
algorithms

Article

On Finding Two Posets that Cover Given Linear Orders

Ivy Ordanel 1,*, Proceso Fernandez, Jr. 2 and Henry Adorna 1

1 Department of Computer Science, University of the Philippines Diliman, Quezon City 1101, Philippines;
hnadorna@up.edu.ph

2 Department of Information Sytems and Computer Science, Ateneo De Manila University,
Quezon City 1108, Philippines; pfernandez@ateneo.edu

* Correspondence: ivyordanel@gmail.com

Received: 13 August 2019; Accepted: 17 October 2019; Published: 19 October 2019
����������
�������

Abstract: The Poset Cover Problem is an optimization problem where the goal is to determine a
minimum set of posets that covers a given set of linear orders. This problem is relevant in the field of
data mining, specifically in determining directed networks or models that explain the ordering of
objects in a large sequential dataset. It is already known that the decision version of the problem is
NP-Hard while its variation where the goal is to determine only a single poset that covers the input
is in P. In this study, we investigate the variation, which we call the 2-Poset Cover Problem, where the
goal is to determine two posets, if they exist, that cover the given linear orders. We derive properties
on posets, which leads to an exact solution for the 2-Poset Cover Problem. Although the algorithm
runs in exponential-time, it is still significantly faster than a brute-force solution. Moreover, we show
that when the posets being considered are tree-posets, the running-time of the algorithm becomes
polynomial, which proves that the more restricted variation, which we called the 2-Tree-Poset Cover
Problem, is also in P.

Keywords: partial order; poset; linear extensions; algorithm; complexity

1. Introduction

A poset is a fundamental concept in mathematics that formalizes the notion of ordering in a
collection of objects. Formally, a poset P = (V,≤P) is a pair consisting of a finite set V and a binary
relation ≤P⊆ V × V that is reflexive, antisymmetric and transitive. In this paper, we only consider
strict posets, written here as P = (V,<P), where the binary relation is antisymmetric and transitive
but irreflexive. An example of a strict poset is shown in Figure 1a. From here on, all posets being
discussed refer to strict posets.

V = {1, 2, 3, 4, 5}

<P = {(1, 2),
(1, 3),(1, 4),
(1, 5),(2, 4),
(3, 5)}

a. P = (V,<P)

1

2

3

4

5

b. H(P)

L(P) = {
(1, 2, 3, 4, 5),
(1, 2, 3, 5, 4),
(1, 2, 4, 3, 5),
(1, 3, 2, 4, 5),
(1, 3, 2, 5, 4),
(1, 3, 5, 2, 4)}

c. L(P)

Figure 1. Poset P, its Hasse diagram and linear extensions.

Every poset P = (V,<P) also corresponds to a directed acyclic graph (DAG) G = (V, A) having
the vertex set V and the edge set A = {(u, v)|(u, v) ∈<P}. However, a poset is more commonly

Algorithms 2019, 12, 219; doi:10.3390/a12100219 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a12100219
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/12/10/219?type=check_update&version=2

Algorithms 2019, 12, 219 2 of 11

illustrated using a Hasse diagram that corresponds to the transitive reduction of the DAG. Figure 1b
shows the Hasse diagram H(P) of the poset P defined in Figure 1a.

The binary relation in a poset is called a partial order since not all pairs need to be related. For the
case wherein all pairs are related, the binary relation is called a total order, and the poset is said to
be a totally ordered set or a linear order. Formally, a linear order L = (V,<L) is a poset where for
all distinct elements u, v ∈ V, either u <L v or v <L u. Basically, we can treat a linear order as a
permutation of the elements in V. Moreover, a linear order L = (V,<L) is said to be a linear extension
of poset P if and only if <P⊆<L. The set of all linear extensions of P is denoted by L(P). For example,
Figure 1c shows the set of linear extensions of the poset P in Figure 1a.

Generating the linear extension of a poset, which is also equivalent to getting all the topological
sorting of a directed acyclic graph, is a well studied problem. Algorithms [1,2] on this show that we
can generate each successive linear extension or topological sorting in polynomial-time. The reverse
problem where the given is a set of linear extensions, or more technically a set of linear orders, and the
goal is to determine the set of posets that generate the given linear orders is the Poset Cover Problem.
Formally, the Poset Cover Problem is defined as follows [3]:

POSET COVER PROBLEM

INSTANCE: A set Υ = {L1, L2, ..., Lm} of linear orders over the set V = {1, 2, 3, ..., n}.
SOLUTION: A set P∗ = {P1, P2, ..., Pk} of posets where

⋃
Pi∈P∗ L(Pi) = Υ and k is minimum.

The Poset Cover Problem finds application in data mining where there is a massive set of
sequential data and the goal is to determine directed networks that explain the ordering of objects in
the sequential data. A simple example of this is in marketing, when the business wants to generate a
directed process model from the logs of customers’ purchases of their products. The logs can be treated
as linear orders of the products. Determining directed process models, which explains the purchasing
behavior of the customers, can then be represented as getting a set of posets that generate the linear
orders (logs). The process model can then be used to predict other customers’ future purchases, and the
business could develop marketing campaigns from it. Similar to this kind of data mining, the problem
is also relevant in other areas such as in neuroscience [4], chemical engineering [5], epidemiology [6],
paleontology [7,8], and systems biology [9].

The decision version of the Poset Cover Problem has been shown to be NP-Hard [3]. To deepen
the knowledge about the Poset Cover Problem, efforts in the past have focused on studying constrained
cases of the problem and trying to draw boundaries of the cases that are in P and cases that are NP-Hard.
There are essentially two ways in which the problem can be restricted or constrained. The first is
to consider only a specific number of posets, say k. The problem when k = 1, or the 1-Poset Cover
Problem, is in P [10]. The computational complexity of the problem when k = 2, or the 2-Poset Cover
Problem, is not yet known. What have been devised are heuristics for the 2-Poset Cover Problem [11].
The other way of restricting the problem is to consider only a specific class of posets according to
their Hasse diagram, such as a tree-poset. The poset in Figure 1 is an example of a tree-poset since its
Hasse diagram is a tree. The restricted cases of the Poset Cover Problem are similarly important as
there may also be instances wherein the class of posets to be reconstructed are known. For example in
paleontology, the goal is to construct evolutionary ordering of fossil sites from sequential data about
the taxa that occur in each site [7,8]. Evolutionary orderings are usually expressed using trees because
evolution starts with an origin and branches out to descendants. Other classes of posets that have
been studied are hammock posets and leveled posets [10]. The 2-Tree-Poset Cover Problem then is a
contrained variation where the goal is to determine if there exist two tree-posets that cover exactly all
of the given set of linear orders.

In our study, we derived properties on posets, which lead to an exact solution for the 2-Poset
Cover Problem. The algorithm runs in exponential time. However, if the posets to be considered are

Algorithms 2019, 12, 219 3 of 11

tree-posets, the running time of the algorithm becomes polynomial. This proves that the 2-Tree-Poset
Cover Problem is also in P.

2. Definitions

We first define here the terms and notations used in the discussion of results.

Definition 1. ancestors(v,P)
Given a poset P = (V,<P) and v ∈ V, the ancestors(v, P) is the set of elements in poset P that precedes

v, i.e., ancestors(v, P) = {a ∈ V|a <P v}.

Definition 2. descendants(v,P)
Given a poset P = (V,<P) and v ∈ V, the descendants(v, P) is the set of elements in poset P that

succeeds v, i.e., descendants(v, P) = {d ∈ V|v <P d}.

Definition 3. cover relation ≺P
Given a poset P = (V,<P), its cover relation is ≺P= {(u, v)|u <P v and there is no w ∈ V where

u <P w <P v}.

Definition 4. cover
The term cover is used in many instances for different objects in the discussion.
Given two elements u, v ∈ V of poset P, we say that u covers v if and only if u ≺P v. In this instance,

(u, v) are also said to be cover pairs in P.
Given a set of linear orders Υ and poset P, we say that P covers Υ if and only if L(P) = Υ.
Given a set of linear orders Υ and a set of posets P∗, we say that P∗ covers Υ if and only if

⋃
Pi∈P∗ L(Pi) = Υ.

Definition 5. Hasse Diagram of Poset H(P)
A poset P = (V,<P) corresponds to a Hasse diagram H(P), which is a directed acyclic graph G with the

elements in V as nodes and pairs in the cover relation of P as edges, i.e., G = (V,≺P).

Definition 6. Tree Poset
A tree-poset P = (V,<P) is a poset whose Hasse diagram is a rooted directed tree with each non-root node

being covered by exactly one node.

Definition 7. parent(v,P)
Given a tree-poset P = (V,<P) and v ∈ V such that v is not the root node, parent(v, P) is the element u

that covers v, i.e., parent(v, P) = u if and only if u ≺P v.

Definition 8. 2-Poset Cover Problem
Instance: A set Υ = {L1, L2, ..., Lm} of linear orders over the set V = {1, 2, 3, ..., n}.
Question: Does there exist a pair of distinct posets P1 = (V,<P1) and P2 = (V,<P2) such that

L(P1) ∪ L(P2) = Υ and L(P1) is neither a subset nor a superset of L(P2)?

Definition 9. 2-Tree-Poset Cover Problem
Instance: A set Υ = {L1, L2, ..., Lm} of linear orders over the set V = {1, 2, 3, ..., n}.
Question: Does there exist a pair of distinct tree-posets P1 = (V,<P1) and P2 = (V,<P2) such that

L(P1) ∪ L(P2) = Υ and L(P1) is neither a subset nor a superset of L(P2)?

Definition 10. comparable and incomparable
Given a poset P = (V,<P) and elements u, v ∈ V, u and v are comparable, denoted by u ⊥ v if u <P v

or v <P u. Otherwise, u and v are incomparable, denoted by u||Pv.

Algorithms 2019, 12, 219 4 of 11

3. Theoretical Bases

Before we discuss the algorithms, we present the following lemmas and theorems that serve as
bases in devising the algorithms.

Lemma 1. Given posets P1 = (V,<P1) and P2 = (V,<P2), if <P1⊆<P2 , then L(P2) ⊆ L(P1).

Proof. Let the linear order L be a linear extension of P2, i.e., L ∈ L(P2). By definition of linear
extension, <P2⊆<L. Since <P1⊆<P2 , then by transitivity, <P1⊆<L. This implies that L ∈ L(P1).
Hence, L(P2) ⊆ L(P1).

Given a pair that is incomparable in P, say a ‖P b, we know that there are some linear extensions
where a < b while b < a in the remaining ones. In other words, we can partition Υ into Υ1 =

{L ∈ L(P)|a <L b} and Υ2 = {L ∈ L(P)|b <L a}. The next theorem shows that there exists
posets P1 = (V,<P1), P2 = (V,<P2) that cover Υ1 and Υ2, respectively. Moreover, we can derive the
relationship of <P1 and <P2 from <P, which is also given in the following theorem.

Theorem 1. Consider a poset P = (V,<P) and distinct elements a, b ∈ V where a||Pb.
Let Υ1 = {L ∈ L(P)|a <L b} and Υ2 = {L ∈ L(P)|b <L a}. Moreover, let

<A= {(x, y)|x ∈ {a} ∪ ancestors(a, P), y ∈ {b} ∪ descendants(b, P)} (1)

<B= {(x, y)|x ∈ {b} ∪ ancestors(b, P), y ∈ {a} ∪ descendants(a, P)} (2)

Then, there exist posets P1 = (V,<P1) and P2 = (V,<P2) where <P1=<P ∪ <A and <P2=<P ∪ <B
such that L(P1) = Υ1 and L(P2) = Υ2. Moreover, in terms of cover relation,

≺P1= {(a, b)}∪ ≺P \({(u, b) ∈≺P |u <P a} ∪ {(a, v) ∈≺P |b <P v}) (3)

≺P2= {(b, a)}∪ ≺P \({(u, a) ∈≺P |u <P b} ∪ {(b, v) ∈≺P |a <P v}). (4)

To illustrate the theorem, consider the posets P, P1 and P2 with Hasse diagrams in Figure 2.
Since 3||P4, let us take elements 3 and 4 as a and b in the theorem, respectively. If we generate L(P),
we have the following linear extensions.

(1, 2, 3, 4, 5, 6) (1, 2, 4, 3, 5, 6)

(1, 2, 3, 4, 6, 5) (1, 2, 4, 3, 6, 5)

(1, 2, 3, 5, 4, 6) (2, 1, 4, 3, 5, 6)

(2, 1, 3, 4, 5, 6) (2, 1, 4, 3, 6, 5)

(2, 1, 3, 4, 6, 5) (2, 4, 1, 3, 5, 6)

(2, 1, 3, 5, 4, 6) (2, 4, 1, 3, 6, 5)

Figure 2. Example of Theorem 1.

We can partition L(P) into two - Υ1 = {L ∈ L(P)|3 <L 4} and Υ2 = {L ∈ L(P)|4 <L 3}.
Clearly, Υ1 contains all the linear extensions in the left column while Υ2 contains those in the right

Algorithms 2019, 12, 219 5 of 11

column. From the theorem, there exist posets P1 and P2 that cover Υ1 and Υ2, respectively. In our
example, they are the posets P1 = (V,<P1) and P2 = (V,<P2) in Figure 2. Verify that L(P1) = Υ1 and
L(P2) = Υ2. Moreover,

<P1 = <P ∪ {(x, y)|x ∈ {3} ∪ ancestors(3, P), y ∈ {4} ∪ descendants(4, P)}
= {(1, 3), (2, 3), (2, 4), (3, 5), (3, 6), (4, 6), (1, 5), (1, 6), (2, 5), (2, 6)} ∪

{(3, 4), (3, 6), (1, 4), (1, 6), (2, 4), (2, 6)}
= {(1, 3), (2, 3), (2, 4), (3, 5), (3, 6), (4, 6), (1, 5), (1, 6), (2, 5), (2, 6), (3, 4), (1, 4)}

<P2 = <P ∪ {(x, y)|x ∈ {4} ∪ ancestors(4, P), y ∈ {3} ∪ descendants(3, P)}
= {(1, 3), (2, 3), (2, 4), (3, 5), (3, 6), (4, 6), (1, 5), (1, 6), (2, 5), (2, 6)} ∪

{(4, 3), (4, 5), (4, 6), (2, 3), (2, 5), (2, 6)}
= {(1, 3), (2, 3), (2, 4), (3, 5), (3, 6), (4, 6), (1, 5), (1, 6), (2, 5), (2, 6), (4, 3), (4, 5)}

In terms of cover relation, which is the transitive reduction of <P1 and <P2 , we have the following:

≺P1 = {(3, 4)} ∪ ≺P \ ({(u, 4) ∈≺P |u <P 3} ∪ {(3, v) ∈≺P |4 <P v})
= {(3, 4)} ∪ {(1, 3), (2, 3), (2, 4), (3, 5), (3, 6), (4, 6)} \ ({(2, 4)} ∪ {(3, 6)})
= {(3, 4), (1, 3), (2, 3), (3, 5), (4, 6)}

≺P2 = {(4, 3)} ∪ ≺P \ ({(u, 3) ∈≺P |u <P 4} \ {(4, v) ∈≺P |3 <P v})
= {(4, 3)} ∪ {(1, 3), (2, 3), (2, 4), (3, 5), (3, 6), (4, 6)} \ ({(2, 3)} ∪ {(4, 6)})
= {(4, 3), (1, 3), (2, 4), (3, 5), (3, 6)}

Proof. We first show that P1 = (V,<P1) where <P1=<P ∪ <A is a poset. Since P is a poset, then
we know that <P is irreflexive, antisymmetric and transitive. We also know that a and b are distinct
elements. An element x cannot be both in ancestors(a, P) and descendants(b, P), otherwise, a and b are
related in <P. Hence, we can say that <A is also irreflexive and antisymmetric. To show that <P1 is
transitive, suppose (x, y), (y, z) ∈<P1 , then we have the following cases:

• (x, y) ∈<P and (y, z) ∈<P
By transitive property of poset P, (x, z) ∈<P. Hence, (x, z) ∈<P1

• (x, y) ∈ A and (y, z) ∈ A
By the definition of A, y ∈ {a} ∪ ancestors(a, P) and y ∈ {b} ∪ descendants(b, P). It cannot be
that y = a or y = b because of the assumption that a and b are distinct. It cannot also be that
y ∈ ancestors(a, P) and y ∈ descendants(b, P), otherwise the assumption that a||Pb is violated.
Hence, we can say that this case is not possible.

• (x, y) ∈<P and (y, z) ∈ A
By the definition of A, y ∈ {a} ∪ ancestors(a, P) and z ∈ {b} ∪ descendants(b, P). If y = a,
then x ∈ ancestors(a, P). Hence (x, z) ∈ A and thus, (x, z) ∈<P1 . On the other hand, if y ∈
ancestors(a, P), then (y, a) ∈<P. By the transitive property of <P, (x, a) ∈<P. In other words,
x ∈ ancestors(a, P). Hence, (x, z) ∈ A and thus, (x, z) ∈<P1 .

• (x, y) ∈<A and (y, z) ∈<P
By the definition of A, x ∈ {a} ∪ ancestors(a, P) and y ∈ {b} ∪ descendants(b, P). If y = b,
then z ∈ descendants(b, P). Hence (x, z) ∈ A and thus, (x, z) ∈<P1 . On the other hand, if y ∈
descendants(b, P), then (b, y) ∈<P. By the transitive property of <P, (b, z) ∈<P. In other words,
z ∈ descendants(b, P). Hence (x, z) ∈ A and thus, (x, z) ∈<P1 .

Algorithms 2019, 12, 219 6 of 11

From these cases, we can say that <P1 is transitive. Hence, <P1 is a poset. In a similar way, we can
also show that <P2 is a poset.

Next, we show that L(P1) = Υ1 by showing that L(P1) ⊆ Υ1 and Υ1 ⊆ L(P1).
To prove the first direction, suppose L ∈ L(P1). Then <P1⊆<L. This implies that a <L b.

Since <P⊆<P1 , then we can also say that <P⊆<L. This means, L ∈ L(P). Hence, L ∈ Υ1.
To prove the other direction, suppose L ∈ Υ1. Then, L ∈ L(P) and a <L b. Now, let x <P1 y.

It suffices to show that x <L y. This clearly holds if x <P y, since L ∈ L(P). Otherwise, x <A y, which
implies that (x = a or x <P a) and (b = y or b <P y), whence (x = a or x <L a) and (b = y or b <L y).
In any case, since a <L b, we get x <L y by transitivity.

In a similar way, it can also be shown that L(P2) = Υ2.
Now, let us determine the cover relation ≺P1⊆<P1 . We first determine which pairs (x, y) ∈<A are

cover pairs in P1. If (x, y) = (a, b), we know that by definition of <A, there exists no w ∈ V such that
(a, w) ∈<A and (w, b) ∈<A, otherwise a <P b. Since a ‖P b, then we also know that there exists no
w ∈ V such that (a, w) ∈<A and (w, b) ∈<A. Hence, (a, b) ∈≺P1 . On the other hand, any other value
of (x, y) in <A will lead to (x <P1 a <P1 b <P1 y), (x = a <P1 b <P1 y) or (x <P1 a <P1 b = y), which all
imply that (x, y) /∈≺P1 . Hence, the only pair in <A that is covered in P1 is (a, b). Now, we know that
<P corresponds to ≺P. Hence, ≺P1 is the transitive reduction of {(a, b)}∪ ≺P. To get the transitive
reduction, we have to elimate pairs in ≺P that are not in ≺P1 because the addition of (a, b) no longer
makes them covered. These are the following:

• u ≺P b where u <P a
In this case u <P1 a <P1 b, hence, (u, b) /∈≺P1 .

• (a ≺P v) where b <P v
In this case a <P1 b <P1 v, hence, (a, v) /∈≺P1

Hence, ≺P1= {(a, b)}∪ ≺P \{{(u, b) ∈≺P |u <P a} ∪ {(a, v) ∈≺P |b <P v}}. In a similar way,
we can derive the formula for ≺P2 .

Corollary 1. If the poset P = (V,<P) in Theorem 1 is a tree-poset, then Equations (3) and (4) become
Equations (5) and (6), respectively.

≺P1=

{
{(a, b)}∪ ≺P, if parent(b, P) ||P a

{(a, b)}∪ ≺P \{(parent(b, P), b)}, if parent(b, P) <P a
(5)

≺P2=

{
{(b, a)}∪ ≺P, if parent(a, P) ||P b

{(b, a)}∪ ≺P \{(parent(a, P), a)}, if parent(a, P) <P b
(6)

Proof. From Theorem 1, ≺P1= {(a, b)}∪ ≺P \({(u, b) ∈≺P |u <P a} ∪ {(a, v) ∈≺P |b <P v}).
First, we show that {(a, v) ∈≺P |b <P v} = ∅ if P is a tree-poset. Suppose there exists such v where
a ≺P v and b <P v. Since, every non-root node in a tree-poset is covered by only one element, then only
a covers v. Then it must be that b <P a, so that b <P v. This is a contradiction to the assumption that
a||Pb. Hence, {(a, v) ∈≺P |b <P v} = ∅.

Next, we examine the set {(u, b) ∈≺P |u <P a}. If P is a tree-poset, then there exists only one
possible u that covers b, which is parent(b, P). Hence, we have two possibilities. If parent(b, P) <P a
then ≺P1= {(a, b)}∪ ≺P \{(parent(b, P), b)}. Note that a 6<P parent(b, P), otherwise a <P b. Hence,
the only other condition is when parent(b, P)||Pu. With this condition, Equation (3) then becomes
≺P1=≺P ∪{(a, b)}.

We can prove Equation (6) in a similar way.

Algorithms 2019, 12, 219 7 of 11

4. Algorithm for the 2-Poset Cover Problem

As mentioned earlier, there is already a polynomial-time solution for the 1-Poset Cover
Problem [10]. We can determine in O(mn2) time, where m is the number of linear orders over a
base set of n elements, the poset that covers a given set of linear orders. Let us denote the algorithm
for the 1-Poset Cover Problem as GeneratePoset. The input to GeneratePoset is a set of linear orders
and it returns a poset, if there exists such, that covers the input; otherwise it returns null. Now, for the
2-Poset Cover Problem with input Υ, a brute-force algorithm is then to determine Υ1, Υ2 ⊆ Υ such that
Υ1 ∪ Υ2 = Υ and then use GeneratePoset to determine if there is a poset that covers Υ1 and a poset that
covers Υ2. Since there are 3m possibilities for values of Υ1 and Υ2, the brute-force algorithm entails a
running time of O(3mmn2).

Theorem 1 suggests a strategy of partitioning Υ. Given a pair (a, b) ∈ V ×V, we can partition Υ
into Υ1 = {L ∈ Υ|a <L b} and Υ2 = {L ∈ Υ|b <L a}. Suppose there exist two posets, say P = (V,<P)

and P′ = (V,<P′) that cover Υ. If (a, b) ∈<P and (b, a) ∈<P′ , then we just have partitioned Υ perfectly
because Υ1 = L(P) and Υ2 = L(P′). Hence, we can determine P and P′ using GeneratePoset with
Υ1 and Υ2 as inputs, respectively. This is executed in Lines 7 and 8 of Algorithm 1. However, such a
pair does not always exist. There can be also instances where a ⊥P b and a||P′b and vice versa—there
also exists a different pair, say (c, d) where c||Pd and c ⊥P′ d. Without lost of generality on a ⊥P b,
suppose a <P b. Then, if we apply the same partitioning strategy, Υ1 = L(P) ∪ {L ∈ L(P′)|a <L b}
and Υ2 = {L ∈ L(P′)|b <L a}. We are not sure if there exists a poset that covers Υ1, however, we are
sure from Theorem 1 that there exists a poset that covers Υ2, say P2. Moreover, with the use of the
equations in the Theorem, we can determine or reconstruct the relation of P′ from P2. These are
executed in Lines 22–32. We can also determine P in a similar way with the pair (c, d). This is executed
in Lines 10–20 in the Algorithm.

Theorem 2. Algorithm 1 produces a solution to the 2-Poset Cover Problem in O(2nmn + mn4 + m2) time.

Proof. Let P and P′ be the two different posets that cover Υ, i.e., L(P) ∪ L(P′) = Υ. In the following,
we want to show that P and P′, if there exist such, can be determined and generated by the 2-Poset
Cover Algorithm.

With the assumption that P 6= P′ means also that <P 6=<P′ , then there must exist, without loss
of generality, at least one (a, b) such that (a, b) ∈<P but (a, b) /∈<P′ . On the other hand, there must
also exist (c, d) such that (c, d) ∈<P′ but (c, d) /∈<P, otherwise, <P′⊂<P and by Lemma 1, Υ can be
covered by a single poset P′.

Let us first take the case where (a, b) ∈<P but (a, b) /∈<P′ . With this, we have two further cases.

1. (b, a) ∈<P′

In this case, Υ1 = L(P) and Υ2 = L(P′). Hence, posets P1 = P and P2 = P′ can be generated in
Lines 5 and 6, respectively and are returned in Line 8.

2. (b, a) /∈<P′

In this case, a||P′b. Hence, there exist linear extensions of P′ where a < b and linear extensions
where b > a. Let E = {L ∈ L(P′)|a <L b} and F = {L ∈ L(P′)|b <L a}. This implies that
Υ1 = L(P) ∪ E and Υ2 = F. Let P1 and P2 be the return of GeneratePoset for Υ1 and Υ2 in Lines 4
and 5, respectively.

We know that P2 is not null because from Theorem 1 there exists a poset that covers Υ2. Moreover,
we can also reconstruct P′ from P2 using Equation (4), i.e., ≺P′=≺P2 \{(b, a)} ∪ {C ∪ D} where
C = {(u, a) ∈≺P′ |u <P′ b} and D = {(b, v) ∈≺P′ |a <P′ v}.

In reconstructing P′ from P2, let P3 be our working poset. First, we let ≺P3=≺P′ \{(b, a)} and
if L(P3) ⊂ Υ, then we can already disregard the components {C ∪ D} of ≺P′ . This is because
≺P2 \{(b, a)} ⊂≺P2 \{(b, a)} ∪ {C ∪ D}. With Lemma 1, whatever set of linear orders that are
covered by the poset with the later cover relation can be already covered by the poset with the

Algorithms 2019, 12, 219 8 of 11

former cover relation. These are executed with the “If” condition in Lines 23–24. Otherwise
(the else part), we have to determine C and D. However, in the Algorithm, what we have
only generated and know is the relation of P2. We do not know P′ yet hence we also do not
know C and D. However, we know that C ⊆ {(u, b) ∈<P′} and D ⊆ {(a, v) ∈<P′}, and with
Equation (2), (u, b) ∈<P2 and (a, v) ∈<P2 . Hence, C ⊆ A where A = {(u, b) ∈<P2} and D ⊆ B
where B = {(a, v) ∈<P2}. Hence, we can try all possible subsets of A and B for ≺P3 . This is what
we have done in Lines 26–32. Every possible poset from each combination is a candidate poset
and added to P∗.

Algorithm 1: 2-Poset Cover Algorithm

Input: A set Υ = {L1, L2, ..., Lm} of linear orders on V = {1, 2, ..., n}
Output: A pair of posets {P, P′}, P 6= P′ where L(P) ∪ L(P′) = Υ and L(P) is neither a subset nor a

superset of L(P′), if there exist such.
1 P∗ := ∅
2 for each pair (a, b) ∈ V ×V do
3 Υ1 := {L ∈ Υ|a <L b}
4 Υ2 := {L ∈ Υ|b <L a}
5 P1 := GeneratePoset(Υ1)

6 P2 := GeneratePoset(Υ2)

7 if P1 6= null and P2 6= null then
8 return {P1, P2}
9 else if P1 6= null then

10 P3 := (V,<P3) where ≺P3=≺P1 \{(a, b)}
11 if L(P3) ⊂ Υ then
12 P∗ := P∗ ∪ {P3}
13 else
14 A := {u ∈ V|u <P1 a}
15 B := {v ∈ V|b <P1 v}
16 for each C ⊆ A do
17 for each D ⊆ B do
18 P3 := (V,<P3) where ≺P3=≺P1 \{(a, b)} ∪ {{(c, a)|c ∈ C} ∪ {(b, d)|d ∈ D}}
19 if L(P3) ⊂ Υ then
20 P∗ := P∗ ∪ {P3}
21 else if P2 6= null then
22 P3 := (V,<P3) where ≺P3=≺P2 \{(b, a)}
23 if L(P3) ⊂ Υ then
24 P∗ := P∗ ∪ {P3}
25 else
26 A := {u ∈ V|u <P2 b}
27 B := {v ∈ V|a <P2 v}
28 for each C ⊆ A do
29 for each D ⊆ B do
30 P3 := (V,<P3) where ≺P3=≺P2 \{(b, a)}∪ {{(c, a)|c ∈ C} ∪ {(b, d)|d ∈ D}}
31 if L(P3) ⊂ Υ then
32 P∗ := P∗ ∪ {P3}
33 for each Pi, Pj ∈ P∗, Pi 6= Pj do
34 if L(Pi) ∪ L(Pj) = Υ then
35 return {Pi, Pj}
36 return null

We can also do the same in determining P when the iteration evaluates the pair (c, d) where
(c, d) /∈<P but (c, d) ∈<P′ .

Lastly, to get P and P′ in P∗, we can try all possible pairs of posets that exactly cover Υ in Lines 33–35.

Algorithms 2019, 12, 219 9 of 11

Now, we determine the running time complexity of the algorithm.
The first and outermost for-loop iterates in O(n2). One dominating execution inside it is the call

to GeneratePoset, which runs in O(mn2) [10]. Another dominating part is the two inner for-loops,
in Lines 16–20 or Lines 28–32, that iterates through all the pairwise combinations of subsets A and
subsets of B. Note that an element cannot be both an ancestor and descendant of a or b. Hence
|A + B| < n. If |A| = t, then |B| is at most n− t. Hence, there are 2t × 2n−t= 2n pairs of their subsets.
Inside the two inner for-loops is a statement that gets all linear extensions of poset, i.e., L(P3). This can
be done in O(mn) by using the algorithm of Pruesse and Ruskey [1]. Hence, the total running time of
the first outermost for-loop is O(mn4 + mn2n).

For the second outermost for-loop, |P∗| ∈ O(m) since the smallest posets (with respect to the
number of linear extensions) are the linear orders themselves. Thus, the second for-loop iterates in
O(m2). Inside it is a set equality testing that can be performed in constant time [12]. Hence, the second
for-loop runs in O(m2).

Thus, the total running time of the algorithm is O(2nmn + mn4 + m2).

The running time of the solution for the 2-Poset Cover Problem is still exponential. But there is
now an improvement from the running time of a brute-force solution, i.e. from a base of 3 to a base of
2 and from exponents in terms of m = |Υ| to exponent in terms of n = |V|. Hence, we can say that for
a large m, Algorithm 1 is much more efficient than a brute-force solution.

In the following, we show that when the posets are tree-posets, the running time of the algorithm
becomes polynomial.

5. Algorithm for the 2-Tree-Poset Cover Problem

From Theorem 2, the part of Algorithm 1 that makes its running-time exponential is determining
the latter components of Equations (3) or (4). However, with Corollary 1, the said components become
simpler if the posets are tree-posets. Hence, we can then modify Algorithm 1 to specifically consider
only tree-posets. The resulting algorithm is Algorithm 2. Consequently, the running time of the
algorithm becomes polynomial. With these results, we can then say that the 2-Tree-Poset Cover
Problem is in P.

Corollary 2. Algorithm 2 produces a solution to the 2-Tree-Poset Cover Problem in O(n5 + mn4 + m2).

Proof. The theoretical bases of Algorithm 2 is the same as Algorithm 1 for the 2-Poset Cover
Problem except that we use Equations (5) and (6) for tree-posets as given in Corollary 1 instead
of Equations (3) and (4) for general posets. Consequently, the running time then of the Algorithm
differs on the following points.

1. B is empty and there is only one element in A that could cover v or u. This follows from
Corollary 1. Hence, |A| = O(n)

2. There is a need to check if the poset is a tree-poset. This can be done in O(n2)

Hence, the inner for-loops runs in O(n(mn + n2)) = O(mn2 + n3). The first outermost for-loop
then run in O(n2(mn2 + n3)) = O(mn4 + n5). The running time of the second-outermost for loop
remains the same, i.e., O(m2). The running time then of the algorithm is O(n5 + mn4 + m2).

Algorithms 2019, 12, 219 10 of 11

Algorithm 2: 2-Tree-Poset Cover Algorithm

Input: A set Υ = {L1, L2, ..., Lm} of linear orders on V = {1, 2, ..., n}
Output: A pair of tree-posets {P, P′}, P 6= P′ where L(P) ∪ L(P′) = Υ and L(P) is neither a subset nor a

superset of L(P′), if there exist such.
1 P∗ := ∅

for each pair (a, b) ∈ V ×V do
2 Υ1 := {L ∈ Υ|a <L b}
3 Υ2 := {L ∈ Υ|b <L a}
4 P1 := GeneratePoset(Υ1)

5 P2 := GeneratePoset(Υ2)

6 if P1 6= null and P2 6= null then
7 if P1 is a tree and P2 is a tree then
8 return {P1, P2}
9 else if P1 6= null then

10 P3 := (V,<P3) where ≺P3=≺P1 \{(a, b)}
11 if L(P3) ⊂ Υ and P3 is a tree then
12 P∗ := P∗ ∪ {P3}
13 else
14 A := {u ∈ V|u <P1 a}
15 for each u ∈ A do
16 P3 := (V,<P3) ≺P3=≺P1 \{(a, b)} ∪ {(u, b)}
17 if L(P3) ⊂ Υ and P3 is a tree then
18 P∗ := P∗ ∪ {P3}
19 else if P2 6= null then
20 P3 := (V,<P3) where ≺P3=≺P2 \{(b, a)}
21 if L(P3) ⊂ Υ and P3 is a tree then
22 P∗ := P∗ ∪ {P3}
23 else
24 A := {u ∈ V|u <P2 b}
25 for each each u ∈ A do
26 P3 := (V,<P3) where ≺P3=≺P2 \{(b, a)} ∪ {(u, a)}
27 if L(P3) ⊂ Υ and P3 is a tree then
28 P∗ := P∗ ∪ {P3}
29 for each Pi, Pj ∈ P∗, Pi 6= Pj do
30 if L(Pi) ∪ L(Pj) = Υ then
31 return {Pi, Pj}
32 return null

6. Conclusions

In this study, we explored the Poset Cover Problem, a hard problem that is relevant in the field of
data mining. It is already known that we can determine a single poset that covers a given set of linear
orders in polynomial time. In this paper, we extended the knowledge on the problem by investigating
the hardness of the case where we want to determine two posets, if they exist, that cover a set of linear
orders, which we called the 2-Poset Cover Problem.

We discovered properties on posets that lead to an exact solution for the 2-Poset Cover Problem.
The algorithm runs in O(2nmn + mn4 + m2) where m is the number of linear orders over a based set
of n elements. When m > n, the algorithm is significantly faster than a brute-force solution, which
runs in O(3mmn2). Since the algorithm runs in exponential time, the complexity class that the 2-Poset
Cover Problem belongs to remains unknown. However, when the posets to be considered are tree
posets, which can be treated as combinatorial models for evolutionary orderings, the running time of
the algorithm becomes polynomial. Hence, this proves that the more restricted case, which we called
2-Tree-Poset Cover Problem, belongs to the computational complexity class P.

Algorithms 2019, 12, 219 11 of 11

Author Contributions: Conceptualization, I.O. and P.F.J.; Formal analysis, I.O.; Investigation, I.O., P.F.J. and H.A.;
Supervision, H.A.; Writing—original draft, I.O.; Writing—review and editing, P.F.J. and H.A.

Funding: This research was supported by Department of Science and Technology - Engineering Research and
Development for Technology (DOST-ERDT).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Pruesse, G.; Ruskey, F. Generating linear extensions fast. SIAM J. Comput. 1994, 23, 373–386. [CrossRef]
2. Kalvin, A.D.; Varol, Y.L. On the generation of all topological sortings. J. Algorithms 1983, 4, 150–162.

[CrossRef]
3. Heath, L.S.; Nema, A.K. The poset cover problem. Open J. Discret. Math. 2013, 3, 101–111. [CrossRef]
4. Lee, A.; Wilson, M. A combinatorial method for analyzing sequential firing patterns involving an arbitrary

number of neurons based on relative time order. J. Neurophysiol. 2005, 92, 2555–2573. [CrossRef] [PubMed]
5. Wiggins, C.; Nemenman, I. Process pathway via time series analysis. Exp. Mech. 2003, 43, 361–370. [CrossRef]
6. Unnikrishnan, K.; Ramakrishnan, N.; Sastry, P.; Uthurusamy, R. Network reconstruction from dynamic data.

ACM Sigkdd Explor. Newsl. 2006, 8, 90–91. [CrossRef]
7. Puolamäki, K.; Fortelius, M.; Mannila, H. Seriation in paleontological data: Using markov chain monte carlo

methods. PLoS Comput. Biol. 2006, 2, e6. [CrossRef] [PubMed]
8. Mannila, H. Finding total and partial orders from data for seriation. Lect. Notes Comput. Sci. 2008, 5255, 16–25.
9. Arkin, A.; Sheng, P.; Ross, J. A test case of correlation metric construction of a reaction pathway from

measurements. Science 1997, 277, 1275–1279. [CrossRef]
10. Fernandez, P.L.; Heath, L.S.; Ramakrishnan, N.; Tan, M.; Vergara, J.P. Mining posets from linear orders.

Discret. Math. Algorithms Appl. 2013, 5, 1350030. [CrossRef]
11. Sanchez, G.A.; Fernandez, P.L.; Vergara, J.P. Some heuristics for the 2-poset cover problem. Philipp. Comput. J.

2014, 9, 26–32.
12. Yellin, D. Representing sets with constant time equality testing. J. Algorithms 1992, 13, 353–373. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1137/S0097539791202647
http://dx.doi.org/10.1016/0196-6774(83)90042-1
http://dx.doi.org/10.4236/ojdm.2013.33020
http://dx.doi.org/10.1152/jn.01030.2003
http://www.ncbi.nlm.nih.gov/pubmed/15212425
http://dx.doi.org/10.1007/BF02410536
http://dx.doi.org/10.1145/1233321.1233335
http://dx.doi.org/10.1371/journal.pcbi.0020006
http://www.ncbi.nlm.nih.gov/pubmed/16477311
http://dx.doi.org/10.1126/science.277.5330.1275
http://dx.doi.org/10.1142/S1793830913500304
http://dx.doi.org/10.1016/0196-6774(92)90044-D
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Definitions
	Theoretical Bases
	Algorithm for the 2-Poset Cover Problem
	Algorithm for the 2-Tree-Poset Cover Problem
	Conclusions
	References

