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Abstract: Temporal networks are graphs in which edges have temporal labels, specifying their starting
times and their traversal times. Several notions of distances between two nodes in a temporal network
can be analyzed, by referring, for example, to the earliest arrival time or to the latest starting time of
a temporal path connecting the two nodes. In this paper, we mostly refer to the notion of temporal
reachability by using the earliest arrival time. In particular, we first show how the sketch approach, which
has already been used in the case of classical graphs, can be applied to the case of temporal networks in
order to approximately compute the sizes of the temporal cones of a temporal network. By making use of
this approach, we subsequently show how we can approximate the temporal neighborhood function
(that is, the number of pairs of nodes reachable from one another in a given time interval) of large
temporal networks in a few seconds. Finally, we apply our algorithm in order to analyze and compare
the behavior of 25 public transportation temporal networks. Our results can be easily adapted to the case
in which we want to refer to the notion of distance based on the latest starting time.

Keywords: temporal network; link stream; temporal path; earliest arrival time; temporal reachability;
neighborhood function; public transportation system

1. Introduction

Temporal networks are graphs in which nodes and edges can appear or disappear over time, due
not only to failures or malfunctioning of the entities participating to the system represented by the
temporal graph, but mostly to the “normal” behaviour of the system itself. A typical temporal network is
a person-to-person communication network within a company. In such a network, for example, nodes can
appear or disappear (depending on the recruitment policy of the company), and edges appear whenever
an employee of the company sends an e-mail message to another employee of the company. In this paper,
we will focus on temporal networks in which the set of nodes does not change over time (at least over
a specified interval of time). Moreover, we consider only the case in which edges are available at discrete
time instants, so that the dynamics of the network are specified only by the appearance times of the edges.

As observed in [1], temporal networks can model a great variety of systems in nature, society and
technology. Several different types of temporal networks have, indeed, been analyzed: person-to-person
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communication networks (such as e-mails or phone calls), one-to-many information spreading networks
(such as Twitter interactions), contact networks (such as cell phone proximity detections), biological
networks (such as protein interactions), distributed computing networks (such as autonomous system
communications), infrastructure networks (such as public transport timetables), and many others.
It is worth observing, however, that different names have been used for denoting temporal networks
(even though the basic notion was almost the same), such as, for example, dynamic networks [2],
time-varying graphs [3], evolving networks [4], and link streams [5].

In this paper, we are interested in studying reachability properties of temporal networks. As already
observed in [6], if we just remove all time information from the temporal graph (and collapse, if necessary,
multiple edges between any two vertices into a single edge), we clearly lose all the temporal information
of the graph. This loss can be critical to the understanding of the reachability relationships between the
nodes of the graph. For example, in the left part of Figure 1, a temporal network with five nodes and
five temporal edges is represented, while, in the right part of the figure, the “non-temporal” version
of the graph (in which all edge temporal labels have been removed) is shown. It is easy to verify that
the two simple paths from node 1 to node 2 in the non-temporal graph do not exist in the temporal
network (a temporal path is, intuitively, a path such that each edge in the path appears later than the edges
preceding it in the path). Indeed, the edge from node 3 to node 2 appears at time 1, hence it cannot be
used within a path starting from node 1, since all of this node’s edges appear after that time. Moreover,
the path of length 2 from node 1 to node 5 in the non-temporal graph does not exist in the temporal graph
since it is only possible to reach node 3 from node 1 in one step at time 5, while the edge from node 3 to
node 5 appears at time 4. In summary, removing temporal information may let us conclude that two nodes
(i.e., 1 and 2) are reachable, while they are not, or that the length of the shortest path between two nodes
(i.e., 1 and 5) is smaller than it really is.
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Figure 1. An example of temporal graph with five nodes and five temporal edges (left), and the
corresponding "non-temporal” graph in which edge temporal labels have been removed (right).

For this reason, we are interested in developing algorithmic techniques that allow us to efficiently
compute aggregate information about temporal paths and time-distances between pairs of nodes.
In particular, we focus on the temporal neighborhood function (in short, TNF) of a temporal network, which is
the natural extension of the neighborhood function already widely analyzed in the case of non-temporal
graphs [7,8]. More precisely, given a time interval I = [tα, tω ], the temporal neighborhood function returns
the value |N (I)|, where N (I) denotes the set of pairs of nodes (u, v) such that there exists a temporal path
from u to v, which starts from u not earlier than tα, arrives in v no later than tω, and it is such that each
edge appears later than the edges preceding it.

By assuming that a temporal network is represented by the sequence of its temporal edges, ordered
in non-decreasing order with respect to their appearance times, the temporal neighborhood function
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can be easily computed by making use of the following “scan-based” algorithm [9], which allows us to
compute the cardinality of the temporal cone of a node s, which is the set of nodes reachable from s in the
interval [tα, tω ].

1. Initialize t[s] = tα and t[v] = ∞ for all v 6= s.
2. For each (directed) edge e = (u, v, t):

(a) If t ≤ tω, t[u] < t, and t + 1 < t[v], then t[v] = t + 1.
(b) If t > tω, then stop.

3. Return the number of elements of t different from ∞.

If m is the number of temporal edges, it is easy to verify that the complexity of the above algorithm is
O(m). In order to compute the temporal neighborhood function, we have to execute the above procedure
starting from every node of the temporal network. We refer to this algorithm as ETNF (Exact TNF). Hence,
if n denotes the number of nodes, we can conclude that ETNF runs in time O(nm).

Unfortunately, this time complexity is not acceptable when dealing with real-world temporal
networks, where there are millions of nodes and billions of temporal edges. For this reason, in this paper,
we propose a new algorithm called ATNF for approximating the temporal neighborhood function of
a temporal network.

1.1. Our Results

In order to approximate the temporal neighborhood function, we first describe a simple dynamic
programming algorithm for computing the reverse temporal cone of a node s, which is the set of nodes
that can reach s in a specific interval [tα, tω ]. Note that, if we can compute the cardinalities of the reverse
temporal cones, then we can also compute the temporal neighborhood function. We then show how the
sketch approach, which has already been widely used in the case of non-temporal graphs [10–13], can be
applied to the case of temporal networks in order to approximately compute the cardinalities of the reverse
temporal cones of a temporal network. More specifically, the resulting approximation algorithm, called
ATNF (Approximated TNF), has a relative error bounded by ε with high probability, whenever the sketches
have size k = Θ

(
log n

ε2

)
. The time complexity of the algorithm is O(km).

We then experimentally evaluate the quality of the approximation performed by ATNF by comparing
the approximate value of the temporal neighborhood function with the exact one (computed by making
use of the scan-based exact algorithm described in the previous section) on a data-set containing several
medium-size temporal networks. As a matter of fact (and as expected), the obtained approximation is
much better than the one guaranteed in theory, even when the size of the sketches is significantly smaller
than the required size. By making use of the approximation algorithm, we hence show how we can
accurately approximate, in a few minutes, the temporal neighborhood function (and, hence, the distance
distribution) of two large temporal networks: the IMDB collaboration network (which is undirected) and
the Twitter re-tweets network (which is directed). The first network contains more than half a million
nodes and more than three million edges, while the second network contains more than two million nodes
and more than sixteen million edges.

Finally, we apply ATNF in order to analyze and compare the behavior of twenty-five public
transportation temporal networks [14]. In particular, we analyze the reachability properties of these
networks, by computing the values of the temporal neighborhood function in different intervals during
a day. As a matter of fact, we observe that there are cities which perform significantly better than others
with respect to these reachability properties, and that this result cannot always be deduced by simply
looking at the density of the temporal network. Moreover, we show that the quality of the approximation
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is preserved even with small values of the sketch sizes: this allowed us to perform the entire experimental
evaluation for all the cities in less than one hour (while the exact algorithm would have roughly required
almost four days).

1.2. Related Work

Algorithms for distance computation in temporal networks have been proposed in [6,15]. The method
in [16] uses a similar algorithm to [6] for computing spanning trees. The method in [9] proposes to index
data to answer reachability and path queries in temporal networks. The problem of finding different types
of path (minimum traveling time, earliest arrival time, and minimum number of hops) in the temporal
network has also been investigated in a distributed context [17].

A problem related to the one analyzed in this paper is computing distances in road networks,
where edges have a traversal time but are supposed to exist at all times. In this case, the focus is mainly
on pre-computing some information in order to be able to answer fastest path queries very quickly
(see, for example, [18,19]). The analysis in [20] focuses on the impact of the passenger demand on the
performance of path finding algorithms.

Concerning public transportation networks, many works have focused on the efficient design of
such networks, by considering, e.g., where to place hubs, see, for instance [21,22], or on their robustness or
resilience, by studying how perturbations on specific nodes or links, or changes in demand, affect the whole
network; see, for instance, [23,24]. Other works have used connectivity notions to evaluate the importance
of nodes in transportation networks; see, for instance, ref. [25] and references within.

1.3. Structure of the Paper

In Section 2, we give all basic definitions and notations concerning temporal networks, paths,
cones and neighborhood functions. In Section 3, we describe the dynamic programming algorithm
for computing reverse temporal cones, and we show how the bottom-k sketch approach can be used in
order to approximate the cardinalities of these cones (and, hence, the temporal neighborhood function),
getting our approximation algorithm ATNF. In Section 4, we experimentally evaluate the quality of the
approximation of ATNF and its running time, comparing our results with the ones of ETNF. Moreover, we
use the algorithm itself to compute the temporal neighborhood functions of two large temporal networks.
Finally, in Section 5, we apply ATNF for comparing the reachability properties of twenty-five public
transportation networks.

2. Definitions and Notations

The following definitions are mostly inspired by [3,5,9]. A temporal graph is a pair G = (V, E), where V
is the set of nodes and E is the set of temporal edges. A temporal edge e ∈ E is a triple (u, v, t), where u, v ∈ V
are the source and destination nodes of the edge, respectively, and t ∈ N is its appearing time. When the
temporal edges are bidirectional, then (u, v, t) can be also written as (v, u, t). The time horizon T (G) of
a temporal graph G is the union of all the appearing times of its temporal edges. For instance, in the left
part of Figure 2, a temporal graph with five nodes and 12 temporal edges is shown: its time horizon is
{1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12}. A different way of representing a temporal graph is the link stream diagram
shown in the right part of Figure 2, where the labels on the left of the diagram represent the nodes of
the graph while the labels above the diagram represent the different time instants. In this paper, we will
indeed assume that the edges are given to the algorithms one after the other (similarly to the streaming
model) in non-decreasing order with respect to the appearing time: this corresponds to reading the edges
in the link stream diagram from left to right.
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Figure 2. An example of temporal graph with five nodes and 12 temporal edges (labels on edges represent
appearing time), and the corresponding link stream representation (labels on the left represent nodes, labels
above represent time instants).

2.1. Temporal Paths

A temporal path P in a temporal graph G = (V, E) from a node u ∈ V to a node v ∈ V is
a sequence of temporal edges e1 = (u1, v1, t1), e2 = (u2, v2, t2), . . . , ek = (uk, vk, tk) such that u = u1,
v = vk, and, for each i with 1 < i ≤ k, ui = vi−1 and ti ≥ ti−1 + 1. The length of a temporal path is
the number of temporal edges it contains. For example, referring to the temporal graph of Figure 2,
(1, 4, 1), (4, 2, 5), (2, 5, 11), (5, 3, 12) is a temporal path of length 4. On the contrary, (1, 4, 1), (4, 2, 5), (2, 3, 2)
is not a temporal path, since the appearing time of the second edge is larger than the appearing time of the
third edge. The starting time (respectively, ending time) of a temporal path P, denoted by σ(P) (respectively,
η(P)), is equal to the appearing time of the first (respectively, last) edge in the path. For instance,
if P = (1, 4, 1), (4, 2, 5), (2, 5, 11), (5, 3, 12), then σ(P) = 1 and η(P) = 12. Given a time interval I = [tα, tω ]

and two nodes u and v, we will denote by P(u, v, I) the set of all temporal paths P from u to v such that
tα ≤ σ(P) ≤ η(P) ≤ tω. Among all temporal paths between two nodes in a given time interval, in this
paper, we will distinguish the ones that allow us to arrive as early as possible.

Definition 1. Given a temporal graph G = (V, E), two nodes u and v in V, and a time interval I = [tα, tω ], a path
P ∈ P(u, v, I) is said to be an earliest arrival path if η(P) = min{η(P′) : P′ ∈ P(u, v, I)}.

For example, the left part of Figure 3 shows the earliest arrival path from node 1 to node 3 in the time
interval [1, 12] in the temporal graph of Figure 2: this path consists of the temporal edges (1, 4, 1), (4, 5, 3),
and (5, 3, 4), its starting time is 1, and its ending time is 4. The right part of the figure, instead, shows an
earliest arrival path from node 1 to node 3 in the time interval [2, 12]: it consists of the temporal edges
(1, 4, 6) and (4, 3, 9), its starting time is 6, and its ending time is 9 (note that another earliest arrival path
from node 1 to node 3 in the same interval is the one consisting of the temporal edges (1, 5, 7), (5, 4, 8),
and (4, 3, 9)).
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Figure 3. The earliest arrival path from node 1 to node 3 in the temporal graph of Figure 2 in the time
interval [1, 12] (left) and in the time interval [2, 12] (right).

2.2. Temporal Reachability Cones and Neighborhood Functions

Given a temporal graph G = (V, E), a node u ∈ V, and a time interval I = [tα, tω ], in this paper,
we are interested in efficiently computing the number of pairs of nodes (u, v) such that v can be reached
from u in the interval I. To this aim, we give the following definition.

Definition 2. Given a temporal graph G = (V, E), a node u, and a time interval I = [tα, tω ], the temporal
reachability cone of u in the interval I is defined as C(u, I) = {u} ∪ {v ∈ V : P(u, v, I) 6= ∅}.

For example, by referring to the temporal graph of Figure 2, the left part of Figure 4 shows the
temporal reachability cone of node 1 in the interval [1, 5]: in this case, all nodes can be reached by node 1.
The right part of figure, instead, shows the temporal reachability cone of node 1 in the interval [9, 12]: in
this case, all nodes can be reached by node 1 apart from node 4. It is also easy to verify that the temporal
reachability cone of node 1 in the interval [2, 5] contains only node 1, since there are no temporal edges
leaving it in this time interval.
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Figure 4. Two temporal reachability cones of node 1: the first one (left) is in the interval [1, 5] and includes
all nodes, while the second one (right) is in the interval [9, 12] and includes all nodes but node 4.

Definition 3. Given a temporal graph G = (V, E) and a time interval I = [tα, tω ], the temporal neighborhood
function in the interval I is defined as |N (I)|, where N (I) = {(u, v) ∈ V ×V : v ∈ C(u, I)}.

For example, by referring to the temporal graph of Figure 2 and by choosing I = [1, 5], N (I)
contains the pairs (1, 1), (1, 2), (1, 3), (1, 4), and (1, 5), since all nodes belong to C(1, I). N (I) also
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contains the pairs (2, 2), (2, 3), (2, 4), (2, 5) (since C(2, I) = {2, 3, 4, 5}), (3, 2), (3, 3), (3, 4), (3, 5) (since
C(3, I) = {2, 3, 4, 5}), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5) (since C(4, I) = {1, 2, 3, 4, 5}), (5, 2), (5, 3), (5, 4),
and (5, 5) (since C(5, I) = {2, 3, 4, 5}). Therefore, the temporal neighborhood function in I is equal to 22.

3. Computing Temporal Neighborhood Functions through Reverse Temporal Cones

As we already said, in this paper, we consider the left-to-right order for reading the stream of
temporal edges, which corresponds to reading the edges in non-decreasing order with respect to their
appearing times.

Definition 4. Given a temporal graph G = (V, E) and a time instant t ∈ T (G), the predecessor pred(t) of t in
G is the maximum time instant t′ ∈ T (G) such that t′ < t (if t′ does not exist, then we set pred(t) = ⊥).

For example, by referring to the temporal graph of Figure 2, pred(1) = ⊥, pred(9) = 8,
and pred(11) = 9.

Observe that, if I = [tα, tω ] and pred(tω) 6= ⊥, then N (I)−N ([tα, pred(tω)]) contains exactly all
pairs of nodes (u, v) such that any earliest arrival path P from u to v satisfies η(P) = tω.

In order to compute the temporal neighborhood function of a temporal graph G in a given time
interval [tα, tω ], we first introduce the following definition.

Definition 5. Given a temporal graph G = (V, E), a node u, and a time interval I = [tα, tω ], the reverse temporal
cone of u in the interval I is defined asR(u, I) = {v ∈ V : P(v, u, I) 6= ∅}.

In other words, the reverse temporal cone of u in the interval I contains all nodes v that can reach u
in I (hence, if v ∈ R(u, I), then u ∈ C(v, I)). The advantage of referring to reverse temporal cones is that
these cones can be easily computed by using the following dynamic programming algorithm (observe
that, for any t ∈ T (G), C(u, [t, t]) is the neighborhood of u at time t, that is, the set of nodes v such that
(u, v, t) ∈ E).

Base case R(u, [tα, tα]) = {u} ∪ {v ∈ V : u ∈ C(v, [tα, tα])}.
Recursive step Let t ∈ T (G) with t > tα and suppose we have computed R(u, [tα, t′]) for every t′ < t

with t′ ∈ T (G). Then,R(u, [tα, t]) = R(u, [tα, pred(t)]) ∪⋃v:u∈C(v,[t,t])R(v, [tα, pred(t)]).

The base case simply states that, if there is an edge (v, u, tα), then v belongs to the reverse temporal
cone of u in the interval [tα, tα]. The recursive step, instead, says that, if there is an edge (v, u, t), then all
nodes that could reach v before t can now also reach u at time t. For example, by referring to the temporal
graph of Figure 2 (in which all edges are bidirectional), Table 1 shows the evolution of the reverse temporal
conesR(u, [1, 6]) according to the above algorithm (until all nodes are reachable from all other nodes).

Table 1. Evolution of the reverse temporal cones for the temporal graph of Figure 2 (in which all edges
are bidirectional).

(u, v, t) R(1, [1, 6]) R(2, [1, 6]) R(3, [1, 6]) R(4, [1, 6]) R(5, [1, 6])

(1, 4, 1) {1, 4} {2} {3} {1, 4} {5}
(2, 3, 2) {1, 4} {2, 3} {2, 3} {1, 4} {5}
(4, 5, 3) {1, 4} {2, 3} {2, 3} {1, 4, 5} {1, 4, 5}
(3, 5, 4) {1, 4} {2, 3} {1, 2, 3, 4, 5} {1, 4, 5} {1, 2, 3, 4, 5}
(2, 4, 5) {1, 4} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5}
(1, 4, 6) {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5}
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Let us assume that the set of temporal edges of a temporal graph G = (V, E) is ordered
in non-decreasing order with respect to the appearing times, and that edges are not bidirectional.
Let
−→
E = (e−→

1
, e−→2 , . . . , e−→m ) be the resulting ordered set of temporal edges, so that the appearing time

of e−→
i

is not greater than the appearing time of e−→
i+1

, for any i with 1 ≤ i < m. We can then implement the

above dynamic programming algorithm by scanning the edges in
−→
E one after the other. For each edge

e−→
i
= (v, u, t), if t = tα, then we add v toR(u, [tα, tα]). Otherwise (that is, t > tα), we setR(u, [tα, t]) equal

to the union ofR(u, [tα, t]) andR(v, [tα, pred(t)]), after having initializedR(u, [tα, t]) toR(u, [tα, pred(t)])
the first time an edge appearing at time t is scanned. Since the size of the intermediate reverse temporal
cones can be linear in the number n of nodes in the graph, the time complexity of this algorithm is O(nm).
Moreover, if we want to maintain all the intermediate reverse temporal cones, then the space complexity
of the algorithm is O(n2m). However, if we just want to compute the final reverse temporal cones, then
the space complexity can be reduced to O(n2). Observe that, if the edges are bidirectional, then we can
easily modify this algorithm by simply considering twice each edge (v, u, t): once as (v, u, t), and the other
as (u, v, t).

Once we have computed the reverse temporal cones in a specific interval I, we can easily compute
N (I). Indeed, we have that, for each pair of nodes u and v, (u, v) belongs toN (I) if and only if u ∈ R(v, I).
This implies that

|N (I)| = ∑
u∈V
|R(u, I)| .

Hence, the temporal neighborhood function can be computed by using the sizes of the reverse
temporal cones.

Remark 1. Note that the above dynamic programming approach does not seem to be applicable to the computation
of temporal cones, as defined in the previous section. More precisely, it is not clear how to rewrite the recursive step
of the algorithm, when referring to temporal cones. Indeed, in general, it holds that

C(u, [tα, t]) 6= C(u, [tα, pred(t)]) ∪
⋃

v∈C(u,[t,t])

C(v, [tα, pred(t)]),

since, for each vertex v, C(v, [tα, pred(t)]) is the set of all the vertices reachable from v through temporal paths
which use edge appearing times smaller than t. Hence, C(u, [tα, t]) does not necessarily include the nodes in
C(v, [tα, pred(t)]), as the corresponding paths might turn out to be not valid from a temporal point of view. Indeed,
the edge from u to v appears at time t, but the edges on the paths from v to other vertices may have appearing times
smaller than t. Let us consider, for example, the temporal graph with the three nodes 1, 2, and 3, and the two temporal
edges (1, 2, 1) and (2, 3, 2). Clearly, C(2, [1, 1]) = {1, 2} and C(3, [1, 1]) = {3}. Hence, when the edge (2, 3, 2) is
analyzed, we have that

C(3, [1, 2]) = {2, 3} 6= {1, 2, 3} = C(3, [1, 1]) ∪ C(2, [1, 1]).

3.1. Approximating the Size of the Reverse Temporal Cones

As we have already observed, the time complexity of the dynamic programming algorithm for
computing the reverse temporal cones is O(nm), where n = |V| and m = |E|. This complexity can
turn out to be prohibitive when dealing with temporal graphs with thousands of nodes and millions
of temporal edges. For this reason, in this section, we propose ATNF, an algorithm for computing an
approximation of the size of the reverse temporal cones, which is based on the application of the sketch
techniques: these techniques allow us to represent the reverse temporal cone for each node u in a compressed
approximated form of (almost) constant size k (typically O(log(n))). By using cone sketches in place of
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real cones, we will obtain a dynamic programming approximation algorithm whose time complexity is
O(km) time.

3.1.1. Sketch Operations

Given a set A, a sketch S(A) is a compressed form of representation of A of size O(k), with k ∈ N,
providing the following operations.

INIT (S(A)) How a sketch S(A) for A is initialized.
UPDATE (S(A), u) How a sketch S(A) for A is modified when an element u is added to A.
UNION (S(A), S(B)) Given two sketches for A and B, provide a sketch for A ∪ B.
SIZE (S(A)) Estimate the number of distinct elements of A.

The following two requirements are needed for sketches: (i) given two sketches S(A) and S(B) for
any two sets A and B, S(A ∪ B) can be computed just by looking at S(A) and S(B), and (ii) the order in
which the elements are added and adding any element twice does not affect the sketch. We assume that
|A| > k > 1.

3.1.2. Bottom-k Sketches

One of the most popular sketch techniques is the bottom-k technique, which works as follows.
Given a mapping r : U → {1/n, 2/n, . . . , n/n} and a subset A of U, we denote as Hk(A) the first k
elements of A according to r (or A itself if |A| < k). A bottom-k sketch for A is Hk(A).

INIT (S(A)): S(A) = ∅.
UPDATE (S(A), u): return Hk(S(A) ∪ {u}).
UNION (S(A), S(B)): return Hk(S(A) ∪ S(B)).
SIZE (S(A)): If |S(A)| < k return |S(A)|. Otherwise, return k−1

maxu∈S(A) r(u) .

As an example, let U be the set of the 26 letters of the alphabet and let r : U → {1/26, 2/26, . . . , 26/26}
be the following function:

a b c d e f g h i j k l m n o p q r s t u v w x y z

r 10
26

22
26

2
26

24
26

25
26

12
26

6
26

7
26

11
26

17
26

13
26

15
26

14
26

19
26

5
26

9
26

21
26

8
26

18
26

26
26

16
26

1
26

20
26

4
26

23
26

3
26

Let A = {a, l, i, c, e}, B = {w, o, n, d, e, r, l, a}, and k = 3. Then, S(A) is {a, i, c} and S(B) is {o, r, a},
as these letters are the three elements of A and B, respectively, having minimum r-values. Hence,

S(A ∪ B) = UNION(S(A), S(B)) = H3(S(A) ∪ S(B)) = H3({a, i, c, o, r}) = {c, o, r}.

The size of A ∪ B = {a, l, i, c, e, w, o, n, d, r}, which is equal to 10, can then be estimated as follows:

SIZE(S(A ∪ B)) = SIZE({c, o, r}) = 2
maxu∈{c,o,r} r(u)

=
2

8/26
=

52
8

= 6.5.

It can be shown that the mean relative error of the sketch sizes with respect to the real sizes is bounded
by 0.79/

√
(k− 2) and that, if we choose k ∈ Θ

(
log |U|

ε2

)
, the mean relative error is bounded by ε with high

probability [10,11].
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3.1.3. Applying Sketches to Reverse Temporal Cones

In the case of reverse temporal cones, the sets whose sizes we want to approximate are the reverse
temporal cones at different time instants within a specific time interval I. Indeed, for each edge scanned by
the dynamic programming algorithm described in the previous section, either we use the UPDATE operation
in order to add a node to the sketch of a reverse temporal cone, or we use the UNION operation in order to
compute the union of the sketches of two reverse temporal cones. Whenever all edges whose appearing
time is in I have been read, we can use the SIZE operation in order to estimate, for each node u, the size of
R(u, I). Let r(u, I) denote the obtained estimate of |R(u, I)|. Hence, ATNF approximates |N (I)| by using
the estimates r(u, I) as follows:

|N (I)| = ∑
u∈V

r(u, I).

By linearity of expectation, the approximation performed by ATNF is unbiased and has relative error
bounded by ε with high probability, whenever k ∈ Θ

(
log n

ε2

)
.

4. Experimental Results

This section is devoted to analyze the performance of ATNF on approximating N (I). We evaluate
both the running time of ATNF and the quality of the approximation achieved, comparing our results with
the ones provided by ETNF. Summarizing, the two algorithms we are going to compare are the following:

ATNF Our method for approximating the earliest arrival reverse temporal cones and hence N (I),
as described in Section 3.1. As the quality of the approximation of ATNF and its running time depend
on the value of k, we analyze the behaviour of ATNF varying k in the set {2, 4, 8, 16, 32, 64, 128}.

ETNF The method in [9] described in Section 1 to compute exactly the earliest arrival temporal cones and
hence N (I) for any I.

Implementation and Computing Platform

Our computing platform is a machine with Intel(R) Xeon(R) CPU E5-2620 v3 at 2.40 GHz, 24 virtual
cores, 128 GB RAM, and running Ubuntu Linux version 4.4.0-22-generic (machine available at Dipartimento
di Informatica, Università di Pisa, Italy). The code has been written in Java, using Java 1.8, for both of
the competitors.

Dataset

In order to perform our experiments, we used the following temporal graphs (other temporal networks
will be considered in Section 5, in which we will perform a case study based on the directed public transport
networks of 25 cities):

• COLLEGE: Private messages sent on an online social network at the University of California, Irvine.
An edge (u, v, t) means that user u sent a private message to user v at time t [26,27].

• ENRON: Emails between Enron employees 1999 and 2003. An edge (u, v, t) means that user u sent
an email to user v at time t.

• FACEBOOK-WALLPOST: A small subset of posts to another user’s wall on Facebook. The nodes of the
network are Facebook users, and each directed temporal edge represents one post, linking the users
writing a post to the user whose wall the post is written on [28–30].

• IMDB: Every node corresponds to an actor and two actors are connected by their collaboration in
a movie, where the appearing time of an edge is the year of the movie. We will consider both the
whole temporal collaboration graph and the graphs induced by the following genres: adventure,
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horror, thriller, crime, romance, action, comedy, drama (for each genre, we consider only the edges
corresponding to movies classified in that genre) [31].

• ROLLERNET: Opportunistic sighting of Bluetooth devices by groups of rollerbladers carrying Intel
iMotes during a roller tour. The 62 iMotes performed neighborhood scans every 15 s [32,33].

• TOPOLOGY: The nodes are autonomous systems and the edges are connections between autonomous
systems. The appearing time of an edge is the time-point of the corresponding connection [29,30,34].

• TWITTER: Tweets about the migrant crisis of 2015 [35,36]. A directed edge (u, v, t) means that user u
retweeted a tweet of user v at time t.

• WIKI-ELECTION: The network of users from the English Wikipedia that voted for and against each
other in admin elections. Nodes represent individual users, and edges represent votes. Each edge is
annotated with the date of the vote [29,30,37].

The dimensions of the above temporal graphs are summarized in Table 2, where we report for each
graph its number of nodes and its number of edges, and whether the graph is directed or not. For a given
network G, let tα and tω denote the minimum and maximum appearing time, respectively, of the temporal
edges included in G. We have then considered different intervals I = [tα, tβ], for increasing values of tβ

with tβ ∈ T (G), where T (G) is the time horizon of G (that is, the union of all the appearing times of its
temporal edges). Both ETNF and ATNF compute (or approximate) the number of pairs of nodes u and v
such that, starting from u not before time tα, we can reach v within time tβ. As a result, we get an exact
cumulative frequency distribution, running ETNF, and its approximation, running ATNF. Section 4.1 is
devoted to measure the quality of this approximation, while Section 4.2 shows the running times.

Table 2. Number of nodes and edges of each (undirected or directed) graph.

Undirected Graphs

Name Nodes Edges
TOPOLOGY 34,761 154,842
ROLLERNET 63 403,834

IMDB-
ADVENTURE 47,763 157,492
HORROR 65,338 167,026
THRILLER 69,753 188,862
CRIME 62,050 216,741
ROMANCE 79,227 305,390
ACTION 72,260 338,815
COMEDY 162,303 666,568
DRAMA 279,059 1,342,886
ALL 527,535 3,152,994

Directed Graphs
Name Nodes Edges
ENRON 150 24,705
COLLEGE 1900 59,834
WIKI-ELECTION 7118 103,675
FACEBOOK-WALLPOST 46,952 876,993
TWITTER 3,511,241 16,438,790

4.1. Quality of the Approximation

In order to evaluate the quality of the approximation, for each I = [tα, tβ], we have compared
the approximation |N (I)| provided by ATNF with respect to the exact value |N (I)| provided by ETNF,
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using the RELATIVE ERROR. We have hence considered the MEAN RELATIVE ERROR (in short, MRE) among
all the intervals I = [tα, tβ] for all values of tβ in T (G). More formally, the MRE is defined as follows:

MRE =
1

|T (G)| ∑
tβ∈T (G)

||N ([tα, tβ])| − |N ([tα, tβ])||
|N ([tα, tβ])|

.

For each k ∈ {2, 4, 8, 16, 32, 64, 128}, we have repeated the experiments ten times, and we have
reported our results in Table 3. In this table, for each k, we have reported the average MRE, denoted as µ,
and the standard deviation, denoted as σ, over the ten experiments (note that both µ and σ are 0 for the
ROLLERNET network, whenever k ≥ 64, since the graph has less than 64 nodes and hence ATNF turns out
to always compute the exact values).

Table 3. Comparing the quality of the approximation of ATNF (our method for approximating the earliest
arrival reverse temporal cones) with respect to ETNF (the exact method in [9]) for approximating |N (I)|.
For each k, the average µ and the standard deviation σ of the MRE (Mean Relative Error) over ten experiments
are reported.

Graph
MRE of ATNF

k = 2 k = 4 k = 8 k = 16 k = 32 k = 64 k = 128

µ σ µ σ µ σ µ σ µ σ µ σ µ σ

TOPOLOGY 0.288 0.185 0.145 0.124 0.075 0.076 0.096 0.075 0.066 0.041 0.050 0.044 0.034 0.028
ROLLERNET 0.444 0.647 0.192 0.235 0.110 0.112 0.055 0.049 0.017 0.019 0.000 0.000 0.000 0.000

ENRON 0.578 0.481 0.454 0.505 0.161 0.118 0.138 0.136 0.075 0.070 0.069 0.063 0.046 0.041
COLLEGE 0.531 0.406 0.450 0.537 0.199 0.138 0.118 0.098 0.108 0.076 0.043 0.033 0.028 0.025

WIKI-ELECTION 0.318 0.197 0.387 0.347 0.152 0.103 0.115 0.096 0.088 0.066 0.072 0.047 0.038 0.028
FACEBOOK-WALLPOST 0.430 0.348 0.370 0.251 0.213 0.156 0.168 0.110 0.064 0.059 0.067 0.045 0.058 0.041

IMDB-ADVENTURE 0.350 0.236 0.280 0.206 0.182 0.130 0.135 0.115 0.087 0.067 0.044 0.039 0.047 0.041
IMDB-HORROR 0.419 0.371 0.220 0.155 0.191 0.194 0.134 0.104 0.079 0.081 0.056 0.066 0.029 0.027

IMDB-THRILLER 0.472 0.703 0.239 0.377 0.144 0.182 0.094 0.105 0.064 0.070 0.044 0.046 0.020 0.027
IMDB-CRIME 0.461 0.402 0.256 0.230 0.247 0.267 0.121 0.101 0.108 0.104 0.070 0.056 0.035 0.027

IMDB-ROMANCE 0.546 0.496 0.395 0.387 0.131 0.103 0.122 0.093 0.081 0.079 0.089 0.077 0.043 0.034
IMDB-ACTION 0.420 0.345 0.275 0.197 0.184 0.143 0.136 0.097 0.085 0.063 0.064 0.054 0.043 0.034
IMDB-COMEDY 0.585 0.680 0.285 0.195 0.216 0.182 0.135 0.095 0.113 0.080 0.073 0.050 0.052 0.039
IMDB-DRAMA 0.776 1.335 0.250 0.175 0.185 0.136 0.144 0.134 0.099 0.079 0.072 0.057 0.042 0.030

In general, both µ and σ consistently decrease while increasing k. For k = 2, 4, and 8, the average MRE

appears to be quite large: for k = 2, the MRE can be up to 50%, and, for k = 8, the MRE can be close to 20%.
By increasing k to 16, we get an average MRE consistently smaller than 17%, which further reduces with
k = 32 and k = 64, where, in both of the cases, the average MRE is very often below 8%. Finally, for k = 128,
the average MRE appears to be always smaller than 5.3%. For the sake of completeness, looking at the
values of σ, we can observe how the variability of the experiments is more controlled when k increases.

Note that, in the table, the IMDB-ALL and TWITTER networks are missing since, according to our
estimate and as shown in the next section, ETNF would have taken more than one week for the first and
more than 190 days for the second to complete. Hence, for these two graphs, no quality comparison
was possible.

4.2. Running Time and Time Comparison with Respect to ETNF

Table 4 reports the average running time (in milliseconds) of ATNF and of ETNF, respectively, to get
the approximate and the exact value of |N (I)| for each I = [tα, tβ]. Increasing the value of k, the running
time of ATNF increases consistently (as also the quality of the approximation). In the case of bigger graphs,
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the running time of ATNF is orders of magnitude smaller with respect to the one of ETNF (rightmost column).
We have highlighted this improvement in Table 5, where we have shown the ratio between the running
time of ATNF and the one of ETNF.

Concerning the smaller graphs, like ROLLERNET and ENRON, which have respectively 63 and
150 nodes, we have observed that ATNF turns to be exact if k is set to a value greater than this number
of nodes. In the case of ROLLERNET, it is interesting to note that the dynamic programming algorithm
(which, hence, is exact for k = 64 or 128) is strictly faster than the BFS approach implemented by ETNF.
On the other hand, as in the case of ENRON, the running time of ATNF, although not exact, can be sometimes
worse than the one of ETNF whenever the graph has few nodes.

Table 4. Running times (milliseconds) of ATNF for different values of k compared with the running time of
ETNF. The numbers marked with † are estimated due to the computation limits of ETNF.

Graph Running Time of ATNF Running Time of ETNF
k = 2 k = 4 k = 8 k = 16 k = 32 k = 64 k = 128

TOPOLOGY 2419.4 2428.7 2547.8 2937.4 4700.3 9892.4 31,295.7 1,715,090
ROLLERNET 498.9 740.8 1066.5 1759.2 4079.3 1040.3 956.2 7636

ENRON 70.2 34.2 75.1 131.4 262.9 822.9 1201.5 1172
COLLEGE 93.5 120.9 170.7 312.5 992.9 3010.1 9468.7 32,394

WIKI-ELECTION 142.1 178.3 329.9 611.8 1478 4763 16,811.1 202,519
FACEBOOK-WALLPOST 1542.7 2376.9 3256.9 6188.5 17,152.6 56,847.8 172,628.4 12,469,653

IMDB-ADVENTURE 232.9 307.2 348.4 472.2 967.8 2428.8 6925.5 2,125,739
IMDB-HORROR 393.6 424.7 417.4 468.1 730.5 1352.1 3239.2 3,039,487

IMDB-THRILLER 460.5 473.4 504.9 586.5 1065.6 2517.1 6549.6 3821,616
IMDB-CRIME 383.1 402.6 477.0 628.6 1315.3 3230.9 9455.8 3,745,721

IMDB-ROMANCE 704.2 758.8 873.6 1196.2 2160.6 5773.4 16,980.6 7,046,556
IMDB-ACTION 865.7 927.5 1014.8 1243.6 2645.3 6060.7 18,109.9 7,079,857
IMDB-COMEDY 2825.3 3033.0 3057.8 4075.4 7131.3 15,709.5 4,2579.4 31,806,022
IMDB-DRAMA 9619.7 9923.5 11,022.8 13,050.7 19,975.2 38,993.5 101,945 113,236,400

IMDB-ALL 39,671.1 40,273.2 41,582.4 44,120.5 55,290.4 91,824.0 212,132.1 †622,185,999
TWITTER 31,892.7 40,758.1 61,724.0 135,468.9 424,497.6 1,325,115.7 4,222,861.0 †25,771,840,132

Table 5. Ratio between the running time of ATNF and the one of ETNF for different values of k (lower is better).
The values for the graphs marked with † are estimated due to the computational limits of ETNF.

Graph Running Time of ATNF over Running Time of ETNF

k = 2 k = 4 k = 8 k = 16 k = 32 k = 64 k = 128

TOPOLOGY 0.00141 0.00142 0.00149 0.00171 0.00274 0.00577 0.01825
ROLLERNET 0.06534 0.09701 0.13967 0.23038 0.53422 0.13624 0.12522

ENRON 0.05990 0.02918 0.06408 0.11212 0.22432 0.70213 1.02517
COLLEGE 0.00289 0.00373 0.00527 0.00965 0.03065 0.09292 0.29230

WIKI-ELECTION 0.00070 0.00088 0.00163 0.00302 0.00730 0.02352 0.08301
FACEBOOK-WALLPOST 0.00012 0.00019 0.00026 0.00050 0.00138 0.00456 0.01384

IMDB-ADVENTURE 0.00011 0.00014 0.00016 0.00022 0.00046 0.00114 0.00326
IMDB-HORROR 0.00013 0.00014 0.00014 0.00015 0.00024 0.00044 0.00107

IMDB-THRILLER 0.00012 0.00012 0.00013 0.00015 0.00028 0.00066 0.00171
IMDB-CRIME 0.00010 0.00011 0.00013 0.00017 0.00035 0.00086 0.00252

IMDB-ROMANCE 0.00010 0.00011 0.00012 0.00017 0.00031 0.00082 0.00241
IMDB-ACTION 0.00012 0.00013 0.00014 0.00018 0.00037 0.00086 0.00256
IMDB-COMEDY 0.00009 0.00010 0.00010 0.00013 0.00022 0.00049 0.00134
IMDB-DRAMA 0.00008 0.00009 0.00010 0.00012 0.00018 0.00034 0.00090

IMDB-ALL† 0.00006 0.00006 0.00007 0.00007 0.00009 0.00015 0.00034
TWITTER† 1.2·10−6 1.6·10−6 2.4·10−6 5.2·10−6 0.00002 0.00005 0.00016
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In the general case, running ATNF with k = 128, and thus getting an average MRE below 5.3%
(as we have seen in the previous section), the running time of ATNF is very often below 0.3% the running
time of ETNF. This improvement is even more striking for bigger graphs, where the running time of ATNF

further reduces to 0.1%.
For the two biggest graphs, i.e., IMDB-ALL and TWITTER, we were not able to run ETNF, due to the

large amount of time required by the method. For this reason, we have estimated its running time (reported
with † in Table 4). The estimation is based on the fact that ETNF runs n single-source procedures, each
one from a different source node. It is possible to estimate the average running time µ of a single-source
procedure, sampling Θ( logn

ε2 ) sources and computing the average time µ. It is easy to show that this is an
unbiased estimator and that, by using the Hoeffding’s inequality, |µ− µ| is bounded with high probability
by ε · r, where r is an upper bound on the maximum time needed by a single-source procedure, e.g., the
time for visiting all the edges. By multiplying µ by n, we get an estimation of the running time of ETNF.
We have verified experimentally that the order of magnitude reported by our estimation is consistent with
the actual time used by ETNF for the smaller graphs. As a result, applying our estimation for the biggest
graphs, since a single-source procedure requires on average 1.18 s for IMDB-ALL and 7.33 s for TWITTER,
with relative standard deviation, respectively, of 17.49% and 10.87%, ETNF requires 622,185 s (more than
a week) for IMDB-ALL and 25,771,840 s (more than 198 days) for TWITTER. On the other hand, setting
k = 128, ATNF is able to approximate |N (I)| in only 112 s for the former graphs and in 71 min for the latter
one, as shown in Table 4. Comparing these running times with our estimates (last two rows of Table 5),
ATNF turns out to be four orders of magnitude faster than ETNF.

5. Case Study: Comparison of 25 Public Transport Networks

In this section, we will show how the ATNF algorithm for computing the approximation of the
temporal neighborhood functions can be applied in order to perform an exhaustive analysis of some
reachability properties of several temporal graphs in a very efficient way. In particular, we will make use
of a recently published collection of 25 cities’ public transport networks [14]. This collection is available
in multiple formats including the temporal edge list for a specific day, which is the format we use here.
The list of the 25 cities is summarized in Table 6, where, for each city, we provide the number of stops
(that is, the number of vertices of the temporal graph), the number of temporal edges, the day in which the
data were collected, and the radius R around the city’s central point that should cover all the continuous
and dense parts of the city and its public transport network [14]. We have grouped the 25 cities into five
groups according to the vale of R. In particular, group i contains all the cities such that 10(i− 1) < R ≤ 10i,
for 1 ≤ i ≤ 5.

Our goal is to analyze the reachability efficacy of each public transport network. To this aim, we compute
the (approximate) value of the temporal neighborhood functions corresponding to different time intervals
of the day in which the data were collected. In particular, we divide the interval between 6:00 a.m. and 9:00
p.m. into 30, 15, and 10 intervals of length 30, 60, and 90 min, respectively. For each interval I = [tα, tω ], we
compute the approximate value of the temporal neighborhood function |N (I)| (normalized with respect
to the number of all possible pairs of nodes), by using the ATNF algorithm. In the following, we will
represent the distributions of these values by reachability diagrams such as the one shown in Figure 5, which
refers to the city of Adelaide.

Observe that, in the case of transport networks, going from one stop to another, i.e., following an
edge, takes some time. Therefore, in our dataset, the temporal edge list contains the starting time se and
the arrival time ae of each temporal edge e between two nodes u and v. In order to apply our approach,
we have used the following transformation. For each edge e in the dataset from u to v with starting time
se and arrival time ae, with ae − se > 1, we have replaced e with a pair of two edges: one from u to ze
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with appearing time se, and the other from ze to v with appearing time ae − 1, where ze is a new dummy
node. For the edges e from u to v in the dataset such that ae − se = 1, we replace e by an edge from u to v
with appearing time se. It is easy to show that there is a one-to-one correspondence between the feasible
journeys in the original dataset and the sequences induced by the non-dummy nodes in the temporal
paths of the resulting temporal graph. Moreover, it is worth remarking that, when computing the temporal
neighborhood function in our transformed temporal graph, we have to focus only on non-dummy nodes.
To this aim, we have slightly modified our approach in order to exclude the dummy nodes from the
sketches of our reverse temporal cones and, hence, not to count them in the final estimation of the temporal
neighborhood function. In particular, to do this, in the base case in Section 3, it is enough to exclude u
fromR(u, [tα, tα]), whenever u is a dummy node.

Table 6. The 25 cities included in the public transport network dataset [14]. The Stops column indicates the
number of nodes, the Edges column the number of temporal edges, the Day column the day in which the
data were collected, the R column the city’s radius (in km), and the G column the group the city belongs to.

City Stops Edges Day R G

Adelaide 7548 404, 300 12/12/16 40 4
Berlin 4601 1, 048, 218 04/25/16 30 3

Brisbane 9645 392, 805 12/12/16 40 4
Detroit 5683 214, 863 12/12/16 30 3

Grenoble 1547 114, 492 11/14/16 20 2
Kuopio 549 32, 122 12/12/16 10 1

Luxembourg 1367 186, 752 11/28/16 20 2
Nantes 2353 196, 421 12/12/16 20 2
Paris 11, 950 1, 823, 872 12/12/16 35 4

Rennes 1407 109, 075 12/19/16 20 2
Sydney 24, 063 1, 265, 135 12/19/16 50 5
Turku 1850 133, 512 12/12/16 10 1

Winnipeg 5079 333, 882 12/12/16 30 3
Belfast 1917 122, 693 09/05/16 30 3

Bordeaux 3435 236, 595 12/12/16 30 3
Canberra 2764 124, 305 01/09/17 30 3

Dublin 4571 407, 240 12/12/16 20 2
Helsinki 6986 686, 457 12/12/16 30 3
Lisbon 7073 526, 179 11/21/16 30 3

Melbourne 19, 493 1, 098, 227 12/12/16 50 5
Palermo 2176 226, 215 09/22/14 20 2
Prague 5147 670, 423 12/12/16 30 3
Rome 7869 1, 051, 211 11/06/17 20 2

Toulouse 3329 224, 516 12/12/16 20 2
Venice 1874 118, 519 12/12/16 20 2

In the left column of Figure 6, we show, for each city group, the reachability diagrams of all cities in
the group in the case in which we consider intervals of 60 min (these diagrams have been obtained by
running 20 times the approximation algorithm with k = 64, and by taking the average values). As can be
seen, in the case of the first and the last group, the two cities included in the group behave quite similarly,
even if the city of Sydney seems to be more efficient in correspondence with the two peaks of its diagram
at 8:00 a.m. and at 5:00 p.m. (which might be considered as the rush hours of the day). In the other three
groups, instead, there is clearly a city more efficient than the others of the group (that is, Luxembourg in
Group 2, Berlin in Group 3, and Adelaide in Group 4). In each of these groups, the existence of a second
more efficient city (that is, Palermo, Winnipeg, and Paris) is also evident. While, in Group 2, two cities (that
is, Rome and Rennes) fight for the third position, in Group 3, all of the other cities are basically equivalent.
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Note that we are not evaluating the whole quality of a public transport service, which of course
depends on many other factors, such as robustness, safety, reliability, and customer service; instead,
we are only comparing different public transport networks in terms of their temporal neighborhood
functions during a day. In particular, the reachability diagram of a public transport network should only
be interpreted as an indicator of the percentage of the pairs of nodes that are connected in each interval,
with respect to the total number of pairs of nodes. It is also worth emphasizing the fact that, in order to
use these diagrams for comparing two public transport networks of two cities, we must implicitly assume
that the nodes of a network are uniformly spread in the circle of radius R corresponding to the network
itself. It clearly does not make sense to compare a transportation network in which nodes are concentrated
in a small sector of the circle with one in which nodes are uniformly spread, since this would turn out
into a greater efficiency of the first network with respect to the second one. Unfortunately, we are not
able to verify that nodes are uniformly spread in the circle, and we can only assume that this requirement
is satisfied.

6am 8am 10am 12pm 2pm 4pm 6pm 8pm

0.01

0.02

0.03

0.04

0.05

0.06

R
ea

ch
ab

le
p
ai

rs
/a

ll
p
ai

rs

Adelaide

Number of pairs (u, v)
of nodes such that
P(u, v, I) 6= ; divided

by n2, where n is the
number of nodes in the
temporal graph.

I = [5pm, 6pm]

<latexit sha1_base64="g3SH5q54zSzzHztYTfPP+PNq0EU="></latexit>

Figure 5. The reachability diagram of the public transport network of the city of Adelaide, in which the
interval between 6:00 a.m. and 9:00 p.m. has been split into 15 intervals of one hour each.

One could suspect that results similar to the ones shown in the left column of Figure 6 could be
obtained by simply considering the temporal density of the original transport networks. For each interval
I = [tα, tω ], let m(I) denote the number of edges from u to v with both starting and arrival time in I.
We then define the temporal density in the interval I as δ(I) = m(I)

n , where n denotes the number of nodes
of the network. In the right column of Figure 6, we show, for each city group, the density diagrams of all
cities included in the group. As it can be seen, in Groups 1, 2, 3 and 5, the first city is the same as in the
reachability diagrams. In Group 4, instead, Paris seems to have the densest public transport network,
even if it is not the first city in terms of reachability cone sizes. Moreover, while the reachability and
the density diagrams of Groups 1 and 5 seem to be quite consistent, this is not the case for Groups 2
and 3. For instance, in Group 2, Rome is denser than Palermo, but Palermo outperforms Rome in terms of
reachability, while, in Group 3, this phenomenon happens in the case of Prague and Winnipeg. In other
words, the reachability diagram seems to provide some information that is not explicitly given by the
density diagram. It is also worth observing how several cities present two peaks in their reachability
and density diagrams, which we can assume correspond to the two rush hours of the day. This seems to
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indicate that these cities, in correspondence with these rush hours, increase the number of connections and
provide a better service in terms of the number of pairs of connected nodes.
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Figure 6. The comparison of the reachability diagrams (left) and of the density diagrams (right) of the 25
public transport networks.
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In Figure 7, instead, we compare the reachability diagrams of the five groups obtained with time
intervals of length 30 and 90 min, respectively (these diagrams should also be compared to the reachability
diagrams shown in the left column of Figure 6, which are obtained with time intervals of length 60 min).
It is worth observing that, in the second and in the third group, considering shorter time intervals makes
the city with the better diagram perform even better compared to the others, and it basically nullifies the
differences among the other cities. When larger time intervals are analyzed, it seems that the only effect
we get is that the reachability diagrams are systematically shifted up. This is quite reasonable, since we
can expect that, in a time interval of one hour and half, a significant percentage of all possible pairs of
nodes are now connected. It is anyway worth noting that, in the case of the three cities in Group 4 and of
the two cities in Group 5, even with time intervals of 90 min, this percentage is quite low (less than 15%
in Group 4 and less than 3% in Group 5). This suggests that, in order to obtain a globally almost total
connectivity, these cities require trips of quite great duration.

Finally, in Figure 8, we show the reachability diagrams of three sample cities obtained with different
values of k in ATNF (the number of experiments is always 20). As it can be seen, the diagrams are almost
identical, which might suggest that even k = 32 could be used in order to reduce the execution time.
However, we decided to use k = 64 in the previously described experiments in order to further increase
the approximation quality of the results.

As we said at the beginning of this section, the main goal of this analysis has been to describe a case
study in which, by using ATNF, we can extremely reduce the total execution time of the experiments.
For example, with k = 64 and 20 experiments, producing the reachability diagrams of all cities with respect
to intervals of 60 minutes in length requires approximately 2.3 hours. The time to get the exact values of
the temporal neighborhood functions for each time interval by using ETNF is instead approximately equal
to 68.2 hours, that is, between one and two orders of magnitude bigger than the running time of ATNF,
consistently with the results shown in Section 4.
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Figure 7. Cont.
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Figure 7. The comparison of the reachability diagrams with 30 intervals of 30 min each (left), and with 10
intervals of 90 min each (right) of the 25 public transport networks.

6am 11am 3pm 8pm

0.03

0.04

0.05

0.06

R
ea

ch
ab

le
p
ai

rs
/a

ll
p
ai

rs

Grenoble

k = 32
k = 64
k = 128

<latexit sha1_base64="8+XJ10hSeju/Pvrw1AV0qaAdXlI="></latexit>

6am 11am 3pm 8pm

0.04

0.05

0.06

0.07

Helsinki

k = 32
k = 64
k = 128

<latexit sha1_base64="pKiAPLdlk2tqeinIln0oXNXTwjo="></latexit>

6am 11am 3pm 8pm

0.0045

0.005

0.0055

0.006

0.0065

0.007

0.0075

Melbourne

k = 32
k = 64
k = 128

<latexit sha1_base64="R4dOEX9+nyYPGm/bilmWjo7sOMY="></latexit>

Figure 8. The reachability diagrams of three sample cities with different values of k.

6. Conclusions

In this paper, we have proposed a new algorithm for approximating the temporal neighborhood
function of a temporal network, which is based on the bottom-k sketch technique. We have experimentally
validated the quality and the time performance of our algorithm, by comparing it with a recently proposed
scan-based algorithm. We showed that our algorithm is able to obtain good quality results (typically with
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a mean relative error of 5% or less) in a very small fraction of the time of the exact algorithm (typically 0.3%
or less). Finally, we have applied our algorithm to the analysis of the reachability properties of 25 public
transport networks and showed that the neighborhood function gives some non-trivial insight about the
number of pairs of stops that are reachable from one another.

From a more technical point of view, a quite natural and straightforward extension of our work
consists of applying other sketch techniques, such as, for example, the ones based on the probabilistic
counting approach [7,8,38]. We are confident that, by using these other techniques, our results can be
improved both in terms of approximation quality and of execution time. A comparison of the different
sketch techniques for approximating the temporal neighborhood function is beyond the scope of this
paper, whose main goal is showing how these techniques are extremely effective when applied to
temporal networks.

More interestingly, the approach we have described in this paper can also be applied to compute
a different kind of temporal cones. Intuitively, these cones would allow us, for each node u of a temporal
graph G = (V, E), to determine what is the latest starting time from any other node v that can reach u
in a specified interval I = [tα, tω ], in order to arrive at u not later than tω. By appropriately adapting the
dynamic programming algorithm for computing the reverse temporal cones, we can show that the latest
starting time cones can also be computed in time O(nm) and space O(n2m) (or O(nm) if we do not need
to store all the intermediate results). Moreover, in order to improve the efficiency of the algorithm, we can
use, even in this case, the bottom-k sketch technique, exactly as we have done in the case of the reverse
temporal cones.

Finally, a more general question is whether other heuristics can be used in order to compute graph
metrics for which the sketch approach does not seem to be very efficient in the case of classical graphs.
For example, a promising research direction is to define an analogue of the backward breadth-first search
for temporal networks, in order to apply techniques that have been extremely powerful for computing
the diameter of a graph [39,40] or to apply sampling techniques for computing centrality measures in
temporal networks [41,42].
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