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Abstract: Most of the architectural design problems are basically real-parameter optimization problems.
So, any type of evolutionary and swarm algorithms can be used in this field. However, there is a
little attention on using optimization methods within the computer aided design (CAD) programs.
In this paper, we present Optimus, which is a new optimization tool for grasshopper algorithmic
modeling in Rhinoceros CAD software. Optimus implements self-adaptive differential evolution
algorithm with ensemble of mutation strategies (jEDE). We made an experiment using standard test
problems in the literature and some of the test problems proposed in IEEE CEC 2005. We reported
minimum, maximum, average, standard deviations and number of function evaluations of five
replications for each function. Experimental results on the benchmark suite showed that Optimus
(jEDE) outperforms other optimization tools, namely Galapagos (genetic algorithm), SilverEye (particle
swarm optimization), and Opossum (RbfOpt) by finding better results for 19 out of 20 problems.
For only one function, Galapagos presented slightly better result than Optimus. Ultimately, we
presented an architectural design problem and compared the tools for testing Optimus in the design
domain. We reported minimum, maximum, average and number of function evaluations of one
replication for each tool. Galapagos and Silvereye presented infeasible results, whereas Optimus and
Opossum found feasible solutions. However, Optimus discovered a much better fitness result than
Opossum. As a conclusion, we discuss advantages and limitations of Optimus in comparison to other
tools. The target audience of this paper is frequent users of parametric design modelling e.g., architects,
engineers, designers. The main contribution of this paper is summarized as follows. Optimus showed
that near-optimal solutions of architectural design problems can be improved by testing different types
of algorithms with respect to no-free lunch theorem. Moreover, Optimus facilitates implementing
different type of algorithms due to its modular system.

Keywords: grasshopper; optimization; differential evolution; architectural design; computational
design; performance based design; building performance optimization; single-objective optimization;
architectural design optimization; parametric design
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1. Introduction

1.1. The Necessity of Optimization in Architecture

Architectural design problems have an excessive number of design parameters. All possible
combinations of design parameters correspond to thousands of different design alternatives. It is
difficult to choose the desirable design within such a big search space. In addition, architectural design
requires different performance aspects to be satisfied as design objectives focus on various topics
(e.g., social, economic, physiological, health, safety, structural, cultural, sustainability, etc.) [1]. Some of
these performance aspects (e.g., energy, and daylight) require non-linear equations, which increase the
level of the complexity. All these refer that decision-making is highly important in the early stages of
the design process. Because, the decisions that are taken in the early design phases have a great impact
on the following design stages. As a result, they influence the overall performance and the appearance
of the constructed building. At this point, computational optimization techniques became a necessity
in architectural design.

Regarding the computational optimization techniques, metaheuristic algorithms can play a vital
role for not only presenting promising design alternatives but also for dealing with complexity [2]. On the
other hand, these algorithms do not guarantee to finding the global optimal solutions [3]. However,
they can present near-optimal results within a reasonable time. For a decision maker, providing a
near-optimal solution in a reasonable time can be more advantageous than presenting the optimal
solution within extremely long time. To discover desirable solutions, metaheuristics are usually inspired
by the natural processes (such as interactions within swarms and evolution over the generations).
Some of these metaheuristic algorithms are harmony search (HS) [4], particle swarm optimization
(PSO) [5], differential evolution (DE) [6,7], genetic algorithm (GA) [8], ant colony optimization (ACO) [9],
simulated annealing (SA) [10], and evolutionary algorithm (EA) [11]. According to current state of the
art, evolutionary computation and swarm optimization algorithms are the most popular metaheuristics
in architectural domain [2].

1.2. Performative Computational Architecture Framework

In order to investigate how the desirable solution can be found in the early phase of the design
process, a general framework called performative computational architecture (PCA) [1,2] is considered
in this paper. PCA proposes an iterative method based on form finding, performance evaluation,
and optimization as illustrated in Figure 1. The form-finding stage includes the geometric generation
using parameters in algorithmic modeling environments. The performance evaluation stage comprises
of the numeric assessments of performance aspects to evaluate how well the form meets with the
objectives. Optimization stage corresponds the metaheuristic algorithms for discovering desirable
design solutions within a systematic search process.
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1.3. Current Optimization Tools in Grasshopper

In this section, existing single objective optimization tools for grasshopper (GH) (available in
www.food4rhino.com) are reviewed. Algorithm applications for specific optimization problems (such
as topology optimization for structure) are not considered. In this context, Galapagos, Goat, Silvereye,
Opossum, Dodo, and Nelder–Mead optimization plug-ins, shown in Figure 2, are explained. Some of
these plug-ins have been compared in building optimization problems in the literature, that can be
found in [12–15].
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1.3.1. Galapagos

Galapagos [16] is one of the first released optimization plug-in for GH. The tool provides two
heuristic optimization algorithms, which are GA [8] and SA [10]. Author of the tool suggests SA for
rough landscape navigation, whereas evolutionary solver for finding reliable intermediate solutions.
Majority of the design optimization papers in the literature utilized Galapagos tool in dealing with
energy [17–19], daylight [20,21], both energy and daylight [22,23] and structure [24–26].

1.3.2. Goat

Goat [27] uses the NLopt library [28] in the graphical user interface of Galapagos. The tool
considers a mathematically-rigorous approach (gradient-free optimization algorithm) to reach fast and
deterministic results. Goat provides several optimization algorithms as well. These are constrained
optimization by linear approximation (COBYLA), bound optimization by quadratic approximation
(BOBYQA), subplex algorithm (Sbplx), the dividing rectangles algorithm (DIRECT), and controlled
random search 2 (CRS2). Very recently, Goat is used for building energy optimization [14] and structure
optimization [29,30].

1.3.3. Silvereye

Despite the gradient-free optimization and evolutionary computation, Silvereye [15] is
one of the swarm intelligence optimization plug-ins released for GH. The tool considers
ParticleSwarmOptimization.dll, which is a shared library containing an implementation of the core
version of the PSO. In the literature, Silvereye is used in the design optimization problems that are
focusing on energy [14], micro climate [31] and structural [29].

1.3.4. Opossum

Opossum [32] is the first model-based optimization tool for GH. The solver is based on an
open-source library for black-box optimization with costly function evaluations (RBFOpt) [33] such as
energy and daylight simulations. RBFOpt library uses the radial basis function with local search while
discovering satisfactory solutions with a small number of function evaluations. Opossum is used in
several design problems to deal with daylight [34], structure [29,30] and energy [14].

1.3.5. Dodo

Dodo [35] is a plug-in based on different implementation of optimization algorithms. These are
non-linear gradient free optimization based on NLopt library [28], stochastic gradient descent algorithm,
and swarm optimization. In addition, Dodo also provides several supervised and unsupervised neural
network algorithms.

1.3.6. Nelder–Mead Optimization

Nelder–Mead Optimization [36] is the first tool based on the Nelder–Mead method [37], a local
search-based optimization algorithm, in GH. Compared to heuristics, Nelder–Mead typically has
fewer function evaluations for computationally expensive models. In addition, the implementation of
Nelder–Mead Optimization also allows considering multiple constraints using Kreisselmeier-Steinhauser
function [38].

1.4. This Study: Optimus

In the field of computer science, different types of metaheuristic algorithms have been suggested
to solve real-parameter optimization problems by researchers and engineers in many years. As a
common approach, the performance of each developed algorithm is tested by using a set of the standard
benchmark problems such as Sphere, Schwefel’s, Rosenbrock’s, Rastrigin’s, etc. For real-world problems,
this test is done by using benchmark instances. The main reason for comparing algorithms is based on
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the no free lunch theorem (NFLT) [39]. The performance of an optimization algorithm depends on the
nature of the problem. In other words, one algorithm can outperform another algorithm in a specific
problem. Thus, NFLT argues that there is no global optimization algorithm, which can present the best
results for all real-world and benchmark problems.

In the field of architecture, testing different types of algorithms for the same architectural design
problem is not a common approach. One of the most important reason of this fact is that computer
aided design (CAD) tools of architects does not include optimization algorithms in a wide range.
According to the current state of the art [40], only 3% of total users of optimization tools are architect in
the domain of building performance optimization. This fact clearly shows that there is a little attention
on using optimization methods within the CAD programs. Therefore, this paper introduces a new
optimization solver, called Optimus, with significant features listed below:

• Compatible with parametric design models created in GH [16] algorithmic modeling for
Rhinoceros [41] CAD software.

• Supports PCA framework outlined in previous section.
• Implements a self-adaptive [42] differential evolution algorithm with ensemble of mutation

strategies [43] (jEDE), explained in Section 3.
• Presents the highest performance when compared to other optimization algorithms available in

GH reviewed in Section 1.3.

# The performance of the Optimus is tested by benchmark suite, which consists of standard
single objective unconstrained problems and some of the test problems proposed in IEEE
Congress on Evolutionary Computation 2005 (CEC 2005) [44]. Problem formulations and
optimization results of these benchmarks are given in Section 4.1.

# Finally, Optimus is tested with a design optimization problem. The problem formulation
and optimization results are given in Section 4.2.

The development process of the Optimus is illustrated in Figure 3.
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2. Self-Adaptive Differential Evolution Algorithm with Ensemble of Mutation Strategies

Metaheuristics are one of the most used optimization methods in the domain of architectural
design [2]. These algorithms can avoid local minima and maxima while coping with real-parameters
in large search spaces. In addition, metaheuristics can present near-optimal results when compared to
other direct search methods in a reasonable time [3].

Swarm intelligence (SI) and evolutionary algorithms (EAs) are the most common sub-categories
of metaheuristics. These algorithms are inspired by nature using different search strategies. SI is based
on interactions of swarms such as flocks of birds, schools of fish, ants and bees. Some examples of SI
can be shown as Ant Colony Optimization (ACO) [9] and Particle Swarm Optimization (PSO) [45,46].
EAs are in the class of population-based metaheuristic optimization algorithms. EAs are inspired by
the mechanisms of biological evolution that mimics the selection and reproduction processes of living
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organisms. EAs are very effective to deal with NP-hard problems. Some examples of EAs are Genetic
Algorithms (GAs) [8,47]. Genetic Programming (GP) [48], Evolution Strategy (ES) [49], and DE [7].

DE, which is introduced by Storn and Price [7], is potentially one of the most powerful stochastic
real-parameter optimization algorithms in the literature. The algorithm can converge very fast in
solving real-world problems such as in scheduling [50], optics [51], communication [6], power
systems [52], pattern recognition [53] and recently in architectural design [54,55]. A recent survey by
Das and Suganthan [56,57] clearly explained the history of DE and its success. DE algorithm has many
advantages. The simple code structure of the algorithm facilitates its implementation. Other advantage
is that the number of control parameters in DE is few, which are crossover rate (CR), mutation rate
(MR), and population size (NP). In classical DE, these control parameters are constant during the whole
optimization process. However, a simple change in MR or CR generation strategies can significantly
improve the performance of the algorithm. Therefore, some variants of DE in the literature focus on
parameter settings as presented in [42,58]. Moreover, DE can tackle the large scale and computationally
expensive optimization problems. Because, the space complexity of DE is low as mentioned in [59].

2.1. The Basic Differential Evolution

The classical DE has four main stages. There is a recursive process among second, third and fourth
steps as follows:

1. Initialization for generating the initial target population once at the beginning.
2. Reproduction with mutation for generating the mutant population by using the target population.
3. Reproduction with crossover for generating the trial population by using the mutant population.
4. Selection to choose the next generation among trial and target populations using one-to-one

comparison. In each generation, individuals of the current population become the target population.

2.1.1. Initialization

In the basic DE algorithm, the initial target population has NP individuals with a D-dimensional
real-parameter vectors. Each vector is obtained randomly and uniformly within the search space

restricted by the given minimum and maximum bounds:
[
xmin

ij , xmax
ij

]
. Thus, the initialization of j-th

component of i-th vector can be defined as:

x0
i j = xmin

ij +
(
xmax

ij − xmin
ij

)
× r, (1)

where x0
i j is the i-th target population at generation g = 0; and r is a uniform random number in the

range [0, 1].

2.1.2. Mutation

The difference vector in mutation operator is one of the main strengths of DEs [7]. Hence, DE
differs from other EAs since it relies on a difference vector with a scale factor MR. The mutation process
is the first step to generate new solutions. In order to obtain mutant population, two individuals are
randomly chosen from the target population. The weighted difference of these individuals is added to
a third individual from the target population as in Equation (2).

vg
ij = xg−1

kj + MR×
(
xg−1

l j − xg−1
mj

)
(2)

where k, l, m are three randomly chosen individuals from the target population such that
(k , l , m , i ∈ (1, .., NP)) and j = 1, .., D. MR > 0 is a mutation scale factor influencing the differential
variation between two individuals. vg

ij is the mutant population in generation g.



Algorithms 2019, 12, 141 7 of 27

2.1.3. Crossover

To obtain the trial population, a binomial crossover is applied to each variable. If a randomly and
uniformly generated number r [0, 1] is less than or equal to the crossover rate (CR), the individuals
from mutant population is chosen, otherwise target individuals are chosen. Simply, trial population is
generated by recombining mutant individuals with their corresponding target individuals as follows:

ug
ij =

vg
ij if rg

ij ≤ CR or j = D j

xg−1
i j otherwise

, (3)

where the index D j is a randomly chosen dimension from ( j = 1, .., D). It makes sure that at least

one parameter of the trial population ug
ij will be different from the target population xg−1

i j . CR is a

user-defined crossover constant in the range [0, 1], and rg
ij is a uniform random number in the interval

[0, 1] whereas ug
ij is the trial population at generation g.

When trial population is obtained, parameter values might violate search boundaries. Therefore,
the solution can be restricted. For this reason, parameter values that are violating the search range are
randomly and uniformly re-generated as in Equation (4).

xg
ij = xmin

ij +
(
xmax

ij − xmin
ij

)
× r. (4)

2.1.4. Selection

For the next generation, selection process is realized, which is based on the survival of the fittest
among the trial and target populations. The population that has the lower fitness value is chosen
according to one-to-one comparison, as in Equation (5).

xg
i =

ug
i if f

(
ug

i

)
≤ f

(
xg−1

i

)
xg−1

i otherwise
. (5)

2.2. Self-Adaptive Approach

In this paper, self-adaptive DE [42], so called jEDE, is employed. The jDE is very simple, effective
and converges much faster than the basic DE, especially when the dimensionality of the problem is
high or the problem is complex. In the jDE, each individual has its own MRi and CRi values. In this
paper, they are initially taken as CRi = 0.5 and MRi = 0.9 and they are updated as follows:

MRg
i =

MRl + r1.MRu if r2 < t1

MRg−1
i otherwise

(6)

CRg
i =

r3 if r4 < t2

CRg−1
i otherwise

, (7)

where r j ∈ {1, 2, 3, 4} are uniform random numbers in the range [0, 1]. t1 and t2 represent the probabilities
to adjust the MR and CR. They are taken as t1 = t2 = 0.1 and MRl = 0.1 and MRu = 0.9.

2.3. Ensemble Approach

In addition to the self-adaptive approach, an ensemble approach [43] is employed in the jDE, so
called jEDE. This means that instead of using one type of mutation strategy with fixed parameter
setting as in the basic DE, each mutant individual is generated according to different mutation strategies
with different parameter settings. In this approach, each dimension has values pool for competition
of producing better future offspring according to their success in the past generations. In this paper,
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following mutation strategies (Mi) are considered as in Equations (8)–(10). In M1, the individuals that
formed the mutant population are randomly selected. In M2 and M3, strategies are benefitted from the
information of the best solution (xbest) so far.

if STRi = 0 M1 : v j,t+1
i = x j,t

k + MRi ×
(
x j,t

l − x j,t
m

)
(8)

if STRi = 1 M2 : v j,t+1
i j = x j,t

best + MRi ×
(
x j,t

l − x j,t
m

)
(9)

if STRi = 2 M3 : v j,t+1
i = x j,t

i + MRi ×
(
x j,t

best − x j,t
i

)
+ F×

(
x j,t

k − x j,t
l

)
, (10)

where k, l, m are three randomly selected individuals from the target population such that
(k , l , m , i ∈ (1, .., NP)) and j = 1, .., D. MRi > 0 is a mutation scale factor, in our jEDE, it is
generated by using self-adaptive procedure. STRi is the strategy used in each population to choose
different mutation strategies. The pseudo code of the jEDE is given in Algorithm 1.

Algorithm 1. The self-adaptive differential evolution algorithm with ensemble of mutation strategies.

1: Set parameters g = 0, NP = 100, Mmax = 4
2: Establish initial population randomly
3: Pg =

{
xg

1 , .., xg
NP

}
with xg

i =
{
xg

i1, .., xg
iD

}
4: Assign a mutation strategy to each individual randomly
5: Mi = rand()%Mmax f or i = 1, .., NP
6: Evaluate population and find xg

best
7: f (Pg) =

{
f
(
xg

1

)
, .., f

(
xg

NP

)}
8: Assign CR[i] = 0.5 and F[i] = 0.9 to each individual
9: Repeat the following for each individual xg

i
10: Obtain vg

i = Mi
(
xg

i

)
11: Obtain ug

i = CRi
(
xg

i , vg
i

)
12: Obtain xg

i =

ug
i if f

(
ug

i

)
≤ f

(
xg−1

i

)
xg−1

i otherwise

13: If f
(
ug

i

)
> f

(
xg−1

i

)
, Mi = rand()%Mmax

14: If f
(
xg

i

)
≤ f

(
xg

best

)
, xg

best = xg
i

15: Update Fg
i and CRg

i
16: If the stopping criterion is not met, go to Lines 9–15
17: Else stop and return πbest

3. Optimus

Optimus is a new optimization plug-in (https://www.food4rhino.com/app/optimus) developed
for GH. The beta version (1.0.0) of the plug-in implements the self-adaptive [42] differential evolution
algorithm with ensemble of mutation strategies [43] (jEDE). The algorithm is coded in C#, which is one
of the available programming languages for custom scripting component in the GH. Optimus is based
on a modular approach with many C# items. Every step of the optimization process can be observed
within these items. Figure 4 shows the eight components of Optimus, which are categorized under
three main titles, as follows:

1. Optimus consists of

a. ReadMe (giving details about Optimus),
b. jEDE (using jEDE algorithm, generating mutant and trial populations)
c. One-to-one (enabling selection process for next generation)

2. Initialize consists of

https://www.food4rhino.com/app/optimus
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a. GetBound (taking the boundaries of design variables in D dimensions)
b. InitPop (generating initial population for NP population size in D dimensions)

3. Utilities consists of

a. xBest (finding chromosomes that has the lowest fitness value in the population)
b. Merge (collecting the fitness, population, xBest and optimization parameters)
c. Unmerge (separating the fitness, population, xBest and optimization parameters)
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To manage the main loop of the Optimus, the HoopSnake component [60] is used for enabling
feedback loops (recursive executions) within the GH.

In the Optimus, each of the eight components is transferred to GH clusters by defining collections
of inputs and outputs as shown in Figure 5. This gives a flexibility to the user for improving the C#
code according to his/her own implementation purposes. As next step, each cluster is converted to GH
user object files, which are provided in the supplementary materials. By this way, Optimus can be
used as a plug-in of the GH.
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The user needs to follow several steps for using Optimus:
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1. Place GetBound on the GH canvas and connect with number sliders.
2. Define the population size.
3. Get InitPop for initialization using population size and output of GetBound.
4. Evaluate initial fitness using the output of InitPop.
5. Internalize the initial fitness.
6. Place xBest on the GH canvas.
7. Get Merge and connect with internalized initial fitness and outputs of InitPop and xBest.
8. Connect Merge with starting input (S) of HoopSnake.
9. Place UnMerge on the GH canvas and connect with feedback output (F) of HoopSnake.
10. Get jEDE and connect outputs of UnMerge, InitPop, GetBound.
11. Evaluate trial fitness using the output of jEDE.
12. Get One-to-One and connect with initial fitness, trial fitness and outputs of jEDE.
13. Place xBest and connect outputs of One-to-one for updating the new best chromosome.
14. Get Merge and connect outputs of jEDE, One-to-one, and xBest.
15. Complete the loop by connecting the output of Merge to the data input (D) of the HoopSnake.

These steps are visualized in Figure 6 and an example file is shared in supplementary materials.

Algorithms 2019, 12, x FOR PEER REVIEW 10 of 30 

The user needs to follow several steps for using Optimus: 

1. Place GetBound on the GH canvas and connect with number sliders.  
2. Define the population size. 
3. Get InitPop for initialization using population size and output of GetBound.  
4. Evaluate initial fitness using the output of InitPop. 
5. Internalize the initial fitness. 
6. Place xBest on the GH canvas. 
7. Get Merge and connect with internalized initial fitness and outputs of InitPop and xBest. 
8. Connect Merge with starting input (S) of HoopSnake. 
9. Place UnMerge on the GH canvas and connect with feedback output (F) of HoopSnake. 
10. Get jEDE and connect outputs of UnMerge, InitPop, GetBound. 
11. Evaluate trial fitness using the output of jEDE. 
12. Get One-to-One and connect with initial fitness, trial fitness and outputs of jEDE. 
13. Place xBest and connect outputs of One-to-one for updating the new best chromosome.  
14. Get Merge and connect outputs of jEDE, One-to-one, and xBest. 
15. Complete the loop by connecting the output of Merge to the data input (D) of the HoopSnake. 

These steps are visualized in Figure 6 and an example file is shared in supplementary materials. 

 
Figure 6. Visualization of the Optimus loop. 

To save some computation time, Optimus does not update number sliders in the GH. During 
the optimization process of the design problem, the geometry is generated with initial and trial 
populations. For this reason, 𝑁𝑃 size of geometries is observed in each iteration. During the initial 
stage, various types of design alternatives are generated. However, when the Optimus is converged, 
similar geometries are observed, as shown in Figure 7.  

 
 

Figure 6. Visualization of the Optimus loop.

To save some computation time, Optimus does not update number sliders in the GH. During
the optimization process of the design problem, the geometry is generated with initial and trial
populations. For this reason, NP size of geometries is observed in each iteration. During the initial
stage, various types of design alternatives are generated. However, when the Optimus is converged,
similar geometries are observed, as shown in Figure 7.
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4. Experiments

In this section, we explain how the experiments were performed to test the performance of the
Optimus in comparison to the other chosen plug-ins. As mentioned before, the evaluations are done by
using standard benchmark problems in the literature and one architectural design problem proposed
by the authors.

4.1. Benchmark Suite

The performance of the Optimus (jEDE algorithm) was firstly tested by using the following
benchmark suite, which consists of 20 test functions. The first ten functions in the benchmark suite were
classical test problems that have been commonly used in the literature. The remaining ten functions
are taken from the benchmark suit presented in the CEC 2005 Special Session on Real-Parameter
Optimization. These functions have been modified from the classical test problems in order to locate
their global optimum under some circumstances such as shifted and/or rotated landscape, optimum
placed on bounds, Gaussian noise and/or bias added etc. [44]. This fact makes these functions more
difficult to solve than the classical test functions. In our test suit, F1 to F5 are unimodal, F6 to F10 are
multimodal functions. All the benchmark functions are minimization problems. Our benchmark suite
is presented in Table 1. These functions are summarized in Appendix A.
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Table 1. Benchmark Suite.

Notation Function

Fsph Sphere Function
Fros Rosenbrock’s Function
Fack Ackley’s Function
Fgrw Griewank’s Function
Fras Rastrigin’s Function
Fsch Generalized Schwefel’s Problem 2.26
Fsal Salomon’s Function
Fwht Whitely’s Function
Fpn1 Generalized Penalized Function 1
Fpn2 Generalized Penalized Function 2
F1 Shifted Sphere Function
F2 Shifted Schwefel’s Problem 1.2
F3 Shifted Rotated High Conditioned Elliptic Function
F4 Shifted Schwefel’s Problem 1.2 With Noise in Fitness
F5 Schwefel’s Problem 2.6 With Global Optimum on Bounds
F6 Shifted Rosenbrock’s Function
F7 Shifted Rotated Griewank’s Function without Bounds
F8 Shifted Rotated Ackley’s Function with Global Optimum on Bounds
F9 Shifted Rastrigin’s Function
F10 Shifted Rotated Rastrigin’s Function

4.1.1. Experimental Setup and Evaluation Criteria

All the benchmark functions were coded in C# as individual components in the GH environment.
These components are also available in supplementary materials as GH files to contribute evaluations
of further developed architectural design optimization tools. Furthermore, all the benchmark functions
ran on a computer that has Intel Core I7-6500U CPU @ 2.50 GHz with 16 GB RAM. Both the number
of dimension D and the population size NP are taken as 30 to limit the search space. To make a fair
comparison, termination criteria defined as 30 min for each component. For each problem instance,
five replications carried out for each function and for each tool (thus, the total run time is 12,000 min).
For evaluating the performance of the algorithms (of the components), we simply reported f x_min,
f x_max and f x_avg where f x_min is the minimum fitness value of function x, f x_max is the maximum
fitness value of function x and f x_avg is the average fitness value of function x, after all replications
for each tool. The maximum number of fitness evaluations (FES) within 30 min for each tool are also
recorded, which means how many times the fitness is tested during each 30-min optimization process.

4.1.2. Experimental Results

As mentioned before, Galapagos employs GA, SilverEye (v1.1.0) uses PSO and Opossum (v1.5.0)
considers RBFOpt for enabling architectural design optimization in the GH environment. We compared
results of Optimus, which uses jEDE, with those three optimization tools to present its performance.
In addition, all the runs for each component and for each function were taken by the authors. Table 1
shows the fitness results of Optimus, Opossum, SilverEye, and Galapagos together with optimal fitness
values of each function. Table 2 clearly indicates the superiority of the Optimus over other optimization
tools such that it yielded the lowest minimum function values ( f x_min) in nineteen (19) functions
out of twenty (20) functions, significantly. On the other hand, Galapagos favors Optimus in only one
function (F8) with a very small difference. Maximum ( f x_max) and average ( f x_avg) function values
in Table 1 further justify the better performance of the Optimus in such a way that the maximum and
average function values of Optimus are closer to optimal fitness values in nineteen (19) functions
than those yielded by other tools. Furthermore, the average number of function evaluations (FES)
within thirty minutes in each problem were the highest in Optimus. This clearly shows high margins
between Optimus and other components where Optimus was tremendously faster in each iteration.



Algorithms 2019, 12, 141 13 of 27

For example, when solving Fsph, the Optimus (jEDE) approximately realized 5844 FES/minute, whereas
GA made 1643 FES/minute, PSO made 1205 FES/minute, RBFOpt made 85 FES/minute. These facts
explicitly imply the superiority of Optimus over other components in solving benchmark suite.

Table 2. Comparison of Optimus, Opossum, Silvereye, Galapagos (D = 30, NP = 30, termination: 30 min).

Optimus_jEDE Opossum_RBFOpt SilverEye_PSO Galapagos_GA Optimal

Fsph

f (x)_min 0.0000000 × 100 1.4000000 × 10−5 5.9000000 × 10−5 1.1709730 × 100

0
f (x)_max 0.0000000 × 100 5.8000000 × 10−5 2.7057298 × 101 4.4052130 × 100

f (x)_avg 0.0000000 × 100 3.6400000 × 10−5 5.4171618 × 100 2.7928586 × 100

Std.Dev. 0.0000000 × 100 1.8039956 × 10−5 1.0820072 × 101 1.1492298 × 100

FES 194,520 3225 31,560 34,260

Fros

f (x)_min 0.0000000 × 100 2.7485056 × 101 1.6689612 × 101 6.0863438 × 103

0
f (x)_max 3.9866240 × 100 2.1030328 × 102 5.8965910 × 104 2.2859534 × 104

f (x)_avg 2.3919744 × 100 9.0892522 × 101 1.3859753 × 104 1.3060872 × 104

Std.Dev. 1.9530389 × 100 7.1919037 × 101 2.2886020 × 104 6.7095472 × 103

FES 149,460 882 26,700 35,070

Fack

f (x)_min 0.0000000 × 100 3.3550000 × 10−3 1.3404210 × 100 5.7470000 × 10−2

0
f (x)_max 1.3404210 × 100 2.4098540 × 100 3.7340120 × 100 1.0270860 × 100

f (x)_avg 2.6808420 × 10−1 1.3795174 × 100 2.2482728 × 100 4.8037520 × 10−1

Std.Dev. 5.3616840 × 10−1 8.5713298 × 10−1 9.1850828 × 10−1 4.0392221 × 10−1

FES 206,370 1447 38,490 28,710

Fgrw

f (x)_min 0.0000000v 1.5840000 × 10−3 3.2081000 × 10−2 3.4407200 × 10−1

0
f (x)_max 0.0000000 × 100 1.7086000 × 10−2 2.6292800 × 10−1 1.0657060 × 100

f (x)_avg 0.0000000 × 100 7.6638000 × 10−3 1.2049020 × 10−1 8.2474220 × 10−1

Std.Dev. 0.0000000 × 100 5.6121253 × 10−3 8.1064770 × 10−2 2.6131521 × 10−1

FES 151,110 1089 26,610 37,410

Fras

f (x)_min 4.9747950 × 100 2.5870757 × 101 3.3829188 × 101 7.0535550 × 100

0
f (x)_max 2.3879007 × 101 4.1789542 × 101 6.1687356 × 101 2.9072445 × 101

f (x)_avg 1.3332448 × 101 3.6218407 × 101 4.8355074 × 101 1.5404780 × 101

Std.Dev. 6.7363920 × 100 5.4349940 × 100 1.1424086 × 101 9.1077975 × 100

FES 206,520 4149 37,650 51,480

Fsch

f (x)_min 2.3687705 × 102 1.2877414 × 103 4.1089621 × 103 1.9550066 × 103

0
f (x)_max 4.7375372 × 102 4.0111803 × 103 6.1589437 × 103 2.7977670 × 103

f (x)_avg 4.0269072 × 102 2.7169368 × 103 5.2658793 × 103 2.3201102 × 103

Std.Dev. 9.4750668 × 101 8.8809862 × 102 6.6677783 × 102 2.8681876 × 102

FES 148,140 1487 27,210 35,940

Fsal

f (x)_min 1.9987300 × 10−1 2.8070190 × 100 2.9987300 × 10−1 1.4998750 × 100

0
f (x)_max 4.9987300 × 10−1 4.3000810 × 100 4.9987300 × 10−1 2.8375760 × 100

f (x)_avg 3.1987300 × 10−1 3.4413810 × 100 3.7987300 × 10−1 2.0682340 × 100

Std.Dev. 1.1661904 × 10−1 5.6623101 × 10−1 7.4833148 × 10−2 6.1557512 × 10−1

FES 201,720 4769 38,640 51,360

Fwht

f (x)_min 2.3704633 × 101 9.6592754 × 102 1.8455490 × 102 2.3632742 × 105

0
f (x)_max 2.4040716 × 102 1.6904059 × 103 6.2776811 × 102 5.5055000 × 108

f (x)_avg 1.0789137 × 102 1.2610498 × 103 4.0698894 × 102 2.7440867 × 108

Std.Dev. 7.4951993 × 101 2.6984398 × 102 1.6923390 × 102 2.2575944 × 108

FES 146,640 728 23,250 29,730

Fpn1

f (x)_min 0.0000000 × 100 2.9057000 × 10−2 3.1283800 × 10−1 1.4510000 × 10−3

0
f (x)_max 0.0000000 × 100 9.0392970 × 100 1.3487570 × 100 1.7632000 × 10−2

f (x)_avg 0.0000000 × 100 2.8243854 × 100 6.7680180 × 10−1 6.0638000 × 10−3

Std.Dev. 0.0000000 × 100 3.1774566 × 100 4.2868737 × 10−1 6.0403379 × 10−3

FES 203,880 1394 39,420 57,720

Fpn2

f (x)_min 0.0000000 × 100 2.0400434 × 101 1.0000000 × 10−11 1.8037300 × 10−1

0
f (x)_max 1.0987000 × 10−2 2.8693232 × 101 9.3079800 × 10−1 2.7208440 × 100

f (x)_avg 2.1974000 × 10−3 2.5384324 × 101 2.2552480 × 10−1 1.0041520 × 100

Std.Dev. 4.3948000 × 10−3 3.4851206 × 100 3.5679494 × 10−1 9.4298611 × 10−1

FES 148,380 639 29,040 41,520

F1

f (x)_min −4.5000000 × 102
−4.4999898 × 102 2.6232595 × 102

−4.4995998 × 102

−450
f (x)_max −4.5000000 × 102

−4.4999478 × 102 8.0377273 × 103
−4.4988406 × 102

f (x)_avg −4.5000000 × 102
−4.4999680 × 102 4.0824562 × 103

−4.4992015 × 102

Std.Dev. 0.0000000 × 100 1.4829922 × 10−3 2.9460423 × 103 3.0428108 × 10−2

FES 198,060 6156 45,580 66,180
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Table 2. Cont.

Optimus_jEDE Opossum_RBFOpt SilverEye_PSO Galapagos_GA Optimal

F2

f (x)_min −4.5000000 × 102 3.4590652 × 104 −3.8035693 × 102 6.8476195 × 103

−450
f (x)_max −4.5000000 × 102 4.7978174 × 104 5.2590674 × 102 1.2302281 × 104

f (x)_avg −4.5000000 × 102 4.3226072 × 104 −1.2838464 × 102 1.0174618 × 104

Std.Dev. 0.0000000 × 100 4.9030645 × 103 3.3183646 × 102 1.8557926 × 103

FES 146,010 1061 33,840 50,160

F3

f (x)_min 6.0045376 × 104 1.5561000 × 107 1.9264000 × 106 1.1250000 × 107

−450
f (x)_max 2.4850013 × 105 7.5084000 × 107 8.0820000 × 106 2.7772000 × 107

f (x)_avg 1.2857393 × 105 3.7380600 × 107 4.5525000 × 106 1.7212200 × 107

Std.Dev. 6.4175884 × 104 2.0647812 × 107 2.0206526 × 106 5.6281541 × 106

FES 205,260 1293 48,030 66,000

F4

f (x)_min −4.5000000 × 102 2.8373782 × 104 −4.2715712 × 102 7.8877685 × 103

−450
f (x)_max −4.5000000 × 102 3.9404224 × 104 4.0484178 × 103 1.1191542 × 104

f (x)_avg −4.5000000 × 102 3.2359668 × 104 5.1724092 × 102 9.4535270 × 103

Std.Dev. 0.0000000 × 100 4.0412734 × 103 1.7663033 × 103 1.2966977 × 103

FES 147,240 1055 35,610 53,520

F5

f (x)_min 9.3362001 × 102 4.7527012 × 103 7.5856684 × 103 1.8506721 × 104

−310
f (x)_max 2.5603668 × 103 5.8813877 × 103 1.2910221 × 104 2.4057172 × 104

f (x)_avg 2.0333032 × 103 5.3824799 × 103 9.4390617 × 103 2.0151105 × 104

Std.Dev. 570.1512256 438.2070353 2031.289127 2004.100331
FES 195,720 1891 47,550 67,560

F6

f (x)_min 3.9000000 × 102 1.4168473 × 103 5.0073093 × 102 9.7856127 × 102

390
f (x)_max 3.9398662 × 102 1.3904779 × 104 4.1540000 × 109 9.6995775 × 103

f (x)_avg 3.9159465 × 102 8.7212119 × 103 9.8402870 × 108 5.6395846 × 103

Std.Dev. 1.9530389 × 100 4.6035484 × 103 1.5972516 × 108 3.5378379 × 103

FES 148,260 687 33,540 48,810

F7

f (x)_min 4.5162886 × 103 4.5162896 × 103 5.8669417 × 103 4.5172240 × 103

−180
f (x)_max 4.5162886 × 103 4.5162985 × 103 7.2432580 × 103 4.5290168 × 103

f (x)_avg 4.5162886 × 103 4.5162936 × 103 6.5251090 × 103 4.5222540 × 103

Std.Dev. 0.0000000 × 100 3.1911420 × 10−3 5.4380701 × 102 4.7496031 × 100

FES 200,820 10,108 42,060 58,290

F8

f (x)_min −1.1905178 × 102
−1.1910166 × 102

−1.1901775 × 102
−1.1940297 × 102

−140
f (x)_max −1.1902135 × 102

−1.1876717 × 102
−1.1892500 × 102

−1.1906700 × 102

f (x)_avg −1.1903319 × 102
−1.1889866 × 102

−1.1899553 × 102
−1.1919711 × 102

Std.Dev. 1.0538581 × 10−2 1.1070562 × 10−1 3.5483336 × 10−2 1.4127484 × 10−2

FES 149,670 2018 35,580 52,020

F9

f (x)_min −3.1706554 × 102
−2.5827181 × 102

−2.3690804 × 102
−3.1677970 × 102

−330
f (x)_max −3.1209075 × 102

−2.3567358 × 102
−1.6682751 × 102

−3.1164785 × 102

f (x)_avg −3.1527462 × 102
−2.4625749 × 102

−1.8917798 × 102
−3.1499413 × 102

Std.Dev. 1.7117897 × 100 8.0334497 × 100 2.5285354 × 101 1.8617799 × 100

FES 212,160 5577 47,610 67,560

F10

f (x)_min −2.7030257 × 102
−2.3528777 × 102

−1.3299956 × 102 4.0215414 × 101

−330
f (x)_max −2.2751946 × 102

−1.3298172 × 102
−8.1262211 × 101 1.8543670 × 102

f (x)_avg −2.5139841 × 102
−1.8578676 × 102

−1.0572303 × 102 1.1181316 × 102

Std.Dev. 1.4307998 × 101 3.9394042 × 101 1.8528544 × 101 5.7458318 × 101

FES 146,820 1192 35,220 53,070

Results presented in Table 1 are provided in supplementary materials containing minimum
fitness values of each replication, as well as their corresponding chromosomes. Considering f x_min,
convergence of standard benchmarks is presented in Figure 8, whereas convergence of CEC 2005
benchmarks is given in Figure 9.
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step, using the base surface, we generated the frame structure using truss structure component 
provided by LunchBox [61] plugin, which consists of several components using different geometrical 
shapes. In this component, the structure on the base surface is controlled by three parameters. These 
are division amounts on u and v directions, and the depth of the truss system. Finally, generated 
frame structure is combined with Karamba 3D plug-in [62], which provides evaluation of parametric 
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4.2. Design Optimization Problem

In this part, we present a design problem for a frame structure, which has a span for 30 m by
25 m. Before generating the frame structure, we executed a base surface, which controls the shape of
the design. Therefore, a curved surface having 7.5 m height, five axes, and 25 controlling points is
generated. Afterwards, 65 parameters are defined for 5 axes to change the shape of the base surface, so
the shape of the frame structure. Points on ground level have two parameters for x and y directions,
whereas other points have three parameters for changing the positions in all directions. In the next step,
using the base surface, we generated the frame structure using truss structure component provided by
LunchBox [61] plugin, which consists of several components using different geometrical shapes. In this
component, the structure on the base surface is controlled by three parameters. These are division
amounts on u and v directions, and the depth of the truss system. Finally, generated frame structure is
combined with Karamba 3D plug-in [62], which provides evaluation of parametric structural models in
GH. Structural evaluation process is mentioned on the following lines. Development of the parametric
model is illustrated in Figure 10.
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To evaluate each generated structure alternative, each line in the structure model is defined
as beam, whereas each point located on the ground level is defined as support points. In addition,
cross-section and its parameters are also defined by Karamba just before the evaluation process. For the
problem on hand, rectangular cross-section is defined using three parameters. These are height, upper
and lower widths of the cross-section. To finalize the necessary inputs, we defined gravity and lateral
loads. As gravity load, we considered the distribution of the total mass for each intersecting point. For
the lateral load, we applied 2 kN on each intersecting point, as well. The material type of the model is
assigned as steel. An example of evaluated model is shown in Figure 11.
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x69 Height of the cross-section 10.00 30.00 Continues 
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Figure 11. Evaluation of the structure model.

To sum up, 70 parameters are used to define the design optimization problem. This corresponds
approximately 1.333 × 10177 alternatives in the search space. The reason of giving such a freedom is
to investigate the impact of the design on the performance. Moreover, design problems are different
than mathematical benchmark problems. A design problem can have more parameters due to an
optimization task (e.g., optimizing the layout scheme and the façade design of a building to find the
most desirable plan scheme with the lowest energy consumption). Properties of design parameters are
given in Table 3. To show the divergence of the design problem, some of the frame structure alternatives
are illustrated in Figure 12.

Table 3. Properties of design parameters.

Notation Design Parameter Min Max Type

x1–x13 Coordinates of control points in axis 1 −2.00 2.00 Continues
x14–x26 Coordinates of control points in axis 2 −2.00 2.00 Continues
x27–x39 Coordinates of control points in axis 3 −2.00 2.00 Continues
x40–x52 Coordinates of control points in axis 4 −2.00 2.00 Continues
x53–x65 Coordinates of control points in axis 5 −2.00 2.00 Continues

x66 Division amount on u direction 3 10 Discrete
x67 Division amount on v direction 3 10 Discrete
x68 Depth of the truss 0.50 1.00 Continues
x69 Height of the cross-section 10.00 30.00 Continues
x70 Upper and lower width of the cross-section 10.00 30.00 Continues
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Objective function, which is minimizing the mass (m) subject to displacement (v), is formulated
as follows:

Min (m) where m is given by

m =

j∑
i=1

Wi, (11)

where Wi is the weight of ith element of the frame structure and j is the total number of the frame
structure elements.

Subject to:
v ≤ 0.1m (12)

v =
F
K

, (13)

where F is the loading force, and K is the bending stiffness of the frame structure. To compare the
optimization results of Optimus with others, we defined a penalty function by combining m and v
as follows:

m =

{
m if v ≤ 0.1
100 ∗m o.w.

. (14)

To sum up, for safety reasons, the final design should have minimum 0.1 m displacement. For this
reason, displacement result that has smaller than 0.1 m is a feasible solution. In addition, for minimizing
construction cost, the objective is defined as the minimization of the mass. Therefore, the final design
should have the smallest amount of steel usage. The higher the mass is the lower the displacement,
and the other way around.

4.2.1. Experimental Setup and Evaluation Criteria

The design optimization problem ran on a computer that had Intel Core I7-6500U CPU @ 2.50 GHz
with 16 GB RAM. The number of dimensions D was taken as 70, whereas the population size NP was
taken as 50. As such the CEC 2005 benchmark problems, the termination criteria was determined as
30 min for each run. For the instance on hand, only one replication carried out for each optimization
tool. To evaluate the performance of different optimization tools, we report f x_min, which is the
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minimum fitness value of the design problem, and g(x), which is the constraint value of the minimum
fitness. The maximum number of fitness evaluations (FES) within 30 min for each tool are also recorded,
which means how many times the fitness is evaluated during the optimization process. This problem
definition is also available in supplementary materials as GH file to contribute evaluations of further
developed architectural design optimization tools.

4.2.2. Design Results

After 30 min run for each tool in GH, overview of optimization results is given Table 4. Convergence
graph for Optimus, Opossum, SilverEye and Galapagos is also given in Figure 13. In addition, final
designs proposed by each algorithm are also illustrated in Figure 14. Based on these results, Optimus
and Opossum found feasible solutions, whereas SilverEye and Galapagos discovered infeasible
alternatives. Looking at feasible solutions, there is a significant difference between jEDE and RbfOpt.
Optimus found smaller mass amount than Opossum. During the optimization process, we also
observed that Optimus evaluated fitness function more than other tools. From the point of proposed
design alternatives, Galapagos and SilverEye found bigger frame structures with smaller profile
dimensions. This causes an increment on both displacement and mass. On the other hand, Opossum
presented similar size with Galapagos and Silvereye, but bigger dimension sizes for profile. This
suggests smaller amount of displacement. However, the final solution has more than 22 tons of steel.
From the point of Optimus, the final design alternative presents the smallest frame structure having
small profile sizes. This gives not only an advantage on displacement, but also provides a design
alternative having smaller amount of steel comparing with other algorithms. A parametric model with
70 decision variables is a challenging optimization problem in the domain of architecture. From this
perspective, the impact of self-adaptive parameter update, and ensemble of mutation strategies can be
seen for the architectural design problem.

Table 4. Comparison of Optimus, Opossum, Silvereye, Galapagos (D = 70, NP = 50, termination: 30 min).

Optimus jEDE Opossum RBFOpt Silve Eye_PSO Galapagos GA

Design
problem

f (x)_min 6.21637 × 103 2.25410 × 104 6.89062 × 105 6.74560 × 105

g(x) 0.0994 0.0996 0.6674 0.9273
FES 31,800 5102 17,100 19,000
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Results presented in Table 3 are provided in supplementary materials containing minimum fitness
values, and their corresponding chromosomes. The best result discovered by Optimus is illustrated in
Figure 15.
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5. Discussion

In this paper, we presented a new optimization tool called Optimus, which implements jEDE
algorithm, for GH. We tested the performance of Optimus using 20 benchmark problems and a design
optimization problem against GA, PSO, RBFOpt. Experimental results show that jEDE outperforms
these algorithms by finding better fitness values. There are several reasons to explain this fact. First,
Optimus uses self-adaptive approach for producing control parameters. This gives an advantage
to adapt the algorithm itself according to the nature of the problem. Secondly, Optimus presented
significantly smaller fitness values than the other tools. This is related to the ensemble of mutation
strategies. While the other algorithms are based on only one mutation operator, Optimus uses three
mutation operators. During searching for a better solution, using more than one mutation strategy
enlarges the search space. This increases the ability of searching near-optimal results. Thirdly, Optimus
does not update number sliders, which corresponds to parameters, for each iteration. Instead, generated
populations are directly connected to the geometry. Therefore, required computation time for one
generation is less than the other algorithms. Finally, optimal values of some problems are outside of
the initialization range (e.g., F7). One may argue that this situation can be faced in architectural design
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problems, as well. Generating chromosome values outside of the initialization range is possible in the
Optimus, whereas it is not possible in the other tools.

RBFOpt algorithm is recently compared with metaheuristics using several building optimization
problems in [12–14,32]. According to the results, RBFOpt found better solutions than metaheuristics.
In these studies, termination criterion is defined as number of iterations during the evaluation of
different algorithms. This gives an advantage for RBFOpt, due to ability to discover desirable solutions
with small number of function evaluations. However, metaheuristics require more function evaluations
to find the optimal solutions. In this study, we defined the termination criterion as run time for 30 min
to make a fair comparison. Results show that RBFOpt requires more computation time to execute one
function than metaheuristics. For this reason, while comparing these algorithms, rather than iterations
and/or function evaluations, run time should be considered as termination criterion.

Fitness functions based on simulations (e.g., energy and daylight) may require a huge amount of
time for the convergence during the optimization. From the point of metaheuristics, usage of surrogate
models [63] can be a solution to overcome this drawback. Because, surrogate models require less
amount of function evaluation while approximating the fitness. By this way, researchers can consider
many replications in a short run time.

Furthermore, handling constraints is another important topic for architectural design optimization.
Most of the real-world problems require design constraints that may restrict the design alternatives during
the optimization process. There are many constraint handling methods that can be practically integrated
to the optimization algorithms [64]. In the reviewed literature, only Nelder–Mead optimization tool
provides a constraint handling method for the design optimization problems in the GH. To make a fair
comparison with Galapagos, SilverEye, and Opossum, we considered penalty function as constraint
to find the feasible solution in the design optimization problem. However, there are extremely hard
constraints that can be tackled in the real-world problems e.g., equality constraints. Currently, this is
not available in GH.

In addition to the advantages of Optimus mentioned above, there are some limitations, as well.
Firstly, even though modular approach provides a flexibility when we want to use different algorithms,
it requires more plug-in items to generate each step of the optimization. This effects the practical usage
of Optimus. Another limitation is evaluation strategy of fitness function. In other words, Optimus
creating NP size of list, where each element in the list has D size of dimensions. All these parameters
(with NPxD size) are sending to the objective function for fitness evaluation. Then, we obtain NP size
of fitness results simultaneously. In the other tools, each parameter is sending to the fitness function in
sequence. Then, the fitness function is evaluated. This fact gives an advantage for Optimus in terms of
computation time but it may not be suitable for some of the architectural design problems.

6. Conclusions

As the conclusion, this paper presented a new optimization plug-in, called Optimus for grasshopper
algorithmic modelling (GH) in the Rhinoceros CAD program. A self-adaptive differential evolution
algorithm with ensemble of mutation strategies was implemented in Optimus for architectural design
optimization problems. To test the algorithm performance, experimental design was made by using
standard test problems in the literature, some of the test problems proposed in IEEE CEC 2005 and
an architectural design problem. In general, Optimus outperformed other optimization tools in GH.
This paper showed that an algorithm that presents a good performance in solving real-parameter
benchmark functions can also find more desirable solutions in solving architectural design problems.

As future work, Optimus will be further improved by implementing different types of metaheuristic
algorithms due to NFLT. These algorithms can be variants of PSO, GA, HS, and DE. Moreover, Optimus
can be updated for constrained optimization problems using near-feasibility threshold [65,66], Superior
of Feasibility [67], and Epsilon constraint [68]. Moreover, ensemble of constraint handling techniques [69]
can be used in Optimus that may play a crucial role in architectural design problems. Finally, Optimus
can be simply extended for multi-objective optimization problems due to its modular system.
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Appendix A

Table A1. Benchmark Functions.

Fsph: Sphere Function Fsph(x) =
D∑

i=1
x2

i

F∗sph(x
∗) = (0, .., 0) = 0−100 ≤ x ≤ 100

Fros: Rosenbrock’s Function Fros(x) =
D−1∑
i=1

(
100

(
xi+1 − x2

i

)2
+ (1− xi)

2
)

F∗ros(x∗) = (1, .., 1) = 0−100 ≤ x ≤ 100

Fack: Ackley’s Function Fack(x) = −20 exp

−0.2

√
1
D

D∑
i=1

x2
i

− exp
(

1
D

D∑
i=1

cos(2πxi)

)
+ 20 + e

F∗ack(x
∗) = (0, .., 0) = 0−32 ≤ x ≤ 32

Fgrw: Griewank’s Function Fgrw(x) =
D∑

i=1

x2
i

4000 −
D∏

i=1
cos

(
xi√

i

)
+ 1

F∗grw(x∗) = (0, .., 0) = 0 −600 ≤ x ≤ 600

Fras: Rastrigin’s Function

Fras(x) =
D∑

i=1

(
x2

i − 10 cos(2πxi) + 10
)

F∗ras(x∗) = (0, .., 0) = 0 −5 ≤ x ≤ 5

Fsch: Generalized Schwefel’s Problem 2.26

Fsch(x) = 418.9829N −
D∑

i=1
(xi sin(|xi|))

F∗sch(x
∗) = (420.9687, .., 420.968) = 0 −500 ≤ x ≤ 500

Fsal: Salomon’s Function

Fsal(x) = − cos

2π

√
D∑

i=1
x2

i

+ 0.1

√
D∑

i=1
x2

i + 1

F∗sal(x
∗) = (0, .., 0) = 0 −100 ≤ x ≤ 100

Fwht: Whitely’s Function

Fwht(x) =
D∑

j=1

D∑
i=1

(
y2

i j

4000 − cos
(
yi j

)
+ 1

)
where yi j = 100

(
x j − xi

)2
+ (1− xi)

2

F∗wht(x
∗) = (1, .., 1) = 0 −100 ≤ x ≤ 100

Fpn1: Generalized Penalized Function 1

Fpn1(x) = π
D

{
10 sin2(πy1) +

D−1∑
i=1

(yi − 1)2
[
1 + 10 sin2(πyi+1)

]
+ (yD − 1)2

}
+

D∑
i=1

u(xi, 10, 100, 4)

where yi = 1 + 1
4 (xi + 1) and

u(xi, a, k, m) =


k(xi − a)m xi > a

0 −a ≤ xi ≤ a
k(−xi − a)m xi < a

F∗pn1(x
∗) = (−1, ..,−1) = 0 −50 ≤ x ≤ 50
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Fpn2: Generalized Penalized Function 2

Fpn2(x∗) = 0.1
{

sin2(3πx1) +
D−1∑
i=1

(xi−1 − 1)2
[
1 + sin2(3πxi+1)

]
+ (xD − 1)2

[
1 + sin2(2πxD)

]}
+

D∑
i=1

u(xi, 5, 100, 4)

F∗pn1(x
∗) = (1, .., 1) = 0 −50 ≤ x ≤ 50

F1: Shifted Sphere Function

F1(x) =
D∑

i=1
z2

i + f _bias1

x ∈ [−100, 100]D, F1(x∗) = f _bias1 = −450

F2: Shifted Schwefel’s Problem 1.2

F2(x) =
D∑

i=1

 i∑
j=1

z j

2

+ f _bias2

x ∈ [−100, 100]D, F2(x∗) = f _bias2 = −450

F3: Shifted Rotated High Conditioned Elliptic Function

F3(x) =
D∑

i=1

(
106

) i−1
D−1 z2

i + f _bias3

x ∈ [−100, 100]D, F3(x∗) = f _bias3 = −450

F4: Shifted Schwefel’s Problem 1.2 With Noise in Fitness

F4(x) =

 D∑
i=1

 i∑
j=1

zi

2× (
1 + 0.4

∣∣∣N(0, 1)
∣∣∣)+ f _bias4

x ∈ [−100, 100]D, F4(x∗) = f _bias4 = −450

F5: Schwefel’s Problem 2.6 with Global Optimum on Bounds
F5(x) = max{|Aix− Bi|}+ f _bias5, i = 1, 2, .., D
x ∈ [−100, 100]D, F5(x∗) = f _bias5 = −310

F6: Shifted Rosenbrock’s Function

F6(x) =
D−1∑
i=1

(
100

(
z2

i − zi+1
)2
+ (zi − 1)2

)
+ f _bias6

x ∈ [−100, 100]D, F4(x∗) = f _bias6 = 390

F7: Shifted Rotated Griewank’s Function without Bounds

F7(x) =
D∑

i=1

z2
i

4000 −
D∏

i=1
cos

(
zi√

i

)
+ 1 + f _bias7

Initialize population in [0, 600]D, Global optimum is outside of the initialization range, F7(x∗) = f _bias7 = −180

F8: Shifted Rotated Ackley’s Function with Global Optimum on Bounds.

F8(x) = −20 exp

−0.2

√
1
D

D∑
i=1

z2
i

− exp
(

1
D

D∑
i=1

cos(2πz)
)
+ 20 + e + f _bias8

x ∈ [−32, 32]D, F8(x∗) = f _bias8 = −140

F9: Shifted Rastrigin’s Function

F9(x) =
D∑

i=1

(
z2

i − 10 cos(2πzi) + 10
)
+ f _bias9

x ∈ [−5, 5]D, F9(x∗) = f _bias9 = −330

F10: Shifted Rotated Rastrigin’s Function

F10(x) =
D∑

i=1

(
z2

i − 10 cos(2πzi) + 10
)
+ f _bias10

x ∈ [−5, 5]D. F10(x∗) = f _bias10 = −330
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