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Abstract: The proliferation of indoor and outdoor tracking devices has led to a vast amount of spatial
data. Each object can be described by several trajectories that, once analysed, can yield to significant
knowledge. In particular, pattern analysis by clustering generic trajectories can give insight into
objects sharing the same patterns. Still, sequential clustering approaches fail to handle large volumes
of data. Hence, the necessity of distributed systems to be able to infer knowledge in a trivial time
interval. In this paper, we detail an efficient, scalable and distributed execution pipeline for clustering
raw trajectories. The clustering is achieved via a fuzzy similarity relation obtained by the transitive
closure of a proximity relation. Moreover, the pipeline is integrated in Spark, implemented in Scala
and leverages the Core and Graphx libraries making use of Resilient Distributed Datasets (RDD) and
graph processing. Furthermore, a new simple, but very efficient, partitioning logic has been deployed
in Spark and integrated into the execution process. The objective behind this logic is to equally
distribute the load among all executors by considering the complexity of the data. In particular,
resolving the load balancing issue has reduced the conventional execution time in an important
manner. Evaluation and performance of the whole distributed process has been analysed by handling
the Geolife project’s GPS trajectory dataset.

Keywords: Apache Spark; big data; distributed computing; clustering analysis; fuzzy relational
clustering approaches; partitioning strategy

1. Introduction

In our time, billions of events are generated by location-aware devices in a matter of seconds.
The extracted events’ knowledge can be leveraged to increase economic gain, reinforce security and
support decision making. In particular, the pattern analysis of the moving object trajectories can make it
possible to understand or predict behaviour. Hence, cluster analysis has been quite indispensable. Still,
the real-time, fuzzy, heavy nature of events has been a burden for conventional clustering approaches.
Consequently, researchers have taken interest in fields like big data, online clustering and fuzzy logic.

Big data technologies often refer to notions like concurrency, distribution, parallelism and stream
processing. Mainly, deployed in a cluster environment where the memory and storage can be shared
by the cluster’s nodes. The nodes can be located in the same location or distributed among regions
with a possible peer-to-peer or master–slave connection strategy. High Availability, mass storage,
mass computing and fault tolerance are primarily featured by big data ecosystems. In this study,
we take interest in leveraging the functionalities of Spark (https://spark.apache.org/) into clustering
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trajectories. The choice is supported by the fast computing nature of spark explained by its use of
the Random Access Memory (RAM). In particular, we analyse the Geolife project’s GPS trajectory
dataset [1–3]. The dataset is stored in HDFS and an entire pipeline for reading, manipulating and
defining clusters is being detailed in this paper. Clustering is done by computing the max–min
transitive closure of a fuzzy proximity relation. Several trajectory similarity indices exist on the
literature [4] and reasoning about which one is more accurate than the others is out of the scope of this
paper. Consequently, for simplicity we consider the Longest Common Subsequence’s (LCSS) length [5].
In the process, we have included the max–min, max–delta and max–product transitivity. An option
of both the smart [6] and semi-naive [7] algorithms is deployed for computing the transitive closure.
The system is implemented in Scala; hence, futures, traits, objects and higher-order functions are
integrated to enrich the system’s model. The pipeline’s activity diagrams, system’s class diagrams and
different algorithms are detailed. Furthermore, we have encountered an issue related to unbalanced
workloads; thus, we propose a new partitioning logic that considers the complexity of data and equally
partitions it across the executors. By resolving the load balancing issue, the computation time was
significantly reduced. After defining the clusters, we persist the results in a MongoDB (https://www.
mongodb.com/) collection by leveraging the reactive mongodb driver (http://reactivemongo.org/)
known for its asynchronous nature. This final step can be extended to infer knowledge and analysed
for understanding Spark’s behaviour in the asynchronous boundaries. To the best of our knowledge,
this is the first research giving a detailed implementation of the raw trajectories clustering process in
Spark by leveraging a fuzzy similarity relation, analysing the performance of repartitioning tasks and
providing a new partitioning strategy for handling trajectory data skewness and empirical proof of
its efficiency.

The rest of this paper involves three sections: Section 2 discusses the existing literature; Section 3
yields a background over fuzzy logic, fuzzy relations, LCSS problem and the trasitive closure; Section 4
provides the different algorithms, class and activity diagrams; Section 5 provides the evaluation of the
different partitioning stages; Section 6 concludes our paper and highlights future work.

2. Literature

Since Zadeh initiated fuzzy logic [8], researchers have taken interest in defining fuzzy clusters,
which reflect more the fuzzy nature of features, instead of crisp ones. Consequently, fuzzy clustering
approaches have emerged. Research on fuzzy clustering can be categorised into approaches leveraging
an objective function (fuzzy c-means) and approaches manipulating a proximity relation. The last
ones can be further classified into approaches handling directly the proximity relation and approaches
proposing techniques to convert the proximity relation into a similarity relation then apply a specific
clustering technique to get the different partition trees [9].

Research on directed approaches include [10]. The authors proposed a new approach based
on the entropy measure, which lies in [0, 1]. The main idea is that this measure between two nodes
equals 0 if they are respectively very close or very far from each other and 1 if they get close to the
average distance between all nodes. The entropies are measured from a proximity relation and cluster
centres defined by the lowest entropies. Boulmakoul et al. [11] defined a quadratic time complexity
algorithm for defining clusters from a proximity relation. The authors define a cluster as a maximum
weighted clique of nodes. The weights refer to the different similarities. The obtained clusters are
both compact and well separated. Both the supra works define a cluster node as a node similar to
all the other nodes in the same cluster. In contrast, Kondruk [12] defined an approach based on
cluster centres. Each cluster node is similar to the centre and the centres are updated at each iteration.
Different algorithms exist in the literature to identify the transitive closure. The most known ones
are the smart [6] and semi-naive [7] algorithm. They are leveraged to extract a similarity relation
leading to extended clusters. Tamura et al. [13] introduced the max–min transitivity that yields a
similarity relation having equivalence relations as a resolution form. Each equivalence relation leads to
non-overlapping partition trees. Yang et al. [14] defined max–prod and max–∆ as an extension of the
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previous work. However, the resulting relation can lead to overlapping partitions. Hence, the necessity
for specific algorithms to extract non-overlapping clusters based on a specific cluster definition. Also,
the directed approaches can handle these max–t transitive relations to extract non-overlapping clusters.
Liang et al. [15] identified clusters by considering a metric of trapezoidal numbers and leveraging the
max–min transitivity.

In the scope of the latter approaches, relatively few works have been conducted into evaluating
the performance of computing the transitive closure in a distributed environment. In particular,
studies [16,17] have proposed new fragmentation techniques for computing the transitive closure in a
parallel manner. Gribkoff [18] evaluated the smart and semi-naive algorithm in Hadoop map/reduce
environment. Although Spark outperforms Hadoop in processing, none of the previous works have
evaluated the transitive closure in its environment. An integration in Spark was only given in [19,20].
Initially, we extended the approach of [11] by leveraging Spark into clustering spatial trajectories. Still,
our proposition could not fully distribute the clustering process. Moreover, we have not considered the
transitive closure and we did not give a detailed implementation of the distributed proximity relation
construction process. In the latter, we applied the max–min transitivity over a proximity relation
referring to the similarities between cyber-criminals in Twitter. Unfortunately, we did not evaluate the
performance nor have we considered spatial data. Decidedly, the literature includes several works
related to trajectory clustering [21] and its applications on resolving real world problems [22]. Still,
to the best of our knowledge, this is the first work discussing the exploit of the transitive closure on a
fuzzy similarity relation to extract clusters of raw trajectories by using Spark.

3. Background

Definition 1. Let A be a lexical attribute (warm). The fuzzy set characterising this attribute is denoted
A = {〈x, µA(x)〉 | x ∈ X, µA ∈ [0, 1]}. The µA defines the degree of membership of a lexical variable to the set
A. Thus, each element of the universe of discourse X = {x1, x2..., xn} can be attributed to several sets with a
varying membership degree [23].

Definition 2. A couple of crisp sets’ elements can be related to each other via a relation. The relation is binary
and can be formulated as R = {〈(x, y), µR(x, y)〉 | x ∈ X, y ∈ Y}. In case the relation is crisp the strength of
the relationship µR : (X, Y) equals 0 or 1. In contrast, a binary fuzzy relation has its membership degrees in
[0, 1]. In our study, we consider the latter relation.

R has the resolution form R =
⋃
α

αRα with α ∈ [0, 1]. Rα is a crisp relation with

µRα(x, y) =
{ 1 , i f µR(x, y) ≥ α

0 , otherwise

R can be denoted a proximity relation if it is both reflexive and symmetric. In particular :

• (Reflexivity): ∀x | X, µR(x, x) = 1 ;
• (Symmetry): ∀x, y | X×Y, µR(x, y) = µR(y, x) ;

Additionally, if R respects transitivity, it can be refered to as a fuzzy similarity relation. Transitivity is
defined as µR(x, z) ≥ max(T(µR(x, y), µR(y, z))). T is a t-norm defining the nature of the transitivity; several
norms of this kind exist including :

• (max–min transitivity): T(µ1, µ2) = min(µ1, µ2);
• (max–∆ transitivity): T(µ1, µ2) = max(0, µ1 + µ2 − 1);
• (max–prod transitivity): T(µ1, µ2) = µ1 • µ2.

Moreover, R∧ ⊆ R• ⊆ R4 with R∧,R•,R4 respectively form the set of max–min, max–prod and
max–4 transitive relations [24]. In particular, the max–min transitivity yields a fuzzy similarity relation that
characterizes each crisp relation in the resolution form as an equivalence relation. Different partition trees can be
obtained for each α-level from these equivalence relations [14].
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Definition 3. The fuzzy similarity relation R can be extracted by achieving a series of compositions.
A composition has the form R ◦ R = max

y
(T

x,z
(R(x, y), R(y, z)). In our paper, we deploy both the semi-naive and

smart algorithm for computing the transitive closure (please see the Section 4.1 for a precise implementation).

Definition 4. Trajectories can be mainly considered as a temporally ordered sequence and not forcibly related
to space in this case they are considered metaphorical. Metaphorical trajectories describe the variations of
an attribute over time. Decidedly in the case of an attribute a, Tra = {(a0, t0), ..., (an, tn)} with ti as
a timestamp. Another representation considers the variations of an attribute over abstract spatial regions
instead of spatial coordinates, e.g., cities and countries. This representation is referred to as naïve and
Tra = {(a0, t0, C0), ..., (an, tn, Cn)} with Ci the country or region code. In contrast, raw trajectories consider
spatial coordinates and describe the spatio-temporal profile of a moving object. Each trajectory has the form
Tr(objectid ,trajectoryid)

= {(long0, lat0, t0)...(longn, latn, tn)} with lati and longi respectively denoting the
latitude and longitude degrees [25]. In our study, we handle the raw trajectories of the Geolife project’s GPS
trajectory dataset [1–3].

Definition 5. Let Tr1 and Tr2 be two trajectories, Tr2 is a subsequence of Tr1 if all the points in Tr2 match the
points in Tr1 in an ordered manner with gaps support. The match can reflect respected properties constraints.
The longest common subsequence (LCSS) problem can be leveraged to identify similar trajectories. Mainly the
LCSS between two trajectories is defined as :

LCSS(Tr1, Tr2) =
{ 0 , if Tr1.size=Tr2.size

1+LCSS(Tr1.tail, Tr2.tail), if the constraints are respected
max(LCSS(Tr1.tail, Tr2), LCSS(Tr1, Tr2.tail)), otherwise

Different alignments between the two sequences are tested to get the length of the LCSS. [5] identified two
points as similar if they respect both a time and distance threshold. Furthermore, they defined the similarity as
S(Tr1, Tr2) =

LCSS(Tr1,Tr2)
max(Tr1.size,Tr2.size) . Aiming to get high similarities, we weaken this constraint into considering

either the time or distance. Note that the distance constraint is in meters and the points are defined by their
degrees. Hence, we construct from this distance constraint two thresholds [26]:{ ∆lat_th = (distance_th/earth_radius) in radians

∆long_th =| distance_th/(r ∗ cos(∆lat_th)) |.

The points coordinates are converted into radians and their latitude and longitude differences are compared with
the supra thresholds.

The recursive nature of the LCSS problem is exponential. An alternative based on memorization
has been proposed to resolve the problem in quadratic time and space. Other heuristics have
been proposed to give an approximated solution in less time. Still, we stick to the exact approach
of [27] which resolves the problem in quadratic time and linear space. The algorithm is described
in Algorithm 1. Note that the algorithms in this paper are written in a pseudocode related to the Scala
language because the formal way will not be sufficient to express all the functional features.
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Algorithm 1: LCSS linear space algorithm.
Data: this:trajectory, that: trajectory
Result: similarity
begin

Function def lcss(this:points, that:points):Int=
var current=Array(that.size+1)
var past=current
for i← 1 to this.size do

past=current
for j← 1 to that.size do

if this(i-1).matches(that(j-1)) then current(j)=1+previous(j-1)
else current(j)=max(past(j), current(j-1))

current.last
lcss(this.points, that.points)

4. Materials and Methods

The project is implemented in Scala, aiming to extract clusters from massive trajectory logs stored
in HDFS and persist them in MongoDB. Spark is leveraged to conduct the work in a distributed
manner. RDD distributed across the memory and disk are being created and the work’s stages are
being achieved in parallel by distributing tasks across worker nodes. In particular, the system must
provide the possibility to employ either the smart or semi-naive algorithm for computing the transitive
closure; the choice of applying either the max–min, max–delta and max–product t-norms for transitivity.
Moreover, the max–delta and max–product t-norms need a specific kind of handler.

Theorem 1. Let x ∈ [α, 1] and y ∈ [α, 1] with α ∈ [0, 1]. The product x • y is only in [α2, 1] but not forcibly
in [α, 1].

Proof of Theorem 1. Let us put α = 1/2 then 1/4 ≤ x • y ≤ 1. For x • y to be in [α, 1], α2 ≥ α must be
true. But, in our case 1/2 ≥ 1/4. Hence, by contradiction x • y /∈ [α, 1] only in [α2, 1].

Theorem 2. By considering the same supposition as the Theorem 1. The preposition x + y− 1 ≥ α is not
necessarily true, and it holds only if α = 1.

Proof of Theorem 2. Let us suppose that x = y = α. This is equivalent to x + y− 1 = 2α− 1. Hence,
if x + y− 1 ≥ α, then 2α− 1 ≥ α. The last statement is equivalent to α ≥ 1, and this holds only if α = 1
because by our supposition α ≤ 1. Consequently for α ∈ [0, 1[, x + y− 1 ≥ α is not always true.

These two theorems proof that at each step of computing the t-norms, we must filter the norms
inferior to the chosen α-level. To provide all these possibilities, we present the Figures 1 and 2 explained
in the next subsection.

4.1. The Project’s Class Diagrams

The project integrates the Scala Stackable Trait Pattern. In detail, we provide an abstraction called
AbstractMatrix. It is an abstract class holding the abstract definition of all the operations needed to
achieve the transitive closure. Then, different traits override specific abstract definitions to customize
the behavior. Traits extend java interfaces to provide much richer functionalities. In our case, traits
extend the AbstractMatrix with specific behavior; they are denoted mixins, e.g., the MaxMinNorm
overrides the norm function into computing the minimum of the inputs and the Seminaive mix
overrides the closure algorithm definition. They can only be extended by classes already extending the
AbstractMatrix. Also, the AbstracMatrix has a companion object defining a specific KeyEntry Type and a
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static ireverse operation which reverses the Similarity class entries for the closure’s composition join.
The Similarity class resembles Spark’s MatrixEntry case class in the Spark MLlib library. However, it is
not a case class and it overrides both the equals and hashCode operations to provide specific comparison
behavior. The rationale behind this class is that we observed an anomaly when computing the transitive
closure. More specifically, the transitive closure computing time was very large. After observing the
computing process, we found out that when subtracting the results of the past and present, iterations
in the closure’s similarities were not considered equal because of their weights. Although, the weights
differed from each other in a precision of 10−9. This fact led us to provide our own comparison strategy
with a custom precision of 10−3 integrated in the Similarity class.

Figure 1. The project’s main abstract class.

The abstraction is extended by another trait DefaultMatrix. Like the name suggests, the trait
provides default behavior for the abstract definition. This has made it possible to leverage the abstract
operations without defining a default behavior for each class. As the Figure 2 shows, the class SiMatrix
can leverage the AbstractMatrix operation without having to override them. This is our approach
extension of the stackable trait. Furthermore, Scala traits support self types. Meaning that a trait can
only be extended by a subclass of the specified type. Which is why we implemented a MatrixImpl,
a self type of the DefaultMatrix, adding a restriction to the inheritance strategy. The concrete class
SiMatrix extends both the DefaultMatrix and the Serializable traits to respectively be able to leverage all
the AbstractMatrix traits and to execute spark stages. Note that in the other traits, we did not override
the composition operation because we provided a concrete definition in the lowest level SiMatrix
class. To create the SiMatrix objects, we needed a factory pattern. Fortunately, the factory pattern is
simplified in Scala by companion objects (A companion object of a specific class in Scala has the same
name as the class and it can access the private variables and operations of the class). The SiMatrix
is a companion object providing the factory method for instantiating its relative class. An extract
of the apply method is described in Algorithm 2. The function is a higher order function based on
currying. The first function takes as input the distributed similarities and outputs a function that
takes the alpha threshold used for the partitioning, the chosen t-norm and transitive closure algorithm.
Then, depending on the t-norm and closure algorithm it instantiates the SiMatrix class while specifying
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the traits to be mixed in. Note that the order of the trait is important. Scala is based on linearization
principle, the last trait is the first to be extended. Hence, the name stackable trait pattern. It is like a
stack of patterns where the first one to be extended is actually the last.

Figure 2. The implementation of the AbstractMatrix class.

Algorithm 2: The SiMatrix companion object apply method.

begin
Function def apply(RDD[Similarity])(alpha:Double, t_norm:String, alg:String):SiMatrix=

(t_norm,alg) match {
case ("max–delta", "smart")=> new SiMatrix(flatten(similarities))(alpha) with
HandleWithFilter with MaxDeltaNorm with Smart

case ("max–min", "smart")=> new SiMatrix(flatten(similarities))(alpha) with
HandleWithoutFilter with MaxProductNorm with Smart

}

The apply method of the SiMatrix object leverages the flatten function to create a reverse duplicate
of the entries and return an iterator of the couple which will be flattened by Spark’s flatMap operation.
Now, for computing the closure, we specified two traits Seminaive and Smart related respectively to
the semi-naive and smart algorithm. The difference between the two is that at each iteration the first
considers the initial relation when computing the composition, while the second considers the same
relation related to the current iteration. This led us to define a curried function for each trait with
default parameters. In the Seminaive trait Algorithm 3, we specify that Rx equals the predefined Rx
in the AbstractMatrix, which gets overridden in the SiMatrix class. The last function in the closure
curried form computes the composition of the past specified parameters Ri and Rx. This reflects the
high potential of Scala’s higher order function into simplifying highly complex computations. At the
heart of the closure function, we check if the current Rj equals the past iteration Ri. If the preposition
holds, we return Ri; otherwise, we call the closure again in a recursive manner with Ri as Rj and the
other parameters as default ones. As for the Smart trait Algorithm 4; we change Rx into a KeyEntry
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value returned by calling the ireverse function on the first parameter Ri. Note that to compute the
transitive closure, we consider the type KeyEntry which reflects the RDD[(Long,(Long, double))] type.
The first relation gets its columns extracted and joined with the rows of the second relation which are
extracted by the ireverse function. The composition is overridden in the SiMatrix class (please see the
Algorithm 5). In particular, the composition calls the handle function which in the same manner calls
the norm function. Hence, the order of the mixins is very important.

Algorithm 3: The SemiNaive trait.

begin
trait SemiNaive extends AbstractMatrix {

import AbstractMatrix._
Function override abstract def closure(Ri:RDD[Similarity]) (Rx:KeyEntry=Rx)
(Rj:RDD[Similarity]=composition(Ri)(Rx)) : RDD[Similarity]=

if(Rj.subtract(Ri).isEmpty()) Ri
else closure(Rj)()()

}

Algorithm 4: The Smart trait.

begin
trait Smart extends AbstractMatrix {

import AbstractMatrix._
Function override abstract def closure(Ri:RDD[Similarity]) (Rx:KeyEntry=ireverse(Ri))
(Rj:RDD[Similarity]=composition(Ri)(Rx)) : RDD[Similarity]=

if(Rj.subtract(Ri).isEmpty()) Ri
else closure(Rj)()()

}

Algorithm 5: The overridden composition method in the SiMatrix class.

begin
Function override def composition(R:RDD[Similarity])(Rx:KeyEntry):RDD[Similarity]=

val join=R.map(e=>(e.j,(e.i, e.value))).join(Rx)
handle(join).map({

case ((i,j),w)=>Similarity(j,i,w)
})

To compute the similarities of the trajectories, we defined a trait GeoEntry that gets extended
by the PointEntry and TrajectoryEntry case classes. Case classes in scala are serialized by default,
their constructor parameters become accessible variables and functions like equals and hashCode
are overridden. They are related to the Value Object Pattern. The TrajectoryEntry class is composed
by objects of the PointEntry class. The similarities of the points gets computed by the getSimilarity
function which call the recursive function lcss both defined in the TrajectoryEntry class. The points
gets compared respectively by their time and distance by the functions defined in the PointEntry class.
The order of the comparison is important to reduce additional time overhead. At last, the closure can
be accessed via the closure_edges immutable lazy variable. In particular, the laziness reflects the Lazy
initialization Pattern where the variable gets instantiated on access. The overall pipeline of the process
is described in the next subsection with activity diagrams.

4.2. The Overall Execution Pipeline

The activity in Figure 3 reflects the overall process. All the actions in the diagram are distributed.
First, we leverage Spark’s wholeTextFiles operation to read the different directories. Also, we specify
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the number of partitions. While experimenting, we observed that if we specify n partitions we get
2*n ones. After reading the files, we use the Spark’s map operation to retrieve the trajectory from each
file. Spark’s map function is a higher order function taking as a parameter another function which
gets specified by us. Figure 4 illustrates the trajectories’ creation process. Each file is handled in a
distributed manner; however, each line of the files is handled sequentially to create instances of the
PointEntry class.

Figure 3. The execution pipeline main activity diagram.

Figure 4. The creation of the trajectories.

Afterward, we evaluated the system and we observed a relatively large time overhead. This led
us to specify our own custom partitioning strategy based on the trajectories’ sizes. The strategy is
implemented in the LoadPartitioner class which extends Spark’s Partitioner abstract class. The partitioner
has to override the functions numPartitions and getPartition which return the id of the chosen partition.
Details are in Algorithm 6, the main idea behind the partitioning strategy is to return the partition with
the lowest size. The size of the partitions is not defined by the number of the trajectories, but the size
of the points in the trajectories. The efficiency of the logic is provided in Section 5.
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Algorithm 6: The LoadPartitioner class.

begin
class LoadPartitioner(partitions:Int) extends Partitioner {

val map:HashMap[Int,Int]=HashMap() // partition, size
Function def initializeMap

for(i<-0 until partitions)map.put(i,0)
def numPartitions: Int = partitions
Function def getPartition(key:Any):Int=

key match{
case size:Int=>{

if map.isEmpty then initializeMap
val min_elt=map.minBy(_._2) // get the lowest size partition
map.put(min_elt._1,min_elt._2+size) // increment its size
min_elt._1 // return it

}
}

}

Now that the partitions got repartitioned successfully, we zip each trajectory with a unique
identifier. Then, we suppress the trajectories’s sizes and conduct the cartesian product to assemble the
similarities’ elements. After the cartesian product, we conduct a special filter. This filter enables us
to reduce the load to more than the half of the overall couples. Instead of computing the similarities
of n2 elements, we compute only A1

n + A1
n−1 + ... + A1

1 − n. This is achieved by considering only
the couples where the first trajectory’s id is inferior than the second. Because the relation is a fuzzy
proximity relation, we do only have to compute R(x, y) not also R(y, x). Also, we do not have to
consider R(x, x) because it equals 1. Next, we compute the similarities and conduct a filter to suppress
the similarities with a weight inferior than the chosen α-level. The importance of repartitioning the
similarities after the filter is proven in the Section 5. After repartitioning, we construct the SiMatrix
object and compute the closure. For the clustering, we consider the max–min transitivity and extract
the clusters by defining the connected elements of the created Graph object belonging to the Spark’s
GraphX library. All the extracted clusters form maximum cliques. Now that the clusters are identified,
we index each element by its relative cluster, collect and broadcast the identifiers in a Map type form.
The rationale behind this broadcast is to reduce the time overhead for the join. Because Spark’s joins
require shuffle of the data and this can cost a lot of time. However, the broadcast enables us to cache
the identifiers in each worker. The join and persistence of the objects are explained in the Figure 5.

Instead of handling each element, we handle each partition to reduce the number of database
connections. For persisting the results, we leverage the Reactive MongoDB Driver. First, a driver object,
a database and a collection object get created. Their creation is conducted in an asynchronous manner.
This means that we do not actually get the real objects. Instead, we get Scala’s Futures. After the
completion of the futures, we iterate over the trajectories. For each trajectory, we get its cluster id by
looking up its id in the broadcasted map. Then, we create a bson object and call the insert operation of
the collection. The operation is conducted asynchronously in a non-blocking manner. Consequently,
other bson objects are being created and inserted in the same time. This is achieved by configuring the
spark.task.cpus parameter to the desired number of threads per task. Then, we assemble the futures in a
sequence and await its completion. In the end, we destroy the driver and return the final write result
to declare the end of the task.
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Figure 5. The join and persistence process.

5. Results and Discussions

In the experiments, we deployed a cluster of 6 workers. The master and a worker have 8 cores
and respectively 8 and 6 GB in the RAM, while the others have 4 cores and 4 GB memory. In the
configuration, we specified the spark.driver.memory and spark.executor.memory to respectively equal
4000 MB and 2000 MB. First, in the experience we observed a large set of StackOverFlowError exceptions.
This is explained by the recursive call of the lcss in the executors. To resolve this issue, we increased the
maximum stack size in the executors by setting an extra java option in the executors’ configurations
with spark.executor.extraJavaOptions set to -Xss40M. This increases the default maximum stack size into
40 MB.

While evaluating the performance of the conventional pipeline, we observed a large time overhead.
When we checked the metrics in the SparkUI, we observed a large disturbance in the tasks visible
in Figure 6. This fact is explained by the uneven complexity of the trajectories. To resolve this
issue, we proposed our own partitioning strategy already explained in Section 4. After integrating
the LoadPartitioner strategy, we observed the balanced workload illustrated in Figure 7. Moreover,
we evaluated the performance of the system and plotted the results in Figure 8. The results provide
the empirical evidence of the high efficiency of our partitioning strategy in reducing the computation
time by equally balancing the workloads.

Figure 6. The unbalanced tasks work load.
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Figure 7. The tasks load after integrating the LoadPartitioner strategy.

Figure 8. Execution time before and after integrating the LoadPartitioner strategy.

After conducting the filter of the similarities, we additionally observed a time overhead.
The SparkUI reflected the Figure 9. In the figure, we observed a large number of tasks which are
executed in a very short time, a matter of milliseconds. Hence, each partition contains a very limited
number of elements compared to the past load before the filter. To resolve this additional time
load, we conducted a repartitioning just after the filter and observed the difference in Figure 10.
The execution time of the two possibilities is plotted in Figure 11. We acknowledge that both the
partitionBy and repartitioning stages may cause an additional overhead because of the shuffle behavior.
But over unbalanced loads and after a large filter operation, they are indispensable to reduce the
execution time. In particular, the repartitioning strategy after the filter as can be seen in Figure 10
reduces and reassembles the partitions into a single executor. This fact highly reduces additional
NetworkIO overhead.



Algorithms 2019, 12, 29 13 of 15

Figure 9. The workload without the repartitioning after the similarities filter.

Figure 10. The workload after the repartitioning.

Figure 11. The execution time without and with the repartitioning stage.

6. Conclusions

We provide a pipeline for clustering trajectories by resolving the LCSS problem. The clustering is
achieved via the max–min transitive closure of the fuzzy proximity relation. Clusters are yielded based
on a predefined α-level. Spark is exploited to distribute the execution of the pipelines’ tasks. Details
about the implementation of the different stages are yielded. To reduce the execution time, we studied
the repartitioning effect over the conventional pipeline. Then, we proposed a new partitioning logic,
which resolves the load balancing issue and integrated the repartitioning after the filtering of the
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similarities. Our results prove the efficiency of our partitioning strategy and the repartitioning in
reducing the computation time. Moreover, we integrated the asynchronous Reactive MongoDB Driver
as a first step into studying the behavior of spark in the asynchronous boundaries. We acknowledge
that this integration needs further evaluation. In addition, we are currently working on two projects.
The first aims to integrate a fully distributed algorithm for defining the clusters in the max–product
and max–delta fuzzy similarity relations. The second is to employ a new iterative algorithm that
exploits Spark’s GraphX integration of Pregel. This last will be able to highly reduce the time overhead
for computing the transitive closure of a fuzzy subjective similarity relation.

Computer Code

The project’s Scala code can be retrieved from our github repository: https://github.com/
strangex/spark-transitive-closure .
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