
algorithms

Article

Adaptive Clustering via Symmetric Nonnegative
Matrix Factorization of the Similarity Matrix

Paola Favati 1,* , Grazia Lotti 2 , Ornella Menchi 3 and Francesco Romani 3

1 Istituto di Informatica e Telematica-Consiglio Nazionale delle Ricerche (IIT-CNR), Via G. Moruzzi 1,
56124 Pisa, Italy

2 Dipartimento di Matematica, University of Parma, Parco Area delle Scienze 53/A, 43124 Parma, Italy;
grazia.lotti@unipr.it

3 Dipartimento di Informatica, University of Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy;
menchi@di.unipi.it (O.M.); romani@di.unipi.it (F.R.)

* Correspondence: paola.favati@iit.cnr.it

Received: 12 September 2019; Accepted: 15 October 2019 ; Published: 17 October 2019
����������
�������

Abstract: The problem of clustering, that is, the partitioning of data into groups of similar objects,
is a key step for many data-mining problems. The algorithm we propose for clustering is based on
the symmetric nonnegative matrix factorization (SymNMF) of a similarity matrix. The algorithm is
first presented for the case of a prescribed number k of clusters, then it is extended to the case of a not
a priori given k. A heuristic approach improving the standard multistart strategy is proposed and
validated by the experimentation.

Keywords: clustering; nonnegative matrix factorization; adaptive strategy

1. Introduction

Clustering can be applied to a variety of different kinds of documents as long as a distance measure
can be assigned among the data objects. Generally, a similarity function assigns to pairs of closely
related objects with a higher similarity than to objects which are only weakly related. A clustering
technique classifies the data into groups, called clusters, in such a way that objects belonging to a same
cluster are more similar to each other than to objects belonging to different clusters.

In this paper we assume that the data objects are n distinct points p1, . . . , pn in Rd and denote
by k, with 1 < k � n, the number of clusters. As usual in this context, we consider the similarity
expressed through the Gaussian kernel [1]

ei,r = exp
(
−
‖pi − pr‖2

2
σµ

)
, where µ = max

j,s
‖pj − ps‖

2
2, (1)

and σ > 0 is a parameter based on the scale of the points.
The nonnegative symmetric matrix A ∈ Rn×n

+ , whose elements are

ai,r = d−1/2
i ei,rd−1/2

r , where di =
n

∑
s=1

ei,s, for i, r = 1, . . . , n, (2)

is called the similarity matrix.
Among the many different techniques devised to solve the clustering problem, we chose

a method which performs a dimensionality reduction through the Nonnegative Matrix Factorization
(NMF) of matrix A. NMF finds an approximate factorization of A by means of two low-rank,
nonnegative matrices. In its basic form, the problem is set as follows: given a matrix A ∈ Rm×n

+

Algorithms 2019, 12, 216; doi:10.3390/a12100216 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-0382-3195
https://orcid.org/0000-0002-3299-1967
https://orcid.org/0000-0001-8890-4490
http://www.mdpi.com/1999-4893/12/10/216?type=check_update&version=1
http://dx.doi.org/10.3390/a12100216
http://www.mdpi.com/journal/algorithms

Algorithms 2019, 12, 216 2 of 15

and an integer k� n, we look for two low-rank matrices W ∈ Rm×k
+ (the basis matrix) and H ∈ Rn×k

+

(the coefficient matrix), such that the product WHT approximates A according to

min
W, H≥O

f (W, H), with f (W, H) = 1
2 ‖A−W HT‖2

F, (3)

where the subscript F denotes the Frobenius norm. Actually, if the nonnegativity condition was not
imposed, the minimum of f (W, H) could be obtained by truncating the Singular Value Decomposition
A = UΣVT . Unfortunately, some entries of U and V would be negative, and this would prevent
interpretation of the factorization in terms of clustering [1]. In fact, since each column of A can be
approximately represented by a linear combination with coefficients in H of columns of W, thanks to
the nonnegativity feature, the elements of H, properly normalized, could be seen as the probabilities
of assignment of the points to the different clusters. The clustering can be obtained by assigning the
ith point pi to the jth cluster corresponding to the largest coefficient hi,j in the ith row of H.

The problem of computing NMF was first proposed in [2] for data analysis and, from then on,
it has received much attention. The first algorithm to compute NMF was proposed under the name
of multiplicative updating rule in [3], but its slow convergence suggested looking for more efficient
algorithms. Many of them belong to the class of Block Coordinate Descent (BCD) methods [4–8],
but other iterative methods for nonlinear optimization have also been suggested, based on some
gradient descent procedure. To improve the convergence rate, a quasi-Newton strategy has also
been considered, coupled with nonnegativity (see, for example, the Newton-like algorithm of [9]).
Open source libraries for computing NMF are available—see, for example, [10], where several methods
proposed in related works are implemented. Over the years, many variants of the basic problem (3)
have been considered. The case of a symmetric matrix A has been deeply investigated, but other
features have also been taken into consideration. For example, sparsity and/or regularizing constraints
can be easily embedded [5], classification labels can be incorporated through a supervisor [11],
and extensions to tensor nonnegative factorization have been studied [12].

Since our goal was to obtain clustering through the symmetric matrix A, we restricted our analysis
to the symmetric NMF problem.

When a clustering problem is proposed, the dimension of the clustering, that is, the number k of
the clusters, can be either given a priori or looked for. In this paper we consider both cases:

– problem Pk f ix, with an a priori assigned rank k of matrix W. The matrix W is computed using
NMF and the clustering is obtained.

– Pkvar, where an interval Jk = [kmin, kmax] is assigned. The number k varies in Jk and the best k,
according to a given criterium, has to be found.

The algorithm solving Pk f ix is a constitutive brick of a larger procedure for Pkvar. When dealing
with Pkvar, the factorization of A must be performed for each k in Jk, and a validity index must be
provided to compare the clusterings obtained with different k to decide which is the best one.

Our contribution consists in devising an algorithm which implements a heuristic approach
by improving a multistart policy. The algorithm, especially suitable when working in a
multitasking/multiprocessor environment, lets the computation efforts be concentrated on the more
promising runs, without any a priori knowledge. Each run applies a BCD technique known as
alternating nonnegative least squares, which replaces the BPP method used in [13] by the GCD method
of [7]. This choice, as shown in a previous paper [14], leads to a saving in the computational cost of the
single run. The suggested heuristics enjoys the same effectiveness of the standard implementation
of a multistart approach, with a considerable reduction of the cost. Its only drawback is more
complicated coding.

The paper is organized as follows: Section 2 is devoted to recall the alternating nonnegative
least squares procedure for NMF with both general matrices and symmetric matrices, constituting the
basis of our proposed algorithm. Section 3 describes the validity indices used for comparison criteria.

Algorithms 2019, 12, 216 3 of 15

Next, in Section 4, the algorithm for problem Pk f ix is presented, with a priority queue implementation
to reduce the computational time. The extension of the algorithm to problem Pkvar, described in
Section 5, requires particular attention to the scale parameter σ chosen for the construction of A by
using (1) and (2). The experiments are described and commented on in Section 6.

Notations: the (i, j)th element of a matrix M is denoted by (M)i,j or by the lowercase mi,j.
The notation M ≥ O means that all the elements of M are nonnegative. Several parameters enter in the
description of the algorithm. In the text, where they are introduced, the notation “(Section 6)” appears,
meaning that the values assigned to them in the experiments are listed at the beginning of Section 6.

2. The Alternating Nonnegative Least Squares for NMF

Problem (3) is nonconvex and finding its global minimum is NP-hard [15]. In general, nonconvex
optimization algorithms guarantee only the stationarity of the limit points, and only local minima
can be detected. Most iterative algorithms for solving (3) are based on a simple block nonlinear
Gauss–Seidel scheme [4,5]. An initial W0 ∈ Rm×k

+ is chosen, and the sequences
Hν = argmin

H≥0

1
2 ‖A−Wν−1 HT‖2

F,

Wν = argmin
W≥0

1
2 ‖AT − Hν WT‖2

F,
(4)

are computed for ν = 1, 2, . . ., until a suitable stopping condition is satisfied, such as by checking
whether a local minimum of the objective function f (W, H) has been sufficiently well-approximated.
The convergence of this scheme, called Alternating Nonnegative Least Squares (ANLS), follows
from [16].

Although the original problem (3) is nonconvex, the two subproblems of (4) are convex. Let us
denote by ϕ(X) the objective function to be minimized in both cases,

ϕ(X) = f (Y, X) = 1
2 ‖B−Y XT‖2

F, (5)

where B = A and Y = Wν−1 for the first subproblem in (4), and B = AT and Y = Hν for the second
subproblem in (4). Problem (5) can be dealt with by applying aprocedure for nonnegatively constrained
least squares optimization, such as an Active-Set-like method [13,17–19] or an iterative inexact method
as a gradient descent method modified to satisfy the nonnegativity constraints. We have performed
in [14] a preliminary ad hoc experimentation, comparing an Active-Set-like method (the one called
BPP and coded as Algorithm 2 in [13]) with the Greedy Coordinate Descent method, called GCD in [7].
The results have shown that in our context, GCD is faster and equally reliable. GCD, specifically designed
for nonnegative constrained least squares problems, implements a selection policy of the elements
updated during the iteration, based on the largest decrease of the objective function. We give here
a brief description of GCD (the corresponding code can be found as Algorithm 1 in [7]).

The gradient of ϕ(X) is

G(X) =
(
X YT − BT)Y = XQ− BTY, where Q = YTY.

GCD computes a sequence of matrices Xj, j = 1, 2, . . ., until termination. Initially, X0 is set equal to
Hν−1 for the first subproblem in (4) and to Wν−1 for the second subproblem in (4) (with H0 = O, which
ensures that G(X0) ≤ O). At the jth iteration, matrix Xj is obtained by applying a single coordinate
correction to the previous matrix Xj−1 according to the rule Xj = Xj−1 + s ereT

i , where r and i are
suitably selected indices and er and ei are the rth and ith canonical vectors of compatible lengths.
The scalar s is determined by imposing that ϕ(Xj), as a function of s, is the minimum on the set

S = {s such that (Xj−1)r,i + s ≥ 0}.

Algorithms 2019, 12, 216 4 of 15

Denoting gr,i =
(
G(Xj−1)

)
r,i and qi,i the ith principal element of Q, the value which realizes the

minimum of ϕ(Xj) on S is

ŝ = − gr,i

qi,i
if

gr,i

qi,i
≤ (Xj−1)r,i and ŝ = − (Xj−1)r,i otherwise.

In correspondence, the objective function is decreased by

θ
(j)
r,i = ϕ(Xj−1)− ϕ(Xj) = − gr,i ŝ− 1

2
qi,i ŝ 2.

A natural choice for indices (r, i) would be the one that maximizes θ
(j)
r,i on all the pairs (r, i), but it

would be too expensive. So it is suggested to proceed by rows. For a fixed r = 1, . . . , n, the index
i is chosen as the one that maximizes θ

(j)
r,i on i ∈ [1, k] and the (r, i)th element of Xj−1 is updated.

Then a new index i is detected, and so on, until a stopping condition is met, such as

max
i

θ
(j)
r,i < η1 θmax,

where η1 is a preassigned tolerance (Section 6) and θmax = maxr,i θ
(1)
r,i is the largest possible reduction

of the objective function that can be expected when a single element is modified in X0.

The Symmetric Case

In our case, the similarity matrix A ∈ Rn×n
+ is symmetric; hence, the general NMF problem (3) is

replaced by the symmetric NMF (SymNMF) problem

min
W≥O

f (W), with f (W) = 1
2 ‖A−W WT‖2

F, with W ∈ Rn×k
+ . (6)

Since A may generally be indefinite, while WWT is positive semidefinite, WWT represents a good
factorization of A if A has enough nonnegative eigenvalues. When this happens, we are led to
believe that W naturally captures the cluster structure hidden in A [1,9]. Thanks to the nonnegativity,
the largest entry in the ith row of W is assumed as the clustering assignment of the ith point—that
is, pi belongs to the jth cluster if wij = maxr=1,...,k wir. This interpretation furnishes a clustering Π

induced by the matrix W.
In [9], this approach, which efficiently solves the clustering problem, is shown to be competitive

with the widely used spectral clustering techniques, which perform a dimensionality reduction by
means of the eigenvectors corresponding to the leading eigenvalues of A.

Problem (6) has a fourth-order nonconvex objective function. Following [1], we suggest solving it
through a nonsymmetric penalty problem of the form

min
W, H≥O

fα(W, H), with fα(W, H) = 1
2

(
‖A−WHT‖2

F + α‖W − H‖2
F

)
, (7)

α being a positive parameter which acts on the violation of the symmetry. Problem (7) can be
tackled by using any of the techniques proposed in the literature for solving the general NMF problem (3).
For example, algorithm ANLS can be applied by alternating the solution of the two subproblems

Hν = argmin
H≥0

1
2

∥∥∥∥
[

A√
αν WT

ν−1

]
−
[

Wν−1√
αν Ik

]
HT
∥∥∥∥2

F
,

Wν = argmin
W≥0

1
2

∥∥∥∥
[

A√
αν HT

ν

]
−
[

Hν√
αν Ik

]
WT
∥∥∥∥2

F
.

(8)

Algorithms 2019, 12, 216 5 of 15

In [1], the sequence of penalizing parameters is constructed by setting

αν = βν max A, with β0 = 1,

and βν modified according to the geometric progression βν = ζν with the fixed ratio ζ = 1.01.
We suggest, instead, to let βν be modified adaptively, as shown in [14].

Both problems (8) have a form similar to (5), with k rows involving the
√

αν, appended at
the bottom. Hence, each problem is solved by applying GCD with gradient

G(X) = XYTY− BTY + α(X−Y) = XQ− (B + αIn)
TY, where Q = αIk + YTY.

The function which computes a single iteration of ANLS by applying GCD and modifying αν as
described in [14], is thus called(

Wν, Hν, αν

)
= Sym_ANLS

(
A, Wν−1, Hν−1, αν−1

)
.

The whole iterative procedure is organized in the following function, Sym_NMF. The stopping
condition tests the stabilization of the residuals εν = ‖A −WνWT

ν ‖2
F by using two parameters:

a tolerance η2 and a maximum number νmax of allowed iterations (Section 6).

function Sym_NMF
(

A, W0, H0, α0, νmax
)

ν = 0; ε0 = ‖A−W0WT
0 ‖2

F;
repeat

ν = ν + 1;{
Wν, Hν, αν

}
= Sym_ANLS

(
A, Wν−1, Hν−1, αν−1

)
;

εν = ‖A−WνWT
ν ‖2

F;
cond = |εν − εν−1|/εν ≤ η2;

until cond || (ν ≥ νmax);
return

(
ν, Wν, Hν, αν, cond

)
;

The effective dimension ke of Π can be smaller than the expected k, because void clusters may
turn out (see the following function Partition, where { } denotes the void set).

function Partition
(
W)

πr = { } for r = 1, . . . , k;
for i = 1, . . . , n

let j be such that wi,j = maxr=1,...,k wi,r;
append i to πj

end for;
Π = [π1, . . . , πk];
ke = k;
for r = 1, . . . , k

if πr = { } then discard πr; ke = ke − 1
end for;
return

(
Π, ke

)
;

When applying Sym_NMF we expect that, together with the stabilization of the sequence of
the residuals εν = ‖A −WνWT

ν ‖2
F, a form of stabilization of the corresponding clustering should

Algorithms 2019, 12, 216 6 of 15

also take place. Actually, we have verified experimentally that, in general, the stabilization of the
clusterings proceeds irregularly, before the residuals εν show a substantial reduction. This is the reason
why Sym_NMF does not rely on early clustering stabilization, which could produce incorrect results,
and exploits the decrease of the residuals.

3. The Validity Indices

Since the solution W of problem (6), computed by starting with different initial approximations
W0, may be only a local minimum, tools to evaluate the validity of the clustering Π induced by W
are needed. Denoting by πj the jth cluster, a clustering Π = {π1, . . . , πk}, with k ≥ 2, corresponds
to a partitioning of the indices {1, . . . , n} (actually, the number ke of clusters effectively obtained by
applying Partition(W) can be smaller than the required k). A clustering algorithm generally aims at
minimizing some function of the distances of the points of the jth cluster from its centroid defined by

cj =
1
nj

∑
i∈πj

pi, with nj = # πj,

where the symbol # denotes the cardinality. Over the years, dozens of validity indices have been
proposed (see [20] and its references). Most of them take into account the compactness, which measures
the intra-cluster distances, and the separability, which measures the inter-cluster distances. A good
clustering algorithm should produce small intra-cluster distances and large inter-cluster distances.

3.1. The DB Index

Both compactness and separability are combined by the following Davies-Bouldin index (DB) [21]:

χ =
1
ke

ke

∑
j=1

ζ j, where ζ j = max
r 6=j

γj + γr

dj,r
, γj =

1
nj

∑
i∈πj

‖pi − cj‖2 and dj,r = ‖cj − cr‖2. (9)

A good clustering is associated to a small value of the DB index. In the codes, the function which
uses (9) to compute the DB index χ of the clustering Π obtained by Partition (W), is called

χ = DBindex (Π).

3.2. The DB** Index

When the validity of different clusterings corresponding to different dimensions k must be
established, the DB index can still be used, but if the given points can be organized in different
subclusters, it may be difficult to establish which one results in being the best one. In [22] another
index, called DB**, is proposed to deal with this case. Unlike index DB, index DB** takes into account
the compactness behavior of the clustering corresponding to different values of k in order to penalize
unnecessary merging and to detect finer partitions.

We assume that a sequence of clusterings Π(h) of dimensions k(h) is given, with h = 1, . . . , hmax,
such that k(h) < k(h+1). Let c(h) denote the vector of the centroids of Π(h), and γ(h) the vector of k(h)

components whose jth component is

γ
(h)
j =

1

n(h)
j

∑
i∈π

(h)
j

‖pi − c(h)j ‖2 where n(h)
j = # π

(h)
j .

For h = 1, . . . , hmax− 1, let u(h) and v(h) be the vectors of k(h) components whose jth component is

u(h)
j = max

r 6=j

(
γ
(h)
j + γ

(h)
r
)
−max

r 6=j

(
γ
(h+1)
j + γ

(h+1)
r

)
, v(h)j = max

r=h,...,hmax−1
u(r)

j .

Algorithms 2019, 12, 216 7 of 15

DB** returns a vector χ∗∗ of length hmax − 1 whose hth component is

χ∗∗h =
1

k(h)

k(h)

∑
j=1

ζ
(h)
j , where ζ

(h)
j =

max
r 6=j

(
γ
(h)
j + γ

(h)
r
)
+ v(h)j

min
r 6=j

d(h)j,r

.

The lowest component of χ∗∗ detects the best clustering among the clusterings Π(h) with
h ∈ {1, . . . , hmax− 1}.

3.3. The CL Index

Both the DB index and the DB** index base their valuation of the clustering separability on the
distances between centroids, according to the rule: the farther the centroids, the more separated
the clusters. This rule does not appear profitable in the presence of nonconvex clusters or of clusters
that nearly touch each other, or when the densities of the points differ much from cluster to cluster.
This can be particularly troublesome when the points are affected by noise or when there are outliers.
To check whether the rth and sth clusters nearly touch each other, one should compute their distance;
that is, the minimum distance between each pair of points pi ∈ πr and pj ∈ πs, with a not negligible
increase in computational time. For example, this minimum distance between two clusters is used by
the Dunn index [20].

To reduce the burden of this control, we propose a new index called CL, which provides a measure
of closeness. First, a small integer p (Section 6) is selected, and for any point pi, the indices of its p
nearest points are listed in `i. Using the same notations of the previous subsection, we assume that
a sequence of clusterings Π(h) of dimensions k(h) is given, with h = 1, . . . , hmax. Let π

(h)
r be the cluster

to which pi belongs. We consider the quantity

x(h)i = ∑
j∈`i , j/∈π

(h)
r

exp
(
− c
‖pi − pj‖2

2

µ

)
,

where c is a constant (Section 6) large enough to make negligible in the sum the contribution of far-away
points not belonging to π

(h)
r . Set

yh =
n

∑
i=1

x(h)i , h = 1, . . . , hmax.

The sequence yh can be very oscillating. For this reason, we defined as the CL index the vector ψh
obtained by computing the exponential moving average [23] with smoothing constant 0.1, of the vector yh

ψ1 = y1, ψh+1 = ψh + 0.1(yh+1 − ψh), h = 1, . . . , hmax − 1.

This index is large when at least one point pi exists, having some sufficiently close points not
belonging to the same cluster of pi in Π(h). Typically, the CL index has the following behavior: a zero
ψh means that the clusters of Π(h) are well-separated, and this occurs only in the absence of noise.
The increasing rate, which is bounded for small values of k, tends towards infinity when k exceeds
values for which separated clusters exist. This behavior, together with DB** values, suggests when
stopping the increase of k if kmax is not assigned.

4. The Clustering Algorithm for Problem Pk f ix

Given a fixed value of k, the algorithm Kfix we propose for problem Pk f ix searches the minimum
of (6). This algorithm will be used in Section 5 for solving problem Pkvar. Before describing it, it is

Algorithms 2019, 12, 216 8 of 15

necessary to deal with the important issue of how to choose a suitable value of the scale parameter σ

for the construction of the similarity matrix A according to (1) and (2).
Values of σ that are too small or too large would reduce the variability of A, making all the points

equally distant, resulting in badly mixed-up clusters. Since we must discriminate between close and
far points, an intermediate value between the smallest and the largest distance of the points should
be chosen. Clearly, there is a strong correlation between the value of σ and the number k of clusters that
the algorithm is expected to find: more clusters may have a smaller size and may require a smaller σ to
separate them. To this aim, a triplet σ(k) of suitable values (Section 6) is detected and tested for any k.

Besides the choice of σ, the choice of the initial matrix W0 may also be critical, due to the fact that
only a local minimum of problem (6) can be expected. It is common practice to tackle this issue by
comparing the results obtained by applying Sym_NMF to several matrices W0, randomly generated with
uniform distribution between 0 and 1. The number of the starting matrices is denoted q (Section 6).

For any pair {σ, W0} with σ ∈ σ(k), matrix A(σ) is constructed using (1) and (2) and the function
Sym_NMF is applied starting with W0. Then, the DB index χ of the clustering so obtained is computed.
A trivial multistart implementation could consist in carrying out, up to convergence, function Sym_NMF
for any pair {σ, W0} and choosing, at the end, the best χ.

In the following we present a more sophisticated version, suitable for large problems, which
uses a heuristic approach. The run for any pair {σ, W0} is split in segments with a fixed number λ

of iterations, and the execution scheduling is driven by the values χ already found. The possibility
of discarding the less promising runs is considered. The proposed strategy, which is accomplished
by using a priority queue, specializes to the present clustering problem the procedure given in [24],
where the global minimization of a polynomial function is dealt with. In [24], the heuristic approach
is shown to outperform the multistart one for what regards the computational cost, maintaining the
same efficacy.

The items of the priority queue Q have the form

Y = {r, t, W, H, α, ξ},

where

– r is the index which identifies the pair {σ, W0}.
– t = t(r) is the number of iterations computed until now by Sym_NMF on the item with index r.

Initially t = 0.
– W = W(r) and H = H(r) are the NMF factors of A(σ) computed for the rth item. Initially W = W0,

H = O.
– α = α(r) is the penalizing parameter of the rth item. Initially α = max A(σ).
– ξ = χ(r) + t(r)/tmax, where χ(r) is the DB index defined in (9) for the rth item, and tmax (Section 6)

is the maximum number of allowed iterations for the rth item. Initially ξ = 0.

The queue is ruled, according to the minimum policy, by the value of ξ, allowing to compute first
the more promising items, keeping into account also the age of the computation. Initially, the priority
queue contains 3 q items. Also referred in the procedure, but not belonging to the queue, are

– an array m of length k, whose ith element contains the minimum of the DB indices computed so
far for all the items returning ke = i. Initially, the elements of m are set equal to ∞.

– an array M, containing in position i the partition Π corresponding to mi. Initially, the elements of
M are empty sets.

The belonging of an element to an item Y is denoted by using the subscript (Y). Moreover, A(Y)
denotes the similarity matrix A(σ) generated with the scale parameter σ associated with r(Y).

After the initialization of the queue, the adaptive process evolves as follows: an item Y is
extracted from the queue according to its priority ξ(Y), and the function Sym_NMF is applied. A new
item is so built and, if it is recognized as promising by a specific function Control, it is inserted back

Algorithms 2019, 12, 216 9 of 15

into Q. Otherwise, if Y is not promising, no new item is inserted back into Q—that is, Y is discarded.
Two bounds, tmin and tmax (Section 6), are used to control the execution flow for each item.

function Kfix
(
k, σ(k), q

)
;

inizialize m, M, Q = { };
compute matrices A(σ

(k)
i), for i = 1, . . . , 3, using (1) and (2);

generate randomly W0(j), for j = 1, . . . , q;
for i = 1 to 3

A = A(σi); α = max A;
for j = 1 to q

W0 = W0(j);
r = i + 3(j− 1);
Enqueue

(
Q, {r, 0, W0, O, α, 0}

)
;

end for

end for

χmin = ∞;
while Length (Q) ≥ 1

Y = Dequeue (Q);
{ν, W, H, α, cond} = Sym_NMF

(
A(Y), W(Y), H(Y), α(Y), λ

)
;(

Π, ke
)
= Partition (W);

χ = DBindex(Π);
t = t(Y) + ν; ξ = χ + t/tmax;
if Control (t, χ, Π, ke, cond) then Enqueue

(
Q, {r(Y), t, W, H, α, ξ}

)
end while

return (M, m);

At the end, the kth partition in M, if not empty, is the solution of the problem for the given k.
Other partitions possibly present in M can be of interest, and will be used when Kfix is called for
solving Pkvar.

The core of the whole procedure is the following Boolean function Control, which verifies whether
an item is promising (i.e., must be further processed) or not.

function Control (t, χ, Π, ke, cond);

if χ < mke then mke = χ; Mke = Π;

if ke < k then return t < 2 tmin;
if cond || (t > tmax) then return False;

if t < tmin then return True;

return χ < mke(1 + exp(1− t/tmin))

If True is returned, the selected item is enqueued again, otherwise it is discarded. When the
number ke of clusters effectively found is equal to the expected k, and the convergence of Sym_NMF has
not been yet reached, the item is enqueued both when t < tmin and when tmin < t < tmax, provided
that χ satisfies a bound, which becomes tighter as t increases. When, instead, ke < k, the item is
enqueued only if less than 2 tmin iterations have been performed. In any case, the best value of the DB
index and the corresponding clustering are maintained for each value of ke ≤ k.

Algorithms 2019, 12, 216 10 of 15

Remark 1.
(a) The use of the priority queue allows for an easy parallelization of the computation by simultaneously

keeping active a number of items most equal to the number of the available processors. The numerical examples
of Section 6 have been carried out both with eight active processors and one active processor in order to evaluate
the scalability of the algorithm.

(b) The use of an internal validity index is fundamental in our heuristics. Because of its high impact in
the algorithm, the choice of the DB index among the many indices listed in [20] has been driven by its low
computational time complexity. The DB index, which turned out to be reliable in our experimentation, tends to
detect clusters with separated convex envelopes.

5. The Clustering Algorithm for Problem Pkvar

For problem Pkvar, the dimension k of the clustering is not a priori assigned, but an interval
Jk = [kmin, kmax] is only given where k has to be looked for, according to some performance criterium.
The problem can be tackled by applying the algorithm designed for problem Pk f ix with different values
of k in the interval, and then by choosing the one which gives the better result. The strategy we propose
in the following algorithm Kvar selects the consecutive integers k = kmin, . . . , kmax. For each k, the triple
σ(k) of scale parameters is constructed using formula (10), given in the next section, and function Kfix
is applied. The array m of the optimal DB values and the array M of the corresponding clusterings
Π are returned. The indices DB** and CL, described in Section 3, help in choosing the best k and the
corresponding clustering. Moreover, if a proper value of kmax is not assigned, plots of DB** and CL
can indicate when the computation may be stopped.

function Kvar
(
kmin, kmax

)
initialize m and M;
for k = kmin to kmax

compute triple σ(k);
(M, m) = Kfix

(
k, σ(k), q

)
;

end for;
return (M, m)

From (10) we see that the same σ appears repeatedly for different values of k. Hence, it is not
worthwhile to construct each time the matrix A(σ). Whenever possible, it is better to construct and
store beforehand the matrices A(σ) for all the different scale parameters σ that are expected to be used.

Another shortcut that immediately comes to mind is to exploit the already computed NMF
factorization of an A(σ) for a given dimension k to obtain the NMF factorization of the same matrix for
a larger k, instead of computing it from scratch as suggested in Kvar. In [5], these updating algorithms
are proposed. We have tried them in our experimentation and have found that, in our clustering
context, the improvements on the computational cost are negligible in the face of a more complex code.
Hence we do not recommend them.

6. Experimentation

The experimentation has been performed in JAVA on a Macintosh with a 4 GHz Intel 8 core Xeon
W processor running MAC OS MOJAVE 10.14.4 on synthetic datasets of points in R2. It intends to
prove that the proposed heuristics is reliable. In fact, with regard to a multistart strategy, the proposed
heuristics allows for time-saving, but one could expect that during the elimination of the less promising
roads, roads leading to final good solutions can also be lost. To verify that this does not happen,
the experimentation aims to test the effectiveness of the algorithm.

Initially, an extensive computation has been carried out on selected datasets of points, to determine
suitable values for the parameters to be used in the subsequent computation. Namely:

Algorithms 2019, 12, 216 11 of 15

– the tolerances for GCD and Sym_NMF are set η1 = 10−3 and η2 = 10−4, respectively,
– the constants for CL index are set p = 4 and c = 100,
– the number of the starting random matrices for Kfix is set q = 8,
– the number of iterations for a single segment of Kfix is set λ = 10, hence νmax = 10,
– the bounds for Control are set tmin = 3 λ and tmax = 20 λ,
– for the definition of σ(k) we have set σ̂ = 0.04 and

σ
(k)
0 = σ̂ for k ≤ 5, σ

(k)
0 = σ̂/2 for 5 < k ≤ 10, σ

(k)
0 = σ̂/4 for 10 < k ≤ 20,

σ
(k)
0 = σ̂/8 for 20 < k ≤ 40, σ

(k)
0 = σ̂/16 for k > 40.

The triplets considered in the experiments, varying k, are

σ(k) = {σ(k)
i = σ

(k)
0 /2i, i = 0, 1, 2}. (10)

Regarding the value σ̂, we have taken into account that the quantities ‖pi − pr‖2
2/µ in (1) are not

greater than 1. The choice σ̂ = 0.04 makes the lowest value exp(−1/σ) of ei,r comparable with the
machine precision.

The datasets used in the first two experiments are suggested in [25]. The points are normally
distributed with different variances around a given number of centers.

The first experiment concerns the clustering of the three datasets of Figure 1: dataset Subcluster
(SC) has five clusters, and four of them are subclusters forming two pairs of clusters, respectively;
dataset Skewdistribution (SD) has three clusters with skewed dispersions; dataset Differentdensity (DD)
has clusters with different densities. Each dataset is generated with 1000 points.

SC SD DD
Figure 1. Synthetic datasets SC, SD, and DD of points in R2.

We applied Kvar to each dataset with k varying in the interval [2, 15]. Figure 2 shows the piecewise
linear plots versus k of the DB index (dashed line), DB** index (solid line), and CL index (dotted line)
for the three datasets. The CL plot is normalized in order to fit the size of the figure.

2 4 6 8 10 12 14

0.5

1.0

1.5

2 4 6 8 10 12 14

0.5

1.0

1.5

2 4 6 8 10 12 14

0.5

1.0

1.5

SC SD DD
Figure 2. Plots versus k of DB (dashed line), DB** (solid line), and CL (dotted line) for SC, SD, and DD.

For the dataset SC, the DB index suggests choosing k = 3, while the DB** index suggests both
k = 3 and k = 5, with a weak preference for the former. The plot of the CL index, which is zero
for k ≤ 5, shows that the clusters in this range of k are well-separated, while for k ≥ 6 the increase of
the plot suggests that some clusters are improperly subdivided.

Algorithms 2019, 12, 216 12 of 15

For both datasets SD and DD, the DB and DB** indexes indicate the same value, 3, for k.
The CL plot, which is not zero even for small values of k, reveals the presence of close points in
different clusters. The difficulty encountered in the assignment of these points to the clusters suggests
that such points could be considered as noise. In any case, using the information gathered from the CL
plot, the computation should stop before k becomes too large.

The purpose of the second test is precisely to see how the procedure behaves in the presence
of noise. To this aim, the two datasets of five points Well-separated (WS) and Well-separated noise (WSN)
of Figure 3 are generated, the latter one with 5% noise added to the former.

WS WSN
Figure 3. Synthetic datasets, well-separated (WS) and well-separated noise (WSN) of points in R2.

We applied Kvar, with k varying in the interval [2, 20] and obtained the piecewise linear plots
versus k of Figure 4. For dataset WSN, according to the DB index, both k = 5 and k = 6 seemed to be
acceptable. This uncertainty is explained by the presence of noise which causes spurious clusters to
appear. The DB** index correctly suggests k = 5. The presence of noise is confirmed by the CL index
which is not zero for small values of k.

5 10 15 20

0.5

1.0

1.5

5 10 15 20

0.5

1.0

1.5

WS WSN
Figure 4. Plots versus k of DB (dashed line), DB** (solid line) and CL (dotted line) for WS and WSN.

To analyze more thoroughly the performance of our algorithm when subclusters are present,
a third experiment was carried out concerning the three datasets of Figure 5. Dataset C17 consists
of 1700 points generated around 17 randomly chosen centers; dataset C23, consisting of 2300 points,
has 23 clusters of 100 points which can be grouped in several ways in a lower number of clusters;
dataset C27, consisting of 2700 points, has 27 clusters of 100 points which can be seen as 9 clusters of
300 points or three clusters of 900 points, depending on the granularity level of interest.

C17 C23 C27
Figure 5. Synthetic datasets C17, C23, and C27 of points in R2.

Algorithms 2019, 12, 216 13 of 15

Problems C17, C23, and C27 have been tested with values of k ranging in the intervals [2, 25],
[2, 30], and [2, 35], respectively. The resulting piecewise linear plots versus k of DB, DB**, and CL
indices are shown in Figure 6. By using the DB** indices, it clearly appears that our algorithm is able to
find good clusterings for all three problems. The inspection of the plot of the DB** index gives further
information. For example, for problem C17, a local minimum of the DB** index for k = 4 evidences the
clustering shown in Figure 7 on the left. For problem C23, a local minimum of the DB** index for k = 7
evidences the possible clustering shown in Figure 7 on the right. For problem C27, two local minima
in the DB** plot for k = 3 and k = 9 evidence the two other expected clusterings.

5 10 15 20 25

0.5

1.0

1.5

5 10 15 20 25 30

0.5

1.0

1.5

5 10 15 20 25 30 35

0.5

1.0

1.5

C17 C23 C27
Figure 6. Plots versus k of DB (dashed line), DB** (solid line), and CL (dotted line) for C17, C23, and C27.

C17 C23
Figure 7. Further clusterings evidenced by the DB** plots for C17 and C23.

In all the experiments shown above, the measure CL helps decide the value of kmax if not assigned.
The fourth test regards the computational cost of algorithm Kvar when run on one or eight

processors. Due to its iterative and heuristic structure, our algorithm is not suitable for a theoretical
analysis of the complexity. In order to analyze how the required time increases as a function of the
number of the points, the datasets SC, SD, DD, WS, and WSN have been generated with n varying in
{1000, 2000, 4000, 8000} and k varying in the interval [2, 15]. Figure 8 shows the plots versus n of the
costs in seconds, averaged on all the datasets. The times corresponding to runs with one processor
are fitted with a solid line, where those corresponding to runs with eight processors are fitted with
a dashed line. The resulting polynomial fits are 1.5× 10−5 n2.16 for one processor and 1.4× 10−6 n2.23

for eight processors. This shows that for the considered problems, the time grows slightly more than
quadratically as a function of n, but clearly less than cubically, as one could expect. It also shows that
the whole procedure has a good degree of scalability.

Algorithms 2019, 12, 216 14 of 15

secs

n

Figure 8. Averaged computational costs in seconds for one (solid line) and eight (dashed line) processors.

7. Discussion and Conclusions

In this paper, we considered the symmetric modeling of the clustering problem and proposed
an algorithm which applies NMF techniques to a penalized nonsymmetric minimization problem.
The proposed algorithm makes use of a similarity matrix A, which depends on the Gaussian kernel
function and a scale parameter σ, varying with k. The Gaussian kernel function was chosen because
it is widely used in the clustering problems of points in Rd. Of course, other kernels can be used in
different environments, with different procedures. We think that our heuristic approach could also be
applied to treat other kernels.

As shown in [1,13], the ANLS algorithm with the BPP method handles large datasets more
efficiently than other algorithms frequently used for the same problem. Moreover, in [14], it is shown
that ANLS with GCD allows for further time reduction with respect to ANLS with BPP.

The proposed heuristic approach, which uses ANLS with GCD, processes multiple instances of the
problem and focuses the computation only on the more promising ones, making use of the DB index.
In this way, an additional time reduction is achieved with respect to the standard multistart approach.
The experimentation, conducted on synthetic problems with different characteristics, evidences the
reliability of the algorithm.

The same framework is repeatedly applied with different values of k varying in an assigned
interval, allowing us to deal also with the clustering problem when the number of clusters is not
a priori fixed. The combined use of the different considered validity indices allows to point out the
correct solutions.

Author Contributions: All the authors have contributed substantially and in equal measure to all the phases of
the work reported.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kuang, D.; Yun, S.; Park, H. SymNMF: Nonnegative low-rank approximation of a similarity matrix for
graph clustering. J. Glob. Optim. 2015, 62, 545–574. [CrossRef]

2. Paatero, P.; Tappert, U. Positive matrix factorization: A non-negative factor model with optimal solution of
error estimates of data values. Environmetrics 1994, 5, 111–126. [CrossRef]

3. Lee, D.D.; Seung, H.S. Algorithms for non-negative matrix factorization. In Advances in Neural Information
Processing Systems 2001, Proceedings of the 2000 Conference (NIPS 2000), Denver, CO, USA, 1 January 2001;
Neural Information Processing Systems Foundation: San Diego, CA, USA; pp. 535–541.

4. Kim, H.; Park, H. Nonnegative matrix factorization based on alternating nonnegativity constrained least
squares and active set method. SIAM J. Matrix Anal. Appl. 2008, 30, 713–730. [CrossRef]

5. Kim, J.; He, Y.; Park, H. Algorithms for nonnegative matrix and tensor factorization: An unified view based
on block coordinate descent framework. J. Glob. Optim. 2014, 58, 285–319. [CrossRef]

http://dx.doi.org/10.1007/s10898-014-0247-2
http://dx.doi.org/10.1002/env.3170050203
http://dx.doi.org/10.1137/07069239X
http://dx.doi.org/10.1007/s10898-013-0035-4

Algorithms 2019, 12, 216 15 of 15

6. Cichocki, A.; Phan, A.H. Fast local algorithms for large scale nonnegative matrix and tensor factorizations.
IEICE Trans. Fund. Electron. Commun. Comput. Sci. 2009, 92, 708–721. [CrossRef]

7. Hsieh, C.J.; Dhillon, I.S. Fast coordinate descent methods with variable selection for non-negative
matrix factorization. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data-Mining, San Diego, CA, USA, 21–24 August 2011; pp. 1064–1072.

8. Belachew, M.T. Efficient algorithm for sparse symmetric nonnegative matrix factorization.
Pattern Recogn. Lett. 2019, 125, 735–741. [CrossRef]

9. Kuang, D.; Ding, C.; Park, H. Symmetric nonnegative matrix factorization for graph clustering.
In Proceedings of the 2012 SIAM International Conference on Data-Mining (SDM 2012), Anaheim, CA, USA,
26–28 April 2012; pp. 106–117.

10. Janecek, A.; Grotthoff, S.S.; Gansterer, W.N. LIBNMF—A library for nonnegative matrix factorization.
Comput. Inform. 2011, 30, 205–224.

11. Wu, W.; Jia, Y.; Kwong, S.; Hou, J. Pairwise constraint propagation-induced symmetric nonnegative
matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 6348–6361. [CrossRef] [PubMed]

12. Cichocki, A.; Zdunek, R.; Phan, A.H.; Amari, S. Nonnegative Matrix and Tensor Factorizations: Applications to
Explanatory Multi-Way Data Analysis and Blind Source Separation; Wiley: New York, NY, USA, 2009.

13. Kim, J.; Park, H. Fast nonnegative matrix factorization: An active-set-like method and comparisons. SIAM J.
Sci. Comput. 2011, 33, 3261–3281. [CrossRef]

14. Favati, P.; Lotti, G.; Menchi, O.; Romani, F. Adaptive computation of the Symmetric Nonnegative Matrix
Factorization (NMF). arXiv 2019, arXiv:1903.01321. [CrossRef]

15. Vavasis, S.A. On the complexity of nonnegative matrix factorization. SIAM J. Optim. 2009, 20, 1364–1377.
[CrossRef]

16. Grippo, L.; Sciandrone, M. On the convergence of the block nonlinear Gauss-Seidel method under
convex constraints. Oper. Res. Lett. 2000, 26, 127–136. [CrossRef]

17. Lawson, C.L.; Hanson, R.J. Solving Least Squares Problems; Prentice-Hall: Englewood Cliffs, NY, USA, 1974.
18. Björck, Å. Numerical Methods for Least Squares Problems; SIAM: Philadelphia, PE, USA, 1996.
19. Kim, H.; Park, H. Toward faster nonnegative matrix factorization: A new algorithm and comparisons.

In Proceedings of the 8th IEEE International Conference on Data-Mining (ICDM), Pisa, Italy,
15–19 December 2008; pp. 353–362.

20. Desgraupes, B. Clustering Indices. Available online: https://cran.r-project.org/web/packages/clusterCrit/
vignettes/clusterCrit.pdf (accessed on 15 October 2019).

21. Davis, D.L.; Bouldin, D.W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 1979,
1, 224–227. [CrossRef]

22. Kim, M.; Ramakrishma, R.S. New indices for cluster validity assessment. Pattern Recogn. Lett. 2005,
26, 2353–2363. [CrossRef]

23. NIST/SEMATECH e-Handbook of Statistical Methods. Available online: http://www.itl.nist.gov/div898/
handbook (accessed on 15 October 2019).

24. Favati, P.; Lotti, G.; Menchi, O.; Romani, F. An adaptive procedure for the global minimization of a class of
polynomial functions. Algorithms 2019, 12, 109. [CrossRef]

25. Liu, Y.; Li, Z.; Xiong, H.; Gao, X.; Wu, J. Understanding of internal clustering validation measures.
In Proceedings of the IEEE International Conference on Data-Mining, Sydney, Australia,
13–17 December 2010; pp. 911–916.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1587/transfun.E92.A.708
http://dx.doi.org/10.1016/j.patrec.2019.07.026
http://dx.doi.org/10.1109/TNNLS.2018.2830761
http://www.ncbi.nlm.nih.gov/pubmed/29994550
http://dx.doi.org/10.1137/110821172
http://dx.doi.org/10.3847/1538-4357/ab0c00
http://dx.doi.org/10.1137/070709967
http://dx.doi.org/10.1016/S0167-6377(99)00074-7
https://cran.r-project.org/web/packages/clusterCrit/vignettes/clusterCrit.pdf
https://cran.r-project.org/web/packages/clusterCrit/vignettes/clusterCrit.pdf
http://dx.doi.org/10.1109/TPAMI.1979.4766909
http://dx.doi.org/10.1016/j.patrec.2005.04.007
http://www.itl.nist.gov/div898/handbook
http://www.itl.nist.gov/div898/handbook
http://dx.doi.org/10.3390/a12050109
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Alternating Nonnegative Least Squares for NMF
	The Validity Indices
	The DB Index
	The DB** Index
	The CL Index

	The Clustering Algorithm for Problem Pkfix
	The Clustering Algorithm for Problem Pkvar
	Experimentation
	Discussion and Conclusions
	References

