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Abstract: Microscopic object recognition and analysis is very important in micromanipulation.
Micromanipulation has been extensively used in many fields, e.g., micro-assembly operation,
microsurgery, agriculture, and biological research. Conducting micro-object recognition in the in-situ
measurement of tissue, e.g., in the ion flux measurement by moving an ion-selective microelectrode
(ISME), is a complex problem. For living tissues growing at a rate, it remains a challenge to accurately
recognize and locate an ISME to protect living tissues and to prevent an ISME from being damaged.
Thus, we proposed a robust and fast recognition method based on local binary pattern (LBP) and
Haar-like features fusion by training a cascade of classifiers using the gentle AdaBoost algorithm to
recognize microscopic objects. Then, we could locate the electrode tip from the background with
strong noise by using the Hough transform and edge extraction with an improved contour detection
method. Finally, the method could be used to automatically and accurately calculate the relative
distance between the two micro-objects in the microscopic image. The results show that the proposed
method can achieve good performance in micro-object recognition with a recognition rate up to
99.14% and a tip recognition speed up to 14 frames/s at a resolution of 1360 × 1024. The max error of
tip positioning is 6.10 µm, which meets the design requirements of the ISME system. Furthermore,
this study provides an effective visual guidance method for micromanipulation, which can facilitate
automated micromanipulation research.

Keywords: micro-object recognition; object detection; Haar-like; LBP; feature fusion; machine
learning; microscope image; in situ; micromanipulation

1. Introduction

Micromanipulation has been extensively used in micro-assembly operation, microsurgery, cell
operation in biological research, assembly tests and the maintenance of integrated circuits, DNA editing,
ion flux measurement, and other fields [1]. Owing to its operation in a microspace, the precision of the
operation control is of particular importance. Even a small operational mistake could cause irreparable
losses. Therefore, micromanipulation is a very difficult task. However, in many biologically-related
micromanipulations, such as in vitro fertilization, microinjection, ion flux measurement, the operations
are currently performed manually. Manual operation is not only time consuming but also requires
skills and rich experience, which brings a heavy burden to researchers. Accordingly, automatic
micromanipulation is a promising project.
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The recognition of microscopic objects is a crucial step to realize automatic micromanipulation.
Because of the complexity of microscopic environments, the recognition of a microscopic object is
a complex task. Wang et al. [2] proposed a model based on a Mask RCNN (Region Convolutional
Neural Networks) to detect and segment the dense small objects in nuclei detection. Hung and
Carpenter [3] used a Faster RCNN to realize object detection on malaria images. This kind of
microscopic object recognition methods, which is based on deep learning, usually requires a large
number of training samples, and it is difficult to achieve the best performance when the sample data
set is small. Elsalamony [4] proposed a method based on the circular Hough transform and some
morphological tools to detect cells in blood for the diagnosis of diseases. This method is mainly
used for circular microscopic object detection, but it cannot recognize other microscopic objects with
different shapes. Jayakody et al. [5] trained a cascade of histograms of oriented gradients features to
detect stomata in microscopic images with a precision of 91.68%. The detection rate of the cascade of
distinct features can be further improved by multi-feature fusion.

Yang et al. [6–9] successively proposed a method for needle tip automatic recognition
and localization in cell micromanipulation using template matching, and they developed a
detect-focus-track-servo (DFTS) algorithm for image-guided cell manipulation. Bilen and Unel [10]
combined visual feedback and force feedback to realize the automatic assembly of micro objects.
Sun and Nelson [11] used an optical flow method based on the sum-of-squared-differences to detect
and track pipette, and they used the Hough transform method to detect the nuclei of embryos for
achieving automatic cell injection. Saadat et al. [12] made use of the gradient-weighted Hough
transform method to detect oocyte and its polar body to facilitate micromanipulation. However,
in some micromanipulations cases, such as the ion flux measurement by moving an ion-selective
microelectrode (ISME) [13–15], the above-mentioned methods are not applicable. During the in-situ
ion flux measurement of a live tissue, the ISME must be kept 5–30 µm away from the measured
object to ensure accuracy. Hence, force feedback of automatic micromanipulation [1,16,17] is not
appropriate for applications like this case. In addition, growth, e.g., roots with that of 1–5 µm/min,
may affect the distance between the ISME and the object to be measured when the living object is
measured, with the ISME potentially being damaged and causing measurement failure. To address
these problems, especially in measurement of ion flux by moving the ISME, as shown in Figures 1
and 2, we have proposed a microscopic object recognition method—when we precisely locate the ISME
tip and detect the object to be measured, the relative distance between the ISME and the detected object
in the microscopic image can be automatically and accurately calculated, even with complex noise
interference between the ISME tip and the object to be measured.
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Figure 1. The principle of ion flux measurement. Notes: V1 and V2 are the measured voltages for
different gradients at two positions in distance ∆x using the ion-selective microelectrode (ISME), mV,
and ∆x is the distance between two positions where the ISME vibrated (µm). E = k ± slgC, where
E is the measured voltage between the microelectrode and the reference electrode (mV), C is the ion
concentration (mol/L), s is Nernstian slope (mV/dec); k is Nernstian intercept (mV).
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In fact, in many applications, manipulation tools are not permitted to touch the measured object.
Therefore, we can only choose a non-contact positioning method such as visual positioning the most
commonly used methods. In addition, in microscopic imaging, small noise is exponentially magnified.
When the detection environment is complex, the efficiency of the noise-sensitive template matching
algorithm is considerably reduced. Accordingly, tip location in a microscopic image is a very hard
task [18].

The contribution of this paper is the proposition of an object recognition method with better
robustness, real-time performance and good generalization under the micro scale. In addition,
the proposed method can be used to automatically and accurately calculate the relative distance
between two micro-objects, e.g., the ISME and the measured object in the microscopic image. Moreover,
we provide a method for microscopic object recognition with a relatively small data set by selecting
suitable features to train the recognition model.

The remainder of the paper is organized as follows. In Section 2, we introduce the experimental
material and algorithm implementation methods. In Section 3, we introduce the key testing results of
the algorithm. We discussed the crucial parts of algorithm are discussed in Section 4. Finally, Section 5
presents the conclusion and significance of this paper, as well as a brief introduction of the future work.

2. Materials and Methods

2.1. System Description

We acquired the images from our ion flux measurement system [13], as shown in Figure 3. The ion
flux measurements consisted of an inverted microscope (XDS-1B, Chongqing MIC Technology Co,
Ltd, Chongqing, China), a high-precision three-axis motorized manipulator (CFT-8301D, Jiangsu Rich
Life Science Instrument Co., Ltd, Jiangsu, China), an ISME, a microelectrode holder, a multi-channel
measurement software, and a charge coupled device (CCD) camera (TCC-1.4CHICE, Xintu Photonics,
Fu Zhou, China). The ion flux and intracellular membrane potential were measured by a glass ion
selective microelectrode. The two measured signals were amplified and transferred to the digital
signals by the preamplifier and the 16-bit analogue-to-digital board (USB-4716, Advantech Co, Ltd,
Taiwan, China) in the microelectrode holder. The digital signals were acquired by the multi-channel
measurement software through a universal serial bus (USB) interface. The high-precision three-axis
motorized manipulator was controlled by a personal computer (PC) through a USB interface. For more
details, please refer to [13,19]. In the experiments, we obtained the images using a TCC-1.4CHICE
(Xintu Photonics, Fu Zhou, China) CCD camera. The resolution of each image was 1360 × 1024
pixels, and the bit depth of the image was 24. The magnification of the microscope was 100X. The
proposed vision-based measuring system was based on monocular vision. The CCD camera was
mounted perpendicular to the working plane, and the position of the CCD camera and the internal
and external parameters of the vision system were fixed. Because the purpose of the proposed system
was for measuring the two-dimensional and relative distance of two micro-objects in the working
plane, we did not need to get the world coordinates and camera coordinates of the micro-objects and
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calibrate the microscope imaging system—we only needed to get the axial and lateral resolution of
the microscope imaging system. If researchers need the real location of the world coordinates and
camera coordinates of the micro-objects, please refer to the [20,21]. We calculated the axial and lateral
resolution of the image acquired by the CCD camera with the Leica Stage Graticule (1DIV (division
value) = 0.01 mm) and TSView (Xintu Photonics, China) software. The calculation method was shown
in Figure 4. Both the axial and lateral resolution of the microscope imaging system were 0.94 µm.
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2.2. The Dataset

The original dataset was divided into a training set and a test set. Both the test set and the training
set were composed of the real ISME images and the virtual samples generated by distorting, scaling,
and adding noise to the background of the real ISME images. The virtual samples were generated with
5 real ISME images and 30 background images. The training set contained 6600 positive samples and
3000 negative samples. The test set contained 222 real ISME images obtained in different environments
and 750 virtual samples.

In fact, it is a rather complex process to fabricate an ISME. It usually takes half a day or even one
day to make a qualified ISME. Consequently, it is difficult to obtain enough samples in a short time.



Algorithms 2019, 12, 238 5 of 21

To solve this problem, we generated many virtual sample images by deforming and changing the scale
of existing ISME images and combining these changed ISME images with different background images.
In particular, this method allowed us to add various noises to the background images too. Though it
led to a difficulty of ISME recognition of training data, it could help us to train the ISME recognition
model with stronger robustness. Importantly, a large number of test samples can be generated to
verify the ISME recognition model. To train a cascade classifier with high recognition rate and good
robustness, the sample data must be large enough and abundant.

Figure 5 shows some real ISME images, background images with different exposure and noise
conditions, the generated training samples, and the generated test samples.
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2.3. The Proposed Algorithm

The process of the proposed method for micro-object recognition and automatic relative distance
calculation includes offline training and online detection (Figure 6). Offline training includes image
acquisition, feature extraction, feature subset selection, and cascade classifier training. Online detection
includes image acquisition, region of interest (ROI) acquisition, and image preprocessing (sharpening,
filtering, morphological operations, etc.), edge detection, line extraction, ISME tip location, and relative
distance calculation.
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2.3.1. Image Preprocessing

The edge information of the images was the essential information for our purposes. The
microscopic images collected by the CCD camera often contained lots of noise. For this reason,
images had to be preprocessed. The image preprocessing of the test mainly included image filtering,
sharpening, grayscale conversion, image binarization, and morphological operation.

2.3.2. Training a Cascade Classifier for ISME

In this paper, the concept of the region of interest (ROI) was used to improve computation
efficiency. Furthermore, we selected the area around the ISME that contained the root part as the
ROI and then calculated the distance from the tip of the ISME to the root. In each experiment, there
were some differences in every ISME’s shape. Additionally, some noise in the microscopic images,
such as root hairs, microorganisms and impurities magnified by the microscope, could seriously affect
the recognition of the ISME. For micro-object recognition in this work, there was still a challenge to
determine the ROI. The traditional template matching method is sensitive to noise and does not have
gray scale invariance and rotation invariance. Thus, in a complex environment, recognition accuracy is
seriously affected. In addition, the traditional template matching method has a high computational
cost, as it takes such a long time to recognize the ISME that cannot meet the real-time requirements well.

In a microscopic image, if the gray value of a mico-object is lower than that of the background
environment, there is much more edge information. The improved Haar-like feature contains more
edge information. Therefore, Haar-like features are suitable for ISME detection based on microscopic
images. For detailed process, please refer to [22–24].

Besides rich local texture features, local binary pattern (LBP) features are also characterized by
gray scale invariance and less computation [25]. Therefore, we can use LBP features and Haar-like
features combined with an AdaBoost algorithm for rapid object recognition [22,26–29].

In the proposed method, AdaBoost is used to both select a small set of features and train the
classifier. First, we extracted Haar-like features and LBP features of the ISME, and then we selected
some distinct features for weak classifier training using the AdaBoost algorithm. For the detailed
process, please refer to [30,31].

With ensemble learning, one can get a strong classifier by linearly combining some weak classifiers,
which can greatly improve detection efficiency (Figure 7). Multi-feature fusion can effectively improve
the detection rate of a cascade classifier. We can linearly combine both Haar-like classifiers and LBP
classifiers to get a multi-feature cascade classifier. In this study, the Haar-like features and LBP features
of an ISME were extracted and selected. Many weak classifiers based on Haar-like and LBP features
were concatenated into strong cascade classifiers for ISME recognition. Then, we compared the strong
cascade classifiers with the traditional template matching method.
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2.3.3. Edge Detection of the Target in the Microscopic Image

The useful information that we needed was the edge feature of the plant tissue and the ISME
in microscopic field-of-view. After extracting the ROI and image preprocessing, edge detection was
conducted. According to the differences of the filter, there are various image edge detection techniques,
e.g., Canny edge detection, Sobel edge detection, Laplace edge detection, and Scharr edge detection.
Sobel edge detection and Scharr edge detection are simpler than the others, but they are sensitive to
noise and very error-prone. Laplace edge detection is able to find edges correctly, and it also has the
ability to detect a wider neighborhood of pixels, but it is possible to make mistakes at the corners,
flexure, and some areas where dimming and brightening are drastically changed. Canny edge detection
is the most wildly used method, and it has a good ability for noise suppression [32,33], and it is mainly
used to identify plant tissues and microelectrode edges.

2.3.4. The Contour Extraction and the Localization of ISME Tip

In this work, the root and ISME were initially placed on the same x–y plane. Therefore, there was
no need to consider spatial relations between them along the z-axis. For the root in the view of the
microscope, the distance from the electrode tip to the root was the distance to the right edge of the root.
The coordinate system of the image is shown in Figure 8. Therefore, to find the position of the ISME
tip, we could firstly find the outermost contours of the ISME and traverse the pixels of the outermost
contour. Where the point with the smallest value of x was the ISME tip represented by P. Due to the
fact that the right edge of the root was an approximate straight line, Hough line detection could be
performed on it. After the straight-line L was extracted, the distance d from the electrode tip P to the
root edge (straight-line L) could be calculated. In order to detect the relative distance between the
ISME tip and plant root, it was necessary to localize the ISME tip in microscopic field-of-view. Firstly,
we extracted the outermost contours of the ISME.
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Figure 8. The coordinate system of the image.

Contour extraction was proposed by Suzuki and Abe [34], and it was used to extract the contours
of ISME in our work. First, we found the outermost contour of the ISME. Then, we located the ISME
tip. The ISME tip localization algorithm is described in Algorithm 1.
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Algorithm 1: ISME Tip Localization

Input: edge_image
Output: Tip Localization image is represented by tipLoc_image
BEGIN
1.Find Contours ()
2.For i = 0: contours.size//contours.size is the number of the contours
3.Get the length of all of the contours
4.END
5.Get the length of every contour
6.Con = the Longest contour
7.draw the Con on tipLoc_image
8.For j = 0: Con.size//Con.size is the size of Con
9.find the point named TIP with the minimum x//

10.draw a circle around the TIP
END

2.3.5. Edge Detection of Plant Root Using Hough Transformation

In order to detect the distance between the ISME and the plant root, it was necessary to detect the
edge of the root in the microscopic field-of-view. Figure 2 shows that the local feature of the boundary
of the main root could be approximated by a straight line. The widely used method for straight lines
extraction in image processing is the Hough transformation [35].

We used the Hough transformation to detect the straight lines of the image, then screened and
filtered the detected lines, and finally found the boundary of the main root. In order to allow the
line to be filtered easily, we made the direction of the main root in the ROI vertical or approximately
vertical (Figure 2). If the absolute value of the difference between the endpoints’ vertical coordinates
of the extracted lines was bigger than three-quarters of the height of the ROI and the absolute value
of the difference between the endpoints’ horizontal coordinates of the extracted lines was smaller
than one third of the width of the ROI is, we retained the lines. Otherwise, we discarded the lines.
This method helped us filter the lines, the directions of which were horizontal or approximately
horizontal. The process of the root-edge-detection algorithm is described in Algorithm 2 and Figure 9.Algorithms 2019, 9, 9 FOR PEER REVIEW 9 of 21 
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Algorithm 2: Boundary Detection of Root

Input: edge_image
Output: Tip Localization image is represented by tipLoc_image
BEGIN
1.plines = Hough Line detection of edge_image
2.For i = 0: plines.size//plines.size is the number of the lines
3.Point_A = A end point of plines segment
Point_B = Another end point of plines segment
4.IF |Point_A.x–Point_B.x| < 1/3 edge_image.width & |Point_A.y – Point_B.y| > 3/4 edge_image.height
5.THEN retain the plines(i)
Draw the plines(i)
6.ENDIF
7.END
END

2.3.6. Distance Calculation

The pixel distance d from the tip P (x0, y0) to the straight-line L was calculated with Formula (2).
We multiplied the d by the real-world distance corresponding to the pixel to get the real-world distance
from P to L. Equation (2) is a general expression of a straight-line L, and Equation (3) is a distance
formula from a point to a straight line. In Equation (4), D is the real-world distance from P to L, and α

is the real-world distance corresponding to one pixel.

L : Ax + By + C = 0 (1)

d =

∣∣∣∣∣∣Ax0 + By0 + C
√

A2 + B2

∣∣∣∣∣∣ (2)

D = d × α (3)

2.4. Experiments

In this study, all algorithms and experiments were performed with Visual Studio IDE (2015)
with Intel(R) Core(TM) i5-4570 CPU. The training time of each classifier was recorded. To test the
proposed algorithm, 800 test images were used as a test set on which the cascade classifiers and
template matching algorithms were applied. The 800 test images consisted 50 real microscopic ISME
images and 750 virtual samples. The total number of false positives (background was detected as
the ISME) and true positives (the ISME was detected as ISME) were manually counted. When the
intersection over union (IOU) value of the rectangle of the object label and the rectangle of the ISME
detection is greater than 0.5, true positives count is increased by 1, otherwise false positives count is
increased by 1. The true positive rate was used to evaluate the different methods of ISME detection.
We also recorded the average time spent on ISME detection with each method. The true positive rate is
defined as Equation (5) [22,23].

True positive rate =
True positives

Ture positives + False positives
× 100% (4)

We labeled the ISME tips in 145 microscopic images and used the 145 labeled images as a test set to
test the ISME tip location precision. We recorded the real-world distance from the ISME tip to the root
in 25 images to test distance calculation precision of the proposed method. We calculated the root mean
square error (RMS), mean error, and relative error [6,20]. The relative error of the tip location (RET) is
defined as Equation (6), where AWP is the area of the working plane acquired by the CCD camera and
RMST is the root mean square error of the tip location of the test samples. The relative error of the



Algorithms 2019, 12, 238 10 of 21

relative distance of the micro-objects (RED) is defined as Equation (6), where RMSD is the root mean
square error of the relative distance of the test samples and DM is the mean of the real-world distance
of the test samples. The AWP is 1,230,536.7 µm2 (1360 × 0.94 × 1024 × 0.94). The DM is 267.55 µm.

RET =
RMST

2

AWP
× 100% (5)

RED =
RMSD

DM
× 100% (6)

3. Results

3.1. Image Preprocessing

In image processing, the mainly need information is that of the edge of the image. The images
collected by the camera often contain a lot of noise. Therefore, if the images are not preprocessed,
which may affect the results of edge extraction and contour detection, even edge information and
contours cannot be extracted.

The left three images in Figure 10 are the result of global binarization using the OTSU method [36],
and the right three images are the result of local binarization using the adaptive threshold method [37,38].
The result shows that there was less noise in the result of global binarization using the OTSU method.
Thus, the global binarization using adaptive threshold selection was better.
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Figure 10. (a): The left three images are the results of global adaptive threshold selection binarization.
(b): The right three images are the results of local adaptive threshold binarization.

Though the image had been filtered and binarized, there were still some noise points and holes
in it. We removed the remaining noise points and holes in the images by opening and closing the
operation (Figure 11). The experiments showed that the noise was effectively suppressed and the
features that we needed were highlighted.
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Figure 11. (a,b) are two binarized images, (c,d) are binary images after the open operation, and (e,f)
are binary images after the close operation.

3.2. ISME Cascade Classifier Training and ISME Detection

The tip of the ISME has recognizable characteristic from which the Haar-like and LBP features of
the ISME tip can be extracted. With a gentle AdaBoost algorithm [39,40], we cascaded 30 different
Haar-like feature-based weak classifiers and 30 different LBP feature-based weak classifiers to obtain
two strong cascade classifiers for ISME tip detection. Some visualization images of the Haar-like and
LBP features are shown in Figure 12. A typical case of ISME detection and ROI extraction results are
shown in Figure 12. We used 800 test images to test the different detectors. According to the receiver
operating characteristic (ROC) curve for the ISME detectors, cascade classifiers detectors were faster
and more accurate than the template matching (TM) detectors, and the LBP cascade classifier had the
best performance (Figure 13). Different ISME detectors had different levels of performance (Table 1).
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Figure 12. Extracting the region of interest (ROI). Note: (a) is the visualization of some Haar-like
features of ISME tip; (b) is the recognition result of the ISME tip; (c) is the visualization of some local
binary pattern (LBP) features of the ISME tip; and (d) is the result of ROI extraction.
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Table 1. Comparison of different ISME detectors.

Feature of
Methods

Positive
Samples
Number

Negative
Samples
Number

Positive Samples
Resolution (pixel)

Training
Time

(hours)

Average
Test Time
(s/frame)

Detection
Rate

Haar-like 1118 1000 24 × 24 4.5 0.23 10.97%
LBP 1118 1000 24 × 24 1 0.30 4.31%

Haar-like 6600 3000 24 × 24 34 0.13 57.34%
LBP 6600 3000 24 × 24 4.78 0.21 47.22%

Haar-like 6600 3000 60 × 20 weeks 0.07 90.75%
LBP 6600 3000 60 × 20 26 0.13 92.73%
LBP 1118 1000 48 × 48 2.5 0.31 5.55%
LBP 6600 3000 48 × 48 28.5 1.14 50.82%
LBP 6600 3000 90 × 30 59.5 0.16 95.68%

LBP+Haar-like 6600 3000 90 × 30 (LBP)/60 ×
20 (Haar-like) – 0.23 99.14%

Templet-matching – – – – 0.33–0.44 17.50–39.95%

3.3. Edge Detection of Plant Tissues and Microelectrodes

We compared the detection performance of various edge detection techniques with the images
of the ROI (Figure 14). Canny proposed three criteria for evaluating the performance of edge
detection [32,33]:

(1) The signal-to-noise ratio is higher.
(2) The location of the edge points must be accurate; in other words, the detected edge points should

be as close as possible to the center of the actual edge.
(3) The detection must only have one response to a single edge, that is a single edge has only one

unique response, and suppresses the response to false edge.

It can be seen from the figure that the effect of Canny edge detection was the best.
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To test the performance of the ISME-location algorithm, 145 images were used as a test set. 
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3.4. Contour Extraction and ISME Tip Localization

A contour extraction result is shown in Figure 15. Each color represents a separate contour, and
the experiment showed that there were many contours in the image. The results of contours filtration
and ISME tip location are shown in Figure 15b, where the blue point P is the position of the ISME.
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Figure 15. Contour extraction and ISME tip localization. Note: (a) is the output image of contour
extraction, and (b) is the output image of the outermost contour selection and the ISME tip location. P
is the ISME tip.

To test the performance of the ISME-location algorithm, 145 images were used as a test set. Almost
all the ISME tip could be correctly located (Figures 16 and 17). The mean error was 2.86 µm, and the
root mean square error was 2.89 µm. The RET was 0.000665%.
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3.5. Edge Detection of Plant Root Using Hough Transformation

The result of the edge detection of main root is shown in Figure 18a. Obviously, there are many
straight lines in the image. With the straight-lines screening, only the straight-line L extracted from the
root edge was left (Figure 18b).
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Figure 19 shows some results of the straight-line extraction and the ISME tip location.
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3.6. Computation of Relative Distance

In this case, the real-world distance corresponding to one pixel was 0.94 µm. We conducted an
error analysis of the distance from the electrode tip to the root (n = 41) (Figure 20). The mean square
error was 3.15 µm, and the root mean square error was 3.54 µm. The max distance error was 6.10 µm.
The RED was 1.32%. The results indicate that the automatic detection of relative distance was more
accurate than human eyes under these conditions.
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4. Discussion

4.1. ISME Recognition

This research was intended to propose a method that can automatically and accurately calculate
the relative distance between the two micro-objects in a microscopic image and facilitate automated
micromanipulation research, e.g., ISME and detected objects.

In this work, ISME recognition using the proposed algorithm was a crucial step for subsequent
operations. However, there were some differences in each ISME’s shape, and each ISME may have
been randomly rotated to some angle in the experiment. The template matching-based algorithms
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were sensitive to noise without gray scale invariance and scale invariance. Accordingly, without
continually changing the ISME templet in the ISME detection, the recognition rates could hardly meet
the requirements (Figure 13). Besides that, the time cost of the template matching algorithm was higher
than the best cascade classifier (Table 1).

The results suggest that the improved LBP features with the advantages of both gray scale
invariance and scale invariance, as well as the Haar-like features with rich edge information, are
suitable for object detection in complex situations (Table 1).

The performance of the proposed methods is dependent on image resolution and the amount of
training data. Our results show that with the improvement of image resolution of training set, more
effective features were detected, which improved the detection rate of classifiers but caused an increase
of training time. When the training data set was small, the detection rate of Haar-like cascade classifier
was slightly better than that of the LBP cascade classifier. With the increase of training data in the same
resolution of training samples, the detection rate of the LBP cascade classifier was higher than that of
the Haar-like cascade classifier. Additionally, the training time of the Haar-like cascade classifier was
much longer than that of the LBP cascade classifier. When the resolution of the sample was relatively
larger (e.g., 48 × 48) the training speed of the Haar-like cascade classifier became very slow—even the
training of a weak classifier needed more than one day. Therefore, the LBP cascade classifier is a better
choice when there is little difference in detection rate between the two kinds of classifiers. Between the
ISME detection with Haar-like and LBP cascade classifiers, the Haar-like cascade classifiers had lower
time costs. Therefore, Haar-like cascade classifiers are the better choice when real-time requirement is
the primary choice. The cascade classifier with both Haar-like and LBP features had the best detection
rate. This shows that the detection rate of an ISME cascade classifier can be improved by a multi-feature
fusion method.

In the in-situ ion flux measurement process of a live tissue, the ISME was kept at 5–30 µm from
the measured object to ensure accuracy and a growth speed of the root is 1–5 µm/min [13,19]. Thus,
we needed monitor the root at least one time per minute. According to the processing time cost of each
frame (Table 1), the frame rate could achieve 4.35–14 frames/s at a resolution of 1360 × 1024, which
could perfectly meet the requirement.

In addition, the reasonable selection of training samples’ resolution could effectively reduce
training time and improve detection rate. Because the width-to-height ratio of the ISME tip was
about 3:1, when the width-to-width ratio of the training sample was 1:1, there was a large number of
irrelevant pixels in the training sample. These irrelevant pixels increased the computation of feature
extraction, thus increasing the training time. What is worse, some disturbing features were extracted
from irrelevant pixels in the feature extraction process, which increased the difficulty of subsequent
feature selection. The irrelevant pixels and disturbing features are shown in Figure 21. When the
width-to-width ratio was 3:1, the training time was effectively reduced and the detection rate was
greatly improved (Table 1).
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4.2. Location of the ISME Tip

The location of the electrode tip is the crucial step in the detection of the distance between the
ISME tip and root, and its accuracy determines whether the distance can be correctly calculated.
The proposed method could locate the ISME tip accurately with a mean error of 2.86 µm, a root mean
square error of 2.89 µm, and an RET of 0.000665%. Normally, the distance between the ISME tip and
the measured objects is 30 µm in the ion flux measurement. Therefore, this algorithm can well meet the
accuracy requirement. Though almost all the ISME tips could be correctly located using the proposed
algorithm (Figure 16), there were still a few exceptions, e.g., 55, 56, and 58 frames in Figure 22. It is the
root hair that makes the ISME’s contour extraction inaccurate, which then allow for ISME tip locating
failure (Figure 22). We could address this problem by increasing the limit of y direction and finding the
point with the smallest y and x values. On the other hand, this reduces the flexibility of the ISME tip
detection algorithm. This is a limitation of the algorithm. In the future, we will investigate the solution
of this limitation.
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We utilized tighter bounding boxes around the tip and then searching for corners inside the box.
Therefore, the different corner detectors were used to locate the tip of ISME. Our experiments showed
that this method was susceptible to noise points and was even not able to find the real tip of the ISME
(Figure 23). The method used in our paper was a little more computationally intensive, but it had
better robustness and accuracy.
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4.3. Straight-Line Screening

To calculate the relative distance between ISME and the root accurately, the root-edge straight line
must be correctly and precisely extracted. Using the Hough transformation to detect straight lines in
the ROI, the results show that there was more than one line, as shown in Figure 18a. In addition to the
line extracted from the plant root, there were also straight lines extracted from the edge of the ISME.
To pick out the lines that we needed, the parameters were also very important when we extracted the
straight lines. If we set the appropriate value of the parameters, e.g., the maximum distance between
two adjacent points and the minimum length of the lines that we extracted, we could filter the lines
that were not long enough. Sometimes, there were several lines with the same or similar slopes around
the root edge, as shown in Figure 18a. We could compute the intercept of these lines, and we were able
to see that the line with the smallest intercept was the boundary of the roots. The coordinate system is
shown in Figure 8.

4.4. Evaluation

Much research based on non-invasive micro-test technology (NMT) such as plant stress [41],
plant heavy metal [42], growth and development [43], plant nutrition [44], plants and microbes
interaction [45], and plant defense [46] are mainly conducted on a two-dimensional microscope
imaging system. In all of these above, the measurement operations are performed by manually
manipulating the electric motor under the microscope to further control the robot arm. The proposed
method can facilitate the establishment of an automated micromanipulation system that can keep the
distance between the selective microelectrode and the measured object safe, stable, and reliable and
avoid their contact. The mean square error, the root mean square error, the max distance error, and the
related error of the proposed automatic distance measurement algorithm is 3.15 µm, 3.54 µm. 6.10 µm,
and 1.32%, respectively. Normally, the distance between the ISME tip and the objects to be measured is
30 µm in ion flux measurements. Thus, the proposed automatic distance-measurement algorithm can
meet this requirement. The proposed method can not only ensure the accuracy and repeatability of
measured data but also lighten the burden on researchers.

The purpose of the proposed system is to measure the two-dimensional and relative distance of
two micro-objects in a working plane; thus, two advantages of this system are that we do not need
to get the world coordinates and camera coordinates of the micro-objects and we do not need not to
calibrate the microscope imaging system. The proposed method is simple to implement, but there are
some disadvantages of the proposed method, such as this system not providing the real-world location
of the world and camera coordinates of the micro-objects. This system is two-dimensional and does not
provide three-dimensional information of the micro-objects. If researchers need the real-world location
of the world coordinates, as well as the camera coordinates and the three-dimensional information
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of the micro-objects, the microscope imaging system should be additionally calibrated. Among the
calibrations, there is both a strong anti-/interference ability and a good real-time performance of the
calibration based on structured light [20]. Apolinar and Rodríguez [21] proposed a three-dimensional
microscope vision system based on micro laser line scanning and adaptive genetic algorithms for
retrieving metallic surface, and their system has a better performance compared with traditional
systems, though its implementation is more complex. To sum up, the proposed method is simple and
easy to implement, and it can be used in many applications based on micromanipulation and facilitate
automated micromanipulation research. To address the limitation, researchers could add additional
functions to this system based on their requirements.

5. Conclusions

Because of a wide range of applications, the study of automatic micromanipulation is very
promising. A major advantage of the proposed method are that it adopts a more robust and faster
microscopic object recognition algorithm to detect and locate microscopic objects and to calculate
the distance between the two microscopic objects. Furthermore, this study can facilitate automated
micromanipulation research. Another contribution of this work is that its provides a method for
microscopic object recognition with a relatively small set of data by selecting suitable features to train
the recognition model.

For a typical case, e.g., ion flux measurement by moving an ISME, we have proposed a more robust
and faster microscopic object recognition and visual distance measurement algorithm with a better
generalization ability. This algorithm can not only improve the efficiency of an ion flux measurement
but also extend to other micromanipulation-related fields to aid automatic micromanipulation. In future
research, we will optimize and accelerate the algorithm, and we will provide support for the automation
of micromanipulation in broader applications in many research fields.
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