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Abstract: Image deblurring under the background of impulse noise is a typically ill-posed inverse
problem which attracted great attention in the fields of image processing and computer vision. The fast
total variation deconvolution (FTVd) algorithm proved to be an effective way to solve this problem.
However, it only considers sparsity of the first-order total variation, resulting in staircase artefacts.
The L1 norm is adopted in the FTVd model to depict the sparsity of the impulse noise, while the L1
norm has limited capacity of depicting it. To overcome this limitation, we present a new algorithm
based on the Lp-pseudo-norm and total generalized variation (TGV) regularization. The TGV
regularization puts sparse constraints on both the first-order and second-order gradients of the image,
effectively preserving the image edge while relieving undesirable artefacts. The Lp-pseudo-norm
constraint is employed to replace the L1 norm constraint to depict the sparsity of the impulse noise
more precisely. The alternating direction method of multipliers is adopted to solve the proposed
model. In the numerical experiments, the proposed algorithm is compared with some state-of-the-art
algorithms in terms of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), signal-to-noise
ratio (SNR), operation time, and visual effects to verify its superiority.

Keywords: fast total variation deconvolution; total generalized variation; non-convex shrinkage; Lp
shrinkage; direction method of multipliers; image restoration

1. Introduction

Image deblurring under impulse noise is important in digital image processing research. It is
widely applied in many aspects of science and engineering such as space detection, photodetection,
remote sensing technology, medical image analysis, and geological exploration. In the process of
acquiring, storing, and transmitting images, owing to limitations of imaging equipment and conditions,
images are prone to quality degradation, such as image blurring, noise pollution, contrast decline,
and loss of details. Image restoration of degraded images is an inverse problem whose solution is often
ill-posed [1]. For such types of problems, regularization proved to be an effective method. This involves
the proper use of some prior information of the degraded image as a fidelity term and an image
optimization model that contains an efficient solution algorithm as a regularization term, because
recovering a clear image is of great importance for advanced image processing in the later stages.

The total variation (TV) regularization proposed by Rudin, Osher, and Fatemi [2], also known as the
ROF model, proved to be one of the most advanced regularizations in the field of image reconstruction.
Based on the TV regularization, some extended models and their algorithms were widely applied to
image restoration. For example, Wang et al. [3] proposed a fast total variation deconvolution (FTVd)
model for image deblurring. The model uses the total variation (TV) regularization based on the
assumption that the image is piecewise smooth; the method can remove image noise sufficiently,
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but it is prone to producing a “staircase effect”. Furthermore, the FTVd model adopted the L1 norm
to express the sparsity of impulse noise. However, it cannot depict the statistic characteristics of
impulse noise.

Recently, some TV extensions emerged. Sakurai et al. [4] proposed a four-directional total
variation model to extend the vertical and horizontal gradient information in the TV regularization
into four directions. Ren et al. [5] proposed a fractional-order TV (FTV) model and tried to extend the
integer-order TV model to the fractional order. Selesnick and Chen [6] proposed an overlapping group
sparsity TV (OGSTV) model, in which the neighborhood information of the image gradient was taken
into account and applied in conjunction with an L2-norm fidelity term to the Gaussian-noise denoising
of one-dimensional signals. Liu et al. [7] extended the model to a two-dimensional model based on an
L1-norm fidelity term and applied the extended model to image deconvolution and impulse noise
removal, achieving good results [8]. Bredies et al. [9] proposed a total generalized variation (TGV)
model based on total variation, which simultaneously constrains the first-order and second-order
gradients of the image and has many excellent mathematical properties such as convexity, lower
semi-continuity, and rotation invariance; it is also capable of approximating any number of items.
The TGV model proved—in theory and practice—to be able to remove the staircase effect effectively
while preserving the edges and details of the image. TGV regularization terms attracted wide attention
in the academic community and were applied to the reconstruction of nuclear magnetic resonance
images [10] and seismic signal denoising [11,12]. Inspired by the advantages of TGV regularization,
we incorporate it here in the image deblurring process.

The aforementioned image deblurring methods mostly employ the L1 norm to constrain the
fidelity term. However, the L1 norm is a convex relaxation of the L0 norm, with limited ability to
induce sparsity [13]. Recently, Woodworth and Chartrand [14] proved that Lp-pseudo-norm shrinkage
is a method with better sparsity compared with soft-threshold shrinkage, which attracted extensive
attention in academia. Zheng et al. [15] theoretically compared the advantages of Lp-minimization
and L1-minimization, and tested them in a Gaussian noisy setting. Zhang et al. [16] applied Lp
shrinkage [17] to the reconstruction of tomographic images to obtain an effect superior to the L1-norm
constraint. Chen et al. [18] applied an Lp-pseudo-norm constraint to the sparse time–frequency
representation of the seismic signal spectrum to obtain a time–frequency spectrum with higher
time–frequency resolution. Wong et al. [19] proposed a model combining an Lp-pseudo-norm fidelity
term and OGS regularization, which uses neighborhood structure similarity of image gradients for
image denoising.

Considering the superiority of Lp-pseudo-norm and TGV, here, we employ Lp-pseudo-norm to
describe the sparsity of impulse noise and adopt the TGV regularization term to fit the image sparsity.
On the one hand, the Lp-pseudo-norm constraint increases the degrees of freedom of the fidelity
term and better represents the sparsity of the impulse noise. In this way, the deblurring process is
more robust to noise pollution. On the other hand, the TGV regularization term simultaneously puts
constraints on the information of the first-order and second-order gradients of the image, thereby
effectively suppressing the staircase effect.

To solve the problem, the alternating direction method of multipliers (ADMM) [20,21] is employed
to decompose the complex problem into a number of sub-problems that are relatively easy to solve.
At the same time, to improve the efficiency of the algorithm, it is assumed here that the image
satisfies a periodic boundary condition. Following a fast deconvolution method [3,22,23], fast Fourier
transform (FFT) is employed based on the convolution law to transform image differences in the
time domain to differences in the frequency domain to avoid large matrix multiplication operations.
In numerical experiments, the proposed new method is compared with FTVd, TGV, and OGSTV in
terms of the following objective indicators: peak signal-to-noise ratio (PSNR), structural similarity
(SSIM), signal-to-noise ratio (SNR), and computation time.

The rest of this paper is organized as follows: Section 2 presents prerequisite knowledge related
to the algorithms used in this study, including the modeling of the TGV regularization term and the Lp
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norm. Section 3 firstly presents the model proposed in this study and then elaborates on an efficient
method for solving the model in the ADMM framework. Results of the numerical experiment are
presented in Section 4, and conclusions are given in Section 5.

2. Prerequisite Knowledge

2.1. FTVd Model

We assumed that the linear mathematical model of an observed degraded image is expressed as
follows [24]:

G = H ∗ F + N. (1)

For the sake of simplicity, it was assumed, in this study, that the processed image is an N ×N
square matrix, which can be easily generalized to an image of size M×N. G ∈ RN×N is a degraded
image matrix, F ∈ RN×N represents an original unknown clear image matrix, H is a blur kernel matrix,
∗ represents the two-dimensional convolution operator, and N ∈ RN×N represents additive noise,
such as Gaussian noise and impulse noise. For impulse noise, a discrete ROF model is constructed
using the L1 norm, where the FTVd model is expressed as

min
F
{‖H ∗ F−G‖1 + µR(F)

}
, (2)

where ‖·‖1 represents the Euclidean L1 norm. In Equation (2), ‖H ∗ F−G‖1 is the fidelity term using
the L1-norm, and R(F) is the regularization. In FTVd mode, R(F) = ‖Kh ∗ F‖1 + ‖Kv ∗ Fv‖1 is the
anisotropic total variation (ATV) regularization term, Kh = [−1, 1] and Kv= [− 1, 1]T are the horizontal
and vertical convolution operators, respectively, and µ is a regularization parameter higher than zero,
which serves to balance the fidelity term and the regularization term.

As is shown in Equation (1), FTVd employs the ATV as the regularization and the L1 norm to
depict the sparsity of impulse noise. However, ATV assumes the processed image to be piecewise
constant. As a result, staircase artefacts occur. In addition, the L1 norm is the convex relaxation of the
L0 norm. It cannot express the sparsity of impulse noise precisely. Considering the disadvantages of
FTVd, the TGV regularization is employed to replace the ATV regularization, and the Lp-pseudo-norm
is adopted to depict the statistic characteristics of impulse noise.

2.2. Second-Order TGV Regularization

The standard TGV regularization is expressed by Equation (3) [25].

TGV2(F) = α0(‖Kh ∗ F−Vh‖1 + ‖Kv ∗ F−Vv‖1) + α1(‖Kh ∗Vh‖1 + ‖Kv ∗Vv‖1 + ‖Kv ∗Vh + Kh ∗Vv‖1), (3)

where α0 and α1 serve as the balance coefficients between the first-order total variation ‖Kh ∗ F−Vh‖1 +

‖Kv ∗ F−Vv‖1 and the second-order total variation ‖Kh ∗Vh‖1 + ‖Kv ∗Vv‖1 + ‖Kv ∗Vh + Kh ∗Vv‖1,
and Vh, Vv ∈ RN×N represent the horizontal and vertical gradients of the processed image.

Since the TGV regularization puts sparse constraints on not only the first-order gradients but also
the second-order gradients, the staircase artefacts are relieved. Thus, we adopt the TGV regularization
instead of ATV regularization in Equation (2) to further improve the quality of the restored image.

2.3. Lp-Pseudo-Norm

This study focused on exploring image restoration in the presence of impulse noise pollution.
An impulse noise is often the noise of alternating bright (white) and dark (black) dots resulting
from a number of factors, such as a faulty pixel in the imaging sensor, a wrong memory location
in the hardware, a transmission channel noise, and a decoding process; it is considered an additive
noise. In recent years, with the introduction of optimization methods, sparsity was widely applied to
image restoration. However, the non-convexity of the L0 norm makes solution optimization (NP-hard
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problem) challenging. In 2004, Nikolova [26] discovered that, when the noise is an impulse noise, the use
of an L1 norm for constructing a fidelity term model allows better removal of outliers. Later, many
studies used an L1-norm fidelity term for image denoising related to impulse noise or outliers. Image
deconvolution in the presence of impulse noise is often treated as solving a minimization problem
involving an L1-norm fidelity term and a regularization function. In fact, the sparsity of the L1 norm,
which is the convex relaxation of the L0 norm, is not as good as that of the L0 norm. In 2016, Woodworth
and Chartrand [14] pointed out that the Lp norm is a better convex approximation of the L0 norm than
the L1 norm is, and proved that Lp shrinkage has better sparsity than soft-threshold shrinkage. The Lp

norm is defined as ‖F‖p = (
N∑

i=1

N∑
j=1

∣∣∣Fi j
∣∣∣p)1/p

, and the Lp-pseudo-norm is defined as ‖F‖pp =
N∑

i=1

N∑
j=1

∣∣∣Fi j
∣∣∣p.

To better elaborate on this issue, the contours of the Lp-pseudo-norm are shown in Figure 1.
Figure 2 presents a group of diagrams, where the contours represent the fidelity terms for image
restoration, while the dashed lines represent the regularization terms. As shown in the figure, it is
more likely for the regularization term to intersect with the fidelity term of p < 1 than that of p = 1 on
the coordinate axis, thereby making the likelihood of obtaining a sparse solution greater. Therefore,
by using the Lp-pseudo-norm as a constraint, it is possible to better extract the sparse characteristics of
signals in the transform domain to more precisely restore the image in the optimization problem.
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3. Model Proposal and Solution Method

3.1. Proposed Model

To use the FFT to achieve a faster algorithm computation speed, it is assumed that the image
satisfies a periodic boundary condition. Moreover, the model is expressed as a matrix, and the
gradient difference is expressed in the form of a convolution to avoid large-scale matrix multiplication
operations, thereby facilitating the subsequent discussion. Combining the Lp-pseudo-norm with the
TGV regularization, this study proposes a new regularization model for image restoration to more



Algorithms 2019, 12, 221 5 of 24

thoroughly extract the structural characteristics of the first-order and second-order gradient matrices
of the image, and obtain a sparser solution. The model is named the TGV-Lp model, described below.

min
F,Vh,Vv

‖H ∗ F−G‖pp + µTGV2(F)

= min
F,Vh,Vv

‖H ∗ F−G‖pp + µ[α0(‖Kh ∗ F−Vh‖1 + ‖Kv ∗ F−Vv‖1)

+α1(‖Kh ∗Vh‖1 + ‖Kv ∗Vv‖1 + ‖Kv ∗Vh + Kh ∗Vv‖1)]

, (4)

where µ is the regularization parameter, ‖ · ‖pp represents the Lp-pseudo-norm, α0 and α1 serve as the
balance coefficients, and Vh, Vv represent the horizontal and vertical gradients of the processed image.

3.2. Solution Method

To solve the model described by Equation (4), the complex optimization problem is decomposed
into several sub-problems that are solved using the ADMM framework. Then, alternating iterations of
the solutions of the sub-problems are performed until the solutions converge to the optimal solution of
the original optimization problem. To this end, a series of intermediate variables Xi are introduced,
with Xi ∈ RN×N(i = 0 ∼ 5), and they are defined as

X0 = H ∗ F−G

X1 = Kh ∗ F−Vh

X2 = Kv ∗ F−Vv

X3 = Kh ∗Vh

X4 = Kv ∗Vv

X5 = Kv ∗Vh + Kh ∗Vv

. (5)

The original problem is now transformed into the following constraint problem:

min
F,Vh,Vv

‖X0‖
p
p + µ[α0(‖X1‖1 + ‖X2‖1) + α1(‖X3‖1 + ‖X4‖1 + ‖X5‖1)]

s.t.X0 = H ∗ F−G, X1 = Kh ∗ F−Vh, X2 = Kv ∗ F−Vv,

X3 = Kh ∗Vh, X4 = Kv ∗Vv, X5 = Kv ∗Vh + Kh ∗Vv.

(6)

The augmented Lagrangian multiplier (ALM) method [20] is used to transform the constraint
problem described by Equation (6) into an unconstrained augmented Lagrangian function as follows:

J = max
Λ0∼Λ5

{ min
F, Vh, Vv,

X0 ∼ X5

‖X0‖
p
p + µ[α0(‖X1‖1 + ‖X2‖1) + α1(‖X3‖1 + ‖X4‖1 + ‖X5‖1)]

−
〈
β0Λ0, X0 − (H ∗ F−G)

〉
−

〈
β1Λ1, X1 − (Kh ∗ F−Vh)

〉
−

〈
β1Λ2, X2 − (Kv ∗ F−Vv)

〉
−
〈
β2Λ3, X3 −Kh ∗Vh

〉
−

〈
β2Λ4, X4 −Kv ∗Vv

〉
−

〈
β2Λ5, X5 − (Kv ∗Vv + Kh ∗Vv)

〉
+
β0
2 (‖X0 − (H ∗ F−G)‖22 +

β1
2 (‖X1 − (Kh ∗ F−Vh)‖

2
2 + ‖X2 − (Kv ∗ F−Vv)‖

2
2)

+
β2
2 (‖X3 −Kh ∗Vh‖

2
2 + ‖X4 −Kv ∗Vv‖

2
2 + ‖X5 − (Kv ∗Vh + Kh ∗Vv)‖

2
2)

}

(7)
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where µ0 = µα0 and µ1 = µα1; the dual variable Λi ∈ RN×N(i = 0 ∼ 5) is introduced as a Lagrangian
multiplier, β j > 0 ( j = 0 ∼ 2) is the penalty parameter, and 〈X,Y〉 represents the inner product of two

matrices X and Y. Upon adding the term
β j
2 (Λi

2
−Λi

2) = 0 (i = 0 ∼ 5, j = 0 ∼ 2) to Equation (7) to
complete the formula, Equation (8) is obtained after rearrangement.

J = max
Λ0∼Λ5

{ min
F, Vh, Vv,

X0 ∼ X5

‖X0‖
p
p + µ[α0(‖X1‖1 + ‖X2‖1) + α1(‖X3‖1 + ‖X4‖1 + ‖X5‖1)]

+
β0
2 (‖X0 − (H ∗ F−G) −Λ0‖

2
2 +

β1
2 (‖X1 − (Kh ∗ F−Vh) −Λ1‖

2
2 + ‖X2 − (Kv ∗ F−Vv) −Λ2‖

2
2)

+
β2
2 (‖X3 −Kh ∗Vh −Λ3‖

2
2 + ‖X4 −Kv ∗Vv −Λ4‖

2
2 + ‖X5 − (Kv ∗Vh + Kh ∗Vv) −Λ5‖

2
2)

−
β0
2 Λ2

0 −
β1
2 (Λ

2
1 + Λ2

2) −
β2
2 (Λ

2
3 + Λ2

4 + Λ2
5)

}
,

.

(8)

3.2.1. Solving Sub-Problems F, Vh, and Vv

According to the ADMM principle, F, Vh, and Vv are decoupled with the intermediate variables
and the dual variables, while there is coupling between F, Vh, and Vv. It is necessary to establish
Equation (9) to obtain a simultaneous solution.

JF =
β0
2 ‖X

(k)
0 − (H ∗ F−G) −Λ

(k)
0 ‖

2

2

+
β1
2 [‖X

(k)
1 − (Kh ∗ F−Vh) −Λ

(k)
1 ‖

2

2 + ‖X
(k)
2 − (Kv ∗ F−Vv) −Λ

(k)
2 ‖

2

2]

JVh =
β1
2 ‖X

(k)
1 − (Kh ∗ F−Vh) −Λ

(k)
1 ‖

2

2

+
β2
2 [‖X

(k)
3 −Kh ∗Vh −Λ

(k)
3 ‖

2

2 + ‖X
(k)
5 − (Kv ∗Vh + Kh ∗Vv) −Λ

(k)
5 ‖

2

2]

JVv =
β1
2 ‖X

(k)
2 − (Kv ∗ F−Vv) −Λ

(k)
2 ‖

2

2

+
β2
2

[
‖X(k)

4 −Kv ∗Vv −Λ
(k)
4 ‖

2

2 + ‖X
(k)
5 − (Kv ∗Vh + Kh ∗Vv) −Λ

(k)
5 ‖

2

2

)
. (9)

It is assumed here that the image to process satisfies a periodic boundary condition. According to
the convolution law, the convolution result of two matrix spaces corresponds to the point multiplication
of two matrix spectra in the frequency domain. To effectively avoid the computational complexity
introduced by large-scale matrix operations, FFT is used for convolutional computation to solve the
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problem described by Equation (9). To this end, F, Vh, and Vv in Equation (9) are re-expressed in the
frequency domain as follows:

JF =
β0
2 ‖X

(k)
0 − (H ◦ F−G) −Λ

(k)
0 ‖

2

2

+
β1
2 [‖X

(k)
1 − (Kh ◦ F−Vh) −Λ

(k)
1 ‖

2

2 + ‖X
(k)
2 − (Kv ◦ F−Vv) −Λ

(k)
2 ‖

2

2]

JVh
=

β1
2 ‖X

(k)
1 − (Kh ◦ F−Vh) −Λ

(k)
1 ‖

2

2

+
β2
2 [‖X

(k)
3 −Kh ◦Vh −Λ

(k)
3 ‖

2

2 + ‖X
(k)
5 − (Kv ◦Vh + Kh ◦Vv) −Λ

(k)
5 ‖

2

2]

JVv =
β1
2 ‖X

(k)
2 − (Kv ◦ F−Vv) −Λ

(k)
2 ‖

2

2

+
β2
2

[
‖X

(k)
4 −Kv ◦Vv −Λ

(k)
4 ‖

2

2 + ‖X
(k)
5 − (Kv ◦Vh + Kh ◦Vv) −Λ

(k)
5 ‖

2

2

)
, (10)

where X denotes the frequency spectrum of X, and ◦ denotes the element-wise matrix multiplication
operator. The right side of the equation is a smooth convex function. To seek the optimal solution of
Equation (10), the partial differentiation of JF, JVh

, JVv with respect to F, Vh, Vv is set to zero as follows:

∂JF
∂F

= β0(H)
∗
◦ [H ◦ F−G− (X

(k)
0 −Λ

(k)
0 )] + β1{Kh

∗
◦ [Kh ◦ F−Vh − (X

(k)
1 −Λ

(k)
1 )]

+Kv
∗
◦ [Kv ◦ F−Vv − (X

(k)
2 −Λ

(k)
2 )]

}
= 0

∂JVh
∂Vh

= −β1[Kh ◦ F−Vh − (X
(k)
1 −Λ

(k)
1 )] + β2{(Kh)

∗
◦ [Kh ◦Vh − (X

(k)
3 −Λ

(k)
3 )]

+(Kv)
∗
◦ [Kv ◦Vh + Kh ◦Vv − (X

(k)
5 −Λ

(k)
5 )]

}
= 0

∂JVv
∂Vv

= −β1[(Kv ◦ F−Vv − (X
(k)
2 −Λ

(k)
2 )] + β2{(Kv)

∗
◦ [Kv ◦Vv − (X

(k)
4 −Λ

(k)
4 )]

+(Kh)
∗
◦ [Kv ◦Vh + Kh ◦Vv − (X

(k)
5 −Λ

(k)
5 )]

}
= 0

. (11)

For the sake of reading convenience, Equation (12) is re-formulated into simultaneous equations
of the three variables F, Vh, and Vv.

A11 ◦ F + A12 ◦Vh + A13 ◦Vv = B1

A21 ◦ F + A22 ◦Vh + A23 ◦Vv = B2

A31 ◦ F + A32 ◦Vh + A33 ◦Vv = B3

. (12)

By re-organizing Equation (11), we obtain

A11 = β0
(
H
)∗
◦H+ β1

(
Kh

)∗
◦Kh + β1

(
Kv

)∗
◦Kv

A12 = −β1(Kh)
∗

A13 = −β1(Kv)
∗

B1 = β0
(
H
)∗
◦ (X

(k)
0 + G−Λ

(k)
0 ) + β1(Kh)

∗
◦ (X

(k)
1 −Λ

(k)
1 )

+β1(Kv)
∗
◦ (X

(k)
2 −Λ

(k)
2 )

, (13)
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A21 = −β1Kh

A22 = β11 + β2(Kh)
∗
◦Kh + β2(Kv)

∗
◦Kv

A23 = β2 (Kv)
∗
◦Kh

B2 = β1(Λ
(k)
1 −X

(k)
1 ) + β2[(Kh)

∗
◦ (X

(k)
3 −Λ

(k)
3 ) + (Kv)

∗
◦ (X

(k)
5 −Λ

(k)
5 )]

, (14)



A31 = −β1Kv

A32 = β2(Kh)
∗
◦Kv

A33 = β11 + β2(Kh)
∗
◦Kh + β2(Kv)

∗
◦Kv

B3 = β1(Λ
(k)
2 −X

(k)
2 ) + β2[(Kv)

∗
◦ (X

(k)
4 −Λ

(k)
4 ) + (Kh)

∗
◦ (X

(k)
5 −Λ

(k)
5 )]

, (15)

where 1 denotes a matrix of ones. Now, F, Vh, and Vv can be solved using FFT based on Cramer’s rule.

F(k+1) = F−1
2D


∣∣∣∣∣∣∣∣∣

B1 A12 A13

B2 A22 A23

B3 A32 A33

∣∣∣∣∣∣∣∣∣
∗

/∣∣∣∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣∣∣∣
∗


V

(k+1)

h = F−1
2D


∣∣∣∣∣∣∣∣∣

A11 B1 A13

A21 B2 A23

A31 B3 A33

∣∣∣∣∣∣∣∣∣
∗

/∣∣∣∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣∣∣∣
∗


V

(k+1)
v = F−1

2D


∣∣∣∣∣∣∣∣∣

A11 A12 B1

A21 A22 B2

A31 A32 B3

∣∣∣∣∣∣∣∣∣
∗

/∣∣∣∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣∣∣∣
∗



. (16)

In Equation (16), F−1
2D denotes a two-dimensional inverse Fourier transform, and the division

symbol / denotes element-wise matrix division. According to Cramer’s rule, ||∗ in Equation (16) refers

to the following:

∣∣∣∣∣∣∣∣∣
Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

∣∣∣∣∣∣∣∣∣
∗

= Y11 ◦ Y22 ◦ Y33 + Y12 ◦ Y23 ◦ Y31 + Y13 ◦ Y21 ◦ Y32

− Y13 ◦ Y22 ◦ Y31 − Y12 ◦ Y21 ◦ Y33 − Y11 ◦ Y32 ◦ Y23

.

3.2.2. Solving Sub-Problems Containing Intermediate Variables Xi(i = 0, 1, 2, · · · , 5)

For the sub-problems containing intermediate variables of Xi(i = 0, 1, 2, · · · , 5), the objective
functions are expressed as

JX0 = min
X0
‖X0‖

p
p +

β0
2 (‖X0 − (H ∗ F(k+1)

−G) −Λ
(k)
0 ‖

2

2

JX1 = min
X1
µ0‖X1‖1 +

β1
2 ‖X1 − (Kh ∗ F(k+1)

−V(k+1)
h ) −Λ(k)

1 ‖
2

2

JX2
= min

X2
µ0‖X2‖1 +

β1
2 ‖X2 − (Kv ∗ F(k+1)

−V(k+1)
v ) −Λ

(k)
2 ‖

2

2

JX3 = min
X3
µ1‖X3‖1 +

β2
2 ‖X3 −Kh ∗V(k+1)

h −Λ
(k)
3 ‖

2

2

JX4 = min
X4
µ1‖X4‖1 +

β2
2 ‖X4 −Kv ∗V(k+1)

v −Λ
(k)
4 ‖

2

2

JX5 = min
X5
µ1‖X5‖1 +

β2
2 ‖X5 − (Kv ∗V(k+1)

h + Kh ∗V(k+1)
v ) −Λ

(k)
5 ‖

2

2

. (17)
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To solve the sub-problem of X0 in Equation (17), Lp shrinkage [16,17] is used, with the Lp
shrinkage operator defined as shrinkp(ξ, τ) = sgn(ξ)max{|ξ| − τ2−p

|ξ|p−1, 0}. In the case of p = 1, the Lp
shrinkage operator degenerates into a soft-threshold shrinkage operator. Soft-threshold shrinkage of
the sub-problems of X1 ∼ X5 gives

X(k+1)
0 = shrinkp(H ∗ F(k+1)

−G + Λ
(k)
0 , 1

β0
)

X(k+1)
1 = shrink(Kh ∗ F(k+1)

−V(k+1)
h + Λ

(k)
1 , µ0

β1
)

X(k+1)
2 = shrink(Kv ∗ F(k+1)

−V(k+1)
v + Λ

(k)
2 , µ0

β1
)

X(k+1)
3 = shrink(Kh ∗V(k+1)

h + Λ
(k)
3 , µ1

β2
)

X(k+1)
4 = shrink(Kv ∗V(k+1)

v + Λ
(k)
4 , µ1

β2
)

X(k+1)
5 = shrink(Kv ∗V(k+1)

h + Kh ∗V(k+1)
v + Λ

(k)
5 , µ1

β2
)

. (18)

3.2.3. Solving Sub-Problems Containing Dual Variables Λi(i = 0, 1, 2, · · · , 5)

For the sub-problems containing dual variables Λi(i = 0, 1, 2, · · · , 5), the objective functions are
expressed as 

JΛ0 = max
Λ0
β0

〈
Λ0, (H ∗ F(k+1)

−G) −X(k+1)
0

〉
JΛ1 = max

Λ1
β1

〈
Λ1, (Kh ∗ F(k+1)

−V(k+1)
h ) −X(k+1)

1

〉
JΛ2 = max

Λ2
β1

〈
Λ2, (Kv ∗ F(k+1)

−V(k+1)
v ) −X(k+1)

2

〉
JΛ3 = max

Λ3
β2

〈
Λ3, (Kh ∗V(k+1)

h ) −X(k+1)
3

〉
JΛ4 = max

Λ4
β2

〈
Λ4, (Kv ∗V(k+1)

v ) −X(k+1)
4

〉
JΛ5 = max

Λ5
β2

〈
Λ5, (Kv ∗V(k+1)

h + Kh ∗V(k+1)
v ) −X(k+1)

5

〉

. (19)

In the ADMM framework, dual variables can be updated using the ascending gradient method
as follows: 

Λ
(k+1)
0 = Λ

(k)
1 + γβ0(H ∗ F(k+1)

−G−X(k+1)
0 )

Λ
(k+1)
1 = Λ

(k)
1 + γβ1(Kh ∗ F(k+1)

−V(k+1)
h −X(k+1)

1 )

Λ
(k+1)
2 = Λ

(k)
2 + γβ1(Kv ∗ F(k+1)

−V(k+1)
v −X(k+1)

2 )

Λ
(k+1)
3 = Λ

(k)
3 + γβ2(Kh ∗V(k+1)

h −X(k+1)
3 )

Λ
(k+1)
4 = Λ

(k)
4 + γβ2(Kv ∗V(k+1)

v −X(k+1)
4 )

Λ
(k+1)
5 = Λ

(k)
5 + γβ2(Kv ∗V(k+1)

h + Kh ∗V(k+1)
v −X(k+1)

5 )

, (20)

where γ denotes the learning rate or the slack variable. The convergence of the algorithm was proven

in the case of γ ∈ (0,
√

5+1
2 ) [21]. Hitherto, all the sub-problems of the model proposed in this study

were solved, and the algorithm is herein referred to as TGV_Lp, which is summarized in Algorithm 1.
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Algorithm 1. Pseudocode TGV_Lp for image restoration

Input: G,H
Output: F
Initialize:
k = 1, X(k)

i = 0, Λ
(k)
i = 0, (i = 0, 1, . . . , 5), F(k) = 0,µ0,µ1, βi(i = 0, 1, 2),γ, p, tol.

1: Set ‖F(k+1)
− F(k)‖2/‖F(k)‖2 as 1;

2: While ‖F(k+1)
− F(k)‖2/‖F(k)‖2 > tol do

3: Update F(k+1), V(k+1)
h , V(k+1)

v according to Equation (16);

4: Update X(k+1)
i (i = 0, 1, . . . , 5) according to Equation (18);

5: Update Λ
(k+1)
i (i = 0, 1, . . . , 5) according to Equation (20);

6: k = k + 1;
7: End while
8: Return F(k) as F.

4. Numerical Experiments

To verify the appropriateness and validity of the proposed model, standard images of different
styles were selected as experimental objects. The images were degraded with Gaussian blur, average
blur, motion blur, and different degrees of impulse noise so that a large number of numerical simulation
experiments could be performed to make indicator-based comparisons and evaluations in an objective
manner. In particular, the image “Satellite” was downloaded from the Emory University image
database [27], and the other images were downloaded from CVG-UGR (Computer Vision Group,
University of Granada) image database [28]. These test images were widely used in other relevant
publications, thereby allowing for objective and fair comparison of the test results. All calculations in
this study were performed using MATLAB R2018a on a Windows 10 system with an Intel®Core™
i7-7700 central processing unit (CPU) (4.2 GHz) with 16.0 GB of memory.

4.1. Evaluation Indicators and Stopping Criteria

For objective evaluation of image quality, PSNR, SSIM, and SNR were used. Their definitions are
given below [29].

PSNR(X, Y) = 10log10
L2

1
N2

N∑
i=1

N∑
j=1

(Xi j − Yi j)
2

, (21)

where X represents an original image, and Y represents a restored image; L represents the maximum
gray level of the image, which was set as 255 in this study. Generally, a larger PSNR value of a
restored image denotes less image distortion and greater similarity between the restored image and
the original image.

SSIM(X, Y) =
(2µXµY + L2k2

1)(2σXY + L2k2
2)(

µ2
X + µ2

Y + L2k2
1

)(
σ2

X + σ2
Y + L2k2

2

) , (22)

where µX and µY represent the means of images X and Y, respectively, σ2
X and σ2

Y represent the
variances of X and Y, respectively, σXY represents the covariance of X and Y, and the constants k1

and k2 are very small positive numbers introduced to prevent the denominator of Equation (22) from
being zero; they were set as 0.01 and 0.03 in this study, respectively. The maximum value of SSIM is 1,
which indicates that the original image and the restored image are 100% identical; as the value of SSIM
approaches 1, the similarity between the original and restored images increases.

SNR(X, Y) = 10log10
‖X‖22
‖X− Y‖22

. (23)
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Images with low noise have higher SNR values, making SNR an important metric for characterizing
the performance of the restoration algorithm.

In the experiments, the iteration stopping criterion for comparing various algorithms was
Equation (24), where F(k) and F(k+1) denote the objective functions after the k-th iteration and (k + 1)-th
iteration, respectively.

‖F(k+1)
− F(k)

‖2 · ‖F
(k)
‖
−1
2 < 10−4. (24)

The blur kernels used in the test were Gaussian blur, average blur, and motion blur, all of which
were generated by built-in functions of MATLAB. The function fspecial (‘gaussian’, S,σ) generates an
S× S Gaussian blur kernel standard deviation of σ, and the kernel is hereinafter referred to as (G, S, σ)
for convenience; fspecial (‘average’, S) generates an S× S average blur kernel, which is referred to as
(A, S); fspecial (‘motion’, L,θ) generates a motion blur kernel with a length of L and angle of θ, which
is referred to as (M, L,θ). Noise effects were generated by built-in function imnoise (Ib, ‘salt & pepper’,
level), where “Ib” is the blurred image and “level” is the noise density, i.e., the percentage of noise in
the total number of pixels.

4.2. Parameter Selection and Sensitivity Analysis

Parameters involved in the algorithm of this study are µ0, µ1, βi(i = 0, 1, 2), p, and γ. In particular,
µ0 = µα0 and µ1 = µα1 are regularization parameters with values greater than zero, which serve to
balance the fidelity term and regularization term. Based on our previous experience with testing, we
assumed here that α0 = 2α1 while gradually increasing the value of µ between 0.1 and 10 to find
the optimal effect of image restoration. Given the characteristics of impulse noise, the value of the
Lp-pseudo-norm was gradually increased from 0.1 to 1 by a step of 0.05, and a loop statement was
adopted to traverse all paths to find the p value for the optimal PSNR. In all tests, the penalty parameter
βi(i = 0, 1, 2) of the ALM method was set to have ratios of β0 : β1 : β2 = 50 : 1 : 5, and the slack variable
was set to 1, i.e., γ = 1.

4.2.1. Regularization Parameter µ

To test the effect of the regularization parameter µ on the image restoration results, different
levels of blur and impulse noise were introduced into the test images (a)–(i), and PSNR values were
recorded by gradually increasing the value of µ in the range of 0.1–10 while fixing other parameters.
The experimental results show that the proposed algorithm is not sensitive to µ; that is, during the
recovery process of different images, the value of PSNR does not undergo significant changes with
changes in µ, indicating that the proposed algorithm is robust. The test results of the “Boat” image
of Figure 3d and “Hill” image of Figure 3f treated with the Gaussian blur kernel at 30%, 40%, 50%,
and 60% noise levels are presented in Figure 4. The PSNR value in Figure 4 was not optimal for the
proposed algorithm, as other fixed parameters remained to be adjusted optimally. In subsequent
experiments, the regularization parameter was set to 1, i.e.,µ = 1.
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Figure 4. Effect of the regularization parameter µ on the experimental results. (a) Effect of µ on peak
signal-to-noise ratio (PSNR) at noise levels 30%, 40%, 50%, and 60% with image “Boat”. (b) Effect of µ
on PSNR at noise levels 30%, 40%, 50%, and 60% with image “Hill”.

4.2.2. Value of p in Lp-Pseudo-Norm

When it came to selecting the p value of the Lp-pseudo-norm, given the characteristics of the
impulse noise, the p value was gradually increased from 0.1 to 1 in steps of 0.05, and a loop statement
was adopted to traverse all paths so as to find the p value that could give the optimal PSNR value
of image restoration. For restoration of the nine images treated with (G, 7, 5) at 30–60% noise levels,
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the best p values were obtained and are listed in Table 1, with the results showing that the p value was
relatively stable for the same image.

Table 1. Values of p that give optimal peak signal-to-noise ratio (PSNR) values for different test images.

Noise Level Fingerprint Butterfly Baboon Boat Bird Hill Truck Plane Satellite

30% 0.30 0.45 0.50 0.35 0.50 0.55 0.50 0.55 0.75
40% 0.30 0.45 0.50 0.35 0.50 0.55 0.50 0.55 0.75
50% 0.30 0.45 0.50 0.35 0.50 0.55 0.50 0.55 0.75
60% 0.25 0.50 0.50 0.35 0.50 0.55 0.55 0.55 0.75

In addition, to better show the best selection of the p and µ values, we used a three-dimensional
(3D) figure. The test results of the “Hill” image treated with the Gaussian blur kernel at 30% noise
level are presented in Figure 5.
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Figure 5. Effect of the p and µ values on PSNR: PSNR (dB) for the recovery of image “Hill” degraded
with a Gaussian blur kernel (G, 7, 5) and 30% impulse noise.

4.3. Numerical Performance Comparison

To test the effectiveness of the proposed algorithm, the following four algorithms were compared:
an FTVd model, a TGV model, an OGSTV model, and the proposed frequency-domain TGV-Lp
model. The algorithms were adapted from the authors’ web pages or shared by the authors. It is
noteworthy that all these algorithms are state-of-the-art algorithms in the field of image restoration.
In the experiments, regularization parameters were adjusted until each algorithm achieved its best
performance for image restoration to ensure an objective and fair comparison.

4.3.1. Numerical Performance Comparison for Image Recovery in the Presence of Gaussian Blur

The results of the image restoration tests performed on nine test images degraded with Gaussian
blur kernel (G, 7, 5) and 30–60% impulse noise are listed in Table 2. In the table, the optimal indicators
are highlighted in bold.
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Table 2. Numerical results of PSNR (dB), structural similarity (SSIM), and SNR (dB) for the recovery of
nine test images degraded with a Gaussian blur kernel (G, 7, 5) and 30–60% impulse noise. FTVd—fast
total variation deconvolution; TGV—total generalized variation; OGSTV—overlapping group sparsity
total variation.

Images Noise
Level

FTVd TGV OGSTV Proposed
PSNR SSIM SNR PSNR SSIM SNR PSNR SSIM SNR PSNR SSIM SNR

Finger
print

30 30.49 0.950 21.90 36.13 0.980 27.39 36.21 0.980 27.68 38.63 0.989 30.08
40 29.16 0.913 19.84 35.32 0.976 26.79 35.64 0.981 26.4 37.44 0.983 28.90
50 28.37 0.866 19.51 33.04 0.959 24.5 33.99 0.957 24.56 35.59 0.970 27.05
60 25.74 0.831 16.27 28.89 0.915 20.35 28.84 0.906 19.32 30.60 0.923 22.07

Butterfly

30 28.21 0.894 21.96 30.37 0.919 24.17 30.84 0.932 24.59 32.17 0.946 25.92
40 27.36 0.875 21.11 29.58 0.901 23.33 30.46 0.926 24.21 30.99 0.931 24.74
50 25.42 0.825 19.17 28.45 0.869 22.2 28.83 0.895 22.45 29.96 0.912 23.71
60 24.06 0.734 14.47 26.48 0.804 20.24 26.61 0.818 20.27 28.99 0.898 22.75

Baboon

30 21.29 0.628 15.83 22.93 0.756 17.47 23.15 0.765 17.69 24.01 0.806 18.55
40 21.06 0.608 15.60 22.56 0.730 17.10 22.93 0.756 17.46 23.39 0.779 17.93
50 20.62 0.572 15.15 22.08 0.693 16.63 21.90 0.702 16.44 22.66 0.738 17.20
60 20.27 0.525 14.43 21.23 0.627 15.77 20.57 0.546 15.12 22.23 0.710 16.77

Boat

30 27.25 0.840 21.92 29.05 0.894 23.71 29.45 0.906 24.11 31.46 0.932 26.11
40 26.49 0.802 21.16 28.33 0.873 22.99 29.06 0.898 23.71 30.28 0.914 24.94
50 25.65 0.789 20.30 27.25 0.839 21.91 27.23 0.836 21.88 28.47 0.884 23.12
60 23.90 0.756 18.56 25.13 0.766 19.80 26.30 0.780 21.06 27.37 0.849 21.78

Bird

30 31.03 0.914 21.97 32.82 0.934 23.76 33.49 0.947 24.43 34.54 0.957 25.47
40 29.71 0.890 20.65 31.84 0.915 22.77 33.03 0.941 23.97 33.39 0.943 24.32
50 26.73 0.831 17.67 29.46 0.874 20.39 30.45 0.882 21.38 32.31 0.930 23.24
60 22.75 0.722 13.69 26.99 0.797 17.93 27.85 0.813 18.77 29.69 0.898 20.62

Hill

30 28.24 0.859 21.87 30.27 0.898 23.91 30.71 0.908 24.35 31.98 0.925 25.62
40 27.24 0.831 20.88 29.48 0.878 23.11 30.29 0.899 23.93 30.94 0.909 24.57
50 25.57 0.802 19.68 28.39 0.845 22.03 28.25 0.865 21.92 29.72 0.887 23.36
60 24.87 0.760 18.51 26.16 0.773 19.79 27.03 0.845 20.69 28.52 0.855 21.74

Truck

30 29.50 0.887 22.23 32.79 0.926 25.52 33.48 0.939 26.22 34.22 0.946 26.96
40 28.70 0.828 21.73 31.85 0.908 24.58 33.06 0.932 25.79 33.14 0.933 25.87
50 27.26 0.794 19.99 30.42 0.873 23.15 31.17 0.905 23.90 32.50 0.923 25.23
60 26.13 0.620 19.18 29.06 0.860 21.80 30.48 0.865 23.11 31.05 0.903 23.79

Plane

30 32.37 0.902 29.18 33.96 0.948 30.77 36.33 0.975 33.15 36.23 0.974 33.05
40 31.68 0.898 28.49 33.00 0.929 29.82 35.20 0.961 31.37 35.30 0.965 32.11
50 30.42 0.831 27.24 31.43 0.892 28.25 32.71 0.901 29.52 33.90 0.951 30.72
60 27.90 0.730 24.72 29.73 0.764 26.04 30.07 0.805 26.89 31.96 0.927 28.78

Satellite

30 31.80 0.925 18.12 34.17 0.959 20.49 36.97 0.989 23.20 36.54 0.985 23.05
40 30.38 0.910 16.70 33.39 0.945 19.72 36.00 0.983 22.32 35.76 0.980 22.08
50 29.08 0.883 15.41 31.37 0.910 17.70 32.32 0.926 18.64 32.61 0.975 18.92
60 27.99 0.830 14.31 29.54 0.855 15.86 30.05 0.904 16.38 30.21 0.944 16.72

The results of image restoration tests performed on nine test images degraded with a Gaussian
blur kernel (G, 15, 5) and 30% noise are shown in Table 3.
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Table 3. Numerical results of PSNR (dB), SSIM, and SNR (dB) for the recovery of nine test images
degraded with a Gaussian blur kernel (G, 15, 5) and 30% impulse noise.

Images Degrada
-tion

FTVd TGV OGSTV Proposed
PSNR SSIM SNR PSNR SSIM SNR PSNR SSIM SNR PSNR SSIM SNR

Fingerprint

Blur:
(G, 15, 5)

Noise
level:
30%

27.31 0.877 18.78 29.89 0.935 21.36 30.09 0.934 21.55 30.72 0.970 22.18
Butterfly 24.91 0.705 18.67 26.96 0.861 20.72 27.05 0.864 20.80 27.47 0.873 21.22
Baboon 19.89 0.481 14.43 20.99 0.597 15.53 21.09 0.603 15.62 21.72 0.645 16.27

Boat 24.73 0.679 19.20 25.63 0.815 20.29 26.37 0.835 21.02 26.86 0.851 21.82
Bird 28.15 0.741 19.08 29.60 0.885 20.54 29.81 0.892 20.75 30.05 0.906 20.91
Hill 25.98 0.690 19.68 27.37 0.830 21.01 27.41 0.832 21.05 28.01 0.840 21.65

Truck 27.56 0.707 20.29 29.42 0.862 22.16 29.57 0.866 22.31 30.30 0.872 23.01
Plane 29.76 0.815 26.58 30.67 0.904 27.65 31.34 0.938 28.15 31.82 0.948 28.64

Satellite 28.20 0.821 14.52 29.66 0.900 15.98 31.47 0.963 17.79 31.39 0.962 17.71

An in-depth analysis of the data in Tables 2 and 3 leads to the following conclusions:

1. All four methods can effectively recover images that were degraded by Gaussian blur and
different degrees of impulse noise. The PSNR, SSIM, and SNR values of the proposed method
are generally higher than those of other competitive methods, which indicates that the proposed
method has better deblurring and denoising effects. In particular, for images with many lines and
complex textures, such as “Fingerprint” in Figure 3a, “Butterfly” in Figure 3b, and “Baboon” in
Figure 3c, the proposed method performed well, especially at high noise levels. For example,
for the “Fingerprint” image of Figure 3a treated with a Gaussian blur kernel (G, 7, 5) and 50%
noise, the PSNR value (35.59 dB) of the proposed method was higher by 7.22 dB than that of the
FTVd method (28.37 dB), and was higher by 2.55 dB and 1.6 dB than that of the TGV method
(33.04 dB) and the OGSTV method (33.99 dB), respectively.

2. When restoring the nine degraded images treated with the Gaussian blur kernel (G, 7, 5) and
30–60% impulse noise, the proposed method achieved 0.58–2.85 dB higher PSNR values compared
with the TGV method. When restoring the nine degraded images treated with the Gaussian blur
kernel (G, 15, 5) and impulse noise, the proposed method achieved 0.45–1.73 dB higher PSNR
values compared with the TGV method. For example, for the “Bird” image of Figure 3e treated
with the Gaussian blur kernel (G, 7, 5) and two different levels (50% vs. 60%) of noise, the PSNR
values of the proposed method (32.31 dB and 29.69 dB) were 2.85 dB and 2.7 dB higher than those
of the TGV method (29.46 dB and 26.99 dB), respectively.

3. The OGSTV method is an excellent algorithm for image deblurring and impulse noise removal,
and it uses the neighborhood gradient information of the image to form a combined gradient
for image restoration, which achieves good image restoration performance for smooth image
regions but is less satisfactory in recovering image edge regions containing sharp lines and angles.
In the test, it was observed that, for smooth images with non-complex textures, such as the
“Plane” image of Figure 3h and “Satellite” image of Figure 3i, the OGSTV method had particularly
excellent performance, which was slightly better than that of the proposed algorithm in the case
of low noise levels. In the case of high noise levels, however, the proposed algorithm was still
superior to the OGSTV method. For example, when restoring the “Satellite” image degraded with
(G, 7, 5) and 30% noise, the OGSTV method achieved a slightly higher PSNR value of 36.97 dB
compared to the proposed method (36.54 dB), with a difference of only 0.43 dB; however, in the
cases of 50% and 60% noise, the PSNR values of the OGSTV method were lower than those of the
proposed method.

The above analysis indicates that the use of Lp-pseudo-norm shrinkage in the proposed method
increases the degree of freedom by one, making it less difficult to describe image gradient sparsity.
The performance of the proposed method in removing Gaussian blur and impulse noise is generally
better than that of the three competitive methods, especially for images with complex textures. In
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addition, the comparison reveals that the image restoration performance of the FTVd algorithm is
much worse than that of the other three algorithms; thus, the subsequent experimental results of the
FTVd algorithm are not listed in some tables.

4.3.2. Numerical Performance Comparison for Image Recovery in the Presence of Average Blur

The image restoration capability of the proposed method for degraded images treated with average
blur and impulse noise was investigated, with Table 4 presenting the results of image restoration tests
performed on nine degraded test images treated with an average blur kernel (A, 7) and two levels
(30% vs. 60%) of noise.

Table 4. Numerical results of PSNR (dB), SSIM, and SNR (dB) for the recovery of nine test images
degraded with an average blur kernel (A, 7) and 30–60% impulse noise.

Images Blur
Size

Noise
Level

TGV OGSTV Proposed
PSNR SSIM SNR PSNR SSIM SNR PSNR SSIM SNR

Fingerprint

(A, 7)

30 36.46 0.983 27.91 36.73 0.980 29.19 38.31 0.989 29.77
60 28.74 0.905 20.20 29.30 0.907 21.24 30.11 0.910 21.57

Butterfly 30 30.40 0.918 24.15 30.99 0.933 24.74 32.21 0.947 25.97
60 25.83 0.784 19.59 26.45 0.803 20.66 28.59 0.895 22.35

Baboon
30 23.01 0.761 17.54 23.29 0.778 17.83 24.11 0.814 18.65
60 21.14 0.622 15.68 21.51 0.657 16.10 22.31 0.715 16.85

Boat
30 29.11 0.894 23.77 29.60 0.907 24.26 31.50 0.933 26.16
60 25.11 0.755 19.77 26.24 0.776 20.52 27.22 0.855 21.88

Bird
30 32.75 0.933 23.67 33.53 0.948 24.47 34.53 0.957 25.46
60 27.05 0.785 17.99 29.06 0.853 20.35 30.19 0.899 21.13

Hill
30 30.33 0.899 23.97 30.85 0.910 24.49 32.07 0.927 25.71
60 25.96 0.757 19.60 26.10 0.762 20.07 27.96 0.852 21.60

Truck
30 32.79 0.925 25.52 33.61 0.940 26.34 34.32 0.947 27.06
60 27.25 0.780 19.97 30.28 0.848 22.32 31.38 0.904 24.12

Plane
30 33.87 0.945 30.68 36.45 0.975 33.27 36.37 0.969 33.08
60 28.15 0.793 24.97 31.87 0.922 28.69 32.31 0.926 29.13

Satellite
30 33.95 0.956 20.28 36.85 0.989 23.18 36.52 0.981 23.10
60 28.06 0.814 14.38 28.52 0.933 14.84 28.54 0.933 14.87

With regard to the image restoration performance of the algorithms for different images treated
with average blur and different levels of impulse noise, the data in Table 4 lead to conclusions similar to
those obtained in the case of Gaussian blur and impulse noise. When restoring the nine degraded test
images treated with an average blur kernel (A, 7) and impulse noise, the proposed method achieved
0.48–4.16 dB higher PSNR values compared with the TGV method. For images with many lines
and complex textures, such as the “Fingerprint” image of Figure 3a, “Butterfly” image of Figure 3b,
and “Baboon” image of Figure 3c, the proposed method achieved 0.8–2.14 dB higher PSNR values
compared with the OGSTV method. However, the OGSTV performed well in restoring smooth images
in the presence of low noise levels.

4.3.3. Numerical Performance Comparison for Image Recovery in the Presence of Motion Blur

Furthermore, the image restoration capability of the proposed method in the case of motion
blur and impulse noise was investigated. Table 5 presents the PSNR results of image restoration
tests performed on the degraded “Butterfly” image of Figure 3b, “Baboon” image of Figure 3c, “Bird”
image of Figure 3e, and “Truck” image of Figure 3g treated with different motion blur kernels and
30–60% noise.
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Table 5. Numerical results of PSNR (dB) for the image restoration test conducted on four test images
degraded with different levels of blur and impulse noise.

Images Blur Size Noise Level FTVd TGV OGSTV Proposed

Baboon
(M, 10, 10) 30 21.7921 24.0100 22.0647 24.8964

40 21.1785 22.9020 23.2183 24.3687

(M, 20, 20) 30 21.0863 23.0958 22.8402 23.6167
40 20.7721 22.4554 22.3522 23.2369

Butterfly (M, 30, 30)

30 26.0616 28.7070 28.4671 29.3110
40 25.3602 27.9250 27.8820 28.9013
50 24.2406 26.8643 27.2269 28.3973
60 22.4797 25.2250 26.4264 27.7279

Bird (M, 20, 20)

30 30.0618 31.7805 32.5596 33.3166
40 28.7341 30.3195 31.8788 32.6383
50 26.2732 28.2106 31.1538 31.7443
60 22.9536 25.2543 30.1680 30.3756

Truck (M, 20, 20)

30 30.3177 31.8087 32.3495 33.3499
40 29.1381 30.3154 31.7592 32.7189
50 27.5260 28.4093 31.1104 31.9235
60 24.7013 25.2220 30.0642 30.7173

For different images treated with varying degrees of motion blur and impulse noise, the data
in Table 5 reveal that the proposed method outperformed the TGV and OGSTV methods in
removing motion blur and impulse noise. When restoring the four images, the proposed method
achieved 0.52–5.50 dB and 0.21–2.83 dB higher PSNR values than the TGV method and the OGSTV
method, respectively.

4.4. Comparison of Visual Effects

To better observe the test results, some restored images are presented below for visual
comparison purposes.

4.4.1. Comparison of the Visual Effects of Restored Images in the Case of Gaussian Blur

Figures 6 and 7 present image restorations by the four algorithms of the “Boat” image degraded
with a Gaussian blur kernel (G, 7, 5) and 30% impulse noise, and zoomed-in images of the restored
images for better comparison, respectively. With respect to the visual effects of the restored images,
with the FTVd method (c), a loss of some image details occurred during restoration of the image,
and there was an obvious staircase effect. The TGV method (d) and the OGSTV method (e) performed
well in suppressing the staircase effect, but slight ringing artefacts were generated when the TGV
method was used to restore the image. Furthermore, the OGSTV method performed well in smooth
image regions but relatively poorly preserved image edges. The proposed method, however, not only
preserved image edges, but also restored smooth image regions well, achieving the best overall visual
effects for image restoration.
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(f) proposed algorithm-restored image.
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image; (e) OGSTV-restored image; (f) proposed algorithm-restored image.

4.4.2. Visual Effect Comparison for Image Restoration in the Case of Average Blur

Figures 8 and 9 present the “Fingerprint” image restored using the four algorithms from the image
degraded with average blur kernel (A, 7) and 50% impulse noise, as well as the zoomed-in restored
images for better comparison. With respect to the visual effects of the restored images, the FTVd
method (c) led to a certain degree of staircase effect in the restored image, the TGV method (d) led
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to blurred image edges in the restored image, and the OGSTV method (e) needed to be improved in
preserving image edges. In contrast, the proposed method performed well in restoring the details of
the image lines.
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Figure 9. Local zoomed-in images from Figure 7 for better comparison: (a) selected region of the original
image; (b) local zoomed-in image of the selected region; (c) FTVd-restored image; (d) TGV-restored
image; (e) OGSTV-restored image; (f) proposed algorithm-restored image.
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4.4.3. Visual Effect Comparison for Image Restoration of Images Degraded with Motion Blur

Figure 10 compares the zoomed-in details of the “Butterfly” image restored using the four
algorithms with those of the image degraded with a motion blur kernel (M, 20, 20) and 30%
impulse noise.Algorithms 2019, 12, x FOR PEER REVIEW 20 of 24 
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noise; (e) FTVd-restored image; (f) TGV-restored image; (g) OGSTV-restored image; (h) proposed
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Figure 11 presents a visual effects comparison of the image restorations using the four algorithms
for the following images: the “Bird” image degraded with a motion blur kernel (M, 20, 20) and 30%
noise, the “Baboon” image degraded with a motion blur kernel (M, 10, 10) and 40% noise, the “Butterfly”
image degraded with a motion blur kernel (M, 30, 30) and 50% noise, and the “Truck” image degraded
with a motion blur kernel (M, 20, 20) and 60% noise. As shown in the figure, the proposed method
allowed for better preservation of the smooth image regions and restoration of the details of the image
lines with fewer artefacts.
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4.5. Comparison of Computing Time

Finally, to further test the timeliness of the proposed model, the proposed method was compared
with the FTVd, TGV, and OGSTV methods by testing the mean time required to restore the nine images
of Figure 3 for different blur kernels at various impulse noise levels. Some test results are shown in
Table 6, where the best indicators are highlighted in bold.

Table 6. Image restoration time (s) of the degraded test images with different levels of blur and
impulse noise.

Images Blur Type Noise Level FTVd TGV OGSTV Proposed

Fingerprint
256 × 256

(G, 7, 5) 30 0.86 1.47 0.81 1.19
(A, 7) 40 0.92 1.48 0.98 1.17

(M, 20, 20) 30 0.81 1.47 1.09 1.22
(M, 20, 20) 60 0.84 1.48 1.47 1.17

Plane
512 × 512

(G, 7, 5) 30 3.28 6.03 6.20 5.31
(A, 7) 40 3.42 6.17 5.98 5.36

(M, 20, 20) 30 3.61 6.28 6.78 5.33
(M, 20, 20) 60 3.27 6.36 4.16 5.36

Satellite
512 × 512

(G, 7, 5) 30 3.36 7.11 3.11 5.27
(A, 7) 40 3.50 6.20 2.66 5.34

(M, 20, 20) 30 3.31 6.22 3.59 5.16
(M, 20, 20) 60 3.23 6.23 4.09 5.14

The calculation times in the table reveal that FTVd, which is a classic algorithm, is still advantageous
in terms of computing speed. The proposed method is comparable to the OGSTV method in terms of
image restoration time, while they are both faster than the TGV method. The proposed method uses the
Lp-pseudo-norm as a regularization constraint, which increases the method’s computational burden,
thereby leading to a certain degree of increase in the image restoration time. However, the gradient
difference is re-expressed in the form of a convolution in this study, where it corresponds to the
dot multiplication of two matrix spectra in the frequency domain; moreover, FFT is employed for
convolution calculation. These strategies effectively avoid large-scale matrix multiplications, thus
speeding up the calculation.

5. Conclusions

In this study, a regularized method for image restoration based on the Lp-pseudo-norm and TGV
was proposed to de-blur images and remove impulse noise. The method constrains the first-order
and second-order gradients of the image and takes advantage of the sparse representation ability of
the Lp-pseudo-norm for image gradients. In this way, it effectively removes image blur and noise,
and reduces undesirable artefacts (such as staircase and ringing artefacts) in image restoration while
better preserving the edges and details of the image. A large number of experimental results revealed
that the proposed method is consistently superior to several state-of-the-art methods in terms of
numerical indicators and visual effects. The regularization parameters µ of the Lp-pseudo-norm used in
the experiments were relatively invariant, indicating that the proposed algorithm is robust. In follow-up
studies, efforts will be made to further improve the computational efficiency of the proposed method.
It should be noted that the proposed algorithm uses a generalized regularization term, which can be
easily extended to other algorithms and is suitable for other image restoration problems.
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