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Abstract: Inspired by the mechanism of generation and restriction among five elements in Chinese
traditional culture, we present a novel Multi-Objective Five-Elements Cycle Optimization algorithm
(MOFECO). During the optimization process of MOFECO, we use individuals to represent the
elements. At each iteration, we first divide the population into several cycles, each of which contains
several individuals. Secondly, for every individual in each cycle, we judge whether to update it
according to the force exerted on it by other individuals in the cycle. In the case of an update, a local
or global update is selected by a dynamically adjustable probability Ps; otherwise, the individual is
retained. Next, we perform combined mutation operations on the updated individuals, so that a new
population contains both the reserved and updated individuals for the selection operation. Finally,
the fast non-dominated sorting method is adopted on the current population to obtain an optimal
Pareto solution set. The parameters’ comparison of MOFECO is given by an experiment and also the
performance of MOFECO is compared with three classic evolutionary algorithms Non-dominated
Sorting Genetic Algorithm II (NSGA-II), Multi-Objective Particle Swarm Optimization algorithm
(MOPSO), Pareto Envelope-based Selection Algorithm II (PESA-II) and two latest algorithms Knee
point-driven Evolutionary Algorithm (KnEA) and Non-dominated Sorting and Local Search (NSLS)
on solving test function sets Zitzler et al’s Test suite (ZDT), Deb et al’s Test suite (DTLZ), Walking
Fish Group (WFG) and Many objective Function (MaF). The experimental results indicate that
the proposed MOFECO can approach the true Pareto-optimal front with both better diversity and
convergence compared to the five other algorithms.

Keywords: multi-objective evolutionary optimization; five-elements cycle model; pareto solution set;
test problems

1. Introduction

In real-world applications, commonly Multiple-Objective Optimization (MOO) problems are
applied to many situations such as biology, engineering, medical and economics, and so forth [1].
Usually this kind of optimization problem contains multiple objectives which conflict with each other,
hence no single optimal solution can be derived. As a result, a set of solutions should be found to trade
off the multiple conflicting goals. In the past few decades, Evolutionary Algorithms (EAs), and some
population-based meta-heuristic algorithms, have been verified to effectively solve MOO problems
and they can also get an optimal Pareto solution set in one run [2]. Therefore, the application of
EAs to MOO problems has received considerable attention, which led to the emergence of a new
research issue named Multi-Objective Evolutionary Algorithms (MOEAs). Since then, a large number
of MOEAs have been developed and widely used, which have become an important research hotspot
in evolutionary optimization.
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The purpose of researching MOEAs is to make the population converge quickly and widely,
and in the meanwhile distribute uniformly in the non-inferior optimal domain of the problem, which
means the convergence and diversity of the solution set should be considered simultaneously [3].
In order to achieve these two goals, quite a few well-performed MOEAs have been proposed in
the literature. Some of the most representative ones and some of their applications are listed as
follows. The Non-dominated Sorting Genetic Algorithm (NSGA)was proposed by Srinivas and Deb [4]
and based on this, an improved version Non-dominated Sorting Genetic Algorithm II(NSGA-II) was
proposed by Deb et al. [5]. NSGA-II was applied to carry out the integer optimized design of the
Methyl Acetate Hydrolysis Process [6]. Zitzler and Thiele proposed the Strength Pareto Evolutionary
Algorithms (SPEA) [7] and its improved version Strength Pareto Evolutionary Algorithms II
(SPEA-II) [8]. In the optimization of the microgrid energy dispatch, considering the economic costs,
energy utilization rate and environmental benefits as multi-objective, the literature [9] established the
microgrid energy allocation model and used the PSEA to solve the MOO problem. Corne et al.
proposed the Pareto Envelope-based Selection Algorithm (PESA) [10] and its successor Pareto
Envelope-based Selection Algorithm II (PESA-II) [11]; Coello et al. proposed the Multi-Objective
Particle Swarm Optimization algorithm (MOPSO) [12], which was effectively applied to the design
of water distribution systems in Reference [13] and minimizing the total signaling overhead of
location management in Long-term Evolution (LTE) networks to solve the signaling overhead in
accessing the network in the literature [14]. In recent years, there has also been a considerable
amount of newly presented multi-objective optimization algorithms showing their competitiveness in
the field of multi-objective optimization. Bili Chen proposed Non-dominated Sorting and Local
Search (NSLS) [15], which was used to solve high-dimensional big data and it turned out that
NSLS could find a better spread of solutions and better convergence to the true Pareto-optimal
front [16]. Bi-Criterion Evolution for Indicator-Based Evolutionary Algorithm (BCE-IBEA) [17] and
Multi-Objective Evolutionary Algorithm based on an enhanced Inverted Generational Distance metric
(MOEA/IGD-NS) [18], and so forth, also show great potential for solving MOO problems.

In the literature [19], a new Five-Elements Cycle Model (FECM) derived from ancient Chinese
philosophy which is based on the Yin-Yang theory and Five Elements (metal, wood, water, fire, earth)
is proposed. FECM was established based on the relationship of generation and restriction among the
five elements. In FECM, the fitness value of each element is measured by calculating the interaction
between elements, and then the element is updated according to its strengths and weaknesses. On the
basis of FECM, Five-Elements Cycle Optimization algorithm (FECO) effectively solves both continuous
function optimization problems and Traveling Salesman Problems (TSP) [19,20].

In FECM, the population is divided into different cycles and the cycles are independent of each
other, which enhances the diversity of the population. While solving MOO problems, we hope that the
obtained Pareto solution set has good diversity. Therefore, based on the scheme of FECM, we propose
a new meta-heuristic algorithm that can effectively solve MOO problems, named the Multi-Objective
Five-Elements Cycle Optimization algorithm (MOFECO).

The rest of this paper is composed of the following 5 parts: Section 2 describes the basic concepts
of MOO problems and some related research on MOEAs; Section 3 elaborates the related work of FECO
and explains the motivation of the proposed algorithm MOFECO; Section 4 illustrates the principle of
the proposed algorithm; Section 5 makes a parameter analysis and then experimentally verifies the
performance of MOFECO algorithm compared with the other five MOEAs; Finally, Section 6 draws
the conclusion of this paper.

2. Basic Concepts of MOO Problem and Related Research on MOEAs

2.1. Description of Multi-Objective Problems

A Multiple-Objective Optimization(MOO) problem with m target functions and D decision
variables (minimizing multi-objective problems) is represented by Equation (1) [21]:
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
min Fun(X) = ( f1(X), f2(X), . . . , fm(X))T

st. gz(X) ≥ 0, z = 1, 2, . . . , Z

he(X) = 0 , e = 1, 2, . . . , E

(1)

where X = (x1, x2, . . . , xD) represents the D-dimensional control variable, Fun(X) stands for m
contradictory objective functions; gz(X) ≥ 0, z = 1, 2, . . . , Z defines Z inequality constraints;
he(X) = 0, e = 1, 2, . . . , E defines E equality constraint functions. The goal of multi-objective
optimization is to find some certain X∗ = (x∗1 , x∗2 , x∗3 , . . . , x∗D), so that the objectives in Fun(X∗) can
be optimal at the same time under the constraint conditions. However, when solving MOO problems,
since the objective functions may be contradictory, it is hardly possible to obtain one single optimal
solution that enables every objective function to reach the optimal value, hence some compromise
solutions should be made instead. These trade-off solutions enable each objective function to achieve
a better condition simultaneously. This type of optimal solution set is called the Pareto solution set
or the non-dominated solution set [22]. It was proposed by Vilfredo Pareto in 1896 and is named the
Pareto optimal solution. The following basic definitions are often used when it comes to solving MOO
problems with MOEAs [23].

Definition 1. Pareto optimal solution. Given a multi-objective optimization problem shown in Equation (1).
If ∀ X ∈ Ω satisfies the following conditions then X∗ ∈ Ω is the optimal solution:

∧i∈r( fi(X) = fi(X∗)) (2)

Or, there is at least one j ∈ {1, 2, . . . , m}, such that:

f j(X) > f j(X∗) (3)

where r = (1, 2, . . . , m), and Ω satisfies the constraint in Equation (1), which is:

Ω = {X ∈ Rn|gz(X) ≥ 0, he(X) = 0, (z = 1, 2, . . . , Z; e = 1, 2, . . . , E)} (4)

Definition 2. Dominance between individuals. Suppose X1 and X2 are two arbitrary, different individuals in
the evolutionary population, if the following two conditions are met, we call X1 dominates X2:

(1) For all sub-objectives, there are fr(X1) ≤ fr(X2), r = (1, 2, . . . , m).
(2) There is at least one sub-objective that makes X1 better than X2, that is ∃j ∈ {1, 2, . . . , m}, such that

f j(X1) < f j(X2).
We call X1 non-dominated, or not inferior or dominant; X2 is dominated, expressed as X1 � X2, where �

is the dominant relation.

Definition 3. Pareto optimal front. Given a MOO problem shown in Equation (1) and its optimal solution set
{X∗}, the Pareto optimal front is defined as:

PF∗ = {Fun(X) = ( f1(X), f2(X), . . . , fm(X))|X ∈ X∗} (5)

Generally, a set of trade-offs can be obtained for MOO problems, so the most important task in
solving a MOO problem is to find a collection of Pareto optimal solutions as close to the true Pareto set
as possible [24]. As shown in Figure 1, the solid line denotes the Pareto front of the two optimization
objectives f1 and f2. It can be inferred that the Pareto front of a tri-objective problem constitutes
a surface and the Pareto front of a many-objective optimization problem (with more than three function
objectives) constitutes a hypersurface. In Figure 1, the solid points a, b, c, d, e and f are all on the Pareto
front, which are optimal solutions; the hollow points g, h, i, j, k, l fall into the search area, but not on
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the Pareto front, they are dominated, directly or indirectly by the non-dominated solutions on the
Pareto front [25].

a

b
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d

e f

g

h

i

j
k

l

Figure 1. Pareto optimal solutions (a,b,c,d,e,f) and dominated solutions (g,h,i,j,k,l).

2.2. Research on Multi-Objective Evolutionary Algorithms

As early as 1967, Rosenberg mentioned in his doctoral dissertation that genetic search algorithms
can solve MOO problems but it was not until 1985 that the first MOEA Vector Evaluated Genetic
Algorithm (VEGA) emerged [26]. What really attracts the evolutionary computation world is the series
of MOEAs that have been proposed since 1990. The development of MOEAs can be divided into two
stages [27].

The first phase was primarily composed of Pareto-based optimization and non-Pareto-based
optimization. One of the typical algorithms not based on Pareto dominance was VEGA, which
partitioned the population of size P to r sub-populations and each sub-population evolved for different
sub-objectives respectively. The superiority of VEGA was that the operation was simple and could
be implemented easily, but it was hard to obtain the optimal solution set when the true Pareto Front
was non-convex. The other branch was the Pareto-based approach, which was first put forward by
Goldberg [28] in 1989 and introduced the Pareto Rank mechanism to implement the operation of
selection. The Pareto-based algorithms mainly include Niched-Pareto Genetic Algorithm (NPGA) [29]
proposed by Horn and Nafpliotis, Multi-objective Genetic Algorithm (MOGA) [30] proposed by
Fonseca and Fleming, and so forth. However, the Pareto-based approach is not universal and
it is necessary to choose a method to maintain the diversity of the solution set based on specific
optimization problems.

The concept of “external set” was put forward at the second stage. The MOEAs proposed in this
period emphasize efficiency and effectiveness. Among them, the typical ones are given as follows.
Knowles and Corne [27] proposed the Pareto Archived Evolution Strategy (PAES) series in 1999,
Corne et al. [10] brought forward the Pareto Envelope-based Selection Algorithm (PESA) for MOO
problems and proposed its improved version PESA-II [11] in 2001 and Deb et al. [5] put forward
a non-dominated set sorting method named Non-dominated Sorting Genetic Algorithm (NSGA-II),
which compensates the shortcomings of its previous version NSGA [4]. In NSGA-II, in order to reduce
the time complexity of the algorithm, a fast sorting method was applied to construct a non-dominated
solution set, but it was difficult to find outliers, and may generate search offset when increasing the
number of objective functions [25].

To some extent, the classic MOEAs are very mature but the field of evolutionary algorithms is still
evolving. In recent years, a large number of split-new MOEAs has appeared. For example, Wagner
and Neumann [31] propose a fast Approximation-Guided Evolutionary multi-objective algorithm
(AGE-II), which approximate the archive in order to control its size and influence on the runtime,
and avoid the shortcomings of Approximation-Guided Evolution (AGE). Bili Chen and Wenhuan
Zeng [15] propose the Non-dominated Sorting and Local Search (NSLS) optimization algorithm, which
have better diversity in terms of combining the farthest-candidate approach with the non-dominated
sorting method to select the new population members. But it easily falls into local optimum on some
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test problems. Miqing Li et al. put forward the Bi-criterion evolution for IBEA (BCE-IBEA) ([17,32]),
it can freely implement the NPC evolution part, which made the approach effectively for those
non-Pareto-based algorithm. Y. Tian et al. [18] propose a Multi-Objective Evolutionary Algorithm
based on an enhanced Inverted Generational Distance metric (MOEA/IGD-NS), which improves
the method of environmental selection. MOEA/IGD-NS uses an enhanced inverted generational
distance metric to find non-contributing solutions (termed IGD-NS). In recent years, more and more
researchers are turning their attention to many-objective optimization (MaOO) problems. For example,
Deb et al. propose the NSGA-III [33,34] using a reference-point-based non-dominated sorting approach
in 2014; Xingyi Zhang and Ye Tian et al. put forward a Knee point-driven Evolutionary Algorithm
(KnEA) [2] in 2015 and it shows good effectiveness in both solution quality and algorithm complexity.
M. Asafuddoula et al. [21] come up with an Improved Decomposition-Based Evolutionary Algorithm
(I-DBEA) in 2015, which produces uniformly distributed reference points by systematic sampling and
it uses distance measures method to balance the convergence and diversity.

3. Related Work and the Motivation of This Paper

In this section, we first describe the related work of FECO, which was proposed in Reference [19]
for solving single-objective problems. Then, we elaborate the motivation of extending FECO to its
multi-objective version, Multi-Objective Five-Elements Cycle Optimization algorithm (MOFECO), by
which multi-objective problems can be solved.

3.1. Related Work of Five-Elements Cycle Optimization (FECO)

The literature [19] first puts forward the FECM, which draws on the dynamic system equilibrium
relationship described by the five elements of ancient Chinese philosophy. The five elements are metal,
wood, water, fire and earth. As depicted in Figure 2, there are two main relationships, generating
interaction and restricting interaction, between the five elements.

Figure 2. The generating and restricting interactions between the five elements.

As shown in Figure 2, the outer circle represents the generating interaction: metal produces water,
water produces wood, wood produces fire, fire produces earth and earth in its turn produces metal.
The generating interaction is analogous to a mother-child relationship, which means children rely
on their mother’s nutrition to grow and become strong. The inner circle represents the restricting
interaction: wood inhibits earth, earth inhibits water, water inhibits fire, fire inhibits metal and metal
in its turn inhibits wood. The restricting interaction as the same as the grandparent-grandchildren
relationship, where the grandmother limits the development of grandchildren. Through the generation
and restriction, all the elements are mutually restricted and promoted by each other, forming a dynamic
equilibrium relationship.

As mentioned above, each element is influenced by the other four in a certain way, and this way
is the force relationship between the five elements. The FECM proposed in Reference [19] is described
as follows. Suppose a dynamic system consists of the five elements shown in Figure 2. Here we use
Xi(k) to represent the i-th element at time k, where i ∈ {1, 2, 3, 4, 5} represents the element within
each cycle. Each of the elements has its own mass and the force powered by other elements in the
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same cycle. The mass of the five elements (metal, water, wood, fire, earth) at time k is defined as
Mi(k) and the force exerted on the i-th element by the other four elements at time k is denoted by
Fi(k), which is corresponding to Mi(k). Each Fi(k) of the elements is composed of four parts (taking
the element “metal” for example), the first part is the force of generation from its parent element
(earth), denoted by F3_1(k), and this segment of force is positive because the generation effect from
its parent element makes it stronger. The value of F3_1(k) is determined by the mass of both wood
(M3(k)) and water (M2(k)). When M2(k) > M3(k), the wood element will become stronger under the
generation effect from its parent element. Furthermore, the bigger M2(k) is, or the smaller M3(k) is,
the greater F3_1(k) will be. Nevertheless, if M2(k) < M3(k), which means wood element was stronger
than its parent element, water element will be injured so that F3_1(k) will reverse. Here, we compute
the formula of F3_1(k) the same as in the literature [19]. The second part is the restriction force from its
grandparent element (fire), denoted by F3_2(k). This segment of force should be negative, because the
restriction effect from an element’s grandparent element makes it weaker. In the same way, the value
of F3_2(k) is determined by the mass of both wood (M3(k)) and metal (M1(k)). Similarly, the third
part is the generation force to its child element (water), denoted by F3_3(k) and the fourth segment is
the restriction force to its grandchild element (wood), denoted by F3_4(k). Thus F3(k) is the weighted
sum of the above four segments.

If we extend the wood instance F3(k) to an arbitrary force Fi(k)(i ∈ {1, 2, 3, 4, 5}), Equation (6)
can be obtained [19]: 

F1(k) = wgp · ln[
M5(k)
M1(k)

]− wrp · ln[
M4(k)
M1(k)

]

− wga · ln[
M1(k)
M2(k)

]− wra · ln[
M1(k)
M3(k)

]

F2(k) = wgp · ln[
M1(k)
M2(k)

]− wrp · ln[
M5(k)
M2(k)

]

− wga · ln[
M2(k)
M3(k)

]− wra · ln[
M2(k)
M4(k)

]

F3(k) = wgp · ln[
M2(k)
M3(k)

]− wrp · ln[
M1(k)
M3(k)

]

− wga · ln[
M3(k)
M4(k)

]− wra · ln[
M3(k)
M5(k)

]

F4(k) = wgp · ln[
M3(k)
M4(k)

]− wrp · ln[
M2(k)
M4(k)

]

− wga · ln[
M4(k)
M5(k)

]− wra · ln[
M4(k)
M1(k)

]

F5(k) = wgp · ln[
M4(k)
M5(k)

]− wrp · ln[
M3(k)
M5(k)

]

− wga · ln[
M5(k)
M1(k)

]− wra · ln[
M5(k)
M2(k)

]

(6)

where each Fi(k)(i ∈ {1, 2, 3, 4, 5}) of the Equation (6) is composed of the four parts Fi_1(k), Fi_2(k),
Fi_3(k), Fi_4(k) described above. The wgp, wrp, wga, wra represent weight coefficients.

Considering that the four segments’ forces are not exactly the same, the weighting coefficients wgp,
wrp, wga and wra are defined to be positive numerical values in the range of [0, 1] [20]. In this paper, we
set the same weighting coefficients as in the literature [20]. The mass of each element changes under
the generation and restriction force at every iteration as the following Equation (7):

Mi(k + 1) = Mi(k) · fΓ(Fi(k)), i ∈ {1, 2, 3, 4, 5} (7)
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where fΓ(Fi(k)) is a nonlinear function, which is used to express the variation of elements’ mass
under the forces. Extending the five elements to L elements, Equations (6) and (7) can be expressed as
Equation (8), which is named FECM, as proposed in Reference [19]:

Fi(k) = wgp · ln[
Mi−1(k)

Mi(k)
]− wrp · ln[

Mi−2(k)
Mi(k)

]− wga · ln[
Mi(k)

Mi+1(k)
]− wra · ln[

Mi(k)
Mi+2(k)

]

Mi(k + 1) = Mi(k) ·
2

1 + exp(−Fi(k))

(8)

where i ∈ {1, 2, . . . , L}. The subscripts of Mi−2(k), Mi−1(k), Mi(k), Mi+1(k), and Mi+2(k) represent
the i circulates in the order of 1, 2, . . . , L.

Based on the FECM described above, Reference [19] proposed FECO for solving single-objective
problems and the capability of FECO for solving TSP problems and continuous function optimization
problems was verified in Reference [20]. In FECO, the elements are generally divided into q different
cycles and each cycle has L elements, where the value of L× q is equivalent to the population size in
the evolution algorithm and each element represents an individual in the population.

3.2. Motivation of This Paper

When optimizing MOO problems, it is necessary to find the Pareto optimal solutions and the
ideal optimal solutions distribute evenly on the true Pareto optimal front. That is to say, the main aim
of optimizing an MOO problem is to improve diversity and convergence of the solution set. Inspired
by FECM, we divide the population into different cycles and the cycles are independent of each other.
During the process of evolution, we can perform local search, which means the updated solutions of
the individuals are only related to the optimal solution in the cycle to which the individuals belong;
and different cycles have different optimal solutions, which shows great merit in terms of population
diversity and has certain advantages for solving MOO problems.

4. The Proposed Multi-Objective Five-Elements Cycle Optimization Algorithm

In this paper, a novel MOEA, called the Multi-Objective Five-Elements Cycle Optimization
algorithm (MOFECO), is presented. In MOFECO, we introduce the method for constructing a Pareto
solution set, the same as in NSGA-II, which used the fast non-dominated sorting and crowded distance
method to obtain a Pareto solution set. In the update stage, MOFECO updates the solutions according
to the magnitude of the element force, iteratively. Compared to traditional MOEAs such as NSGA-II,
the main difference of MOFECO is that it divided the population into different cycles and at each
iteration, each cycle performs a local search independently of each other and combines with a global
search to make the algorithm quickly and stably converge to the true Pareto set. In the following,
the implementation of the proposed MOFECO will be elaborated.

4.1. General Framework of MOFECO

The general framework of MOFECO is similar to most MOEAs, and will be illustrated in the
following. First, randomly generate the initial population, which is divided into q cycles according
to FECM, and each cycle contains L elements wherein the value of L× q is the population number
N. Then, calculate the objective function values for each individual in the population. Second,
determine whether to perform the update operation based on the force of each element. If the
current individual satisfies the update condition, the update mode (local-update or global-update)
is determined according to the current local-global probability Ps, which varies nonlinearly with
the number of iterations. Third, the mutation operation is performed according to the mutation
probability Pm. After the update and mutation operations, we perform the fast non-dominated sorting
borrowed from NSGA-II [5] on the current population (including retained and updated individuals),
and then select local and global optimal individuals which will be used as the search range for the
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next-generation individuals when updating. Fourth, we use the methods for the fast non-dominated
sorting and crowding distance calculation on the parent and updated population, so as to create the
current Pareto optimal solution set. Then, repeats the above process until the maximum number of
iterations is reached. The flowchart of MOFECO algorithm is shown in Figure 3. Several parameters
are configured in the initialization phase?number of individuals in each cycle L, the number of cycles q,
the number of population N, max iteration T, current iteration k, local-global probability Ps, mutation
probability Pm and weight coefficients wgp, wrp, wga, wra. In our proposed algorithm, the weight
coefficients are set the same as in Reference [20] where wgp = wrp = wga = wra = 1 and we also set the
same q and L value as in Reference [20], which proved that these values work the best for the algorithm.
Relevant proof will be given in the following parameter comparison experiments in Section 5. Besides,
when k = 0, set the value of Xij(0) and calculate the value of Mr,ij(0), Fij_r(0).

k

r ijM k

k T

ij rF k

ij u ij uFk kF

s m ij r ij ij rN L q p p T X M F

ij u ij uF k F k

k k
ij rF k

ijX k

ij ijX k X k

Figure 3. The flowchart of MOFECO algorithm.
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Next, we will describe the proposed algorithm MOFECO in detail in the following parts of
this section.

4.2. Expression of Solutions and Population Initialization

Taking the MOO problem in Equation (1) as an example, each solution of Fun(X) corresponds to
an element in the FECM. In the proposed algorithm MOFECO, each element represents an individual
in the population and the population are divided into q cycles. There are L elements in each cycle,
so the population size is L× q. We use Xij(k) to denote the i-th element of the j-th cycle at the k-th
iteration and in the population of MOFECO, Xij(k) represents one individual. Since MOFECO is
designed for multi-objective problems, one individual corresponds to multiple objective function
values. Therefore, we use Mr,ij(k) to represent the mass of Xij(k), corresponding to the values of
objective function Fun(X), r ∈ {1, 2, . . . , m} that represents m objective functions. In FECM, the force
exerted on Xij(k) by other elements in the j-th cycle is related to the element mass. Therefore, in
MOFECO, the Xij(k) has multiple forces from the other elements in the j-th cycle, denoted as Fij_r(k),
which is computed by Equation (9).

Fij_r(k) = wgp · ln[
Mr,(i−1)j(k)

Mr,ij(k)
]− wrp · ln[

Mr,(i−2)j(k)
Mr,ij(k)

]

− wga · ln[
Mr,ij(k)

Mr,(i+1)j(k)
]− wra · ln[

Mr,ij(k)
Mr,(i+2)j(k)

]

(9)

When iteration number k = 0, we generate L × q initial individuals Xij(0) (i ∈ {1, 2, . . . , L},
j ∈ {1, 2, . . . , q}) within the feasible range of search space randomly. Then we use FECM to calculate
their masses and forces expressed as Mr,ij(0), Fij_r(0), respectively. In the k-th iteration, we firstly use
objective functions Mr,ij(k) to evaluate Fij_r(k) by Equation (9). According to FECM, it can be noted
that the value of Fij_r(k) measures the pros and cons of element Xij(k), therefore Fij_r(k) determines
the update pattern of Xij(k). The specific update pattern will be described in detail in Section 4.3.

4.3. Update of Individuals

According to FECM, proposed in Reference [19] and from the expression of solutions in the
previous section, we know that the update of individual Xij(k) depends on the corresponding forces
Fij_r(k). From the perspective of system balance and Equation (6), the smaller Mr,ij(k) is, the larger
Fij_r(k) is, and since larger force will make the element stronger, so that each element will further
converge. Therefore, we can infer that if Fij_r(k) has a positive value, Xij(k) is a good solution. In this
situation, Xij(k) should be reserved. Nonetheless, in MOO problems, the individual Xij(k) corresponds
to multiple objective function values, that is, corresponds to multiple forces Fij_r(k). If we reserved
Xij(k) when all Fij_r(k) have positive value, there are almost no remained individuals. In evolutionary
algorithms, however, we usually want to retain 10% to 20% of the current population as the reserved
solutions. So, in MOFECO, we update Xij(k) as follows:

Xij(k + 1) = Xij(k) i f Fij_u1(k) > 0 and Fij_u2(k) > 0 (10)

where u1 and u2 are randomly chosen from set {1, 2, . . . m}. The above formula shows that two values
are randomly selected in the forces of the element to determine whether they are greater than 0; if so,
reserve the element.

If the element Xij(k) is subjected to a negative force Fij_r(k), it indicates that the system expects the
element to become weaker and its mass Mr,ij(k) must become thinner, which means Xij(k) is probably
not a good solution, in that case, the current Xij(k) needs to be updated. According to Equation (10), if
at least one of the two randomly selected forces of the element is smaller than 0, the element performs
update operation. Then, we can get the update formula as Equation (11):
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{
Xij(k + 1) = Xij(k) i f Fij_u1(k) > 0 and Fij_u2(k) > 0

Xij(k + 1) = XMij(k + 1) others
(11)

where XMij(k + 1) represents the individual after update and mutation. The specific update operation
is designed as follows.

Suppose that the individual Xij(k) is a D-dimensional vector, denoted by Xij,1(k), Xij,2(k), . . . ,
Xij,d(k), . . . , Xij,D(k), and as we hope to generate new solutions in the neighborhood of the
better solutions, the improved Particle Swarm Optimization (PSO) [35] algorithm is introduced
here. Define the individuals velocity vector Vij(k), whose dimension is also D and expressed
as Vij,1(k), Vij,2(k), . . . , Vij,d(k), . . . , Vij,D(k), and Xij(k) represents the individual’s position vector.
Therefore, when individual Xij(k) satisfies the update condition, it will be updated as follows:{

Vij,d(k + 1) = ω×Vij,d(k) + r1 × rs × (X_localj,d(k)− Xij,d(k)) i f rm < Ps

Vij,d(k + 1) = ω×Vij,d(k) + r2 × rs × (X_bestd(k)− Xij,d(k)) i f rm ≥ Ps
(12)

XCij,d(k + 1) = Xij,d(k) + Vij,d(k + 1) (13)

where i ∈ {1, 2, . . . , L}, j ∈ {1, 2, . . . , q}, d ∈ {1, 2, . . . , D}, representing the number of individuals
in one cycle, the number of cycles and the number of dimensions, respectively. And r1 and r2 are
constants; ω represents the inertia weight; rs is randomly produced in the range of [0, 1]; Ps represents
the local-global update probability; X_localj(k) represents the optimal individual in the j-th cycle,
that is, after performing fast non-dominated sorting on all individuals in the current population,
the individual in the j-th cycle that has the smallest Rank value and maximum crowding distance
between two adjacent individuals is recorded as X_localj(k). We randomly select an individual as
X_best(k) among the individuals with Rank value of 1 after the fast non-dominated sorting and
crowded distance calculation method in current population. In Equation (13) XCij(k + 1) represent
the updated individual. It can be seen from Equations (12) and (13) that Xij(k) is updated around the
best element of the j-th cycle X_localj(k) under the probability Ps. Otherwise, it is updated around the
current best optimal solution X_best(k).

From Equation (12), we can see that large Ps is inclined to exploitation, while small Ps is inclined to
exploration. In order to enhance the convergence and flexibility of the proposed algorithm, the value of
the probability Ps is not fixed but changes dynamically according to the current iteration number. The
variation pattern of Ps with the iteration number is shown in Figure 4. In the initial stage of population
evolution, since it is expected that the individuals can converge to the optimal solutions quickly, we
assign a small value to Ps so that individuals tend to find updated solutions in the global scope. As
the number of iteration increases, we hope to find optimal solutions which are more diverse and
distributed, so the value of Ps gradually increases, making individuals tend to perform local search. In
this way, the search range of the solutions is dynamically selected according to the phase of evolution,
so that the individuals can quickly and effectively approach the best optimal solution set. We define
the calculation of Ps as follows:

Ps = 1− (Psmin + (Psmax − Psmin)× exp(−20× (k/T)6) (14)

where Psmin and Psmax represent the values of minimum and maximum probability respectively; k is the
current number of iterations and T is the maximum iteration.
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Figure 4. Nonlinear variation of Ps.

4.4. Mutation of Individuals

To prevent individuals from falling into local optimum, a mutation operation was introduced
in MOFECO. In standard genetic algorithms, the mutations operation often flip each binary bit with
a small probability Pm, which is used to introduce missing genes into the population to achieve global
search of the solution space. To this end, researchers designed a number of mutation operators, such
as uniform mutation, non-uniform mutation, Gaussian mutation, Cauchy mutation, polynomial
mutation and so on [25]. Reference [36] systematically analyzed the global search ability and
local search ability of Gauss distribution, Cauchy distribution and Uniform distribution mutation
operator. Theory and practice show that the Gauss distribution operator has strong local search
ability, the uniform distribution mutation operator has strong global search ability, and the Cauchy
distribution operator has a centered ability of local search and global search.

Hence, we combine these three different mutation operators as follows. In the early stage of
evolution, we use the uniform mutation operator to acquire strong global search ability; In the late
evolution, we use the Gauss mutation operator to enhance the local search ability of the algorithm;
While in the middle of evolution, the Cauchy distribution mutation operator is used to make the
algorithm suitable for global and local search. The specific operation is as follows:

XMij(k + 1) =


XCij(k + 1) + U(−σ1, σ1) i f ( k + 1 ≤ T

4
)

XCij(k + 1) + C(0, σ2) i f (
T
4

< k + 1 ≤ 3T
4
)

XCij(k + 1) + N(0, σ3) i f (
3T
4

< k + 1 ≤ T)

(15)

where XMij(k + 1) represents the individual after mutation; U(−σ1, σ1) represents the uniform
distribution mutation operator and σ1 is called the variation domain and usually has σ1 = 0.1×
(up − lw), where up and lw represent the upper and lower bounds of the decision variable; C(0, σ2)

represents a random number of Cauchy distribution centered at zero and a scale parameter of σ2;
N(0, σ3) represents the Gaussian distribution random number.

After the update and mutation operation, a new population is generated, which contains the
retained individuals and the updated individuals, and the population size is still N. Then, the fast
non-dominated sorting and the crowded distance method in NSGA-II are adopted to sort the new
population. The best solution in each cycle and the optimal solution in the new population are picked
out as the neighborhood solutions that produce new solutions when the next generation is updated.
At the same time, the parent population and the updated individuals are combined to get a new
population R, and R is sorted by using fast non-dominated sorting and crowded distance calculation
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method in NSGA-II. So the solutions with Rank value of 1 and the crowded distance from large to
small in the sorted population R are selected as the current Pareto optimal solution set. Then, the above
process is repeated until the maximum number of iterations is reached.

5. Simulation Experiment and Result Analysis

In this section, we first compare the parameters of the proposed MOFECO algorithm, including
number of cycles q and number of elements L in each cycle, update condition Fij_r, the local-global
probability Ps and the mutation methods. Secondly, we analyze the performance of MOFECO by
empirically comparing it with three classic MOEAs, namely, NSGA-II [5], MOPSO [12], PESA-II [11]
and the two latest algorithms KnEA [2] and NSLS [15]. The experiments were performed on 15 test
problems, which were taken from four widely used test benchmarks suites the Zitzler et al’s Test suite
(ZDT) [37], the Deb et al’s Test suite (DTLZ) [38], the Walking Fish Group (WFG) [39] and the Many
objective Function (MaF) [40]. Among them, the ZDT series are bi-objective functions and the DTLZ
series are tri-objective functions and we set the MaF and WFG series as four-objective functions. In
terms of experimental configuration, all the implementations are done on a 2.39 GHz Intel(R) Xeon(R)
CPU with 32 GB RAM under Microsoft Window 10. MOFECO has been implemented in MATLAB
R2016a and for the NSGA-II, MOPSO, PESA-II, KnEA and NSLS, the programs are derived from the
platEMO provided by the literature [41].

5.1. Test Problems

Four classic series of test benchmarks, the Zitzler et al’s Test suite (ZDT) proposed by Zitzler et al. [37],
the Deb et al.’s Test suite (DTLZ) proposed by Deb et al. [38], the Walking Fish Group (WFG) proposed
by Huband et al. [39] and the Many objective Function (MaF) proposed Cheng [40], are used to test the
performance of the proposed algorithm. The number of objective functions, the dimensions of control
variables and the function features of the test problems are given in Table 1. All of these problems are
unconstrained, and the goals of all problems are to minimize the objective functions.

Table 1. ZDT, DTLZ, WFG and MaF decision space dimension.

Test Problem Dimension D Number of Objects m Feature

ZDT1 30 2 Convex function
ZDT2 30 2 Concave function
ZDT4 10 2 Convex function
ZDT6 10 2 Concave function

DTLZ2 12 3 Concave function
DTLZ4 12 3 Concave function
DTZL5 12 3 Concave function
DTLZ6 12 3 Concave function
DTLZ7 22 3 Mixed function
WFG2 13 4 convex function
WFG3 13 4 linear function
WFG4 13 4 concave function
MaF1 13 4 Linear function
MaF2 13 4 Concave function

MaF12 13 4 Concave function
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5.2. Performance Metrics

Performance metrics are often used to measure the effectiveness of an algorithm for MOO
problems. As we know, the basic aim of multi-objective optimization is to obtain a Pareto set with
better convergence, distribution and diversity of the Pareto set. According to whether the performance
metrics can measure the convergence, the diversity or both of a solution set, they can be divided into
three categories [42], and the following part describes some commonly used performance metrics of
the three categories. Here we suppose the true Pareto optimal front is known as P∗.

(1) Generational Distance (GD): GD is used to evaluate the convergence of a solution set,
the concept of GD was proposed by Veldhuizen and Lamont [43]. It measures the distance between
the obtained non-dominated front P and the true Pareto set PF∗ as:

GD =

√
∑
|P|
i=1 minDis(Xi, PF∗)2

|P|
(16)

where minDis(Xi, PF∗) represents the minimum Euclidean distance between the obtained solution Xi
and the solutions in PF∗, and |P| is the number of the obtained optimal solutions. GD measures how far
these non-dominated solutions X are from those in the true Pareto optimal front PF∗. The smaller the
GD value, the closer the Pareto solution set is to the real Pareto frontier and the better convergence the
solution set has. If GD = 0, the solution set is on the real Pareto front, which is the most ideal situation.

(2) Spacing metric (SP): The spatial evaluation method SP [44] proposed by Schott is used to
evaluate the distribution of individuals in the objective space. The function is defined as follows:

SP =

√√√√ 1
|P| − 1

|P|

∑
i=1

(d̄− di)2 (17)

di = min
j

(
| f i

1(X)− f j
1(X)|+ | f i

2(X)− f j
2(X)|

)
, (i, j = 1, 2, . . . , |P|) (18)

where d̄ is the average of all di and |P| represents the size of Pareto solutions. A smaller value of SP
demonstrates a better distribution of the obtained solution set. Here, SP = 0 when the algorithm
obtained optimal solutions which are completely evenly distributed in the target space.

(3) Spread indicator (SI): Wang et al. [42] proposed the spread metric SI, which is used for
independently evaluating the breadth and the spread of the non-dominated solutions. SI can be
defined mathematically as:

SI = ∑m
i=1 d(ei, P) + ∑X∈P |d(X, P)− d̄|
∑m

i=1 d(ei, P) + (|P| −m)× d̄
(19)

d(X, P) = min
Y∈P,Y/∈X

‖F(X)− F(Y)‖ (20)

d̄ =
1
P
× ∑

X∈P
d(X, P) (21)

where P is optimal solution set, m represents the number of objectives, ei (i = 1, 2, . . . , m) are m
extreme solutions, which belongs to the set of true Pareto front. As can be seen, a smaller SI means the
optimal solution set has a better spread.

(4) Pure diversity (PD): PD is used for measuring the diversity of species, it is defined as
follows [45]:

PD(X) = max
spi∈X

(PD(X− spi) + d(spi, X− spi)) (22)

where
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d(sp, X) = min
spi∈X

(diss(sp, spi)) (23)

Here, d(spi, X − spi) represents the dissimilarity d from one species spi to a community X.
The larger the PD value, the better the diversity of the solution set.

(5) Hypervolume (HV): HV indicator [46] has become a popular evaluation index because of its
good theoretical support. It evaluates the comprehensive performance of MOEAs by calculating the
hypervolume value of the space enclosed by the non-dominated solution set and the reference point.
The calculation formula is:

HV = λ
(
∪|P|i=1vi

)
(24)

where λ represents the Lebesgue measure, vi represents the hypervolume formed by the reference
point and the non-dominated individual and P represents the optimal solution set. Note that a larger
HV denotes a better performance of the algorithm.

(6) Inverted Generational Distance (IGD): The IGD [47] is defined as:

IGD(PF∗, P) = ∑x∈PF∗ mindis(X, P)
|PF∗| (25)

where PF∗ denotes the uniformly distributed true solutions along the Pareto front. P represents an
approximation to the Pareto front. mindis(X, P) denotes the minimum Euclidean distance between the
solution X and the solutions in P. we can see that the smaller the IGD value is, the better convergence
and diversity of the Pareto optimal set has.

5.3. Parameter Analysis and Comparison Experiments of MOFECO

This section mainly analyzes and compares the parameter in proposed MOFECO include L, q,
Fij_r, Ps and mutation methods.

In the comparison experiments, one parameter is varied at a time and the other parameters are
fixed to the best parameters which are set as the same as Equations (11), (14) and (15). The common
parameter settings in the experiment are shown in Table 2 and performed 30 independent runs for
each parameter comparison set.

Table 2. Experimental parameters.

Parameters Values

N 100
T 1000
L 5
q 20

r1 = r2 1
ω 0.5 (for bi-objective MOPs); 0.4 (others)
σ1 0.1
σ2 1
σ3 1
Pm 0.01

5.3.1. Comparison of L and q

In MOFECO, the value of L × q represents the size of the population. Intuitively, large q is
beneficial to maintain the diversity of solutions, while large L is beneficial to search good solutions
faster but may easy to fall into local optimum. Reference [20] compares the effects of different L and q
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values on the performance of FECO algorithms. According to [20], when the population size is 100,
the algorithm performance is optimal when L = 5 and q = 20. In this paper, compared with FECO,
the influence of L and q on the performance of the algorithm is similar to that in the literature [20].
Therefore, the values of L and q are not compared in detail. Here, we designed 4 groups of experiments
with L× q = 100. The comparison experiments are carried out on the test function sets ZDT, DTLZ,
MaF and WFG series, and the results are shown in Tables 3–5, which showed average GD, IGD and SI
values. The best result is bolded for each function.

Table 3. GD result of comparison of L and q in MOFECO algorithm on test functions. (The best result
is bolded for each function).

Functions L = 4/q = 25 L = 5/q = 20 L = 10/q = 10 L = 20/q = 5

ZDT1 2.22× 10−4 1.40 × 10−4 2.39× 10−4 2.53× 10−4

ZDT2 9.73× 10−6 4.02× 10−6 4.46 × 10−7 4.50× 10−7

ZDT4 1.50× 10−4 2.39 × 10−5 4.60× 10−3 4.10× 10−3

ZDT6 3.62× 10−7 3.50× 10−7 1.56 × 10−7 3.32× 10−7

DTLZ2 6.69× 10−4 4.67 × 10−4 1.20× 10−3 7.02× 10−4

DTLZ4 7.30× 10−4 1.43× 10−3 5.53× 10−4 4.39 × 10−4

DTLZ5 5.94× 10−5 3.56 × 10−5 7.15× 10−5 6.76× 10−5

DTLZ6 4.60× 10−7 4.82× 10−7 7.05× 10−7 4.53 × 10−7

DTLZ7 8.80× 10−3 9.60× 10−3 8.90× 10−3 6.60 × 10−3

WFG2 6.90× 10−2 6.25 × 10−2 6.66× 10−2 6.79× 10−2

WFG3 1.74× 10−1 5.29 × 10−2 1.87× 10−1 2.09× 10−1

WFG4 2.11× 10−2 1.57× 10−2 1.70× 10−2 1.20 × 10−2

MaF1 8.80× 10−3 7.10× 10−3 6.70 × 10−3 9.00× 10−3

MaF2 4.90× 10−3 3.67 × 10−3 8.00× 10−3 7.20× 10−3

MaF12 1.88× 10−2 1.88 × 10−2 2.60× 10−2 2.18× 10−2

Table 4. IGD result of comparison of L and q in MOFECO algorithms on test functions. (The best result
is bolded for each function).

Functions L = 4/q = 25 L = 5/q = 20 L = 10/q = 10 L = 20/q = 5

ZDT1 5.90× 10−3 5.40 × 10−3 5.50× 10−3 6.20× 10−3

ZDT2 5.30 × 10−3 5.40× 10−3 5.80× 10−3 6.60× 10−3

ZDT4 5.80× 10−3 5.76 × 10−3 7.04× 10−2 5.15× 10−2

ZDT6 4.90× 10−3 4.70 × 10−3 4.43× 10−1 3.37× 10−2

DTLZ2 7.55× 10−2 7.49 × 10−2 7.65× 10−2 8.06× 10−2

DTLZ4 2.15 × 10−1 2.21× 10−1 2.96× 10−1 6.84× 10−1

DTLZ5 6.30 × 10−3 6.70× 10−3 6.70× 10−3 6.60× 10−3

DTLZ6 6.60× 10−3 6.40 × 10−3 6.80× 10−3 7.30× 10−3

DTLZ7 2.03× 10−1 2.88× 10−1 2.17× 10−1 1.45 × 10−1

WFG2 5.31× 10−1 5.11 × 10−1 5.81× 10−1 5.61× 10−1

WFG3 2.15× 10−1 1.60 × 10−1 2.41× 10−1 2.81× 10−1

WFG4 8.17× 10−1 7.89 × 10−1 8.33× 10−1 7.90× 10−1

MaF1 1.19 × 10−1 1.21× 10−1 1.23× 10−1 1.29× 10−1

MaF2 9.66× 10−2 3.67 × 10−3 8.00× 10−3 7.20× 10−3

MaF12 1.88× 10−2 9.58 × 10−3 1.06× 10−1 1.11× 10−1
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Table 5. SI result of comparison of L and q in MOFECO algorithms on test functions. (The best result
is bolded for each function).

Functions L = 4/q = 25 L = 5/q = 20 L = 10/q = 10 L = 20/q = 5

ZDT1 4.87× 10−1 4.59 × 10−1 5.11× 10−1 4.66× 10−1

ZDT2 5.30× 10−1 4.54 × 10−1 5.12× 10−1 5.96× 10−1

ZDT4 4.70 × 10−1 5.40× 10−1 1.15× 100 1.04× 100

ZDT6 4.58 × 10−1 5.08× 10−1 1.08× 100 1.18× 100

DTLZ2 4.90× 10−1 4.86 × 10−1 5.07× 10−1 6.07× 10−1

DTLZ4 7.04× 10−1 5.65 × 10−1 1.08× 100 1.05× 100

DTLZ5 4.26 × 10−1 4.95× 10−1 5.51× 10−1 5.33× 10−1

DTLZ6 5.10 × 10−1 5.18× 10−1 5.26× 10−1 6.52× 10−1

DTLZ7 6.18 × 10−1 6.50× 10−1 7.31× 10−1 8.49× 10−1

WFG2 5.11× 10−1 4.41 × 10−1 5.11× 10−1 7.17× 10−1

WFG3 5.48 × 10−1 6.83× 10−1 5.57× 10−1 9.54× 10−1

WFG4 4.20× 10−1 4.13 × 10−1 4.39× 10−1 5.16× 10−1

MaF1 4.59× 10−1 4.16 × 10−1 4.63× 10−1 4.99× 10−1

MaF2 4.88× 10−1 4.44 × 10−1 5.30× 10−1 5.92× 10−1

MaF12 4.25× 10−1 4.06 × 10−1 4.35× 10−1 5.30× 10−1

It can be seen from the above results that there are significant differences in those groups of
different settings of L and q. As shown in Table 3, some test functions have the best GD values
when L = 20, which means a larger L value can bring better convergence; but for most functions,
the MOFECO algorithm has the best convergence when L = 5. From Table 5 we can see that, for some
test functions, especially the tri-objective functions, MOFECO has better values of SI when L = 4
and q = 25. However, considering the comprehensive performance index IGD (see Table 4), most
functions have the best comprehensive performance when L = 5, q = 20. Therefore, for most of time,
we recommend setting L = 5 and q = 20.

5.3.2. Comparison of Conditions for Judging Whether to Update

As we described in Section 4 that an individual Xij(k) corresponds to m objective function values
and each objective function value corresponds to a force value, so that every Xij(k) received m force
values Fij_r(k),(r ∈ {1, 2, . . . , m}. We know that the values of objective function affect the force Fij_r,
and judging whether the individual retains or updates is mainly according to the values of Fij_r(k).
Here, we select three update methods for comparison, which are described as follows:

(1) When individual Xij(k) satisfies Fij_u1(k) > 0 and Fij_u2(k) > 0,(u1, u2 ∈ {1, 2, . . . , m}),
the individual retains; Otherwise, updates. And u1,u2 are two random numbers in the set
{1, 2, . . . , m}.

(2) When individual Xij(k) satisfies ∀u, Fij_u(k) > 0,(u ∈ {1, 2, . . . , m}), the individual retains;
Otherwise, updates.

(3) When individual Xij(k) satisfies ∃u, Fij_u(k) > 0,(u ∈ {1, 2, . . . , m}), the individual retains;
Otherwise, updates.

The comparison experiments are carried out on the test function sets ZDT, DTLZ, MaF and WFG
series for the above three update methods, which are denoted method 1, method 2 and method 3 here
for simplicity. The results are shown in Tables 6–8, where average GD, IGD and SP values obtained
by the above three methods are presented, and the bold part of the table represents the optimal value.
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Table 6. GD result of the three update conditions of MOFECO algorithms on test functions. (The best
result is bolded for each function).

Functions Method 1 Method 2 Method 3

ZDT1 1.40 × 10−4 1.40× 10−4 2.61× 10−4

ZDT2 4.02 × 10−6 4.02× 10−6 4.34× 10−6

ZDT4 2.39 × 10−5 2.39× 10−5 1.26× 10−2

ZDT6 3.50 × 10−7 3.50× 10−7 2.40× 10−3

DTLZ2 7.43 × 10−4 1.10× 10−3 1.00× 10−3

DTLZ4 1.43× 10−3 1.80× 10−3 9.39 × 10−4

DTLZ5 3.56× 10−5 3.94× 10−5 3.48 × 10−5

DTLZ6 4.82 × 10−7 9.11× 10−5 2.90× 10−5

DTLZ7 9.60× 10−3 7.70 × 10−3 1.44× 10−2

WFG2 6.25 × 10−2 9.63× 10−2 6.68× 10−2

WFG3 5.29 × 10−2 1.94× 10−1 1.80× 10−1

WFG4 1.57 × 10−2 2.04× 10−2 1.94× 10−2

MaF1 7.10 × 10−3 8.00× 10−3 7.90× 10−3

MaF2 3.67 × 10−3 6.60× 10−3 5.40× 10−3

MaF12 1.88× 10−2 1.85 × 10−2 2.05× 10−2

Table 7. IGD result of the three update conditions of MOFECO algorithms on test functions. (The best
result is bolded for each function).

Functions Method 1 Method 2 Method 3

ZDT1 5.40 × 10−3 5.40× 10−3 6.60× 10−3

ZDT2 5.40 × 10−3 5.40× 10−3 7.00× 10−3

ZDT4 5.76 × 10−3 5.76× 10−3 9.47× 10−2

ZDT6 4.70 × 10−3 4.70× 10−3 4.90× 10−3

DTLZ2 7.49 × 10−2 7.64× 10−2 7.55× 10−2

DTLZ4 1.21 × 10−1 1.69× 10−1 2.68× 10−1

DTLZ5 6.70× 10−3 6.60 × 10−3 8.30× 10−3

DTLZ6 6.60 × 10−3 7.10× 10−3 7.80× 10−3

DTLZ7 2.88 × 10−1 3.77× 10−1 3.76× 10−1

WFG2 5.11 × 10−1 7.21× 10−1 1.21× 100

WFG3 1.60 × 10−1 2.79× 10−1 2.30× 10−1

WFG4 7.89× 10−1 7.96× 10−1 7.86 × 10−1

MaF1 1.21 × 10−1 1.22× 10−1 1.21× 10−1

MaF2 9.58× 10−2 9.78× 10−2 9.11 × 10−2

MaF12 7.43 × 10−1 7.48× 10−1 7.65× 10−1
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Table 8. SP result of the three update conditions of MOFECO algorithms on test functions. (The best
result is bolded for each function).

Functions Method 1 Method 2 Method 3

ZDT1 8.70 × 10−3 8.70× 10−3 1.03× 10−2

ZDT2 7.60 × 10−3 7.60× 10−3 8.80× 10−3

ZDT4 7.40 × 10−3 7.40× 10−3 1.40× 10−2

ZDT6 6.80 × 10−3 6.80× 10−3 3.06× 10−2

DTLZ2 5.57 × 10−2 5.86× 10−2 5.73× 10−2

DTLZ4 4.33 × 10−2 5.01× 10−2 5.67× 10−2

DTLZ5 9.70 × 10−3 9.90× 10−3 1.18× 10−2

DTLZ6 9.40 × 10−3 9.70× 10−3 9.90× 10−3

DTLZ7 6.50× 10−2 5.90 × 10−2 6.29× 10−2

WFG2 3.37 × 10−1 4.21× 10−1 3.63× 10−1

WFG3 1.42 × 10−1 3.12× 10−1 3.01× 10−1

WFG4 4.26 × 10−1 4.80× 10−1 4.99× 10−1

MaF1 7.31 × 10−2 8.49× 10−2 9.19× 10−2

MaF2 6.27 × 10−2 7.01× 10−2 6.60× 10−2

MaF12 4.31 × 10−1 4.52× 10−2 4.81× 10−2

From the experimental results of Tables 6–8, we can see that the GD, IGD, SP values obtained
by the update condition of method 1 are smaller than method 2 and method 3, which shows
that the MOFECO algorithm using the update condition of method 1 has better convergence and
distribution. Therefore, we choose the method 1 as the update condition for the individuals in the
MOFECO algorithm.

5.3.3. Comparison of Local-Global Update Probability Ps

The parameter Ps means the probability that inferior solutions to be displaced by local or global
optimal solutions. Large Ps is inclined to local update while small Ps is inclined to global update.

We designed 3 groups of experiments where Ps either varies nonlinearly with the number of
iterations, or varies linearly with the number of iterations, or is simply fixed. The nonlinear variation
rule is shown in Equation (14) and Figure 4, and the linear variation rule is shown in Equation (26) and
Figure 5:

Ps = Psmin + (Psmax − Psmin)×
k
T

(26)

where Psmin = 0.2 and Psmax = 0.8 are the same as in Equation (14) and in the fixed case Ps is set to
0.5. The complete experiment results are listed in Tables 9–11, which show average GD, IGD and SP
values obtained by the above three case, and the bold part of the table represents the optimal values.

We can see from Tables 9–11 that when the local-global probability Ps changes nonlinearly,
the obtained Pareto solution set has smaller GD, IGD and SP values than the cases of linearly changing
of Ps and the fixed Ps. The advantage of choosing nonlinear variation Ps lies in that it maintains a small
value for a long time in the initial period of iteration, and a large value for a long time in the late
iteration. Thereby increasing the global search time in the early stage of iteration and the local search
time in the late stage of iteration can well balance the global and local search ability of MOFECO.
Therefore, in the proposed algorithm, we choose a nonlinearly changing local-global probability Ps.
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Table 9. GD result of the local-global update probability Ps of MOFECO algorithms on test functions.
(The best result is bolded for each function).

Functions Ps Is Nonlinear Variation Ps Is Linear Variation Ps = 0.5

ZDT1 1.40 × 10−4 1.72× 10−4 1.54× 10−4

ZDT2 4.02× 10−6 4.05× 10−6 3.67 × 10−6

ZDT4 2.39 × 10−5 2.70× 10−3 5.78× 10−5

ZDT6 3.50 × 10−7 3.56× 10−7 3.53× 10−7

DTLZ2 7.43 × 10−4 1.40× 10−3 1.20× 10−3

DTLZ4 1.43× 10−3 2.86 × 10−4 3.87× 10−4

DTLZ5 3.56× 10−5 1.18× 10−2 2.18 × 10−5

DTLZ6 4.82 × 10−7 2.60× 10−6 1.73× 10−6

DTLZ7 9.60 × 10−3 1.03× 10−2 1.50× 10−2

WFG2 6.25 × 10−2 8.45× 10−2 9.51× 10−2

WFG3 5.29 × 10−2 1.84× 10−1 1.36× 10−1

WFG4 1.57 × 10−2 1.91× 10−2 1.83× 10−2

MaF1 7.10 × 10−3 8.40× 10−3 1.28× 10−2

MaF2 3.67× 10−3 5.30× 10−3 2.60 × 10−3

MaF12 1.88× 10−2 2.00× 10−2 1.81 × 10−2

Table 10. IGD result of the local-global update probability Ps of MOFECO algorithms on test functions.
(The best result is bolded for each function).

Functions Ps Is Nonlinear Variation Ps Is Linear Variation Ps = 0.5

ZDT1 5.40 × 10−3 5.50× 10−3 5.60× 10−3

ZDT2 5.40 × 10−3 5.60× 10−3 5.60× 10−3

ZDT4 5.76 × 10−3 3.01× 10−2 5.80× 10−3

ZDT6 4.70× 10−3 4.60× 10−3 4.30 × 10−3

DTLZ2 7.49× 10−2 7.66× 10−2 7.10 × 10−2

DTLZ4 1.21 × 10−1 4.29× 10−1 3.56× 10−1

DTLZ5 6.70 × 10−3 7.00× 10−3 6.90× 10−3

DTLZ6 6.40 × 10−3 6.70× 10−3 6.60× 10−3

DTLZ7 2.88 × 10−1 3.60× 10−1 2.92× 10−1

WFG2 5.11 × 10−1 6.26× 10−1 7.04× 10−1

WFG3 1.60 × 10−1 2.61× 10−1 2.96× 10−1

WFG4 7.89× 10−1 7.86× 10−1 7.74 × 10−1

MaF1 1.21 × 10−1 1.30× 10−1 1.62× 10−1

MaF2 9.58× 10−2 9.49× 10−2 8.34 × 10−2

MaF12 7.43 × 10−1 7.83× 10−1 7.43× 10−1
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Table 11. SP result of the local-global update probability Ps of MOFECO algorithms on test functions.
(The best result is bolded for each function).

Functions Ps Is Nonlinear Variation Ps Is Linear Variation Ps = 0.5

ZDT1 8.70 × 10−3 9.30× 10−3 1.11× 10−2

ZDT2 7.50 × 10−3 7.50× 10−3 7.90× 10−3

ZDT4 7.40 × 10−3 9.10× 10−3 1.07× 10−2

ZDT6 6.80× 10−3 6.60× 10−3 6.50 × 10−3

DTLZ2 5.57× 10−2 5.71× 10−2 5.25 × 10−2

DTLZ4 4.33 × 10−2 5.74× 10−2 4.88× 10−2

DTLZ5 9.70 × 10−3 1.04× 10−2 1.01× 10−2

DTLZ6 9.40 × 10−3 9.60× 10−3 9.50× 10−3

DTLZ7 6.50× 10−2 5.83 × 10−2 8.18× 10−2

WFG2 3.37 × 10−1 3.94× 10−1 4.06× 10−1

WFG3 1.42 × 10−1 2.92× 10−1 2.05× 10−1

WFG4 4.26 × 10−1 4.88× 10−1 4.54× 10−1

MaF1 7.31 × 10−2 8.14× 10−2 5.71× 10−2

MaF12 4.31 × 10−1 4.67× 10−1 4.42× 10−1

0 0.2 0.4 0.6 0.8 1k/T

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
s

Figure 5. Linear variation of Ps.

5.3.4. Comparison of Mutation Methods

The mutation operator has an important influence on the convergence and diversity of
evolutionary algorithms. Based on the analysis of the mutation operator in Reference [25], it is
found that the local search ability of Gaussian mutation is strong and the global search ability of
uniform mutation is strong, while the local and global search capabilities of Cauchy mutation are
centered. In this section, we choose two different mutation operators for comparative experiments
and analysis. Method 1 combined Gaussian mutation, Uniform mutation and Cauchy mutation as
mutation operator, which is shown in Equation (15); And method 2 uses only the Cauchy mutation,
as shown in Equation (27), where the parameters Ps, σ1, σ2, σ3 are set as Table 2. The comparative
experiments results are shown in Tables 12–14, which give average GD, IGD and SP values obtained
by the above two mutation operators and the bold part of the table represents the optimal values.

XMij(k + 1) = XCij(k + 1) + C(0, σ2) (27)
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Table 12. GD result of the mutation methods of MOFECO algorithms on test functions. (The best result
is bolded for each function).

Functions Combined Mutation Cauchy Mutation

ZDT1 1.40 × 10−4 1.50× 10−4

ZDT2 4.02× 10−6 2.46 × 10−6

ZDT4 2.39 × 10−5 1.50× 10−3

ZDT6 3.50 × 10−7 1.80× 10−3

DTLZ2 7.43 × 10−4 1.10× 10−3

DTLZ4 1.43× 10−3 7.65 × 10−4

DTLZ5 3.56× 10−5 3.36 × 10−5

DTLZ6 4.82 × 10−7 4.89× 10−7

DTLZ7 9.60× 10−3 7.30 × 10−3

WFG2 6.25 × 10−2 7.82× 10−2

WFG3 5.29 × 10−2 1.87× 10−1

WFG4 1.57 × 10−2 2.03× 10−2

MaF1 7.10 × 10−3 7.40× 10−3

MaF2 3.67× 10−3 2.60 × 10−3

MaF12 1.88 × 10−2 2.01× 10−2

Table 13. IGD result of the mutation methods of MOFECO algorithms on test functions. (The best
result is bolded for each function).

Functions Combined Mutation Cauchy Mutation

ZDT1 5.40 × 10−3 5.60× 10−3

ZDT2 5.40 × 10−3 6.40× 10−3

ZDT4 5.76 × 10−3 1.80× 10−2

ZDT6 4.70× 10−3 4.60 × 10−3

DTLZ2 7.49 × 10−2 7.54× 10−2

DTLZ4 1.21 × 10−1 3.83× 10−1

DTLZ5 6.70 × 10−3 7.00× 10−3

DTLZ6 6.40 × 10−3 6.60× 10−3

DTLZ7 2.88 × 10−1 4.30× 10−1

WFG2 5.11× 10−1 4.95 × 10−1

WFG3 1.60 × 10−1 3.01× 10−1

WFG4 7.89 × 10−1 7.97× 10−1

MaF1 1.21 × 10−1 1.21× 10−1

MaF2 9.58× 10−2 8.34 × 10−2

MaF12 7.43 × 10−1 7.63× 10−1
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Table 14. SP results of the mutation methods of MOFECO algorithms on test functions. (The best result
is bolded for each function).

Functions Combined Mutation Cauchy Mutation

ZDT1 8.70 × 10−3 9.10× 10−3

ZDT2 7.50 × 10−3 8.10× 10−3

ZDT4 7.40 × 10−3 8.80× 10−3

ZDT6 6.80 × 10−3 1.74× 10−2

DTLZ2 5.57 × 10−2 5.63× 10−2

DTLZ4 4.33× 10−2 3.76 × 10−2

DTLZ5 9.70 × 10−3 1.13× 10−2

DTLZ6 9.40 × 10−3 9.60× 10−3

DTLZ7 6.50× 10−2 5.34 × 10−2

WFG2 3.37 × 10−1 4.33× 10−1

WFG3 1.42 × 10−1 3.02× 10−1

WFG4 4.26 × 10−1 4.84× 10−1

MaF1 7.31 × 10−2 8.42× 10−2

MaF2 6.27× 10−2 5.71 × 10−2

MaF12 4.31 × 10−1 4.52× 10−1

From the experimental results of Tables 12–14, we can see that the Pareto solution set obtained
by MOFECO using combinatorial mutation has smaller GD, IGD and SP values than with using
only Cauchy mutation. The reason may be that combinatorial optimization takes full account of
the characteristics of Pre-iteration and late iteration, which can better adapt to the changes in the
population. Thence, we choose the combined mutation in MOFECO.

In summary, through the above experiment, the MOFECO parameters are configured as follows.
Equation (11) is adopted for the update condition, the variation of local-global update probability Ps is
nonlinear, and the mutation operator uses the combined mutation method.

5.4. Comparison with Other Optimization Algorithms

In this section, the performances of MOFECO were verified by empirically comparing it with
three classic MOEAs NSGA-II [5], MOPSO [12], PESA-II [11], and two latest algorithms KnEA [2]
and NSLS [15]. For a fair-minded comparison, we adopt the consistent parameters of population
size N = 100 and termination condition T = 1000 for all the six algorithms. The other parameters of
MOFECO are shown in Table 2. For the other parameters used in NSGA-II, MOPSO, PESA-II, KnEA
and NSLS, they are consistent with the parameters in their original study [2,5,11,12,15]. The detailed
parameters configuration for the five compared algorithms are shown in Table 15.

Table 15. The detailed parameter configuration for the five compared algorithms.

Algorithms EAreal PSO NSLS Operator

proC proM disC disM div rate ω mu delta

NSGA-II 1 1 20 20 / / / / /
PESA-II 1 1 20 20 10 / / / /
KnEA 1 1 20 20 / 0.4 / / /

MOPSO / / / / / / 0.4 / /
NSLS / / / / / / / 0.5 0.1
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In the EAreal operator, proC is the probability of implementing crossover operation, proM is
the expectation of polynomial mutation, disC represents the distribution index of simulated binary
crossover, and disM represent the distribution index of polynomial mutation. In PESA-II, div is the
number of divisions in each objective. In KnEA, rate represents the rate of knee points in the population.
In MOPSO, ω represents the weight factor, and in the NSLS operator, the mu is the mean value of the
Gaussian distribution and delta is the standard deviation of the Gaussian distribution.

We use the proposed MOFECO algorithm to optimize 15 test functions selected from the ZDT,
DTLZ, MaF and WFG series in the aforementioned environment, and the obtained Pareto front by
MOFECO and the true Pareto front are shown in Figures 6–29. Figures 10 and 12 shows the true
Pareto front of the test function DTLZ2 and DTLZ4, and each of the plots from Figures 10–15 has two
subgraphs, respectively representing the front and left or rear view of the optimized Pareto front in
problems DTLZ2, DTLZ4, DTLZ5 and DTLZ6.

From Figures 6–29, we can see that the obtained Pareto front by using the proposed MOFECO can
evenly distribute on the true Pareto front, which shows that the algorithm can converge to the optimal
solution set and is effective in solving MOO problems.

For quantitative analysis, Tables 16–20 show the results of convergence (GD), diversity (PD),
comprehensive performance (HV) and distribution (SP, SI) on different test functions by using
MOFECO and the other five MOEAs, where “+” means that the MOFECO is better than the comparison
algorithms; “-” denotes that the MOFECO algorithm is inferior to the comparison algorithms, and “∼”
means that the MOFECO algorithm is similar to the comparison algorithms. At the end of each table,
the number of test functions obtained by MOFECO which are better than, inferior to, and equal to
the comparison algorithms are listed. In order to eliminate the effects of various random factors on
the experimental results, all algorithms run independently for 30 times on each test problem and the
average results are recorded.
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Figure 6. Pareto front of MOFECO on ZDT1.
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Figure 7. Pareto front of MOFECO on ZDT2.
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Figure 8. Pareto front of MOFECO on ZDT4.
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Figure 9. Pareto front of MOFECO on ZDT6.
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Figure 10. True Pareto front on DTLZ2.

0
0

0.2

0

0.4

0.6

O
bj

ec
tiv

e 
f3

0.5

0.8

0.5

1

Objective f1Objective f2

1.2

11
1.51.5

MOFECO

(a) front view

1.50

0.2

0 1

0.4

0.2

0.6

Objective f2

O
bj

ec
tiv

e 
f3

0.8

0.4

Objective f1

1

0.50.6

1.2

0.8
1 01.2

MOFECO

(b) left view

Figure 11. Pareto front of MOFECO on DTLZ2.
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Figure 13. Pareto front of MOFECO on DTLZ4.
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Figure 14. True Pareto front and Pareto front of MOFECO on DTLZ5.
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Figure 18. True Pareto front on WFG2.
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Figure 19. Pareto front of MOFECO on WFG2.
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Figure 20. True Pareto front on WFG3.
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Figure 21. Pareto front of MOFECO on WFG3.
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Figure 23. Pareto front of MOFECO on WFG4.
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Figure 24. True Pareto front on MaF1.
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Figure 25. Pareto front of MOFECO on MaF1.
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Figure 26. True Pareto front on MaF2.
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Figure 27. Pareto front of MOFECO on MaF2.
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Figure 28. True Pareto front on MaF12.
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Figure 29. Pareto front of MOFECO on MaF12.
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Table 16. GD result of the six compared algorithms on test functions. (“+”, “∼” and “-” respectively
represent that MOFECO is better than, similar to and inferior to the other five algorithms).

Problems MOFECO NSGA-II MOPSO PESA-II KnEA NSLS

ZDT1 1.40× 10−4 1.54× 10−4 (+) 6.94× 10−4 (+) 1.72× 10−4 (+) 5.36× 10−5 (-) 5.04× 10−4 (+)
ZDT2 4.02× 10−6 2.36× 10−5 (+) 2.00× 10−3 (+) 5.75× 10−4 (+) 5.59× 10−6 (+) 3.80× 10−3 (+)
ZDT4 2.39× 10−5 2.81× 10−5 (+) 9.30× 10−3 (+) 2.09× 10−2 (+) 1.42× 10−2 (+) 1.81× 10−2 (+)
ZDT6 3.50× 10−7 4.02× 10−6 (+) 9.13× 10−2 (+) 6.10× 10−3 (+) 4.36× 10−6 (+) 7.30× 10−3 (+)

DTLZ2 4.67× 10−4 1.20× 10−3 (+) 4.70× 10−3 (+) 1.40× 10−3 (+) 5.03× 10−4 (+) 5.56× 10−4 (+)
DTLZ4 1.43× 10−3 1.10× 10−3 (-) 4.60× 10−3 (+) 1.42× 10−3 (∼) 4.24× 10−4 (-) 6.05× 10−4 (-)
DTLZ5 3.56× 10−5 2.30× 10−4 (+) 1.40× 10−3 (+) 2.19× 10−4 (+) 5.00× 10−4 (+) 1.46× 10−5 (-)
DTLZ6 4.82× 10−7 4.82× 10−6 (+) 5.20× 10−3 (+) 1.80× 10−3 (+) 4.73× 10−6 (+) 4.85× 10−6 (+)
DTLZ7 9.60× 10−3 3.00× 10−3 (-) 1.01× 10−2 (+) 2.70× 10−3 (-) 1.50× 10−3 (-) 2.90× 10−3 (-)
WFG2 6.25× 10−2 8.77× 10−2 (+) 7.12× 10−2 (+) 6.44× 10−2 (+) 6.51× 10−2 (+) 6.66× 10−2 (+)
WFG3 5.29× 10−2 1.85× 10−1 (+) 1.46× 10−1 (+) 1.63× 10−1 (+) 1.21× 10−1 (+) 1.62× 10−1 (+)
WFG4 1.57× 10−2 1.68× 10−2 (+) 3.61× 10−2 (+) 2.58× 10−2 (+) 1.59× 10−2 (∼) 4.39× 10−2 (+)
MaF1 7.10× 10−3 3.97× 10−3 (-) 9.72× 10−3 (+) 4.29× 10−3 (-) 1.75× 10−3 (-) 6.14× 10−3 (-)
MaF2 3.67× 10−3 8.13× 10−3 (+) 4.88× 10−3 (+) 3.79× 10−3 (+) 4.35× 10−3 (+) 6.19× 10−3 (+)

MaF12 1.88× 10−2 2.01× 10−2 (+) 4.11× 10−2 (+) 2.20× 10−2 (+) 2.01× 10−2 (+) 5.83× 10−2 (+)
+ / 12 15 12 10 11
- / 3 0 2 4 4
∼ / 0 0 1 1 0

Table 17. PD result of the six compared algorithms on test functions. (“+”, “∼” and “-” respectively
represent that MOFECO is better than, similar to and inferior to the other five algorithms).

Problems MOFECO NSGA-II MOPSO PESA-II KnEA NSLS

ZDT1 1.73× 103 1.71× 103 (+) 1.47× 103 (+) 1.45× 103 (+) 1.06× 103 (+) 1.52× 103 (+)
ZDT2 1.74× 103 1.73× 103 (∼) 1.53× 103 (+) 1.44× 103 (+) 1.30× 103 (+) 1.36× 103 (+)
ZDT4 1.69× 103 1.63× 103 (+) 8.40× 102 (+) 1.57× 103 (+) 7.27× 102 (+) 1.98× 103 (+)
ZDT6 1.62× 103 1.45× 103 (+) 1.30× 103 (+) 1.27× 103 (+) 1.53× 103 (+) 1.35× 103 (+)

DTLZ2 1.73× 105 1.87× 105 (-) 1.99× 105 (-) 1.85× 105 (-) 1.00× 105 (+) 1.56× 105 (+)
DTLZ4 1.32× 105 1.88× 105 (-) 1.69× 105 (-) 1.70× 105 (-) 8.39× 104 (+) 8.41× 104 (+)
DTLZ5 7.30× 104 7.10× 104 (+) 7.27× 104 (+) 6.29× 104 (+) 7.36× 104 (-) 7.20× 104 (+)
DTLZ6 7.97× 104 7.20× 104 (+) 6.85× 104 (+) 6.66× 104 (+) 7.57× 104 (+) 6.94× 104 (+)
DTLZ7 1.42× 105 2.00× 105 (-) 1.72× 105 (-) 1.35× 105 (+) 1.42× 105 (∼) 1.75× 105 (-)
WFG2 9.78× 106 8.80× 106 (+) 9.78× 106 (∼) 9.55× 106 (+) 5.3× 106 (+) 8.57× 106 (+)
WFG3 8.38× 106 1.20× 107 (-) 8.17× 106 (+) 7.13× 106 (+) 1.02× 107 (-) 1.38× 107 (-)
WFG4 1.92× 107 1.90× 107 (+) 1.84× 107 (+) 1.68× 107 (+) 7.06× 106 (+) 1.69× 107 (+)
MaF1 3.54× 106 3.26× 106 (+) 3.49× 106 (+) 3.09× 106 (+) 2.74× 106 (+) 3.06× 106 (+)
MaF2 2.74× 106 2.57× 106 (+) 2.30× 106 (+) 2.14× 106 (+) 1.52× 106 (+) 2.67× 106 (+)

MaF12 1.96× 107 1.85× 107 (+) 1.90× 107 (+) 1.93× 107 (+) 9.25× 106 (+) 1.55× 107 (+)
+ / 10 11 13 12 12
- / 4 3 2 2 3
∼ / 1 1 0 1 0
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Table 18. HV result of the six compared algorithms on test functions. (“+”, “∼” and “-” respectively
represent that MOFECO is better than, similar to and inferior to the other five algorithms).

Problems MOFECO NSGA-II MOPSO PESA-II KnEA NSLS

ZDT1 8.70× 10−1 8.70× 10−1 (∼) 8.58× 10−1 (+) 8.62× 10−1 (+) 7.62× 10−1 (+) 8.66× 10−1 (+)
ZDT2 5.37× 10−1 5.35× 10−1 (+) 5.28× 10−1 (+) 5.25× 10−1 (+) 3.90× 10−1 (+) 4.95× 10−1 (+)
ZDT4 8.68× 10−1 8.61× 10−1 (+) 6.88× 10−1 (+) 8.62× 10−1 (+) 6.64× 10−1 (+) 6.15× 10−1 (+)
ZDT6 4.33× 10−1 4.33× 10−1 (∼) 3.95× 10−1 (+) 4.28× 10−1 (+) 4.30× 10−1 (+) 4.33× 10−1 (∼)

DTLZ2 6.70× 10−1 7.08× 10−1 (-) 6.61× 10−1 (+) 6.94× 10−1 (-) 7.21× 10−1 (-) 7.46× 10−1 (-)
DTLZ4 8.08× 10−1 6.92× 10−1 (+) 6.78× 10−1 (+) 7.14× 10−1 (+) 7.09× 10−1 (+) 7.07× 10−1 (+)
DTLZ5 1.33× 10−1 1.33× 10−1 (∼) 1.27× 10−1 (+) 1.28× 10−1 (+) 1.29× 10−1 (+) 1.33× 10−1 (∼)
DTLZ6 1.33× 10−1 1.33× 10−1 (∼) 1.30× 10−1 (+) 1.27× 10−1 (+) 1.33× 10−1 (∼) 1.33× 10−1 (∼)
DTLZ7 1.30× 100 1.58× 100 (-) 1.42× 100 (-) 1.53× 100 (-) 1.61× 100 (-) 1.62× 100 (-)
WFG2 5.47× 102 5.40× 102 (+) 4.73× 102 (+) 5.26× 102 (+) 5.41× 102 (+) 5.01× 102 (+)
WFG3 5.01× 100 5.19× 100 (-) 0.00× 100 (+) 0.00× 100 (+) 3.93× 100 (+) 1.81× 100 (+)
WFG4 3.25× 102 3.50× 102 (-) 2.43× 102 (+) 2.60× 102 (+) 3.71× 102 (-) 3.20× 102 (+)
MaF1 5.84× 10−2 6.19× 10−2 (-) 4.75× 10−2 (+) 6.16× 10−2 (-) 7.51× 10−2 (-) 5.03× 10−2 (+)
MaF2 1.37× 10−1 1.32× 10−1 (+) 1.18× 10−1 (+) 1.15× 10−1 (+) 1.33× 10−1 (+) 1.36× 10−1 (∼)

MaF12 2.97× 102 3.10× 102 (-) 2.42× 102 (+) 2.89× 102 (+) 3.64× 102 (-) 2.26× 102 (+)
+ / 5 14 12 9 9
- / 6 1 3 5 2
∼ / 4 0 0 1 4

Table 19. SP result of the six compared algorithms on test functions. (“+”, “∼” and “-” respectively
represent that MOFECO is better than, similar to and inferior to the other five algorithms).

Problems MOFECO NSGA-II MOPSO PESA-II KnEA NSLS

ZDT1 8.70× 10−3 6.90× 10−3 (-) 9.60× 10−3 (+) 1.07× 10−2 (+) 5.90× 10−3 (-) 7.70× 10−3 (-)
ZDT2 7.60× 10−3 7.70× 10−3 (+) 2.02× 10−2 (+) 1.45× 10−2 (+) 4.60× 10−3 (-) 3.91× 10−2 (+)
ZDT4 7.40× 10−3 7.60× 10−3 (+) 1.62× 10−2 (+) 2.19× 10−1 (+) 1.46× 10−1 (+) 5.74× 10−3 (-)
ZDT6 6.80× 10−3 6.84× 10−3 (+) 1.97× 10−1 (+) 4.53× 10−2 (+) 7.90× 10−3 (+) 7.66× 10−2 (+)

DTLZ2 5.57× 10−2 5.85× 10−2 (+) 5.13× 10−2 (-) 5.16× 10−2 (-) 7.16× 10−2 (+) 3.43× 10−2 (-)
DTLZ4 4.33× 10−2 5.48× 10−2 (+) 4.89× 10−2 (+) 5.23× 10−2 (+) 9.10× 10−2 (+) 4.84× 10−2 (+)
DTLZ5 9.70× 10−3 9.30× 10−3 (-) 1.52× 10−2 (+) 1.33× 10−2 (+) 1.80× 10−2 (+) 7.40× 10−3 (-)
DTLZ6 9.40× 10−3 1.12× 10−2 (+) 1.69× 10−2 (+) 2.04× 10−2 (+) 1.03× 10−2 (+) 6.40× 10−2 (-)
DTLZ7 6.50× 10−2 7.18× 10−2 (+) 6.69× 10−2 (+) 6.14× 10−2 (-) 4.97× 10−2 (-) 4.25× 10−2 (-)
WFG2 3.37× 10−1 4.88× 10−1 (+) 3.62× 10−1 (+) 3.40× 10−1 (+) 4.37× 10−1 (+) 3.64× 10−1 (+)
WFG3 1.42× 10−1 3.43× 10−1 (+) 2.01× 10−1 (+) 1.79× 10−1 (+) 4.06× 10−1 (+) 1.99× 10−1 (+)
WFG4 4.26× 10−1 5.23× 10−1 (+) 4.87× 10−1 (+) 4.32× 10−1 (+) 7.24× 10−1 (+) 4.29× 10−1 (+)
MaF1 7.31× 10−2 8.36× 10−2 (+) 7.06× 10−2 (-) 6.23× 10−2 (-) 1.05× 10−1 (+) 7.18× 10−2 (-)
MaF2 6.27× 10−2 6.28× 10−2 (∼) 6.08× 10−2 (-) 5.39× 10−2 (-) 8.64× 10−2 (+) 3.21× 10−2 (-)

MaF12 4.31× 10−1 5.18× 10−1 (+) 4.53× 10−1 (+) 4.33× 10−1 (+) 7.17× 10−1 (+) 6.85× 10−1 (+)
+ / 12 12 11 12 7
- / 2 3 4 3 8
∼ / 1 0 0 0 0
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Table 20. SI result of the six compared algorithms on test functions. (“+”, “∼” and “-” respectively
represent that MOFECO is better than, similar to and inferior to the other five algorithms).

Problems MOFECO NSGA-II MOPSO PESA-II KnEA NSLS

ZDT1 4.59× 10−1 4.01× 10−1 (-) 6.69× 10−1 (+) 9.18× 10−1 (+) 6.98× 10−1 (+) 3.69× 10−1 (-)
ZDT2 4.54× 10−1 4.59× 10−1 (+) 7.91× 10−1 (+) 1.02× 100 (+) 4.90× 10−1 (+) 8.28× 10−1 (+)
ZDT4 5.40× 10−1 4.65× 10−1 (-) 8.27× 10−1 (+) 1.03× 100 (+) 9.64× 10−1 (+) 3.50× 10−1 (-)
ZDT6 5.08× 10−1 5.19× 10−1 (+) 1.21× 100 (+) 1.07× 100 (+) 4.44× 10−1 (-) 5.75× 10−1 (+)

DTLZ2 4.86× 10−1 5.24× 10−1 (+) 3.62× 10−1 (-) 4.24× 10−1 (-) 4.63× 10−1 (-) 1.34× 10−1 (-)
DTLZ4 5.65× 10−1 4.99× 10−1 (-) 3.41× 10−1 (-) 4.04× 10−1 (-) 8.17× 10−1 (+) 3.40× 10−1 (-)
DTLZ5 4.95× 10−1 4.79× 10−1 (-) 6.90× 10−1 (+) 9.17× 10−1 (+) 8.14× 10−1 (+) 2.30× 10−1 (-)
DTLZ6 5.18× 10−1 6.89× 10−1 (+) 9.97× 10−1 (+) 1.23× 100 (+) 4.00× 10−1 (-) 2.10× 10−1 (-)
DTLZ7 6.50× 10−1 5.10× 10−1 (-) 4.50× 10−1 (-) 5.10× 10−1 (-) 3.45× 10−1 (-) 1.93× 10−1 (-)
WFG2 4.41× 10−1 5.79× 10−1 (+) 4.56× 10−1 (+) 4.53× 10−1 (+) 8.37× 10−1 (+) 2.72× 10−1 (-)
WFG3 6.83× 10−1 6.11× 10−1 (-) 4.93× 10−1 (-) 5.76× 10−1 (-) 6.47× 10−1 (-) 1.77× 10−1 (-)
WFG4 4.13× 10−1 4.43× 10−1 (+) 4.90× 10−1 (+) 4.63× 10−1 (+) 7.51× 10−1 (+) 2.65× 10−1 (-)
MaF1 4.16× 10−1 4.77× 10−1 (+) 4.22× 10−1 (+) 4.52× 10−1 (+) 6.33× 10−1 (+) 2.68× 10−1 (-)
MaF2 4.44× 10−1 4.89× 10−1 (+) 4.65× 10−1 (+) 4.76× 10−1 (+) 6.32× 10−1 (+) 1.48× 10−1 (-)

MaF12 4.06× 10−1 4.57× 10−1 (+) 4.15× 10−1 (+) 4.12× 10−1 (+) 7.52× 10−1 (+) 5.67× 10−1 (+)
+ / 9 11 11 10 4
- / 6 4 4 5 11
∼ / 0 0 0 0 0

The GD values are used to measure the convergence of a Pareto solution set. From the Table 16, it
can be seen that the proposed MOFECO performed well on ZDT, DTLZ, MaF and WFG test problems.
In terms of GD indicator, the proposed MOFECO is better than NSGA-II, MOPSO, PESA-II, KnEA
and NSLS on more than 10 test functions among the 15 test functions. Specifically, among the four
ZDT test problems, MOFECO can achieve the smallest GD values on the ZDT test problems except for
ZDT1 compared with other algorithms. Among the five DTLZ test problems, MOFECO can achieve
the smallest GD values on DTLZ2, DTLZ5 and DTLZ6 compared with NSGA-II, MOPSO, PESA-II and
KnEA, while MOFECO does not work well on DTLZ4 and DTLZ7. Among the three MaF and three
WFG test problems, MOFECO can achieve the smallest GD values on all the MaF test problems, and
the smallest GD values on MaF2 and MaF12. These experimental results indicate that MOFECO is
competitive in solving ZDT, DTLZ, WFG and MaF test problems with better convergence.

The PD values are used to measure the diversity of the Pareto solution set. Generally speaking,
large PD values represent good diversity of solution sets. It can be seen from Table 17 that MOFECO
can obtain the largest PD values on at least 10 test functions compared with the other five algorithms,
particularly, it achieves a good performance on all the four ZDT test problems with two objectives in
terms of PD. While on the five DTLZ test functions, the PD values obtained by MOFECO on DTLZ2
and DTLZ7 are slightly worse than those obtained by NSGA-II and MOPSO. But on all the five DTLZ
test problems, MOFECO can show good performance compared with KnEA and NSLS. Among the
four-objective test functions (WFG2, WFG3, WFG4, MaF1, MaF2 and MaF12), MOFECO can achieve
the largest PD values except for WFG3 compared with NSGA-II, MOPSO, PESA-II, KnEA and NSLS.
From those empirical results, we can confirm that the proposed MOFECO algorithm is promising in
solving MOO problems, and it has advantages in maintaining the diversity of obtained Pareto solution
sets, because of its novel characteristics, such as dividing the population into several independent
cycles, relating the new solutions generated in the update process to the optimal solution in each cycle,
and the differences in the optimal solutions obtained between different cycles, etc.

As mentioned earlier, HV is one of the indicators to measure the comprehensive performance of
a Pareto solution set. Generally, the larger the HV value is, the better the comprehensive performance
of an algorithm has. From Table 18, we can find that MOFECO can shows the largest HV values on all
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the four ZDT test functions compared with NSGA-II, MOPSO, PESA-II, KnEA and NSLS. On the five
DTLZ test functions, MOFECO can achieve larger or equal HV values on DTLZ4 to DTLZ6 compared
with the other five algorithms, while on DTLZ2 and DTLZ7, MOFECO performs slightly worse.
Among the four-objective test functions (WFG2, WFG3, WFG4, MaF1, MaF2 and MaF12), MOFECO
has the largest HV values on at least five test functions compared with MOPSO, PESA-II and NSLS,
but it performs worse compared with NSGA-II and KnEA. Overall, the experimental results show that
proposed MOFECO can obtain better HV values on 9 test functions approximately among the 15 test
functions compared with the other five algorithms, which confirms that the proposed MOFECO has
a good characteristic in terms of the comprehensive performance of the Pareto solution set.

SP and SI are indicators for measuring the distribution and distribution breadth of a solution set.
The smaller the SP and SI values are, the better the distribution and breadth a solution set has. It is
clear from Table 19 that the MOFECO has better SP values on all the four ZDT test functions except
for ZDT1 compared with NSGA-II, MOPSO and PESA-II but on the ZDT6 test function, MOFECO
has the smallest SP values compared with the other five algorithms. Among the five tri-objective test
functions of DTLZ, the MOFECO performs better on metric SP on at least four test functions compared
with NSGA-II, MOPSO and KnEA, while it performs slightly worse in NSLS algorithm. On the
four-objective test functions (WFG2, WFG3, WFG4, MaF1, MaF2 and MaF12), MOFECO achieves the
smallest SP values on at least four test functions compared with all the other five algorithms and
MOFECO can even obtain the smallest SP values on all the 6 four-objective test functions compared
with NSGA-II and KnEA. From these empirical results, we can confirm that the proposed MOFECO
has good performance on solving MOO problems with the objective numbers of 2 to 4, and can obtain
better distribution of Pareto solution sets.

According to Table 20, we can see that on the four bi-objective test functions of ZDT, the SI
values obtained by MOFECO are revealed to be superior to those obtained by MOPSO, PESA-II and
KnEA. While on the five tri-objective test functions of DTLZ, MOFECO performs worse compared
with NSLS algorithm, the possible reason of which is that in NSLS, a new method, which combines the
non-dominated sorting and the farthest candidate approach, was chosen to generate a new population
for improving diversity, while in MOFECO, we only use the crowded comparison mechanism presented
in NSGA-II to maintain diversity. Among the six four-objective test functions of the WFG and MaF
series, MOFECO shows better SI values for at least five test functions compared with NSGA-II,
MOPSO, PESA-II and KnEA. These empirical results show that the proposed MOFECO has superiority
in solving MOO problems and can obtain solution sets with better spread on Pareto front. But when
comparing with the NSLS algorithm, MOFECO performs slightly worse.

In order to more visually show the performance of the MOFECO algorithm, a detailed convergence
process increasing the number of iterations is discussed. Here we choose two test problems DTLZ2
and DTLZ6 to show the convergence process. Experimental results are shown in Figures 30 and 31.
The abscissa represents the number of iterations and the ordinate represents the average objective
function value of the non-dominated solutions in each iteration.

As can be seen from Figures 30 and 31, the population obtained by MOFECO converges rapidly
in every objective of DTLZ2 and DTLZ6, which reflect the good convergence of the proposed
MOFECO algorithm.

Overall, the proposed MOFECO performs better than NSGA-II, MOPSO, PESA-II and KnEA on
most of the test functions used in the above experiments in terms of metrics GD, PD, HV, SP and
SI, which indicates that MOFECO algorithm has better convergence and diversity in solving MOO
problems. But MOFECO performs slightly worse on SI indicator compared with NSLS, which will be
one of the problems we need to investigate in the follow-up research.
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Figure 30. Convergence process of MOFECO on DTLZ2.
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Figure 31. Convergence process of MOFECO on DTLZ6.

6. Conclusions

A new multi-objective evolutionary algorithm called the Multi-Objective Five-Elements Cycle
Optimization algorithm (MOFECO) for solving MOO problems is proposed in this paper and the
validity of the MOFECO has been verified by using the test function sets ZDT, DTLZ, WFG and MaF.
The main idea of MOFECO is that, at each iteration, we divide the initial population into q independent
cycles and each cycle contains L elements, where L× q represents the population number and each
element represents an individual in the population. In each cycle, the force applied to each element
by the other four elements related to the mass of each element, while the mass is represented by
the objective functions. Therefore, the value of the force indirectly reflects the pros and cons of an
individual and judges whether the individual is updated. In our paper, in case of an update, the local
update or the global update is selected according to the current local-global probability value Ps.
Then, the combined mutation based on mutation probability Pm is performed, that is, the uniform
distribution mutation operator is used in the early iteration, and the Cauchy distribution mutation
operator is used in the middle of the iteration, and the Gauss distribution mutation operator is used
in the late iteration. Next, as the offspring individuals are stored in the child population, the child
population is combined with the parent population and the next generation is selected from them by
using a fast non-dominated sorting and crowded distance calculation method, and then generate the
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current non-dominated solution set. The operations above are repeated until the maximum number of
iterations is reached and then the optimal Pareto solution set is output as the result of optimization.

In this paper, we compared the different values of L and q, different update conditions,
the adaptive update probability Ps and the different mutation methods as parameters and conditions
that affect the performance of MOFECO algorithm. In addition, this paper compared the performance
of MOFECO with five popular MOEAs NSGA-II, MOPSO, PESA-II, KnEA and NSLS on 15 test
problems, and discussed the convergence process of MOFECO on DTLZ2 and DTLZ6. The results
demonstrate that the proposed MOFECO significantly outperforms MOPSO and PESA-II in
convergence, diversity and distribution, and performs better than all five comparative algorithms in
convergence and diversity. The main weakness of MOFECO is that its distribution of the obtained
Pareto solution set is slightly worse than the one obtained by NSLS. It is certain that there is no
guarantee that the MOFECO algorithm will always show better characteristics on all test problems.
The strengths and weaknesses of the algorithm should be further studied based on the characteristics
of the test problems in future research.
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