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Abstract: This paper proposes a model predictive control method based on dynamic multi-objective
optimization algorithms (MPC_CPDMO-NSGA-II) for reducing freeway congestion and relieving
environment impact simultaneously. A new dynamic multi-objective optimization algorithm
based on clustering and prediction with NSGA-II (CPDMO-NSGA-II) is proposed. The proposed
CPDMO-NSGA-II algorithm is used to realize on-line optimization at each control step in model
predictive control. The performance indicators considered in model predictive control consists of total
time spent, total travel distance, total emissions and total fuel consumption. Then TOPSIS method
is adopted to select an optimal solution from Pareto front obtained from MPC_CPDMO-NSGA-II
algorithm and is applied to the VISSIM environment. The control strategies are variable speed
limit (VSL) and ramp metering (RM). In order to verify the performance of the proposed algorithm,
the proposed algorithm is tested under the simulation environment originated from a real freeway
network in Shanghai with one on-ramp. The result is compared with fixed speed limit strategy and
single optimization method respectively. Simulation results show that it can effectively alleviate traffic
congestion, reduce emissions and fuel consumption, as compared with fixed speed limit strategy and
classical model predictive control method based on single optimization method.

Keywords: freeway transportation; congestion control; environment impact; dynamic multi-objective
optimization; model predict control; clustering and prediction

1. Introduction

As people’s demand for driving increases, freeways have rapidly reached saturation and
traffic congestions occur frequently. In China, reoccurred congestion takes up a large proportion,
contributing to wasting of people’s time, as well as economic loss. In addition, due to serious
environmental pollution and resources shortages, it is important to pay attention to emissions and
fuel wastage resulting from traffic congestion. Therefore, it is important to handle congestion through
reasonable freeway control methods, considering the limited resources. This paper proposes a more
scientific and effective control method to alleviate congestion, reduce pollution and energy wastage.

This paper mainly focuses on the freeway control in a real network with an on-ramp. It uses
METANET model to simulate traffic behaviors of the freeway, and VT-micro for estimating emissions
and fuel consumption. The authors of [1] provide a general framework to integrate these two kinds
of models, the macroscopic traffic flow model METANET and the microscopic emission and fuel
consumption model VT-micro, resulting in the so called the “VT-macro” model. Most of the papers
consider the variable speed limit (VSL) as continuous values, however, in this paper, the VSL values
are treated as discrete values following the ideas in [2], which, not only shows a good performance,
but also keeps the computation time reduced.
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In this article, a model predictive control method based on dynamic multi-objective optimization
algorithm, named as MPC_CPDMO-NSGA-II, is designed and tested under the simulation environment.
Furthermore, in order to provide more reasonable and effective freeway control solutions, a new
dynamic multi-objective optimization algorithm based on clustering and prediction strategy, named as
CPDMO-NSGA-II, is proposed to realize on-line optimization in model predictive control at each
control step.

The aim of the paper is to relieve freeway congestion, reduce fuel consumption and emission
simultaneously based on a model predictive control method. Considering that the essence of the freeway
control problem mentioned above is a multi-objective control problem, four performance indicators are
considered in this paper, which is to minimize the total time spent, total distance, fuel consumption and
emissions simultaneously. The classical way of dealing with multiple conflict objectives in the model
predictive control method is to sum up the different objectives into a single comprehensive performance
indication by a predefined threshold. Its aim is to translate the multi-objective problem into a single
objective control problem. Although the weight sum method is easy to realize, the threshold must
be predefined according to expert experience and better trade-off among different conflict objectives
cannot be guaranteed, especially when the search space is non-linear, non-convex, discontinuous, etc.
Therefore, it is meaningful to use a multi-objective optimization algorithm to optimize the multiple
conflict objectives simultaneously in the model predictive control method. At the same time, since the
model predictive control method has the characteristics of model prediction, receding horizon and
feedback correction, it is not enough to replace the weight sum method with the multi-objective
optimization algorithm and solve it using the classical static multi-objective optimization algorithm.
Therefore, a new dynamic multi-objective genetic algorithm, CPDMO-NSGA-II, is proposed in this
paper to realize on-line multi-objective optimization in the model predictive control. There are
two purposes for replacing the weight sum method with the dynamic multi-objective optimization
algorithm, first is to enable the algorithm to adapt to the environmental variation and converge to the
optimal solution at each control step as soon as possible and second is to realize better trade-off among
different multiple objectives.

The contributions of this paper are as follows: (1) Both freeway congestion and environment
impact are optimized simultaneously based on model predictive control method. (2) A dynamic
multi-objective genetic algorithm is proposed to realize better trade-off among multiple objectives in
the model predictive control method. (3) The proposed model predictive control method is tested
under the simulation environment and compared with fixed time speed strategy and single objective
optimization algorithm.

The remainder of this paper is organized as follows. Section 2 provides the literature review.
The macroscopic traffic flow model METANET, the VT-micro model and the integrated VT-macro
model are described in Section 3. Section 4 discuss the proposed model predictive control method based
on dynamic multi-objective optimization algorithm, MPC_CPDMO-NSGA-II. Section 5 describes the
problem formulation in detail. Section 6 discuss the simulation result of the freeway control problem.
Section 7 provides conclusions and future works.

2. Literature Review

Model predictive control (MPC) is a new control algorithm that was proposed in the late 1970s.
It is a control algorithm based on model prediction [3]. When a traffic light is placed at the on-ramp of
a freeway, a ramp metering is set-up. The traffic light turns over between the red and the green phase.
The number of vehicles that enters the freeway through the on-ramp is controlled by the variation
of the timing of the red and the green phases. In order to keep the traffic density below the critical
density, the inflow of vehicles onto the freeway is limited by the ramp metering set-up. Then, the traffic
breakdown and congestion is avoided. A waiting queue of vehicles is formed at the on-ramp whenever
the traffic demand is larger than the number of cars allowed to enter the freeway [4].
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MPC is a commonly-used method in freeway control [5,6]. It is usually solved through resilient
back propagation [7] and sequence quadratic programming [8]. MPC is quite often designed for
linear or linearized system with linear constraints in order to solve optimization problem easily.
However, the on-line optimization problem in MPC with the characteristics of non-linearity, non-convex
and complicated constraints is considered in some existed research recently. For example, the authors
of [2,9], introduce genetic algorithm (GA) into MPC to realize on-line optimization. In order to
acquire better performance for freeway control, some studies use multiple indicators for evaluation.
These performance indicators are considered as objectives in optimization. Some of them are conflicts
with each other [10,11]. However, most of the papers adopt weighted sum methods to transfer the
multi-objective problem into single-objective problem [12,13]. However, it performs worse in solving
multi-objective problems. Moreover, repeated experiments are necessary to determine proper weighs.
Thus, the authors of [14] adopt a fast and elitist multi-objective genetic algorithm (NSGA-II) [15],
which is verified as an effective algorithm to alleviate congestions. Considering that the essence of the
on-line optimization problem in MPC at each control is a dynamic multi-objective problem, a new
solution needs to be provided by the controller in each control step. Therefore, static multi-objective
optimization algorithms, such as NSGA-II, cannot rapidly respond to the change of environment.
Thus, dynamic multi-objective optimization algorithm is used to realize on-line optimization in model
predictive control at each control step.

As for dynamic multi-objective optimization algorithm (DMOAs), it is important to maintain or
increase population diversity to search for new Pareto front in the current environment. It spends a
long time to be converged. Prediction is an effective strategy to shorten the time of convergence [16].
It tracks the changed Pareto front through historical individuals to provide guidance direction in
evolution, which also increases the diversity of population. The authors of [17] first employ prediction
models in economics, such as AR and VAR. But the premise is that historical data have statistical
characteristics. The authors of [18] then propose four general methods, RND, VAR, PRE and V&P.
They are easier to operate than AR and VAR. However, the performance of distribution they considered
and the historical information they offered are limited. The authors of [19,20] design a strategy called
clustering prediction. The individual elements of prediction are replaced with centers of clustering,
which are regarded as the representatives of the Pareto front. But the performance is related to the
method of clustering.

We will discuss model predictive control method based on dynamic multi-objective optimization
algorithm in the next section. Traditional, the minimum reference deviation, minimum variation or
cost of some parameters, minimum control action is used as the multiple objectives in model predictive
control, and the multiple objectives are combined as a single objective problem by the weight sum
method. In order to get optimal solutions, the weight used in the objectives in model predictive control
is decided by expert’s experience or trial-and-error normally, while in some cases, the weight is adjusted
dynamically. This study makes the first attempt to combine model predictive control with a dynamic
multi-objective genetic algorithm to find Pareto optimal solutions for freeway congestion control
problem. Then TOPSIS method is adopted to select the solution to be implemented. In order to assess
the performance of the proposed approach [21], the proposed algorithm is tested under the simulation
environment originated from a real freeway network in Shanghai with one on-ramp. Compared with
classical MPC approaches that deal with multiple objectives by the weighted sum approach, the model
predictive control method based on dynamic multi-objective genetic algorithm can better fulfill goals
of alleviating traffic congestion, reducing emissions and fuel consumption although it may also be
computationally expensive. With the rapid development of multi-objective evolutionary algorithms,
our study suggests the potential of model predictive control method based on dynamic multi-objective
genetic algorithm to deal with a wide range of freeway congestion control problems in the future.

In this paper, the METANET model is used to predict the traffic states, the integrated VT-macro
model is used to calculated total emissions and fuel consumptions. Therefore, we will discuss the
METANET model and VT- macro model first, then the multi-objective control problem solved by
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MPC_CPDMO-NSGA-II algorithm and related constraints will be described later. Finally, the simulation
result will be discussed. The acronym List are given in Appendix A.

3. Traffic Flow Models

3.1. METANET Model

METANET is a widely used macroscopic second-order traffic flow model. It can simulate traffic
behaviors at specific time and location of the highway with arbitrary topology and characteristics,
including fundamental segments, on-ramp, and intersections [2]. Besides, it can replicate traffic waves
at bottlenecks, as well as capacity degradation caused by congestions. It discretizes the traffic flow
temporally and spatially. The time interval is Ts. As shown in Figure 1, the highway m is spatially
divided into Nm segments with equal length Lm. Average density ρm,i(k), speed vm,i(k) and flow qm,i(k)
are three basic traffic variables. k = 0, 1, . . . , K, where K is the timeline. METANET with VSL and RM
can be expressed as follows:
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The average density is calculated as follows:

ρm,i(k + 1) = ρm,i(k) +
Ts

λmLm
[qm,i−1(k) − qm,i(k) + qo(k)], (1)

where λm is the number of lanes; ρm,i(k) is the density of segment i at kTs; and qo(k) is the flow entered
into mainline from on-ramps.

The average speed is calculated as follows:

vm,i(k + 1) = vm,i(k) +
Ts
τ {V[ρm,i(k)] − vm,i(k)

}
+ Ts

Lm
vm,i(k)[vm,i−1(k)

− vm,i(k)] −
υTs
τLm

ρm,i(k+1)−ρm,i(k)
ρm,i(k)+κ

−
δTsvm,i(k)qo(k)

Lmλm[ρm,i(k)+κ]
(2)

where υ, τ, δ and κ are parameters of the model. vm,i(k) represents the speed of segment i at kTs.

V[ρm,i(k)] is average desired speed. − δTsvm,i(k)qo(k)
Lmλm[ρm,i(k)+κ]

denotes the decreased of speed resulted by entered
vehicles from on-ramps.

The average flow is calculated as follows:

qm,i(k) = λmρm,i(k)vm,i(k). (3)
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The average desired speed is calculated as follows:

V[ρm,i(k)] = min(v f ,m exp[−
1
αm

(
ρm,i(k)
ρcr,m

)
αm

)], (1 + a)vctrl,i), (4)

where αm is parameters of METANET; a is non-compliance rate; ρcr,m is critical density; v f ,m is free
speed; and vctrl,i is the value of VSL executed on segment i.

Due to the effects of congestion, capacity of origins or traffic lights, if demands exceed the capacity
of some segment received, queue will be formed, marked as wo. Take the on-ramp o located in segment
i for example, the queue length of origins is calculated as follows:

wo(k + 1) = wo(k) + Ts · [do(k) − qo(k)] (5)

qo(k) = ro(k)q̂o(k) (6)

q̂o(k) = min
{
q̂o,1(k), q̂o,2(k)

}
(7)

q̂o,1(k) = do(k) + wo(k)/Ts (8)

q̂o,2(k) = Qomin
{

1,
ρmax − ρm,i(k)
ρmax − ρcr,m

}
, (9)

where ρmax is the maximal density. The outflow qo(k) depends on the enforced RM and traffic variables
of segments in which on-ramps located. If ro(k) ∈ [rmin, 1], it denotes the RM rate. If there is RM,
the flow ro(k) ultimately left on-ramp qo(k) in [kTs, (k + 1)Ts] is defined as a portion of maximum
outflow q̂o(k) without RM. ro(k) = 1 denotes RM is absent, otherwise ro(k) < 1. If q̂o,1(k) < q̂o,2(k),
q̂o(k) is determined by the demand do at kTs. Otherwise, it depends on capacity Qo when the density of
the mainline is under-critical, i.e., ρm,1(k) < ρcr,m, or the reduced capacity result from congestion of the
mainline, i.e., ρm,1(k) > ρcr,m.

3.2. Integrating METANET Model with VT-micro Model

In this paper, the VT-macro model proposed in [1], which integrated the METANET model and
the VT-micro, is used to calculated total emissions and fuel consumptions.

In order to balance the performances of computation time and accuracy, the VT-micro model
proposed by the authors of [22] is used to estimate emissions and fuel consumption in this paper.
Figure 2 describes the temporal and spatial traffic flow in the METANET model.
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The instantaneous speed of segment i at kTs in the VT-micro model can be replaced by average
speed vm,i(k) in the METANET model. at

m,i(k) is defined as the temporal acceleration in the segment i
of link m at time kTs, while as

m,i,i+1(k) is spatial acceleration of the vehicles leaving segment i to segment
i+1 of a link m. The corresponding number of vehicles is nt

m,i(k) and ns
m,i,i+1(k). As for the on-ramp,
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its acceleration and number of vehicles are marked as aon,o and non,o. As shown in Figure 2. Following
equations calculate the accelerations and the number of vehicles:

at
m,i(k) =

vm,i(k + 1) − vm,i(k)
Ts

(10)

as
m,i,i+1(k) =

vm,i+1(k + 1) − vm,i(k)
Ts

(11)

nt
m,i(k) = Lmλmρm,i(k) − Tsqm,i(k) (12)

ns
m,i,i+1(k) = Tsqm,i(k) (13)

aon,o(k) = [vm,i(k + 1) − von,o(k)]/Ts (14)

non,o(k) = Tsqon,o(k), (15)

where von,o denotes the average speed of the on-ramp o, and qon,o is the outflow of o. It is noted that
there is no von,o in the METANET model. Therefore, considering the regularity of traffic at peak time,
this paper will estimate spatial acceleration of on-ramp based on history data [1]. Following equations
calculate the emissions and fuel consumption with temporal acceleration:

Jt
y,m,i(k) = Tsnt

m,i(k) exp(Vm,i(k)PyAt
m,i(k)) (16)

Vm,i(k) = [ 1 vm,i(k) (vm,i(k))
2 (vm,i(k))

3 ] (17)

At
m,i(k) = [ 1 at

m,i(k) (at
m,i(k))

2
(at

m,i(k))
3
]
T

, (18)

where y ∈
{
CO, HC, NOx, Fuel consumption

}
. Py is parameter matrix indexed from [1]. In this paper,

the model proposed in [1] is used to consider the environmental effect, in which these four emission
and fuel consumption factors are considered.

VT-micro emission model does not mention the estimated value of CO2 emission rate.
However, the authors of [1] show that there is an almost affine relationship between fuel consumption
and CO2 emission. Then CO2 emission can be computed as follows:

Jα,CO2(l) = δ1vα(l) + δ2 Jα, f uel(l), (19)

where Jα,CO2(l) and Jα, f uel(l) denote the CO2 emission rate and fuel consumption rate of vehicle
α for time step l respectively, δ1 and δ2 are model parameters. Although CO2 is related to fuel
consumption [23], the model considered in this paper is unfit for considering the environmental effect
on the prospect of CO2. It may take many changes by considering it in the model, therefore, we will
only address this in future study.

It is the same to calculate emissions and fuel consumption with other two accelerations, named as
Js
y,m,i(k) and Jon,o(k). Thus, total emissions for various gases or fuel consumption at kTs of the freeway

m is described as follows:

Jy =
∑

k

∑
m

∑
i

(Jt
y,m,i(k) + Js

y,m,i(k)) +
∑

k

∑
o∈Oramp

Jon,o(k) (20)

4. The Proposed Algorithm: MPC_CPDMO-NSGA-II

4.1. Framework of MPC_CPDMO-NSGA-II

In MPC, the controller is required to offer a solution based on current traffic conditions.
Thus, the essence of freeway control problem is to realize on-line dynamic multi-objective optimization
in model predictive control at each control step. Thus, dynamic multi-objective optimization is used to
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solve the model predictive control problem to respond to changed environment rapidly, and to improve
the performance of control solutions. In this paper, a new model predictive control method based on
dynamic multi-objective optimization algorithms, named as MPC_CPDMO-NSGA-II is proposed to
solve freeway control problem. Figure 3 shows the framework of the proposed MPC_CPDMO-NSGA-II
algorithm. The difference between the MPC_CPDMO-NSGA-II algorithm and traditional MPC
method is that it introduces dynamic multi-objective optimization algorithm instead of single objective
optimization algorithm in MPC controller design.

Firstly, MPC_CPDMO-NSGA-II are used to provide more effective optimization solutions by
dealing with multiple conflict objectives. Besides, it is more flexible to process constraints in the
optimization period, such as being modified to new objectives optimized. It is easier to be realized in
complex problems than linear relaxation method. Finally, MPC_CPDMO-NSGA-II can rapidly respond
to the variation of traffic flow. For freeway congestion problems, environmental changes typically
mean disturbance, weather conditions, traffic flow variations, etc. In this paper, in the disturbance,
weather condition is not considered in the model, as the traffic flow is given based on on-site history
data. In order to deal with the variation of traffic flow, the dynamic multi-objective genetic algorithm
is used to solve the multi-objective optimization control problem in the model predictive control.
Compared with static multi-objective genetic algorithm, dynamic multi-objective genetic algorithm
can respond to the variation of traffic flow, i.e., environmental changes occur quickly and provide
optimal solutions effectively.

In the MPC_CPDMO-NSGA-II algorithm, the dynamic multi-objective optimization algorithm
will search for new optimal solutions by considering processed historical solutions as the initial
population. If current optimal solutions are similar to the historical one, algorithms will perform a
quick convergence. In contrast to static optimization algorithms, the initial population need to be
re-generated randomly. Therefore, static optimization algorithms have lower efficiency and it is easy
to acquire inaccurate solutions. In addition, MPC_CPDMO-NSGA-II is universal for application to
solve various problems of optimization in the transportation field.Algorithms 2019, 12, x FOR PEER REVIEW 8 of 25 
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4.2. CPDMO-NSGA-II

In this paper, a new dynamic multi-objective optimization algorithm based on clustering
prediction model, named as CPDMO-NSGA-II, will be proposed first, then the environmental
detection method and prediction strategy used in CPDMO-NSGA-II algorithm will be discussed later.
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The CPDMO-NSGA-II algorithm is used to realize on-line optimization in model predictive control at
each control step.

The proposed CPDMO-NSGA-II algorithm is an improvement on the clustering prediction
model based dynamic multi-objective evolutionary algorithm (CPM_DMOEA) proposed in paper [20].
In order to ensure a preferable distribution performance of the Pareto front, this paper first introduces
a notion of reference points [24]. Reference points can describe the distribution of true Pareto front in
several directions. They are used for determining the historical individuals on time series, which can
alleviate the effects on algorithm’s performance resulted from the poor distribution of individuals on
time series, or time series decided by objectives values [19]. However, if true Pareto front is unknown,
the choice of reference point loses its reference. Therefore, the static points are replaced with dynamic
reference lines in this paper. Dynamic reference lines link static points with historical individuals,
which enhance the distribution performance and population diversity simultaneously.

As for clustering prediction, the centers of clustering need to be predicted. The centers of clustering
can describe current Pareto front obtained by dynamic multi-objective optimization algorithm, so it is
reasonable to adopt reference points to determine the historical centers on time series. Besides, there are
two more shortcomings in CPM_DMOEA in paper [20]: (1) The prediction model requires too many
historical individuals, which occupies much storage space; and (2) Gaussian mutation used in shape
prediction has greatly reduced population diversity. Therefore, in this paper, the VAR method,
and the PRE method proposed by the authors of [18], are combined to predict the center of clustering.
Furthermore, Gaussian mutation is also replaced with the mutation operator in CPM_DMOEA [20].

4.2.1. Description of CPDMO-NSGA-II

Figure 4 gives the flowchart of the proposed CPDMO-NSGA-II algorithm. We will describe the
proposed CPDMO-NSGA-II algorithm firstly, then sub-algorithm 1 and sub-algorithm 2 used in the
CPDMO-NSGA-II algorithm will be discussed later, finally, the environmental detection strategy and
the prediction strategy used in the CPDMO-NSGA-II algorithm will be discussed.Algorithms 2019, 12, x FOR PEER REVIEW 10 of 25 
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(1) The CPDMO-NSGA-II algorithm
Step 1: Initialize parameters and population: set maximal iteration max_pop, population size pop,

initial time window t = 1, and generate initial population randomly;
Step 2: If environment changes, namely the value of detect operator exceeds threshold ζ, go to the

sub-algorithm 1 to realize clustering prediction, otherwise, go to step3.
Step 2.1: Set Qt−1 = Qt, Qt = Pt, For population Pt:
Reject n individuals (the proportion is 25% in this paper), and generate n new individuals

Prandom randomly;
If t < 3, remain rest individuals, then go to Step2.3; if not, go to Step2.2, and generate pop − n

individuals through clustering prediction;
Step2.2: Clustering prediction:
Step 2.2.1 Cluster the individuals in population Pt (execute sub-algorithm 1): for population Pt,

getting centers R(k)t, where k = 1, 2, . . . , cnum, cnum is the number of clusters;
Step 2.2.2 Predict the centers of clustering (execute sub-algorithm 2): make association between

R(k)t and R(k)t−1 through algorithm 2, and predict cnum centers R(k)t+1 through Equation (21);
Step 2.2.3 Execute shape prediction: predict the shape of each cluster according to R(k)t+1,

and generate pop − n individuals Ppredict. The operator of shape prediction is x(k)i
t+1 = R(k)i

t+1 + σ,
where σ is mutation operator in NSGA-II, i = 1, 2, . . . , n, n is the dimension of decision vector;

Step 2.2.4 Merge Prandom and Ppredict, Pt+1 = Prandom ∪ Ppredict, as new parent population;
Step2.3: Go to next time window t = t + 1;
Step 3: Go to the process of evolution and selection;
Step3.1: Execute tournament selection, go to the process of evolution:
Step 3.1.1 Execute tournament selection for population Pt, and select pop/2 individuals to form a

pool for crossover;
Step 3.1.2 Execute crossover and mutation for population Pt, and generate child population Ct;
Step 3.2: Merge child and parent populations, Pt

combine = Ct ∪ Pt;
Step 3.2.1 Execute non-dominated sorting for Pt

combine, and calculation crowd distance;
Step 3.2.2 Select pop optimal individuals through the selection operator in NSGA-II, as new parent

population Pt+1;
Step 4: If the number of iterations reach max_pop, return current optimal individuals, then stop

algorithm; if not, repeat Step 2 to Step 3.
In the proposed CPDMO-NSGA-II algorithm, the sub-algorithm 1 realized in Step 2.2.1, cluster the

individuals in the population is used to realize how to cluster the individuals in population and
get centers R(k)t, which can avoid the poor distribution of historical population resulting in poor
distribution performance of the whole algorithm. The sub-algorithm 1 is described as following:

(2) Sub-algorithm 1: Cluster the individuals in the population
Step 1: Initialize a link list G; save population Pt; and determine the number of cluster cnum.

Initial clusters and centers in G are set as individuals themselves;
Step 2: For each cluster in G, calculate Euclidean distance between any two centers of clusters,

recorded it into distance matrix D: Di j =

√
M∑

m=1
(xim − x jm)

2, where xi, x j ∈ Pt, which represents the

moving direction of the individual in Pareto optimal set, i , j = 1, 2, . . . , pop, m = 1, 2, . . . , M, m is the
dimension of decision vector; pop is the size of Pt;

Step 3: Merge two clusters having minimal distance; update centers R(k)m
t = 1

|G[k]mt |

∑
xm

t ∈G[k]mt

xm
t ,

where k = 1, 2, . . . , cnum; and update distance matrix D;
Step 4: If the number of clusters in G exceeds cnum, then repeat Step2–Step3.
In the proposed CPDMO-NSGA-II algorithm, the sub-algorithm 2 realized in Step 2.2.2,

associate the individuals in the population is used to realize how to associate the individuals in the
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population and get reference lines RLt, which consider the distribution performance and population
diversity simultaneously. The sub-algorithm 2 is described as following:

(3) Sub-algorithm 2: Associate the individuals in the population
Step 1: Place the individuals of population Pt and reference point set R in rectangular coordinates,

expressed as vector xt
i, Rj, where i = 1, 2, . . . , pop, j = 1, 2, . . . , n, pop is the size of population Pt, and n

is the number of reference points, xt
i represents the ith vector predicted at time t;

Step 2: If environment first changes, initialize reference lines RLo =
{
xt

i, Rj

}
, then go to Step 4;

Step 2.1: For each individual xt
i in Pt, calculate the cosine of angles between xt

i and each reference

point Rj: cosαi j =
xt

i
·Rj

|xti|·
∣∣∣Rj

∣∣∣ ;
Step 2.2: Connect xt

i and Rj having minimal angles αi j (or cosαi j is maximal, see Figure 5a):

RLt
k =

{
xt

i, Rx
j
}
, where k = 0, 1, . . . , K, K is the number of reference lines;Algorithms 2019, 12, x FOR PEER REVIEW 12 of 25 
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Step 3: If not, update reference lines merge RLt = {xt, Rx}, then go to Step 4;
Step 3.1: For each individual xt

i in Pt, calculate the distances dik between xt
i and each current

reference point RLt
k: i.e., dik =

∣∣∣∣∣∣∣∣∣
→

R jPt
i
−

→

R jQt−1
i
·
(
→

R jPt
i
·

→

R jQt−1
i)∣∣∣∣∣ →

R jQt−1
i
∣∣∣∣∣2

∣∣∣∣∣∣∣∣∣.
Step 3.2: Connect xt

i and corresponding reference point having minimal distance (see Figure 5b),
and xt

i is associated with historical individual Qt−1 on historical reference line RLt−1. (see Figure 5c)
Step 4: Save reference lines RLt = {xt, Rx}.
In general, reference points are uniformly distributed on a hyperplane. Reference point set R is

set as follows [25]:

R :


R j =

{
R j

1, R j
2, . . . , R j

m
}

R j
m
∈

{
0/p, 1/p, . . . , p/p

}
,

M∑
m=1

R j
m = 1

,
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where j = 1, 2, . . . , n, n is the number of reference points, n = (
M + p− 1

p
); m = 1, 2, . . . , M, M is the

dimension of reference points, p = M. Normally, set n ≈ pop, pop is the size of population. Figure 5
shows the relation determination method of individuals between time t and t − 1. The concrete
method is described in association algorithm for historical individuals. Figure 5a realized in Step 2.2
in sub-algorithm2 shows the relation determination by angles, Figure 5b realized in step 3.2 in
sub-algorithm2 shows the Relation determination by distances, Figure 5c realized in Step 3.2 in
sub-algorithm2 shows the distance between a point and vector. Fi is just a coordinate axis and it doesn’t
mean anything, Pi

t represents the ith Pareto optimal solution at time t in the rectangular coordinate
system, Qi

t−1 represents the ith Pareto optimal solution at time t− 1 in the rectangular coordinate system.

4.2.2. Environmental Detection

Now, we will discuss the environmental detection strategy realized in Step 2 in the proposed
CPDMO-NSGA-II algorithm. In general, similarity test is a common strategy for detecting
environmental changes. The basic idea is to reevaluate objectives or constraints based on the
individuals selected randomly from current population. To some extent, the environment is considered
as change if the value of objectives or constraints has changed. In this paper, the detection operator
proposed in paper [19] is used as follows:

ε(t) =

nε∑
i=1
‖ f (xi, t) − f (xi, t− 1)‖

nε max
i=1,...,nε

‖ f (xi, t) − f (xi, t− 1)‖
(21)

Suppose that there are nε individuals selected to detect change, and xi is the ith individual.
f (xi, t− 1) is the objective at xi at time t− 1, while f (xi, t) is the objective at time t. If ε(τ) ≥ η, where η
is a threshold value, it can be acknowledged as environmental change. For the sake of effectively
searching optimal solutions in new environment, the algorithm should enhance the population diversity
through special methods.

4.2.3. Prediction Strategy

Now, we will discuss the prediction strategy realized in Step2 in the proposed CPDMO-NSGA-II
algorithm. When a change is detected, prediction strategy contributes to a faster convergence to new
Pareto front. In this paper, the VAR method and PRE method proposed in paper [18] are combined to
employ prediction, named as V&P method. Half of the initial population at time t + 1 is distributed
around predicted individuals, and the rest are generated by current population. Following is the
formula of V&P method:

xt+1 =

{
xt + (xt − xt−1) + η, rand() < 0.5;

xt + η, otherwise.
, (22)

where rand() returns a random number within lower bound 0 and upper bound 1. Gaussian noise η is
defined by:

η ∼ N(0, δI), (23)

where I is an unit matrix, and δ is standard deviation, which is defined as:

δ2 =
1

4n
‖xt − xt−1‖

2
2, (24)

where n is the number of decision vector. Generally, in PRE method, Equation (24) is used to find
historical individual xt−1 with the same convergence direction as xt.
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xt−1 = arg min
y∈Qt−1

‖y− xt‖2. (25)

5. Problem Formulation

This section mainly explains the optimization objectives in MPC_CPDMO-NSGA-II. This paper
adopts TTS, TTD, TE and TF to evaluate the performance of the freeway, which are also used as
the optimization objectives in dynamic multi-objective optimization algorithm CPDMO-NSGA-II.
The prediction models for estimating these indicators are the integration of METANET and
VT-micro model.

(1) Total Time Spend (TTS)
The TTS consists of two parts: (1) Total travel time (TTT); (2) Total waiting time (TWT).

min J1(kc) =
Z(kc+Np)−1∑

k=Zkc

Ts · [
∑
m

∑
i
ρm,i(k) · Lm,i · λm,i +

∑
o∈Ramp

ωo(k)] , (26)

where k is steps of sampling; kc is steps of control; Np is prediction horizon; and Z is the ratio of control
period and sampling period.

(2) Total Travel Distance (TTD)

max J2(kc) =
Z(kc+Np)−1∑

k=Zkc

∑
m

qm,i · Ts . (27)

In optimization, maximized objectives will be transformed into minimized problems with a minus.
(3) Total Emissions (TE) and Total Fuel Consumption (TF)
According to the VT-micro model, following equation is used to calculate the TE for various gases

and the TF:

Jy(kc) =

Z(kc+Np)−1∑
k=Zkc

[
3∑

i=1

(Jt
y,m,i(k) + Js

y,m,i(k)) + Jy,on,o(k)], (28)

where y ∈ {CO, HC, NOx}. It should be noted that TE and TF are two different indicators, so they cannot
be added together directly. In this paper, the problem is solved by standardization using the following:

min J3(kc) =
JCO(kc)+JHC(kc)+JNOx (kc)

Jsl,emisson(kc)
+

JFC(kc)

Jsl,FC(kc)
, (29)

where Jsl,emisson(kc) is TE of the freeway with fixed speed limit strategy, and Jsl,FC(kc) is TF. They can be
obtained through the follow-up simulation experiment.

To ensure the safety of the environment, the control solutions should not have too much fluctuation.
Besides, the flows of the freeway should not exceed capacity. Therefore, following constraints are
considered in the optimization.

(1) In the same control horizon, the difference of VSLs between adjacent segments is no more
than 5 km/h: ∣∣∣vctrl,i(kc) − vctrl, j(kc)

∣∣∣ ≤ 5 (30)

(2) At the same segment, the difference of VSLs between adjacent control horizons is no than
10 km/h: ∣∣∣vctrl,i(kc) − vctrl,i(kc + 1)

∣∣∣ ≤ 10 (31)

(3) Between adjacent control horizons, the difference of RM rates is no more than 0.3:∣∣∣ro(kc) − ro(kc + 1)
∣∣∣ ≤ 0.3 (32)
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(4) The range of RM rate is shown as follows:

ro,min ≤ ro(kc) ≤ 1 (33)

(5) The flows of the mainline and the on-ramp should not exceed the traffic capacity:

qm,i(k) −Qmain,max,i ≤ 0 (34)

qo(k) −Qo,max ≤ 0, (35)

where vctrl,i(kc) is the value of VSL applied to segment i at control horizon kc; Qmain,max,i is the capacity
of segment i; Qo,max is the RM rate applied to the on-ramp o at control horizon kc; and Qo,max is the
capacity of the on-ramp o. Some parameters are haven been described in Section 3. Above constraints
are referred to paper [26,27]. Due to a shorter control period in this paper, some of them are modified in
order to alleviate risk of slow response from drivers to changed control solutions. This paper employs
static penalty function to dispose these constraints, so that the CPDMO-NSGA-II algorithm can search
for non-dominated solutions in feasible domains. These penalties are added to existed objectives:

min J1(kc) = J1(kc) + φ1(
Z(kc+Np)−1∑

k=Zkc

∑
i

max(0, qm,i(k) −Qmain,max,i)

+
Z(kc+Np)−1∑

k=Zkc

max(0, qo(k) −Qo))

(36)

min J3(kc) = J3(kc) + φ2(
∑
j

Z(kc+Nc)−1∑
k=Zkc

max(0,
∣∣∣vctrl,1(k) − vctrl,2(k)

∣∣∣− 5)

+
∑
j

Z(kc+Nc)−2∑
k=Zkc

max(0,
∣∣∣vctrl, j(k) − vctrl, j(k + 1)

∣∣∣− 10)

+
Z(kc+Nc)−2∑

k=Zkc

max(0,
∣∣∣ro(k) − ro(k + 1)

∣∣∣− 0.3))

(37)

where j is the number of the segment applied VSL, and Nc is control horizon. In this article, the VSL
strategy is executed on segment 1 and 2. we will explain the reason in Section 5. It is found that
the performance of the CPDMO-NSGA-II algorithm is better with penalty coefficients 0.029 and 0.2,
determined by trial and error experiment.

In the process of receding optimization, it will provide a set of solutions that are non-dominated.
But only one optimal solution can be executed in the highway considering the preference of
decision-makers. In essence, it is a process of multi-attribute decision-making. TOPSIS is one
such efficient method [21]. The weights of TOPSIS are determined subjectively. The efficiency of
freeway expressed by TTS is the most important, closely followed by TTD and the sum of emissions
and fuel consumption, so the corresponding of both model predictive control based on single-objective
optimization algorithm (MPC_SOO) and MPC_CPDMO-NSGA-II weights are 0.4, 0.3, 0.3. The influence
of different weights on experimental results can be discussed in the future.

6. Simulation Research

The MPC_CPDMO-NSGA-II algorithm proposed in Section 4 is used to solve the freeway
congestion control problem with an on-ramp during rush hour.

6.1. Simulation Network

Figure 6 shows the highway with an on-ramp in simulation study. The length of main road is
1500 m. It has three lanes in the mainline, but one lane in the on-ramp. In this paper, the METANET
model is applied to simulate behaviors of the highway. Thus, the highway is divided into three
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segments, each is 500 m. The on-ramp is located in the second segment. The parameters of the
METANET model is referred to paper [7] (see Table 1). Figure 7 is the traffic demand of the mainline and
the on-ramp. It regenerates a peak hour. In this scenario, the capacity of the mainline is 2000 veh/km/lane,
and the on-ramp is 1500 veh/km/lane.
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Table 1. Parameters of the METANET model.

Name Value Unit Name Value Unit

τ 18 s ρcr,m 33.5 veh/km/lane
κ 40 veh/km/lane δ 0.012 -
υ 60 km2/h αm 1.636 -

ρmax 180 veh/km/lane v f ,m 110 km/h
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As shown in Figure 7, the initial demands of the mainline and the on-ramp are small. At the
beginning, they are in the trend of linear growth. After about 20 min, the demand of the mainline
reaches to 5000 veh/h, while the on-ramp reaches to 1500 veh/h in about 10 min. Both of them remains
constant in a period of time. Close to 1.5 h, the demand of the mainline begins to decline, then remains
4000 veh/h to the end. The demand of the on-ramp reduces at 50 min, then it arrives to 500 veh/h and
keeps constant.

6.2. Simulation Results

It is assumed that all of vehicles are cars, and the compliance rate is 100%, namely a = 0.
The parameters of MPC_CPDMO-NSGA-II are shown in Table 2, which are also referred by the authors
of [7]. Table 2 gives the value of parameter use in the MPC_CPDMO-NSGA-II algorithm. It can be seen
from Table 2 that the sampling period is set as 10 s, the control period is set as 1 min, the prediction
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horizon and the control horizon are set as 15 min and 10 min respectively in this paper. Since the
control period is set as 1 min, it means that the MPC_CPDMO-NSGA-II algorithm proposed in this
paper is suitable for both the simulation experiment and on-line control on the small road network.
For larger networks, since more computation time are required, other methods should be applied.
The sampling period is also the prediction period of METANET model.

Table 2. Parameters of MPC_CPDMO-NSGA-II.

Name Value

Simulation time 3 h
Sampling period (Ts) 10 s

Control period 1 min
Prediction horizon 15 min

Control horizon 10 min

In this paper, we will analyze the conditions of the freeway with fixed speed limit strategy
firstly, so as to determine which segment requires freeway control strategy. Then, the proposed
MPC_CPDMO-NSGA-II I algorithm is used to solve freeway congestions in rush hours. The control
strategy is an incorporation of VSL and RM strategy. In the proposed CPDMO-NSGA-II algorithm,
the size of population is 160; the number of iterations is 50; and the number of clustering is 10.

For comparison, a model predictive control based on single-objective optimization algorithm
named as MPC_SOO, is used to solve the freeway control problem in this paper, and the single-objective
optimization algorithm is genetic algorithm [28]. The performance indicator used in MPC_SOO is
described as following:

min J(k) = k1 J1(k) − k2 J2(k) + k3 J3(k), (38)

where k1, k2, k3 are the weights, which are set as 0.4, 0.3, 0.3 respectively. To compare the result of the
MPC_SOO algorithm and the MPC_CPDMO-NSGA-II algorithm under similar expert’s experience,
the weights of the k1, k2, k3 used in the MPC_SOO algorithm is set as the same value used in the TOPSIS
method in the MPC_CPDMO-NSGA-II algorithm. In the MPC_SOO method, the single objective is
set as the weight sum of the multiple objectives considered in the MPC_CPDMO-NSGA-II algorithm,
and the weights used in the single objective in the MPC_SOO method is set as 0.4, 0.3, 0.3, which is
the same value used in the TOPSIS method in the MPC_CPDMO-NSGA-II algorithm. The reason is
that the result of the MPC_SOO method and the MPC_CPDMO-NSGA-II algorithm are compared
under similar expert’s experience. In order to distinctly analyze the trends of traffic variables, they are
averaged before plotting every 2 min.

6.2.1. Results of Traffic Condition, Emissions and Fuel Consumption of the Freeway with Fixed
Speed Limit

In the whole simulation process, the fixed speed limit is directly implemented in VISSIM simulation
environment, and minimum and maximum speed of the vehicle on each segment on the road is set at
[60,100] km/h.

In this part, we will discuss the results obtained from fixed speed limit strategy firstly. The Pareto
fronts obtained by MPC_CPDMO-NSGA-II algorithm will be discussed in Section 6.2.2 secondly.
The results obtained from MPC_SOO method and MPC_CPDMO-NSGA-II algorithm will be discussed
in Section 6.2.3 thirdly. The results about traffic conditions obtained from fixed speed limit strategy,
MPC_SOO method and MPC_CPDMO-NSGA-II algorithm will be discussed in Section 6.2.4.

Figure 8a–d gives the variation of the average flow, the average speed, the average density of
the mainline and the queue length of the on-ramp and its upstream mainline obtained from fixed
speed limit strategy. It can be seen from Figure 8a–c that the flow of segment 1 is always less than
other two segments due to the entered vehicles from the on-ramp. With the increasing demand of the
mainline, its flow and density also increase gradually, but the speed decreases. When the demand
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remains at peak, the average flow, density and speed fluctuate around some value till the demand
declines, the main stream traffic also will be reduced. At 1.5 h, the density begins to drop, and speed
rises. They are in slight fluctuations to the end.
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It can be seen from Figure 8d that the queue length rises with the increasement of the demand
on the on-ramp. The peak is more than 100 vehicles. After a severe congestion in an hour, the queue
disappears rapidly, and there is no queue anymore. This article also samples the queue length of
upstream mainline of the on-ramp. As shown in Figure 8d, its queue is shorter. The maximum is only
about 60 vehicles. After 1 h 15 min, there is almost no waiting vehicles.

Figure 9 shows the trends of emission and fuel consumption of the freeway with fixed speed limit.
In the period of increasing flow and forming congestion of the on-ramp and its upstream mainline,
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emissions and fuel consumption rise. When there is a severe congestion of the on-ramp, they remain
high values. Although the queues disappear, there is no downtrend until the vehicles of the mainline
have higher speeds. After nearly two hours, emissions and fuel consumption fluctuate around 0.1 L
and 5 kg respectively. In this way, we will execute VSL on segment 1 and 2 and RM on on-ramp in
this paper.
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6.2.2. Pareto Fronts Obtained by MPC_CPDMO-NSGA-II Algorithm

Figure 10 give the Pareto fronts obtained by MPC_CPDMO-NSGA-II in a receding horizon. All of
the objectives are normalized. It can be seen that there is no conflict between TTS and TTD, but they
are obviously conflicting with sum of TE and TF respectively. The conflicts are similar.
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Figure 10. Pareto fronts in a horizon of receding optimization with MPC_CPDMO-NSGA-II. (a) The
Pareto front of total time spend (TTS) and total travel distance (TTD); (b) The Pareto front of TTD,
and TE and TF; (c) The Pareto front of TTS, and TE and TF.



Algorithms 2019, 12, 220 18 of 23

Figure 11 displays the control solution with MPC_SOO and MPC_CPDMO-NSGA-II,
including VSLs for segment 1 and 2, and RM strategy. In Figure 11, the actual road network is
taken into account, only VSLs are considered for segment 1 and 2, and no VSLs are implemented in
Section 3. However, we supplement the flow, density and speed of segment 3 under different methods
in Table 4. In terms of safety, the MPC_CPDMO-NSGA-II offers a smoother solution that can reduce
the risk of driver’s slow respond to changes. From 10 min to 1 h, the value of VSLs are small with
proposed method. Afterwards, it provides larger VSLs most of the time. As for ramp metering rate,
it allows more vehicles to enter into the mainline than MPC_SOO most of the time.
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6.2.3. Performance of the Freeway

In this paper, the performance of the freeway is evaluated from the aspect of TTS, TTD, TE and TF.
Table 3 lists these indicators with three control methods, namely fixed speed limit, MPC_SOO and
MPC_CPDMO-NSGA-II. For reducing the effects of random seeds, this paper repeats five experiments
for each method, and calculates the mean value of the performance indicators and traffic variables.
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Table 3. The performance of the freeway with three control methods.

Indicators
TTS (h) TTD (km) TE (kg) TF (l)Methods

Fixed speed limit 554.217 29,228.58 99.554 5493.556
MPC_SOO 465.8766(−15.9%) 30,564.134.6% 38.687(−61.1%) 1775.608(−67.7%)

MPC_CPDMO-NSGA-II 459.8024(−17%) 30,653.244.9% 38.576(−61.3%) 1767.215(−67.8%)

From Table 3, it is known that the efficiency of the freeway is the worst with fixed speed
limit. It also aggravates the burdens of environment and economics. By contrast, MPC_SOO and
MPC_CPDMO-NSGA-II greatly improve the performance of the freeway, especially in the aspect of TE
and TF, reduced more than 60%. In MPC_SOO, TTS is 15.9% shorter than fixed speed limit, while TTD
rises by 4.6%. It implies that vehicles passed the freeway increase, or their speed increases significantly.
Compared to MPC_SOO, the presented method reduces more TTS, TE and TF, and greater improves
TTD, reaching to 4.9%.

6.2.4. Discussion about Traffic Conditions

Then we will explore the effect of traffic variables, including average flow, density and speed,
with three control methods in this paper. Since an on-ramp located in segment 2, bottleneck often
occurs in that area, so we mainly analysis the variation of traffic variables on segment 2 (see Figure 12).
Generally, MPC_SOO and MPC_CPDMO-NSGA-II perform better. They improve the situation of low
efficiency resulted from fixed speed limit, proved by greatly enhanced flow and speed. From 1 h to
1.5 h, the density of segment 2 decreases a lot.

It can be seen from Figure 12 that the results of MPC_CPDMO-NSGA-II algorithm and MPC_SOO
method are too similar, therefore the results of traffic conditions on segment 1, 2, 3 are discussed in
Table 4. It can be concluded from Table 4 that compared to fixed speed limit strategy, the results of
traffic conditions perform better under the MPC_SOO method and MPC_CPDMO-NSGA-II algorithm.
For example, in the aspect of traffic flow, the average flow on segment 2 is increased by 7.4% and
7.9% respectively under the MPC_SOO method and MPC_CPDMO-NSGA-II algorithm compared
with the fixed speed limit strategy, in the aspect of average density, it is decreased by 40.6% and
40.7% respectively on segment 2 under the MPC_SOO method and MPC_CPDMO-NSGA-II algorithm
compared with the fixed speed limit strategy, in the aspect of average speed, it is increased by 14.0%
and 14.2% respectively on segment 3 under the MPC_SOO method and MPC_CPDMO-NSGA-II
algorithm compared with the fixed speed limit strategy.

Figure 13 displays the queue lengths of the on-ramp and its upstream mainline with three control
methods. It can be seen from Figure 13 that in the period of high demand of the on-ramp, the RM adopted
in MPC_SOO greatly reduces the queue length, and shortens time of severe congestion. It should be
noted that the queue is formed naturally with fixed speed limit, while may be resulted actively by traffic
lights with other two methods. Thus, in MPC_SOO, there are slight vehicles wating in the on-ramp
after 1 h, indicating that it may put efficiency of the mainline first. However, the heavy congestion the
on-ramp disappears by using MPC_CPDMO-NSGA-II, with a peak valued 11. Afterwards, there is
almost no waiting vehicle of the on-ramp.
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Table 4. The results of traffic conditions on segment 1, 2, 3 using three control methods.

Methods Fixed Speed Limit MPC_SOO MPC_CPDMO-NSGA-IITraffic Conditions

Flow
(veh/h)

Segment 1 3942.02 4124.114.6% 4121.854.6%
Segment 2 4360.05 4682.847.4% 4704.817.9%
Segment 3 4489.31 4652.833.6% 4670.684.0%

Density
(veh/km/lane)

Segment 1 31.55 18.73(−40.6%) 18.72(−40.7%)
Segment 2 24.70 22.56(−8.7%) 22.62(−8.4%)
Segment 3 23.60 21.35(−9.5%) 21.40(−9.3%)

Speed
(km/h)

Segment 1 52.37 73.4940.3% 73.5240.4%
Segment 2 60.07 69.5515.8% 69.6315.9%
Segment 3 63.67 72.6214.0% 72.7014.2%
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After applying MPC_SOO and MPC_CPDMO-NSGA-II, there is no queue of the mainline, so it is
not plotted in Figure 13. Table 5 also proves the improvement, which lists average queue lengths of
the on-ramp and its upstream mainline with three methods. In MPC_SOO, the queue of the on-ramp
reduces by 45.8%. But the proposed method performs better, with which the average number of
waiting vehicles declines to zero, indicating that almost all vehicles enter into the mainline.

Table 5. The queue length of the on-ramp and its upstream mainline with three control methods.

Location
Mainline(veh) On-ramp(veh)

Methods

Fixed Speed Limit 3 24

MPC_SOO 0
(−100%)

13
(−45.8%)

MPC_CPDMO-NSGA-II 0
(−100%)

0
(−100%)

7. Conclusions and Future Work

This paper mainly focuses on the freeway congestion control problem with the consideration of
fuel consumption and emissions. It proposes a model predictive control method based on dynamic
multi-objective optimization algorithm, MPC_CPDMO-NSGA-II to realize on-line traffic control.
MPC_CPDMO-NSGA-II adopts dynamic multi-objective optimization to model predictive control to
get more effective control solutions. Thus, this paper then explores an algorithm CPDMO-NSGA-II,
which is an improvement of CPM_DMOEA. In order to augment convergence and reduce computation
time, CPDMO-NSGA-II mainly revises original prediction models of centers and cluster shape. It also
introduces and improves the method of determining historical centers on time series, which is based
on reference points.

To verify the control method, this paper carries out a simulation research on a freeway with an
on-ramp. The results show that it effectively improves efficiency of the freeway, and alleviates
congestions, emissions and fuel consumption. Compared to MPC_SOO, the control solutions
MPC_CPDMO-NSGA-II provided are more stable, so that it can ensure traffic safety to some extent.
In addition, it can offer better solutions by balancing multiple objectives with conflicts. Thus, the vehicles
of queue of the on-ramp and upstream mainline are significantly reduced. Although there are more
vehicles the on-ramp released using MPC_CPDMO-NSGA-II, it does not cause congestions in the
mainline. The efficiency of second segment even increases with VSL strategy. However, its efficiency
of computation requires further study.
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Appendix A. Acronym List

Acronym List

English Abbreviations English Full Name

MPC model predictive control
NSGA-II a fast and elitist multi-objective genetic algorithm

CPDMO-NSGA-II
dynamic multi-objective optimization algorithm
based on clustering and prediction with NSGA-II

MPC_CPDMO-NSGA-II model predictive control based on CPDMO-NSGA-II

TOPSIS
Technique for Order Preference by Similarity to an

Ideal Solution
VSL variable speed limit
RM ramp metering

AR, VAR Autoregressive, Vector (multivariate) Autoregressive

RND, VAR, PRE, V&P
Random, Variation, Prediction, Variation and

Prediction

CPM_DMOEA
clustering prediction model based dynamic

multi-objective evolutionary algorithm
TTS Total Time Spend
TTT Total travel time
TWT Total waiting time
TTD Total Travel Distance
TE Total Emissions
TF Total Fuel Consumption

MPC_SOO
model predictive control based on single-objective

optimization algorithm
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