanced subset, is comprised of 131,600 character images, with 47 different classes from
0–9, A–Z and a set of lowercase a-z characters different from their uppercase counterparts. We have
decided to maintain a balanced classes set to isolate this variable in the following experiments. For the

https://www.nist.gov/node/1298471/emnist-dataset

Algorithms 2019, 12, 206 9 of 17

initial training task, we trained the model using the number classes, incrementally adding each letter
in alphabetical order at each training stage.

For all experiments, our network was trained for 25 epochs for each training step, using Adam
Optimizer, with an initial learning rate of 0.001 and with the decay values of β1 = 0.9 and β2 = 0.999
to control the moving averages of the gradient and the squared gradient, respectively. The dataset was
augmented by resizing an image to a target width and height by either centrally cropping the image or
padding it evenly with zeros, moreover the brightness of the image is randomly perturbed. For all the
experiments, we have divided the dataset for each stage into training and test sets, and we report the
average and standard deviation performance of 15 runs in the test set. Our setup was an HP Proliant
Workstation with Intel Xeon ES-2620 CPU with 16GB of RAM and an NVIDIA GeForce GTX960 GPU;
and implemented with TensorFlow 1.8 for GPU using Python 3.6.

4.1. Experiment 1: Does the Method Gradually Forget?

As a first experiment, our model was trained to learn iteratively on splits of these datasets, in order
to study if our network can retain previous information while learning new data, and to see how much
information is lost when learning a new task using only what the model remembers of the previous
task. The dataset was split into four parts, each with an even number of classes. The network was
trained using an initial set. After training each set, we evaluated classification accuracy and generated
a set of images from each learned class, to append it to the new learning task. The generated images
were selected for training if the predicted class from the classifier matched the input class from the
generator. In the steps that followed, we retrained the model with the next batch of new classes, plus
a defined number of generated data: around 75% of the amount of the original training samples for
each class from the previous set. We decided upon this value due to an unbalancing issue with the
previously learned classes when training the new set.

As a base metric, the obtained accuracy for our classifier when evaluating the complete dataset was
87.71% on EMNIST; this result is similar to state of the art on this particular subset (Performance results
of different Deep Learning techniques for the MNIST dataset can be found in https://benchmarks.
ai/mnist, in [46] the authors reports the performance for the EMNIST dataset). While training the
generated set, the accuracy of each training iteration lowered in a constant decay per training step
of around 9.27 ± 0.75%. When trained to add a small subset of the original data to the generated
samples, the decay rate in each training step is cut almost in half, as shown in Table 1. This decay
can be explained as a gradual interference effect to do with how information is learned within the
model, and related to the model’s plasticity when learning new features of the newer classes. As a
comparison, we trained the same model with generated samples and an additional 10% of randomly
sampled original training data, to test performance in pseudorehearsal training.

Table 1. Accuracy evaluated in the test sets using EMNIST partition in four splits.

Training
Scheme

SIGANN with the
Complete Data Set

Pseudorehearsal
SIGANN

Rehearsal SIGANN
with 10% Real Data

Split 1 87.71% 97.91± 0.24% 97.97± 0.17%
Split 2 − 89.25± 0.54% 90.34± 0.42%
Split 3 − 81.84± 0.98% 86.58± 0.55%
Split 4 − 70.11± 2.21% 81.28± 0.71%

Decay Rate − 9.27± 0.75% 5.56± 0.21%

This gradual loss of information can be seen in the generated samples from the model in Figure 3.
In each training split, the recently learned task starts with a better form style definition, due to how
it is encoded on the distribution vector. In following splits, its shape starts to lose form due to the
increasing number of classes within the encoding space.

https://benchmarks.ai/mnist
https://benchmarks.ai/mnist

Algorithms 2019, 12, 206 10 of 17

Figure 3. Generated Samples in each training cycle (5 columns per training cycle).

4.2. Experiment 2: Is the Method Able to Detect New Unknown Classes?

Our second experiment consisted of measuring how our classifier can properly identify data from
an unknown class, using a novelty-detection activation function, and measuring how similarity to the
original set can affect proper detection of novelty. We trained our model using a set of numbers (0–9)
and measured what percentage of data from each letter (A–Z) was accurately identified as a new class.
In this experiment, we expected that similar-looking characters (such as 0 with O, 5 with S, etc.) would
be less likely to be identified as a new class, while distinct data from the original set would be quickly
identified as new.

Our novelty detector, when trained with numbers only, detects up to 55% of the unknown data in
classes which are further from what is already known. Accuracy while classifying without novelty
detection is around 61%, consistent with the number from test data from the original set, since almost
all failures come from the unknown class. Using OpenMax, accuracy raises from 60.08± 4.04% at
its lowest detecting the letter Z, and up to 80.035± 4.48% detecting the letter C. On average, the
mean accuracy using OpenMax is 71.64 ± 5.75%. On average, the detector can identify around
37.065± 15.77% of the total samples of new data presented in inference, using a rejection threshold of
ε = 0.95. Although in some cases the novelty detector has a relatively low accuracy in the detection of
new classes, only a small number of samples are required in order to be recognized as novel to begin
the process of expanding the model to learn this new class.

By measuring the Euclidean distance between each activation logit from a new class, and the
mean activation from each training class, we can infer how similarity can impact the misclassification
of a sample. In Figure 4, we compare the distances between the uppercase A character and each
number character from the dataset. This character typically gets misclassified with the number 4,
and its distance distribution intersects with a large part of the activation distances from the training
set. Still, a large chunk of the set is further than the maximum tail of class 4, and thus, those examples
have a higher probability of being rejected and reclassified as a new class.

In Table 2, we show the mean percentage of the total number of samples from each character detected
by the novelty detector. The uppercase O character is the most complex to accurately identify as a new
class, due to its similarity to the number 0. This trend is also noticeable with similar number-shaped
characters, such as I, H, S, and Z, which are similar to the numbers, 1, 8, 5, and 2, respectively.

Algorithms 2019, 12, 206 11 of 17

0.00

0.05

0.10

De
ns

ity

Class 0
Class A

Class 5
Class A

0.00

0.05

0.10

De
ns

ity

Class 1
Class A

Class 6
Class A

0.00

0.05

0.10

De
ns

ity

Class 2
Class A

Class 7
Class A

0.00

0.05

0.10

De
ns

ity

Class 3
Class A

Class 8
Class A

0 20 40 60 80
Distance from Mean Activation

0.00

0.05

0.10

De
ns

ity

Class 4
Class A

0 20 40 60 80
Distance from Mean Activation

Class 9
Class A

Figure 4. Histogram of activation distances between each training class and the new character class A.

Table 2. Percentage of new class identification for each non-number character images on EMNIST after
training with number images.

Char % Char %

A 49.91± 7.66% T 32.82± 9.12%
B 28.76± 8.88% U 44.44± 13.44%
C 61.49± 10.40% V 41.43± 11.63%
D 45.71± 27.46% W 47.37± 8.36%
E 45.42± 8.17% X 47.07± 11.92%
F 60.38± 7.66% Y 19.45± 5.03%
G 38.38± 7.44% Z 8.27± 3.54%
H 14.92± 7.78% a 46.16± 9.43%
I 14.11± 11.89% b 19.83± 7.69%
J 40.46± 6.87% d 51.22± 8.56%
K 45.56± 7.56% e 57.91± 6.29%
L 11.38± 6.33% f 60.82± 8.16%
M 60.21± 8.85% g 25.36± 4.39%
N 42.64± 8.00% h 43.84± 8.01%
O 35.84± 37.46% n 54.74± 9.65%
P 42.73± 7.54% q 22.27± 4.51%
Q 48.37± 8.46% r 55.91± 10.83%
R 36.09± 6.66% t 29.99± 8.64%
S 15.38± 8.06%

While this detection can be improved using lower thresholds, the detector starts to misclassify
previous classes more. This ε value achieves a balance between good novelty detection and accuracy
regarding previous information. This shows that whenever we are using the OpenMax algorithm as a
novelty detector, we can safely detect new data if it is sufficiently different from the learned set.

Algorithms 2019, 12, 206 12 of 17

4.3. Experiment 3: How Long Could the Method Last?

As a final experiment, we measured the number of incremental training cycles our network can
perform when learning a new set of data identified by the detector. We trained the model with ten
classes, representing numbers, and incrementally trained with a new random class containing samples
obtained from the detection stage of our model, and measured the accuracy loss in each training step
until the number of correctly identified new samples was less than 5% of the total from that class.

When combining both our network and novelty detector, we start to see a slow decline in accuracy
in each evaluation step, mostly due to an increase in noise in the network’s generated samples from
earlier tasks, this is an effect of using generated samples of already generated data. Figure 5 shows
that for at least three training iterations, our model can adequately retain previous information while
learning a new task, without any effects caused by generator noise. Afterwards, the network starts to
gradually lose information, lowering its accuracy at a rate of 7% per training step.

It 1 It 2 It 3 It 4 It 5 It 6 It 7 It 8 It 9 It 10 It 11 It 12 It 13 It 14
Training Step

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 %

Accuracy per training step
Mean Acc. %

Figure 5. Accuracy of incremental training in each training step with random character images.

This information loss can be explained by the way information is encoded in a limited space,
defined on ẑ, as shown in Figure 6.

When trained on the initial classes (Figure 6a), each character clusters within the distribution
space, allowing the generation of different characters as the encoding vector ẑ is defined within it.
As the number of new classes increases, information regarding shape, style, and class is clustered
within a reduced space, thus reducing the variability of the generated samples upon decoding.
This effect is shown in Figure 6b,c, where boundaries between clusters are muddled, thus reducing
differences between outputs from different classes. In addition to this, as previous information is
continuously retrained without the original content, this reduction in variability creates less-defined
outputs, impacting how the network can retain long-term information about old data.

Algorithms 2019, 12, 206 13 of 17

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

(a) a Initial Data

−80 −60 −40 −20 0 20 40 60
−80

−60

−40

−20

0

20

40

60

(b) b After 4 steps

−80 −60 −40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

(c) c After 8 steps

Figure 6. t-SNE visualization of distribution space ẑ with generated samples for the starting classes (a),
after 4 steps (b) and after 8 training steps (c). Each color represents a class.

Algorithms 2019, 12, 206 14 of 17

4.4. Case of Study with CIFAR10

To test the proposed SIGANN model to a different and more complex dataset, we have selected
the CIFAR10 [47]. The CIFAR-10 dataset (https://www.cs.toronto.edu/~kriz/cifar.html) consists of
60,000 tiny color images of size 32× 32 separated in 10 classes, with 6000 images per class. The color
RGB images were converted to a grayscale images (G = 0.3R + 0.59G + 0.11B). The 10 different classes
represent airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. The data set was
randomly split into three parts, with several classes of 4, 3, 3. Similar to experiment 1, the network was
trained using an initial set and then it was retrained in the following steps with the data of the new
segment and samples generated by the model.

Table 3 shows the performance results with this dataset. The accuracy of the base model using the
complete data set was 81.23% on CIFAR10 (Performance results of different Deep Learning techniques
for the CIFAR10 dataset can be found in https://benchmarks.ai/cifar-10). When a pseudorehearsal
approach was used, we obtained a gradual forgetfulness of an average 9% in decreasing accuracy.
On the other hand, when we introduce a small subset of 10% of the original data, the resulting decay
rate was approximately 7%.

Table 3. Accuracy evaluated in the test sets using CIFAR10 partition in three splits.

Training
Scheme

SIGANN with the
Complete Data Set

Pseudorehearsal
SIGANN

Rehearsal SIGANN
with 10% Real Data

Split 1 81.23% 83.76% 83.76%
Split 2 − 77.12% 79.48%
Split 3 − 68.82% 72.29%

Decay Rate − 9.34% 7.08%

Once again, the proposed framework favors the gradual forgetting of information avoiding
catastrophic interference. On the other hand, having representative data of the class contributes to the
lower rate of forgetting.

5. Discussion

Our model can recognize new classes when examining its activation output from the classifier, and
generate samples from previously learned information to improve itself and learn new classes, without
storing previous information for training. This reduces the impact of catastrophic interference when
trained on new information without original data, allowing for several training steps to learn new
information while holding onto old data. We showed that new classes could be inferred by measuring
the distance from the activation output to a mean activation from each learned class, and that by
adjusting by the rejection probability using a Weibull distribution, we can effectively select examples
from new information.

Despite being able to learn and retain information for a limited number of training iterations
without significant loss, when trained continuously using only a small number of generated samples,
a gradual forgetting effect is present. The decay rate presented while training with this effect is
significantly lower than expected, considering the risk of catastrophic interference caused by not using
original training samples from previous training iterations, and could be mitigated by using a greater
amount of data or by improving the novelty detector. This process can be compared to the impact upon
memory when learning, as previous knowledge is harder to recall after learning newer information,
due to interference while encoding both what is previously known and the new stimulus. With fewer
samples to re-order information alongside what is known, the model shows a similar effect to when
there is less time to reorganize information in the brain between learning epochs [48].

The difference between Rebuffi et al. [14] and Li’s et al. [16] works with respect to our proposal
lies in that our method does not consider a memory module. It can detect whenever a new class

https://www.cs.toronto.edu/~kriz/cifar.html
https://benchmarks.ai/cifar-10

Algorithms 2019, 12, 206 15 of 17

appears in the data set. It is important to note that our SIGANN proposal forgets at a higher rate than
iCaRL due mainly to the pseudorehearsal approach of our method where the SIGANN model does
not use any sample from the classes that were previously learned. However, when we use 10% of
new samples from the previous class we can have comparable results (Rehearsal approach). Thus, our
approach could be a step towards achieving a self-training neural network, able to perform life-long
learning of new information as required.

6. Conclusions

In this work, we proposed a neural network system which combined the capabilities of
Adversarial Autoencoders to generate and classify information, and a novelty-detection algorithm for
the identification of unknown data, in order to incrementally learn new information in an unsupervised
way and reduce the need for storage of previously learned data.

SIGANN achieves its purpose of learning new information incrementally through self-improvement,
thanks to its ability to identify new information and learn new emerging patterns from these,
without requiring storage of previous samples. This ability can be applied to incremental learning of
streaming data in a semi-supervised way, allowing training of new information without having to
store information and only when needed.

In future works, we expect to extend our model to more complex image classification datasets
such as ImageNet. Future work will improve the long-term retention of prior information to reduce
the effects of gradual forgetfulness and information loss when learning new classes; as this is one of
the most significant challenges for achieving life-long learning of an increasing number of data classes.
Also, giving the system a long-term memory module might improve on the storage of sample variance
within the distributional space. Achieving this might improve stability, and allow for the generation of
better samples with which to continually self-improve.

Author Contributions: Conceptualization, D.M., R.S. and C.S.; methodology, D.M., R.S., C.S., S.C. and R.T.;
software, D.M., R.S. and R.T.; validation, D.M., R.S., C.S., R.T. and S.C.; writing—original draft preparation, D.M.;
writing—review and editing, R.S., C.S., R.T., S.C.; supervision, R.S.

Funding: The authors acknowledge the support of CONICYT + PAI/CONCURSO NACIONAL INSERCIÓN
EN LA ACADEMIA, CONVOCATORIA 2014 + Folio (79140057), FONDEF ID16I10322, and REDI170367 from
CONICYT. The work of S. Chabert was funded by CONICYT-PIA-Anillo ACT1416.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Polikar, R.; Upda, L.; Upda, S.S.; Honavar, V. Learn++: An incremental learning algorithm for supervised
neural networks. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2001, 31, 497–508. [CrossRef]

2. Salas, R.; Moreno, S.; Allende, H.; Moraga, C. A robust and flexible model of hierarchical self-organizing
maps for non-stationary environments. Neurocomputing 2007, 70, 2744–2757. [CrossRef]

3. Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; Lillicrap, T. Meta-learning with memory-augmented
neural networks. In Proceedings of the International Conference on Machine Learning, New York, NY, USA,
19–24 June 2016; pp. 1842–1850.

4. Thrun, S. Is learning the n-th thing any easier than learning the first? In Proceedings of the 8th International
Conference on Neural Information Processing Systems, Denver, CO, USA, 27 November–2 December 1995;
pp. 640–646.

5. Torres, R.; Salas, R.; Allende, H.; Moraga, C. Robust Expectation Maximization Learning Algorithm for
Mixture of Experts. In Computational Methods in Neural Modeling; Mira, J., Álvarez, J.R., Eds.; Springer:
Berlin/Heidelberg, Germany, 2003; pp. 238–245.

6. McCloskey, M.; Cohen, N.J. Catastrophic Interference in Connectionist Networks: The Sequential Learning
Problem. In Psychology of Learning and Motivation; Bower, G.H., Ed.; Academic Press: Cambridge, MA, USA,
1989; Volume 24, pp. 109–165.

http://dx.doi.org/10.1109/5326.983933
http://dx.doi.org/10.1016/j.neucom.2006.04.011

Algorithms 2019, 12, 206 16 of 17

7. Grossberg, S. Studies of Mind and Brain: Neural Principles of Learning, Perception, Development, Cognition, and
Motor Control; Reidel Press: Dordrecht, The Netherlands, 1982.

8. Mermillod, M.; Bugaiska, A.; Bonin, P. The stability-plasticity dilemma: Investigating the continuum from
catastrophic forgetting to age-limited learning effects. Front. Psychol. 2013, 4. [CrossRef] [PubMed]

9. French, R.M. Semi-distributed Representations and Catastrophic Forgetting in Connectionist Networks.
Connect. Sci. 1992, 4, 365–377. [CrossRef]

10. Salas, R.; Saavedra, C.; Allende, H.; Moraga, C. Machine fusion to enhance the topology preservation of
vector quantization artificial neural networks. Pattern Recognit. Lett. 2011, 32, 962–972. [CrossRef]

11. Kemker, R.; McClure, M.; Abitino, A.; Hayes, T.L.; Kanan, C. Measuring catastrophic forgetting in neural
networks. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans,
LA, USA, 2–7 February 2018.

12. Goodfellow, I.J.; Mirza, M.; Xiao, D.; Courville, A.; Bengio, Y. An Empirical Investigation of Catastrophic
Forgetting in Gradient-Based Neural Networks. arXiv 2013, arXiv:1312.6211.

13. Ge, Z.; Demyanov, S.; Chen, Z.; Garnavi, R. Generative OpenMax for Multi-Class Open Set Classification.
arXiv 2017, arXiv:1707.07418.

14. Rebuffi, S.A.; Kolesnikov, A.; Lampert, C.H. iCaRL: Incremental Classifier and Representation Learning.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017; pp. 5533–5542.

15. Li, Y.; Li, Z.; Ding, L.; Yang, P.; Hu, Y.; Chen, W.; Gao, X. Supportnet: Solving catastrophic forgetting in class
incremental learning with support data. arXiv 2018, arXiv:1806.02942.

16. Li, Z.; Hoiem, D. Learning without Forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2935–2947.
[CrossRef]

17. Shin, H.; Lee, J.K.; Kim, J.; Kim, J. Continual learning with deep generative replay. In Proceedings of the
Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 2990–2999.

18. Cherti, M.; Kegl, B.; Kazakci, A. Out-of-Class Novelty Generation: An Experimental Foundation.
In Proceedings of the 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI),
Boston, MA, USA, 6–8 November 2017; pp. 1312–1319.

19. Leveau, V.; Joly, A. Adversarial Autoencoders for Novelty Detection. Ph.D. Thesis, Inria-Sophia Antipolis,
Valbonne, France, 2017.

20. Skvára, V.; Pevný, T.; Smídl, V. Are generative deep models for novelty detection truly better? In Proceedings
of the ACM SIGKDD Workshop on Outlier Detection De-constructed (KDD-ODD 2018), London, UK,
20 August 2018.

21. Mellado, D. A Biological Inspired Artificial Neural Network Model for Incremental Learning with Novelty
Detection. Master’s Thesis, Universidad de Valparaiso, Valparaiso, Chile, 2018.

22. Mellado, D.; Saavedra, C.; Chabert, S.; Torres, R.; Salas, R. Self-Improving Generative Artificial Neural
Network for Pseudo-Rehearsal Incremental Class Learning. Preprints 2019, 2019. [CrossRef]

23. Ratcliff, R. Connectionist models of recognition memory: Constraints imposed by learning and forgetting
functions. Psychol. Rev. 1990, 97, 285–308. [CrossRef] [PubMed]

24. Robins, A. Catastrophic forgetting, rehearsal and pseudorehearsal. Connect. Sci. 1995, 7, 123–146. [CrossRef]
25. Mellado, D.; Saavedra, C.; Chabert, S.; Salas, R., Pseudorehearsal Approach for Incremental Learning of Deep

Convolutional Neural Networks. In Proceedings of the Computational Neuroscience: First Latin American
Workshop, LAWCN 2017, Porto Alegre, Brazil, 22–24 November 2017; Springer: Cham, Switzerland, 2017;
pp. 118–126. [CrossRef]

26. Freeman, W.J. How and Why Brains Create Meaning From Sensory Information. Int. J. Bifurc. Chaos
2004, 14, 515–530. [CrossRef]

27. Robins, A.; McCallum, S. The consolidation of learning during sleep: Comparing the pseudorehearsal and
unlearning accounts. Neural Networks 1999, 12, 1191–1206. [CrossRef]

28. Ans, B.; Rousset, S. Avoiding catastrophic forgetting by coupling two reverberating neural networks.
Comptes Rendus de l’Académie des Sciences—Series III—Sciences de la Vie 1997, 320, 989–997. [CrossRef]

29. Atkinson, C.; McCane, B.; Szymanski, L.; Robins, A. Pseudo-Recursal: Solving the Catastrophic Forgetting
Problem in Deep Neural Networks. arXiv 2018, arXiv:1802.03875.

30. Besedin, A.; Blanchart, P.; Crucianu, M.; Ferecatu, M. Evolutive deep models for online learning on
data streams with no storage. In Proceedings of the Workshop on IoT Large Scale Learning from Data

http://dx.doi.org/10.3389/fpsyg.2013.00504
http://www.ncbi.nlm.nih.gov/pubmed/23935590
http://dx.doi.org/10.1080/09540099208946624
http://dx.doi.org/10.1016/j.patrec.2011.01.020
http://dx.doi.org/10.1109/TPAMI.2017.2773081
http://dx.doi.org/10.20944/preprints201907.0121.v1
http://dx.doi.org/10.1037/0033-295X.97.2.285
http://www.ncbi.nlm.nih.gov/pubmed/2186426
http://dx.doi.org/10.1080/09540099550039318
http://dx.doi.org/10.1007/978-3-319-71011-2_10
http://dx.doi.org/10.1142/S0218127404009405
http://dx.doi.org/10.1016/S0893-6080(99)00056-8
http://dx.doi.org/10.1016/S0764-4469(97)82472-9

Algorithms 2019, 12, 206 17 of 17

Streams Co-Located with the 2017 European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML-PKDD 2017), Skopje, Macedonia, 18–22 September 2017; p. 12.

31. Parisi, G.I.; Kemker, R.; Part, J.L.; Kanan, C.; Wermter, S. Continual lifelong learning with neural networks:
A review. Neural Netw. 2019, 113, 54–71. [CrossRef]

32. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
33. Doersch, C. Tutorial on variational autoencoders. arXiv 2016, arXiv:1606.05908.
34. Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D.J.; Wierstra, D. DRAW: A Recurrent Neural Network for

Image Generation. arXiv 2015, arXiv:1502.04623.
35. Kulkarni, T.D.; Whitney, W.F.; Kohli, P.; Tenenbaum, J. Deep convolutional inverse graphics network.

In Proceedings of the 28th International Conference on Neural Information Processing Systems—Volume 2,
Montreal, QC, Canada, 7–12 December 2015; pp. 2539–2547.

36. Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; Frey, B. Adversarial Autoencoders. arXiv 2015,
arXiv:1511.05644.

37. Creswell, A.; Bharath, A.A.; Sengupta, B. Conditional Autoencoders with Adversarial Information
Factorization. arXiv 2017, arXiv:1711.05175.

38. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial nets. In Proceedings of the 27th International Conference on Neural Information
Processing Systems—Volume 2, Montreal, Canada, 8–13 December 2014; pp. 2672–2680.

39. Markou, M.; Singh, S. Novelty detection: A review—Part 1: Statistical approaches. Signal Process.
2003, 83, 2481–2497. [CrossRef]

40. Pimentel, M.A.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A review of novelty detection. Signal Process.
2014, 99, 215–249. [CrossRef]

41. Richter, C.; Roy, N. Safe visual navigation via deep learning and novelty detection. In Proceedings of the
RSS 2017: Robotics: Science and Systems, Cambridge, MA, USA, 12–16 July 2017.

42. Bendale, A.; Boult, T.E. Towards open set deep networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1563–1572.

43. Kotz, S.; Nadarajah, S. Extreme Value Distributions: Theory and Applications; Imperial College Press:
London, UK, 2000.

44. Scheirer, W.J.; Rocha, A.; Michaels, R.; Boult, T.E. Meta-Recognition: The Theory and Practice of Recognition
Score Analysis. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 2011, 33, 1689–1695. [CrossRef] [PubMed]

45. Lai, C.D.; Murthy, D.; Xie, M. Weibull Distributions and Their Applications. In Springer Handbook of
Engineering Statistics; Springer: London, UK, 2006; pp. 63–78. [CrossRef]

46. Cohen, G.; Afshar, S.; Tapson, J.; van Schaik, A. EMNIST: An extension of MNIST to handwritten letters.
arXiv 2017, arXiv:1702.05373.

47. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images. Technical Report. 2009. Available
online: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf (accessed on 25 September 2019).

48. Oberauer, K. Interference between storage and processing in working memory: Feature overwriting, not
similarity-based competition. Mem. Cogn. 2009, 37, 346–357. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neunet.2019.01.012
http://dx.doi.org/10.1016/j.sigpro.2003.07.018
http://dx.doi.org/10.1016/j.sigpro.2013.12.026
http://dx.doi.org/10.1109/TPAMI.2011.54
http://www.ncbi.nlm.nih.gov/pubmed/21422483
http://dx.doi.org/10.1007/978-1-84628-288-1_3
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://dx.doi.org/10.3758/MC.37.3.346
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theoretical Framework
	Rehearsal and Pseudorehearsal Learning
	Variational Autoencoders for Image Generation
	Novelty Recognition

	Proposal
	Module 1: Classifier
	Module 2: Generator
	Module 3: Novelty Detector

	Experiments
	Experiment 1: Does the Method Gradually Forget?
	Experiment 2: Is the Method Able to Detect New Unknown Classes?
	Experiment 3: How Long Could the Method Last?
	Case of Study with CIFAR10

	Discussion
	Conclusions
	References

