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Abstract: This paper studies an effective finite difference scheme for solving two-dimensional
Heston stochastic volatility option-pricing model problems. A dynamically balanced up-downwind
strategy for approximating the cross-derivative is implemented and analyzed. Semi-discretized
and spatially nonuniform platforms are utilized. The numerical method comprised is simple
and straightforward, with reliable first order overall approximations. The spectral norm is used
throughout the investigation, and numerical stability is proven. Simulation experiments are given to
illustrate our results.
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1. Introduction

Demand for highly effective, efficient, and reliable numerical methods has grown increasingly
high for solving option-trading modeling equations involving cross-derivative terms. However,
desirable computational procedures are, in general, difficult to obtain, due to challenges from the
participation of cross-derivatives [1,2]. This motivates our study. In this investigation, targeted at
European options that can only be exercised on dates of maturity, we propose and analyze a new and
dynamically balanced up-downwind finite difference method in the pursuit.

In the early 1970s, Black, Scholes, and Merton introduced the popular Black-Scholes-Merton (BSM)
model [3,4]. Under their consideration, stock prices were assumed to follow geometric Brownian
motion, while the volatility of the stock prices was fixed and no sudden jumps occurred. However,
classic BSM models often cannot fit ideally into the market data observed nowadays [4]. This may be
due to the fact that, in modern financial markets, not only are stock prices subject to risk, but also the
estimate of riskiness is typically subject to significant uncertainty. The Black-Scholes model does not
adequately take into account essential characteristics of market dynamics, such as fat tails, skewness
of the distribution of log returns, and the correlation between the value of the underlying and its
volatility. It has also been observed that the volatility starts to fluctuate when the market reacts to new
information [5]. To incorporate an additional source of randomness into an option pricing model,
Heston proposed a more refined approach, based on the concept of stochastic volatility [5–7].

A closed-form solution of the model was also obtained by Heston, under a set of specific boundary
and initial values for assets of the European type [6]. However, to meet a growing demand for American
options and other assets, pricing equations often need to be placed together with more realistic initial
boundary conditions, or even free boundary conditions. Closed forms of solutions are, in general,
unavailable. Thus, numerical approximations of such solutions have become important and necessary.
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This paper is concerned with European options. The scheme we developed here can be extended
directly to price American options. However, due to the free boundary conditions associated with the
American options, the stability and convergence analysis of the scheme becomes rather complicated.
We are still working on the theoretical results behind applying our scheme to American options.

There have been numerous recent publications on the numerical solution of Heston modeling
equations. For instance, certain first-order up-downwind algorithms were proposed and studied by
Ma and Forsyth [2]. Stability analysis was carried out via standard von Neumann analysis for Cauchy
problems or problems with periodic boundary conditions [8,9]. Although numerical stabilities have
been under investigation for even high order schemes on nonuniform grids [4], rigorous analysis is
only available in cases where the cross-derivative terms are neglected. The challenge for stability
analysis persists, whenever a cross-derivative or more general boundary data structure exists [2,10].

However, cross-derivatives are essential to partial differential equations modeling a Heston
Process. Further, Heston modeling formulations also require more realistic Dirichlet, Neumann,
or mixed boundary conditions [6,11]. These have motivated our approaches. In this paper,
we are particularly interested in computations based on a Heston put option model [4,8,9,12–14].
We are primarily interested in a linearly stable finite difference method, based on nonuniform grids.
Our intention is to effectively reduce the computational costs and raise the algorithmic efficiency, by
way of application of appropriate adaptive mechanisms. These results can be extended for call options,
in similar ways.

In particular, we consider the following two-dimensional Heston volatility model interpreting the
behavior of the asset value S and its volatility y at time t ≥ 0,

dS(t)
S(t)

= µdt +
√

y(t)dW1(t), (1)

dy(t) = κ(η − y(t))dt + σ
√

y(t)dW2(t), (2)

cov(dW1(t), dW2(t)) = ρdt, (3)

where µ is the expected return of the asset, κ is the rate of reversion to the mean level of the volatility,
η is the mean level of the volatility, σ > 0 is the volatility parameter, and cov(u, v) is the covariance
between u and v [6,15]. The two Wiener processes W1(t) and W2(t) describe the random noise in asset
and volatility, respectively; they are assumed to be correlated with a constant correlation coefficient
ρ ∈ [−1, 1].

Let v(S, y, t), t ≥ 0, denote the value of a European put option that is a function of asset price,
volatility, and time. An application of Itô’s Lemma and the non-arbitrage principle with a riskless
portfolio construction leads to [4,6,9,16,17],

vt +
1
2

yS2vSS + ρσySvSy +
σ2y

2
vyy + rSvS + κ(η − y)vy = rv, S, y > 0. (4)

Let
v(S, y, T) = max {K− S, 0} , S, y ≥ 0,

be the terminal condition to use, where T is the payoff time and K is the strike price. We adopt the
following mixed boundary conditions for S, y > 0 and T > t ≥ 0 [8]:

v(0, y, t) = Ke−r(T−t), (5)

lim
S→∞

v(S, y, t) = 0, (6)

vy(S, 0, t) = 0, (7)

lim
y→∞

vy(S, y, t) = 0. (8)
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Set τ = T − t. Equation (4) can be rewritten as

vτ =
yS2

2
vSS + ρσySvSy +

σ2y
2

vyy + rSvS + κ(η − y)vy − rv, T > τ > 0.

Let x = ln
S
K

and u =
v
K

erτ . For −∞ < x < ∞, y > 0, T > τ > 0, we observe that

uτ =
y
2

uxx + ρσyuxy +
σ2y

2
uyy −

(y
2
− r
)

ux + κ(η − y)uy, (9)

together with constraints [4,8,14],

u(x, y, 0) = max {1− ex, 0} , −∞ < x < ∞, y > 0, (10)

lim
x→−∞

u(x, y, τ) = 1, y > 0, T ≥ τ > 0, (11)

lim
x→∞

u(x, y, τ) = 0, y > 0, T ≥ τ > 0, (12)

uy(x, 0, τ) = 0, −∞ < x < ∞, T ≥ τ > 0, (13)

lim
y→∞

uy(x, y, τ) = 0, −∞ < x < ∞, T ≥ τ > 0. (14)

We may extend the temporal domain for (9)–(14) by allowing T = ∞. Further, for the sake of
computation, we consider a truncated spatial domain Ω = {(x, y) : −X < x < X; 0 < y < Y},
for sufficiently large X and Y, in the rest of our investigation.

In the next section, a nonuniform spatial mesh will be introduced. Based on it, a semi-discretized
system will be derived for solving (9)–(14). Dynamically balanced up-downwind difference
approximations will be presented. A general linear stability analysis and computational experiments
will be carried out in Section 2. Computationally evaluated rates of convergence of the scheme will
also be provided. Finally, conclusions and future research intentions will be given in Section 3.

2. Results

2.1. Balanced Up-Downwind Semi-Discretized Scheme

Let −X = x0 < x1 < · · · < xM < xM+1 = X, 0 = y0 < y1 < · · · < yN < yN+1 = Y, for which
xm − xm−1 = hm, yn − yn−1 = kn, 0 < hm, kn � 1, m = 1, 2, . . . , M + 1, n = 1, 2, . . . , N + 1.

Let zm,n = zm,n(τ) be an approximation of z(xm, yn, τ), 0 ≤ m ≤ M + 1, 0 ≤ n ≤ N + 1,
0 < τ < T. Further, let ∆`,+, ∆`,−, and ∆`,0 be forward, backward, and central difference operators in
the `-direction, respectively, where ` ∈ {x, y} [10,18]. Similarly, for appropriate indexes, we define

∆2
x,0zm,n =

2zm+1,n

hm+1(hm+1 + hm)
− 2zm,n

hm+1hm
+

2zm−1,n

hm(hm+1 + hm)
, (15)

∆2
y,0zm,n =

2zm,n+1

kn+1(kn+1 + kn)
− 2zm,n

kn+1kn
+

2zm,n−1

kn(kn+1 + kn)
. (16)

We now approximate the diffusion terms in (9) by using the above, and the derivatives in (13)
and (14) via the following,

uy(xm, 0, τ) ≈ 1
hy

∆y,+um,0(τ), uy(xm, Y, τ) ≈ 1
hy

∆y,−um,N+1(τ), 0 < τ < T.

We approximate the advection terms in (9) through three different channels, depending upon
relation between η and r.
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Case 1: η > 2r.

ux(xm, yn, τ) ≈ ∆x,+um,n, uy(xm, yn, τ) ≈ ∆y,+um,n, 2r ≥ y > 0, (17)

ux(xm, yn, τ) ≈ ∆x,−um,n, uy(xm, yn, τ) ≈ ∆y,+um,n, η ≥ y > r, (18)

ux(xm, yn, τ) ≈ ∆x,−um,n, uy(xm, yn, τ) ≈ ∆y,−um,n, Y > y > η. (19)

Case 2: η ≤ 2r.

ux(xm, yn, τ) ≈ ∆x,+um,n, uy(xm, yn, τ) ≈ ∆y,+um,n, η ≥ y > 0, (20)

ux(xm, yn, τ) ≈ ∆x,+um,n, uy(xm, yn, τ) ≈ ∆y,−um,n, 2r ≥ y > η, (21)

ux(xm, yn, τ) ≈ ∆x,−um,n, uy(xm, yn, τ) ≈ ∆y,−um,n, Y > y > 2r. (22)

The computational stencils for the Case 1 and Case 2 are given in Figure 1.

i−1,j+1

i−1,j i,j i+1,j

i+1,j+1

i−1,j−1 i,j−1

i,j+1

i+1,j−1

i−1,j+1

i−1,j i,j i+1,j

i+1,j+1

i−1,j−1 i,j−1

i,j+1

i+1,j−1

i−1,j+1

i−1,j i,j i+1,j

i+1,j+1

i−1,j−1 i,j−1

i,j+1

i+1,j−1

i−1,j+1

i−1,j i,j i+1,j

i+1,j+1

i−1,j−1 i,j−1

i,j+1

i+1,j−1

Figure 1. Computational stencil for (17) and (20) [frame 1]; (18) [frame 2]; (19) and (22) [frame 3];
and (21) [frame 4].

Define

hmin = min
m=1,2···M

hm, hmax = max
m=1,2···M

hm; kmin = min
n=1,2···N

kn, kmax = max
n=1,2···N

kn.

We now approximate the cross-derivative in (9) dynamically. To this end, we have the following
two cases presented in Sections 2.1.1 and 2.1.2.

2.1.1. Case for ρ ∈ [−1, 0]

For smoothness of the nonuniform grids [18], we require that

− ρkmax ≤ σhmin ≤ σhmax ≤ −
1
ρ

kmin. (23)

We propose that

uxy(xm, yn, τ) =
1
2
(∆x,+∆y,− + ∆x,−∆y,+)um,n(τ) +O(hmax + kmax). (24)

Substitute all spatial derivative approximations into (9), and let w denote the approximate solution
to u. We acquire the following linear system,

w′(τ) = Aw(τ) + f (τ), (25)

where w, f ∈ RMN and A ∈ RMN×MN is block tridiagonal of the form
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A =



D1 Q1 · · · · · · · · · 0
P2 D2 Q2 · · · · · · 0
...

. . . . . . . . . · · ·
...

... · · · PM−2 DM−2 QM−2 0
· · · · · · · · · PM−1 DM−1 QM−1

0 · · · · · · · · · PM DM


,

where Pi, Dj, Qk ∈ RN×N , i = 2, 3, . . . , M; j = 1, 2, . . . , M; k = 1, 2, . . . , M− 1. Nontrivial entries of the
matrices Pm, Dm, and Qm, for their respective ranges of m, are as follows:

p(m)
n,n =



yn

hm(hm + hm+1)
+

ρσyn

2hmkn+1
, 0 < yn ≤ 2r,

yn

hm(hm + hm+1)
+

ρσyn

2hmkn+1
+

yn − 2r
2hm

, 2r < yn < Y− kN+1,

yN
hm(hm + hm+1)

+
yN − 2r

2hm
, yn = Y− kN+1;

p(m)
n,n+1 = − ρσyn

2hmkn
;

d(m)
n,n−1 =


σ2yn

kn(kn + kn+1)
+

ρσyn

2hm+1kn
, k1 < yn ≤ η,

σ2yn

kn(kn + kn+1)
+

ρσyn

2hm+1kn
− κ(η − yn)

kn
, η < yn ≤ Y− kN+1;

d(m)
n,n =



αm,1 +
y1 − 2r
2hm+1

− κ(η − y1)

k2
, yn = k1,

βm,n +
yn − 2r
2hm+1

− κ(η − yn)

kn+1
, k1 < yn ≤ 2r,

βm,n −
yn − 2r

2hm
− κ(η − yn)

kn+1
, 2r < yn ≤ η,

βm,n −
yn − 2r

2hm
+

κ(η − yn)

kn
, η < yn < Y− kN+1,

γm,N −
yN − 2r

2hm
+

κ(η − yN)

kN
, yN = Y− kN+1;

d(m)
n,n+1 =


σ2yn

kn+1(kn + kn+1)
+

ρσyn

2hmkn+1
+

κ(η − yn)

kn+1
, 0 < yn ≤ η,

σ2yn

kn+1(kn + kn+1)
+

ρσyn

2hmkn+1
, η < yn < Y− kN+1;

q(m)
n,n−1 = − ρσyn

2hm+1kn
, yn > k1;

q(m)
n,n =



y1

hm+1(hm + hm+1)
− y1 − 2r

2hm+1
, yn = k1,

yn

hm+1(hm + hm+1)
+

ρσyn

2hm+1kn
− yn − 2r

2hm+1
, k1 < y ≤ 2r,

yn

hm+1(hm + hm+1)
+

ρσyn

2hm+1kn
, 2r < yn ≤ Y− kN+1,

where

αm,n = − yn

hmhm+1
− σ2yn

kn+1(kn + kn+1)
− ρσyn

2hmkn+1
,

βm,n = − yn

hmhm+1
− σ2yn

knkn+1
− ρσyn

2hm+1kn
− ρσyn

2hmkn+1
,

γm,n = − yn

hmhm+1
− σ2yn

kn(kn + kn+1)
− ρσyn

2hm+1kn
.
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It is observed that, in the event ρ = −1, we have the following, due to (23):

hmin = hmax = h, kmin = kmax = k, k = σh,

which indicates that uniform spatial grids must be employed. Thus, (25) reduces to

w′(τ) = Asw(τ) + fs(τ).

Nontrivial entries of As are readily obtained, based on the above discussion.

2.1.2. Case for ρ ∈ (0, 1]

We need the following restrictions on mesh steps, in the case [18]

ρkmax ≤ σhmin ≤ σhmax ≤
1
ρ

kmin. (26)

Apparently, when ρ = 1, the above implies that a uniform spatial mesh with h = σk must be used.
Differing from (24), we consider a new, dynamically balanced cross-derivative approximation,

uxy(xm, yn, τ) =
1
2
(∆x,−∆y,− + ∆x,+∆y,+)um,n(τ) +O(hmax + kmax). (27)

Computational stencils for (24) and (27) are shown in Figure 2.

i−1,j+1

i−1,j i,j i+1,j

i+1,j+1

i−1,j−1 i,j−1

i,j+1

i+1,j−1

i−1,j+1

i−1,j i,j i+1,j

i+1,j+1

i−1,j−1 i,j−1

i,j+1

i+1,j−1

Figure 2. Computational stencils of (24) (left) and (27) (right).

In this circumstance, we obtain the following new system

w′(τ) = Ãw(τ) + f̃ (τ), (28)

where w, f̃ (τ) ∈ RMN and Ã ∈ RMN×MN is block tridiagonal; that is,

Ã =



D̃1 Q̃1 · · · · · · · · · 0
P̃2 D̃2 Q̃2 · · · · · · 0
...

. . . . . . . . . · · ·
...

... · · · P̃M−2 D̃M−2 Q̃M−2 0
· · · · · · · · · P̃M−1 D̃M−1 Q̃M−1

0 · · · · · · · · · P̃M D̃M


.

Nontrivial entries of P̃m, D̃m, and Q̃m, within their respective ranges of m, are given by
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p̃(m)
n,n−1 =

ρσyn

2hmkn
, yn > k1;

p̃(m)
n,n =



y1

hm(hm + hm+1)
, yn = k1,

yn

hm(hm + hm+1)
− ρσyn

2hmkn
, k1 < yn ≤ 2r,

yn

hm(hm + hm+1)
− ρσyn

2hmkn
+

yn − 2r
2hm

, 2r < yn ≤ Y− kN+1;

r̃(m)
n,n−1 =


σ2yn

kn(kn + kn+1)
− ρσyn

2hmkn
, k1 < yn ≤ η,

σ2yn

kn(kn + kn+1)
− ρσyn

2hmkn
− κ(η − yn)

kn
, η < yn ≤ Y− kN+1;

r̃(m)
n,n =



α̃m,1 +
y1 − 2r
2hm+1

− κ(η − y1)

kn+1
, y1 = k1,

β̃m,n +
yn − 2r
2hm+1

− κ(η − yn)

kn+1
, k1 < yn ≤ 2r,

β̃m,n −
yn − 2r

2hm
− κ(η − yn)

kn+1
, 2r < yn ≤ η,

β̃m,n −
yn − 2r

2hm
+

κ(η − yn)

kn
, η < yn < Y− kN+1,

γ̃m,N −
yN − 2r

2hm
+

κ(η − yN)

kN
, yN = Y− kN+1;

r̃(m)
n,n+1 =


σ2yn

kn+1(kn + kn+1)
− ρσyn

2hm+1kn+1
+

κ(η − yn)

kn+1
, 0 < yn ≤ η,

σ2yn

kn+1(kn + kn+1)
− ρσyn

2hm+1kn+1
, η < yn < Y− kN+1;

q̃(m)
n,n =



yn

hm+1(hm + hm+1)
− ρσyn

2hm+1kn+1
− yn − 2r

2hm+1
, 0 < yn ≤ 2r,

yn

hm+1(hm + hm+1)
− ρσyn

2hm+1kn+1
, 2r < yn < Y− kN+1,

yN
hm+1(hm + hm+1)

, yN = Y− kN+1;

q̃(m)
n,n+1 =

ρσyn

2hm+1kn+1
, 0 < yn < Y− kN+1,

where

α̃m,n = − yn

hmhm+1
− σ2yn

kn+1(kn + kn+1)
+

ρσyn

2hm+1kn+1
+

ρσyn

2hmkn
,

β̃m,n = − yn

hmhm+1
− σ2yn

knkn+1
+

ρσyn

2hm+1kn+1
+

ρσyn

2hmkn
,

γ̃m,n = − yn

hmhm+1
− σ2yn

kn(kn + kn+1)
+

ρσyn

2hmkn
.

The semi-discretized method (28) reduces to a uniform scheme when ρ = 1; that is,

w′(τ) =
1

2h2 Ãsw(τ) + f̃ (τ).

The nontrivial elements of Ã can be determined from simplifications of the above formulae.
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2.2. Numerical Stability

It is readily verified that the the solution to (25) is

w(τn+1) = e∆τAw(τn) +
∫ τn+1

τn
e(t−τn)A f (t)dt, n = 0, 1, . . . , (29)

where τn = n∆τ. The formal solution to (28) is similar. We have:

Lemma 1 ([10,19]). The semi-discretized schemes (25) and (28) are stable if

lim
hmax,kmax→0

(
max

τ∈[0,τ∗ ]

∥∥∥eτA
∥∥∥

2

)
≤ c(τ∗), lim

hmax,kmax→0

(
max

τ∈[0,τ∗ ]

∥∥∥eτÃ
∥∥∥

2

)
≤ c(τ∗),

where τ∗ ∈ (0, T).

Lemma 2 ([10]). Let B ∈ Cd×d. Then σ(B) ⊂ ∪d
i=1Si, where

Si =

{
z ∈ C : |z− bi,i| ≤

d

∑
j=1,j 6=i

|bi,j|
}

are Geršhgorin discs, and σ(B) is the set of all eigenvalues of B. Moreover, λ ∈ σ(B) may lie on ∂Si0 for some
i0 ∈ {1, 2, . . . , d}, only if λ ∈ ∂Si for all i = 1, 2, . . . , d.

Lemma 3 ([20]). The matrix exponential etA tends to a zero matrix as t→ +∞ if and only if all the eigenvalues
of A have strictly negative real parts.

Theorem 1. The semi-discretized schemes (25) and (28) are linearly stable.

Proof. We will only need to show the case of ρ ∈ (0, 1], η > 2r for (25), since extensions of our results
for other cases are technically imminent. Thus, we only need to show that each of the MN Geršhgorin
discs of A lies on the left side of the complex plane. In fact, there are five types of the Geršhgorin discs
to consider:

1. Discs centered at an internal mesh point;
2. discs centered on one of the Dirichlet boundaries;
3. discs centered on the Neumann boundary;
4. discs centered at one of the intersection mesh points of two Dirichlet boundaries; and
5. discs centered at one of the intersection mesh points of one Dirichlet boundary and the

Neumann boundary.

We provide detailed proofs for the first three types of discs. Similar arguments can be applied to
the rest of the cases.

Case 1: In this situation, we first consider the situation in which η < yn ≤ Y. Let z ∈ Si be any
complex number, where Si is a Geršhgorin disc centered at an internal point of the spatial grids. Thus,∣∣∣∣z + yn

hmhm+1
+

σ2yn

knkn+1
− ρσyn

2hm+1kn+1
− ρσyn

2hmkn
+

yn − 2r
2hm

− κ(η − yn)

kn

∣∣∣∣
≤
∣∣∣∣ σ2yn

kn(kn + kn+1)
− ρσyn

2hmkn
− κ(η − yn)

kn

∣∣∣∣+ ∣∣∣∣ σ2yn

kn+1(kn + kn+1)
− ρσyn

2hm+1kn+1

∣∣∣∣
+

∣∣∣∣ yn

hm+1(hm + hm+1)
− ρσyn

2hm+1kn+1

∣∣∣∣+ ∣∣∣∣ ρσyn

2hm+1kn+1

∣∣∣∣+ ∣∣∣∣ ρσyn

2hmkn

∣∣∣∣
+

∣∣∣∣ yn

hm(hm + hm+1)
− ρσyn

2hmkn
+

yn − 2r
2hm

∣∣∣∣ .

(30)
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Let α be the real part of z. Since we are concerned only about the upper bound of the real part of
the eigenvalues, we may replace z by α via a triangle inequality, and remove the absolute value sign
on the left hand side of (30). As a consequence, (30) renders to

α +
yn

hmhm+1
+

σ2yn

knkn+1
− ρσyn

2hm+1kn+1
− ρσyn

2hmkn
+

yn − 2r
2hm

− κ(η − yn)

kn

≤
∣∣∣∣ σ2yn

kn(kn + kn+1)
− ρσyn

2hmkn
− κ(η − yn)

kn

∣∣∣∣+ ∣∣∣∣ σ2yn

kn+1(kn + kn+1)
− ρσyn

2hm+1kn+1

∣∣∣∣
+

∣∣∣∣ yn

hm+1(hm + hm+1)
− ρσyn

2hm+1kn+1

∣∣∣∣+ ∣∣∣∣ ρσyn

2hm+1kn+1

∣∣∣∣+ ∣∣∣∣ ρσyn

2hmkn

∣∣∣∣
+

∣∣∣∣ yn

hm(hm + hm+1)
− ρσyn

2hmkn
+

yn − 2r
2hm

∣∣∣∣ .

(31)

Recall (26) and that ρ > 0. We have

2
ρσ

kn,
2

ρσ
kn+1 ≥ hm + hm+1 and hm, hm+1 ≥

ρ

σ
(kn + kn+1).

The above indicates that

σ2yn

kn(kn + kn+1)
≥ ρσyn

2hmkn
,

σ2yn

kn+1(kn + kn+1)
≥ ρσyn

2hm+1kn+1
,

yn

hm+1(hm + hm+1)
≥ ρσyn

2hm+1kn+1
,

yn

hm(hm + hm+1)
≥ ρσyn

2hmkn
.

Furthermore, since y > η > 2r, we conclude that

−κ(η − yn)

kn
≥ 0 and

yn − 2r
2hm

≥ 0.

Therefore, the term inside each pair of absolute signs in (31) must be positive. We may remove all
absolute signs in (31), and subsequently yield

α ≤ 0,

which is what we expect. Generalizations of the discussion for cases involving y ≤ η are
straightforward. Therefore, all eigenvalues contained in Si must lie on the left half of the complex plane.

Case 2: Without loss of generality, we consider the case where x = x1 and η < y < Y. Thus,
for any complex number z ∈ Si, where Si is a Geršhgorin disc satisfying∣∣∣∣z + yn

hmhm+1
+

σ2yn

knkn+1
− ρσyn

2hm+1kn+1
− ρσyn

2hmkn
+

yn − 2r
2hm

− κ(η − yn)

kn

∣∣∣∣
≤
∣∣∣∣ σ2yn

kn(kn + kn+1)
− ρσyn

2hmkn
− κ(η − yn)

kn

∣∣∣∣+ ∣∣∣∣ σ2yn

kn+1(kn + kn+1)
− ρσyn

2hm+1kn+1

∣∣∣∣
+

∣∣∣∣ yn

hm+1(hm + hm+1)
− ρσyn

2hm+1kn+1

∣∣∣∣+ ∣∣∣∣ ρσyn

2hm+1kn+1

∣∣∣∣ .

Similar to the previous case, we take α to be the real part of z. Thus,

α ≤ yn

hm+1

(
1

hm + hm+1
− 1

hm

)
− yn − 2r

2hm
< 0.
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The above implies that such an Si must lie strictly on the left half of the complex plane, and the
origin cannot be on its boundary. This ensures our expectation.

Case 3: In this circumstance, the Geršhgorin discs Si concerned are centered at boundary points
where a Neumann condition is imposed. Hence, for any z ∈ Si we have∣∣∣∣z + yN

hmhm+1
+

σ2yN
kN(kN+1 + kN)

− ρσyN
2hmkN

+
yN − 2r

2hm
− κ(η − yN)

kN

∣∣∣∣
≤
∣∣∣∣ σ2yN
kN(kN + kN+1)

− ρσyN
2hmkN

− κ(η − yN)

kN

∣∣∣∣+ ∣∣∣∣ yN
hm+1(hm + hm+1)

∣∣∣∣
+

∣∣∣∣ ρσyN
2hmkN

∣∣∣∣+ ∣∣∣∣ yN
hm(hm + hm+1)

− ρσyN
2hmkN

+
yN − 2r

2hm

∣∣∣∣ .

The above indicates that α, the real part of z, must satisfy

α ≤ yN

(hm + hm+1)2 −
yN

hmhm+1
< 0.

Recall Lemma 2. Since the origin cannot lie on the boundary of every Geršhgorin disc, combining
results from the three cases, we conclude immediately that all eigenvalues of A must be strictly in the
left half of the complex plane. Thus, we must have

lim
hmax ,kmax→0

(
max

τ∈[0,τ∗ ]

∥∥∥eτA
∥∥∥

2

)
≤ c(τ∗).

The above completes our proof.

2.3. Computational Experiments

Consider (9)–(14). Similar to the discussions by Zhu et al. [14], we fix X = 8, Y = 1. We first
concentrate on experiments with ρ = −0.5 and T = 0.5. Next, to test against extreme cases in the
option market, we proceed with ρ = −1 and T = 5. For demonstrating the numerical solution and its
rate of convergence estimates, we first consider uniform spatial grids. To this end, we denote

hm = h, kn = k = σh, m = 1, 2, . . . , M; n = 1, 2, . . . , N.

Results over nonuniform grids will be presented later.
Some key parameters used are shown in Table 1. Further, a Crank-Nicolson type temporal

integrator will be utilized for advancing our semi-discretized system (25), (28), with ∆τ as the temporal
step [19]. It is known that λ = ∆τ/c2, where c = min {h, k} , plays the effective role of the Courant
number [21,22]. We experiment with different values of λ, varying from 0.5 to 1.

Table 1. Key parameter values for numerical simulations.

Key Parameter Value Used

Strike price K = 100
Volatility of volatility σ = 1
Risk-free interest rate r = 0.05

Mean reversion speed κ = 2
Long-run mean of volatility η = 0.1

Our semi-discretized scheme is expected to be up to the first order in convergence in space.
To numerically examine this by experiment, we employ a generalized Milne’s device [10,18].
Then, for a selected terminal time T, we denote the numerical solution at point (xm, yn, T),
1 ≤ m ≤ M, 1 ≤ n ≤ N, as um,n;h for any particular spatial step 0 < h � 1. Likewise, we let
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um,n;h/2 and um,n;h/4 be the computed solutions obtained by using h/2 and h/4, respectively. Thus,
the point-wise rate of spatial convergence at T can be evaluated via

Rh
m,n ≈

1
ln2

ln

∣∣um,n;h − um,n;h/2
∣∣∣∣um,n;h/2 − um,n;h/4
∣∣ . (32)

Most of our experiments are accomplished on Apple workstations. MATLAB platforms without
parallelizations are used throughout our operations.

Let h = 0.01 and σ = 1. For simplicity of notation, we use the same letter v for the approximate
solution to (4). We show the solution v for ρ = −0.5 and ρ = −1 in Figures 3 and 4, respectively. To see
more precise solution profiles, we show corresponding contour maps next to the surfaces. It can be
observed that the European put option price is a decreasing function of the stock price S. This coincides
well with the financial theory that a put option price should have a negative correlation with the
underline stock price [11,23]. To examine further the delicate relationship between a put option price
and its volatility, we plot an average numerical solution v̄(y, t) taken across different stock prices with
respect to the volatility in Figure 5. The simulated computational result is exactly what we would
expect, since a put option price should be positively correlated with volatility [22,23].

Figure 3. (Left) Price of an European put option at T = 0.5 and for ρ = −0.5; (Right) Corresponding
contour map.

Figure 4. (Left) Price of an European put option at T = 5 and for ρ = −1; (Right) Corresponding
contour map.

We plot the computed rate of convergence surfaces for the cases ρ = −0.5 and ρ = −1
in Figures 6 and 7, respectively. In addition, a summary of point-wise convergence rates for the
circumstance as ρ = −0.5, T = 0.5 on different spatial grids is given in Table 2. Minor disturbances
can be observed in regions where the solution changes fast, particularly in the extreme situations with
ρ = −1, as demonstrated in Figure 7. These results are consistent with those from well-established
high-order schemes [2,4,8,13,14]. However, due to the low-order nature of our scheme, to get
the same accuracy we have to employ relatively small mesh sizes. This results in longer running
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times for our scheme. But, because of the established theoretical results, the new method ensures
excellent stability and a great structure for accommodating an exponential splitting, which will
improve computational efficiency in higher dimensions. Improving computational efficiency through
exponential splitting methods, particularly variable step ADI or LOD approximations [12,18,24], is one
of our ongoing researches.

Table 2. Rates of convergence Rh
PW observed with σ = 1, ρ = −0.5, and T = 0.5.

Mesh Steps Rconv. Rates λ = 0.5 λ = 0.75 λ = 1

min
m,n

(Rh
m,n) 0.6193 0.6134 0.6026

h = 0.01 max
m,n

(Rh
m,n) 1.0024 0.9976 0.9811

meanm,n(Rh
m,n) 0.9026 0.90438 0.9053

min
m,n

(Rh
m,n) 0.6324 0.6221 0.6206

h = 0.02 max
m,n

(Rh
m,n) 0.9674 1.0007 1.0151

meanm,n(Rh
m,n) 0.8342 0.8300 0.8296

min
m,n

(Rh
m,n) 0.5824 0.5971 0.6179

h = 0.03 max
m,n

(Rh
m,n) 0.9941 0.9437 0.9586

meanm,n(Rh
m,n) 0.7952 0.8015 0.8142

0 0.2 0.4 0.6 0.8 1

38

38.5

39

Figure 5. Relationship between the average price of an European put option with volatility T = 0.5
and ρ = −0.5.

0.7

0.9

0.8

R
at

e 
of

 C
on

ve
rg

en
ce

0.9

250

y

1

0.5

S

150
500.1

50 100 150 200 250

S

0.1

0.3

0.5

0.7

0.9

y

Figure 6. (Left) Pointwise rate of convergence estimate, T = 0.5 and ρ = −0.5; (Right) Corresponding
contour map.
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Figure 7. (Left) Point-wise rate of convergence estimate, T = 5 and ρ = −1. (Right) Corresponding
contour map.

Now, we consider simulations over nonuniform spatial grids. To better design our tests, we are
particularly interested in the following nonlinear distribution governing functions

z1(S) =

√
1

2.56
+

25(S/K)10

2.56[1 + (S/K)5]4
, Smin ≤ S ≤ Smax, (33)

z2(y) =
10
√

0.5y
7

, ymin ≤ y ≤ ymax. (34)

In our simulation experiments, selections of monitoring functions are based initially on the
numerical solution v, acquired on uniform spatial meshes. The monitoring function in the S-direction,
z1, is chosen so more grid points will be distributed around the areas where oscillatory convergence
rates appear, as indicated in Figure 7. On the other hand, the monitoring function in the y-direction, z2,
is chosen in such a way that it matches the trend of solution curvature in direction, as shown in Figure 5.
In this way, more mesh points can be relocated ideally to regions where the solution has sharper
increases. An overall more accurate result is thus anticipated [19]. For detailed information on general
mesh adaptations, we refer the reader to Cheng et al. [24] and Sheng and Padgett [18]. Our nonuniform
grids are generated via an arc-length equal-distribution principal for the functions z1, z2 in the S-
and y-directions, respectively. The principal is commonly utilized in adaptive computations, and
serves as an initial exploration for more sophisticated adaptations [18,24]. The calculation of the mesh
coordinates in our experiments is conducted based on a forward Euler formula for arc-lengths [19].
For instance, in the S-direction we have

Sj+1 = Sj +
`

(N − 1)
√

1 + [(z1(Sj))S]2
, j = 1, 2, . . . N − 1, (35)

where ` is the total arc-length; that is,

` =
∫ Smax

Smin

√
1 + [(z1(S))S]2 dS. (36)

While the distribution functions z1, z2 are shown in Figure 8, their composite surface plots can
be found in Figure 9. The latter characterizes the 2-dimensional profile of our grid’s distribution.
The numerical solution acquired over such nonuniform grids, with ρ = −0.5 and T = 0.5, is given
in Figure 10.
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Figure 8. (Left) Nonlinear grid distribution governing the function z1 in the S-direction;
(Right) Nonlinear mesh distribution governing the function z2 in the y-direction.
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Figure 10. (Left) Price of an European put option on nonuniform grids, T = 0.5 and ρ = −0.5;
(Right) Corresponding contour map.

Let ΩN,M be a reference spatial mesh, which can be either our uniform or nonuniform mesh.
We may map solutions vunif and vnonunif, numerical solutions obtained on the uniform mesh and
nonuniform mesh, respectively, to ΩN,M. We then define the following point-wise relative difference
function, Rd.

Rd(S, y, t) =
|vunif(S, y, t)− vnonunif(S, y, t)|

|vunif(S, y, t)| , (S, y, t) ∈ ΩN,M, 0 < t ≤ T. (37)

In our numerical approaches, we let the uniform mesh be our reference spatial mesh and then
map vnonunif to ΩN,M, utilizing the built-in MATLAB subroutine interp2.m.

The interesting surface of the point-wise difference and its contour plot are given in Figure 11.
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Figure 11. (Left) Relative difference between solutions on uniform and nonuniform grids, T = 0.5 and
ρ = −0.5; (Right) Corresponding contour map. Formulas (9) and (10) are used.

We may further calculate the relative difference index δ using the standard 2-norm; that is,

δ2 =
‖vunif − vnonunif‖2

‖vunif‖2
. (38)

For numerical solutions and the difference function illustrated in Figures 3 and 10, we have
δ2 ≈ 0.067.

3. Discussion

A dynamically balanced up-downwind semi-discretized finite difference method was constructed
and analyzed in this paper, based on arbitrary spatial grids. The algorithm acquired was easy to
use. It was also effective for solving the underlying Heston stochastic volatility option-pricing model
problems with cross-derivative terms. The scheme was proven to be numerically stable. Computational
experiments were carried out to verify our expectations, both on uniform and nonuniform grids.
The numerical method is expected to be first order in space.

The spectral norm was used throughout this paper. The study can be extended by using different
Euclidean norms. Our ongoing research is in including effective schemes on variable spatial and
temporal meshes for different financial products and simulations. We have also been considering
effective adaptation strategies, such as those investigated by Meng and Padgett et al. [19,22].

Our future endeavors also include improving computational efficiency through exponential
splitting methods, particularly variable-step ADI or LOD approximations [12,18,24]. Compact
schemes for raising accuracy have also been introduced in our study, with initial successes in
handling cross-derivatives dynamically, and well balances pricing American and some Asian
options [9,11,14,16]. Initial investigations were very promising.

4. Materials and Methods

Most parts of our computations are carried out on a MATLAB R© platform and its parallel
computing toolbox, on a high performance HP R© C3000BL HPC cluster running CentOS R© V, at Baylor
University. The processor consists of 128 computer nodes, each with 32 GB of RAM and dual quad-core
Intel 2.6 GHz processors, giving a total of 1024 cores. An Infiniband ConnectX R© DDR network is
used for message passing and networked storage. Shared storage capacity in the cluster is 123 TB.
All computer programs are available, by request to the corresponding author.
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