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Abstract: Stability of persistence diagrams under slight perturbations is a key characteristic behind the
validity and growing popularity of topological data analysis in exploring real-world data. Central to
this stability is the use of Bottleneck distance which entails matching points between diagrams.
Instances of use of this metric in practical studies have, however, been few and sparingly far between
because of the computational obstruction, especially in dimension zero where the computational
cost explodes with the growth of data size. We present a novel efficient algorithm to compute
dimension zero bottleneck distance between two persistent diagrams of a specific kind which runs
significantly faster and provides significantly sharper approximates with respect to the output of
the original algorithm than any other available algorithm. We bypass the overwhelming matching
problem in previous implementations of the bottleneck distance, and prove that the zero dimensional
bottleneck distance can be recovered from a very small number of matching cases. Partly in keeping
with nomenclature traditions in this area of TDA, we name this algorithm LUMÁWIG as a nod to
a deity in the northern Philippines, where the algorithm was developed. We show that LUMÁWIG

generally enjoys linear complexity as shown by empirical tests. We also present an application that
leverages dimension zero persistence diagrams and the bottleneck distance to produce features for
classification tasks.

Keywords: bottleneck distance; persistence diagrams; persistent homology; MNIST classification

1. Introduction

Topological data analysis (TDA) has gathered significant interest from a wide range of researchers
because of its novel approach and use of classical tools from algebraic topology for extracting
descriptive features from data. Succinctly, topological data analysis captures and records the
persistence [1,2] of algebraically computable topological signatures, and regards it as a measure
of significance for different features embedded in the structure of data. For the zero dimensional case,
these signatures correspond to clusters within data that merge based on a filtration of the data points.
One of the most common filtration used in practice is the Rips filtration where pairs of points are
considered merged at a given filtration slice δ when the points are at most δ apart. Hence, as opposed to
other filtrations that require additional parameter choices, the Rips filtration only depends on intrinsic
distances between data points and reveals the underlying multi-scale connectivity information about
natural clusters existing within data. The Rips filtration produces summaries of topological signatures
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all beginning at the start of the filtration, capturing cluster merging dynamics akin to that observed by
hierarchical clustering methods (see Figure 1). This is the setting we will be working on.

Figure 1. A Rips filtration over a point cloud captures the merging dynamics of clusters evolving from
points across multiple scales. The dimension zero persistence diagram produced by this filtration is a
set of points positioned along an extended vertical line at the merging heights in the corresponding
dendrogram, except for the last point positioned at ∞ representing the eventual single component.
The neighborhoods around points are colored by the persistent cluster determined by the elder rule.

Meriting the growing popularity for this approach, and central to its relevance and viability
in interrogating real-world data, is its stability under slight perturbations—small discrepancies
between measurements within data lead to small differences in the recorded persistence of features.
This cornerstone stability result [3] relies on classic bottleneck matchings to evaluate, measure,
and bound changes between two records of feature persistence. These records, called persistence
diagrams, are a collection of points in the extended plane where the coordinates represent the birth and
death times of the recorded features. In these diagrams, points that have multiplicity capture distinct
features with the same birth-death profile, and points with infinite persistence capture perpetual
features. For diagrams induced by the Rips filtration, the sole constant perpetual feature appears in
dimension 0, capturing the eventual single cluster that merges all components (see Figure 1).

Given two persistence diagrams X and Y, the bottleneck distance between them is defined as

dB(X, Y) = inf
φ

sup
x∈X
||x− φ(x)||∞

where the infimum is taken over all bijections φ : X t ∆ → Y t ∆ and ∆ is the diagonal. In general
terms, the bottleneck distance measures the cost to transform one diagram to another. The first, and for
a long time the only, publicly available implementation of the bottleneck distance for persistence
diagrams is in the library DIONYSUS, released in 2010, by Morozov [4]. This implementation uses a
variant of the Hungarian algorithm [5] for the assignment problem.

Understandably, because of the overwhelming matching step in the computation, this first
implementation of the bottleneck distance between two persistence diagrams was considerably slow
by practical standards. Consequently, while the theoretical side of topological data analysis has
made extensive use of the bottleneck distance for advancing the theory [6–8], first computational
uses have been few and sparingly far between. Some notable examples include applications to
classification of hepatic lesions [9], and analysis of time-series data [10] and simulated hippocampal
networks [11]. Most applications of TDA, instead, tap into persistence-based topological features
via another class of objects, called persistence landscapes [12], that record the persistence of features as
a function, thus affording access to desirable properties of the underlying function space. A major
motivation for this detour to landscapes is the ability to generate topological summaries that are
compatible with classical tools in statistics, and even machine learning.

In 2017, Morozov et al. [13] provided an improved implementation of the bottleneck distance in
the library HERA by exploiting geometry. Their approach follows closely the work of Efrat et al. [14].
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For the sets X0 and Y0 of orthogonal projections on the diagonal ∆ of points respectively from X and
Y, and the sets U = X ∪ Y0 and V = X0 ∪ Y, they consider the weighted complete bipartite graph
G = (U tV, U ×V, w) where w : U ×V → R≥0 is given by

w(u, v) =

{
||u− v||∞ if u ∈ X or v ∈ Y

0 otherwise.

With this, the bottleneck computation problem can be recast in the following manner: if G[r] is
the subgraph of G with all edges e of weight w(e) ≤ r, then the bottleneck distance of G is the minimal
value r such that G[r] contains a perfect matching. Hence the bottleneck distance can be recovered
by combining a binary search on the edge weights of G with a test for a perfect matching. For the
matching step, they augment the Hopcroft-Karp algorithm [15] by appealing to a near-neighbor data
structure (a k-d tree) to search for the best candidate pair for a query point, pruning from the search
the subtrees (and hence all other candidates within them) whose enclosing box is further away from
the query than the current best candidate. This circumvents the overwhelming matching problem
by significantly shrinking down the combination pool to retrieve the best matching. To approximate
complexity, they fit curves of the form cnα and found a best fit with α = 1.4. This translates to speed-up
from DIONYSUS already by a factor of 400 on diagrams with 2800 points, and opened opportunities for
several works that examine larger [16] or more complex [17,18] data sets.

We take inspiration from this idea of exploiting the geometry of persistence diagrams to extract
computational speed-up. By considering dimension 0 persistence diagrams induced from the Rips
filtration, we can approach the problem via a different framework, birthing a new efficient algorithm
for computing the bottleneck distance. The key idea is to begin with a specific initial bijection that
one can methodically modify to optimize the norm between matched points. This process allows
us to identify all possible instances where the bottleneck matching is achieved, and the exact value
for the bottleneck distance, significantly bypassing the overwhelming matching step in previous
implementations. We remark that while this strategy only works for persistence diagrams of a specific
kind—those whose detected signatures all begin at the same time—this class is in no way less significant
than diagrams induced from other filtrations. Moreover, in addition to diagrams induced from the
above setting, this class also includes diagrams obtained from the output of any hierarchical clustering
algorithm applied to point cloud data. Hence, the computational speed-up for the bottleneck distance
we obtain benefits the comparison of these diagrams as well. Furthermore, we note that there are other
metrics used in the literature to compare persistence diagrams, and we make no preference claim in
favor of the bottleneck distance. In fact, it is a good question to ask whether the above strategy can be
followed to generate computational speed-up for these metrics as well (We credit Katharine Turner for
raising this question first in relation to the Wasserstein distance.).

We name this algorithm LUMÁWIG. LUMÁWIG is significantly faster than the state-of-the-art and
provides significantly sharper approximates with respect to the output of the original algorithm than
any other available algorithm. We benchmark LUMÁWIG against all available algorithms in terms of
running time and accuracy.

Our motivation for this work is to clear the computational obstruction in the use of bottleneck
distance in applications. In the Filipino language, LUMÁWIG also means to extend, broaden, or expand.
Our hope is that this contribution will serve as a catalyst in the further development of the theory
that leverages persistence diagrams and the bottleneck distance similar to what has been achieved for
persistence landscapes, and will usher in a new era of integrating TDA into the science of big data.
As a proof of concept, we use LUMÁWIG to generate features for the classification of digit images from
the MNIST data set.
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2. Bypassing Matchings

We propose to bypass the overwhelming matching problem in the computation of 0-dimensional
bottleneck distance by showing that the value produced by the bottleneck distance formula can be
recovered by considering only a few cases. We will show that these cases naturally come up in the
process of minimizing the output of the norm.

We first note that for most practical applications to data analysis of 0-dimensional persistence
diagrams, where all components are assumed to be born at the beginning of the filtration for persistent
homology, all non-trivial points lie in the vertical axis (or equivalently for persistence barcodes, all bars
begin at time t = 0). Hence, in this case, if δx, and δφ(x) are the death times respectively for x and its
matched point φ(x), we have that

||x− φ(x)||∞ =

{
max(δx, δφ(x))/2 if φ(x) ∈ ∆

|δx − δφ(x)| otherwise.
(1)

This suggests that while it is natural to do a point-to-point matching between diagrams, there are
cases when we are better off matching a point to the diagonal. For a point x ∈ X and φ(x) ∈ Y,
this happens precisely when

max(δx, δφ(x)) > 2 min(δφ(x), δx). (2)

Figure 2a illustrates this point. Therefore, unless (2) is satisfied, it is our priority to match a
non-trivial point in a diagram X with a non-trivial point in another diagram. This supports the
interpretation that the bottleneck distance is the cost of transforming one diagram to another.

Figure 2. Examples of point-matching between persistence diagrams highlighting the resulting
bottleneck distance. Points in each diagrams are shape coded and matched points are color coded.
(a) illustrates when diagonal matching achieves the bottleneck distance. (b) is used in the proof of
Lemma 1 and (c,d) in Lemma 2.

We are now ready to present our algorithm for computing 0-dimensional bottleneck distance
between two persistence diagrams. We first induce and ordering of the death times in both diagrams
and define a bijection that we can methodically modify to optimize the norm between matched
points and recover the desired matching that achieves the bottleneck distance. The proof of Lemma 1
provides the basic argument that allows us to bypass the overwhelming matching problem. Lemma 2
proceeds in the same manner and identifies all other possible instances where the bottleneck matching
is achieved, and the exact bottleneck distance in each case.

Let X and Y be two 0-dimensional persistence diagrams whose death time entries are arranged
from largest to smallest. Equivalently, X and Y can be thought of as persistence barcodes whose
bars are arranged from longest to shortest. Without loss of generality, assume that X has at most as
many points as Y has. We remark that this pre-processing is equivalent to considering the bijection φ

that matches points between X and Y according to the relative ranking of death times from largest to
smallest, and where unmatched points in Y are matched to the diagonal. Let N = length(X) and define

Z = [zi]
length(Y)
1 where zi =

{
|xi − yi| if i ≤ N

yi/2 otherwise
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and l = arg max(Z).

Lemma 1. Let X, Y, Z, N and φ be defined as above. If N < length(Y) and max(Z) ≤ yN+1/2, then

dB(X, Y) = yN+1/2

where yN+1 is the largest death time of a point in Y matched to the diagonal.

Proof. For the bijection φ corresponding to the pre-processing described above, it follows that

max
x∈X
||x− φ(x)||∞ = yN+1/2.

Figure 2b illustrates this case where the point matched to the diagonal maximizes the norm.
To see why φ achieves the infimum over all bijections between X and Y, note that any other bijection
ψ produces a death time for a point in Y matched to the diagonal that is at least as large as yN+1/2.
Therefore maxx∈X ||x− φ(x)||∞ ≤ maxx∈X ||x− ψ(x)||∞.

Lemma 2. Let X, Y, Z, N, l and φ be defined as above, and let ζ be the second largest entry of Z.

1. If max(Z) ≤ max(xl , yl)/2, then dB(X, Y) = max(Z).
2. If ζ < max(xl , yl)/2 < max(Z), then dB(X, Y) = max(xl , yl)/2.
3. If ζ ≥ max(xl , yl)/2 and m ≥ l for every m such that zm ≥ max(xl , yl)/2, then dB(X, Y) =

max(xl , yl)/2.
4. If ζ ≥ max(xl , yl)/2 and there exists m < l such that zm ≥ max(xl , yl)/2, then there exists a bijection

τ between X and Y such that one of the three preceding cases holds and where

max ||x− τ(x)||∞ < max ||x− φ(x)||∞.

Proof. 1. It follows from our remark immediately after (1) that

max ||x− φ(x)||∞ = max(Z) ≤ max(xl , yl)/2 = max ||x− φ′(x)||∞

where φ′ is the bijection that matches both xl and yl to the diagonal, and coincides with φ

otherwise. Figure 2c illustrates this comparison between the two matchings. For any other
bijection ψ, if x′ ∈ X such that |x′ − ψ(x′)| is maximum among all non-trivial matchings,
either max(Z) ≤ |x′ − ψ(x′)|, or max(xl , yl) ≤ max(x′, ψ(x′)). If N < length(Y), then a similar
argument as that in Lemma 1 holds. The conclusion now follows.

2. In this case, the same bijection φ′ in the previous case yields

max ||x− φ′(x)||∞ = max(xl , yl)/2 < max(Z) = max ||x− φ(x)||∞.

The same argument in the previous case holds for any other bijection ψ. Hence, the inequality
above implies the conclusion.

3. For the bijection φ′′ that sends xm and ym to the diagonal for all such m, and coincides with φ

otherwise (see Figure 2d), we have that

max ||x− φ′′(x)||∞ = max(xl , yl)/2 < max(Z) = max ||x− φ(x)||∞.

Again, since the same argument in the first case holds for any other bijection ψ, the previous
inequality implies the conclusion.
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4. Define the bijection τ that sends xj and yj to the diagonal for all j ≥ l, and coincides with φ

otherwise. Then we have that

max ||x− τ(x)||∞ < max(Z) = max ||x− φ(x)||∞,

Moreover, note that max ||x− τ(x)||∞ depends only on ||x− τ(x)||∞ for non-trivially matched x
and τ(x). Therefore, we can consider only the subsets X′ and Y′ respectively of X and Y whose
points are non-trivially matched by τ. In this case, length(X′) = length(Y′) and one of the three
previous cases above holds.
The proof is now complete.

The two Lemmas above provide the theoretical basis for the bypass approach of the LUMÁWIG

algorithm. Together, they take advantage of the specific form of dimension zero persistence diagrams
being considered, and the methodical approach to optimize norms induced by a specific matching.
The complete pseudo code is given in Algorithm 1 below.

Algorithm 1 LUMÁWIG algorithm for computing 0-dimensional bottleneck distance between two
persistence diagrams

1: Input: Two dimension zero persistence diagrams X and Y such that X 6= Y and where X has

fewer than or as many points as Y.
2: Output: The bottleneck distance between X and Y.
3: Initialization d← 0, X ← death times of points from X sorted from largest to smallest, Y ← death

times of points from Y sorted from largest to smallest, N = length(X), Z ← vector [zi := |xi− yi|]N1 ,

l = arg max(Z), dtemp = max(Z)
4: if length(X) 6= length(Y) and dtemp < yN+1/2 then
5: d = (yN+1)/2;
6: else
7: while length(Z) > 1 do
8: if Second largest entry of Z < max(xl , yl)/2 < dtemp then
9: d = max(xl , yl)/2

10: break
11: else if Second largest entry of Z ≥ max(xl , yl)/2 then
12: if For every m for which zm ≥ max(xl , yl)/2, m ≥ l then
13: d = max(xl , yl)/2
14: break
15: else
16: Trim off all zm, xm, ym for m ≥ l; update l and dtemp
17: if length(Z) = 1 then
18: d = min(dtemp, max(xl , yl)/2)
19: break
20: end if
21: end if
22: else
23: d = dtemp
24: break
25: end if
26: end while
27: end if
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3. Benchmarking

We perform two stages of benchmarking against other publicly available implementations of the
bottleneck distance. The first stage is in terms of computational running time and relative difference
with respect to the original algorithm implemented in the DIONYSUS library included in the R package
TDA [19]. This stage involves persistence diagrams with as many as 900 points and highlights the
computational obstructions with current implementations of the bottleneck distance.

The second stage is also done in terms of running time, but the relative difference is with respect
to the R implementation of LUMÁWIG. Only the faster implementations are considered in this stage as
it involves persistence diagrams with as many as 30,000 points.

3.1. Benchmarking against All Available Algorithms

Figure 3 shows the running time (in seconds) of four algorithms for computing the bottleneck
distance between two persistence diagrams: the DIONYSUS implementation (in R), the current
state-of-the-art HERA (implemented in C++ and wrapped in PYTHON), a new implementation PERSIM

(PYTHON) [20], and LUMÁWIG, implemented both in R and PYTHON. The benchmarking is done
by first simulating 100 0-dimensional persistence diagrams with 50 points. Each dimension zero
persistence diagram is simulated using a set of positive numbers as death times uniformly chosen from
a range twice as wide as the number of points. We pair each diagram with another simulated diagram
not necessarily with the same number of points (as much as 80% more or less points), then compute the
bottleneck distance (up to 10 decimal places) between the pair using the bottleneck implementations
above. The running time of each algorithm is recorded, and the distribution summary of 100 run times
for each algorithm is plotted out as a boxplot. For HERA, we follow the experimental setup from [13]
and set δ = 0.01. We repeat this process while increasing the number of points in the base persistence
diagram by 50 until we reach 500 points for each base persistence diagram.
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Figure 3. Boxplots of running times (seconds in log scale) from different algorithms.

We also compare the computed bottleneck distance against the output of DIONYSUS.
Relative differences of the outputs of three other implementations from DIONYSUS are computed for
all 100 pairs of persistence diagrams. From these bottleneck computations, descriptive summaries are
obtained and plotted as boxplots in Figure 4. Is it worth noting that HERA consistently overestimates
the zero dimensional bottleneck distance relative to DIONYSUS as seen in Figure 4a. Another important
observation is that the output of LUMÁWIGPY recovers that of PERSIM at a much less computational
running time. Finally, we highlight that LUMÁWIGR recovers the exact output values of the original
implementation in DIONYSUS.
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(c) LUMÁWIGPY.
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(d) LUMÁWIGR.
Figure 4. Boxplots of relative differences from DIONYSUS of the bottleneck computation outputs in
(a) HERA, (b) PERSIM, (c) LUMÁWIGPY, and (d) LUMÁWIGR.

We remark here that while this stage of benchmarking is indeed confined within extremely small
data sets, this situation in fact represents what is currently accessible to most researchers, and highlights
the clear computational obstruction in the use of persistence diagrams and bottleneck distance in
applications with currently available algorithms.

3.2. Benchmarking LUMÁWIG on Larger Data Sets

We perform a second stage of benchmarking against the current state-of-the-art implementation
of the bottleneck distance in HERA. We again simulate 100 0-dimensional persistence diagrams and
pair each diagram with another simulated diagram not necessarily with the same number of points.
Similar descriptive measures as in the earlier stage are considered from the 100 pairs of diagrams with
increasing number of points from 1000 to 30,000. The choice of benchmarking bottleneck computation
to at most 30,000 points was to draw comparison with that of HERA in [13]. One difference in our
benchmarking is that the number of points in the two diagrams we are comparing need not be equal.

Figure 5 shows the running time distribution of 100 dimension zero bottleneck distance
computations over increasing diagram sizes. Please note that the vertical axis is displayed in
logarithmic scale. Only five boxplots for the running time of the original algorithm implemented
in DIONYSUS are superimposed to provide reference for the state-of-the-art HERA and our two
implementations of LUMÁWIG. A quick inspection reveals that both implementations of LUMÁWIG are
consistently several orders of magnitude faster than the current state-of-the-art HERA. The use of the
same pairs of simulated persistence diagrams for bottleneck computations across implementations
allowed for paired tests of significant difference in running time relative to HERA. These significant
values, computed at α = 0.95 level of confidence, appear in Table 1.
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Figure 5. Running time (seconds in log scale) of LUMÁWIG versus the current state-of-the-art
implementation in HERA. Five boxplots for the running time of the original algorithm in DIONYSUS

are superimposed for reference.
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Table 1. Summary of significant decrease (at confidence level α = 0.95) in running time (in seconds) for
paired tests versus HERA. Column labels are in thousands of points.

1 2 3 4 5 6 7 8 9 10

LUMÁWIGR 0.230 0.651 1.203 1.971 2.744 3.957 5.003 6.813 8.348 9.983
LUMÁWIGPY 0.231 0.659 1.221 2.004 2.797 4.037 5.107 6.928 8.498 10.181

11 12 13 14 15 16 17 18 19 20

LUMÁWIGR 11.029 12.227 14.985 15.733 18.983 21.588 23.580 26.801 29.425 33.316
LUMÁWIGPY 11.255 12.483 15.296 16.078 19.410 22.087 24.124 27.438 30.153 34.129

21 22 23 24 25 26 27 28 29 30

LUMÁWIGR 38.555 39.818 41.080 44.324 49.933 54.441 57.183 60.196 66.510 72.948
LUMÁWIGPY 39.427 40.734 42.073 45.407 51.129 55.725 58.517 61.605 68.200 74.879

As LUMÁWIGR yields exact values for the bottleneck distance relative to the original DIONYSUS

implementation, we use it as basis in the computation of relative differences in this stage. Figure 6a,b
show the relative difference in the computed dimension zero bottleneck distance respectively of HERA

and LUMÁWIGPY with respect to that of LUMÁWIGR. Consistent with the comparison between the
outputs of HERA and DIONYSUS in Figure 4a, HERA consistently overestimates the dimension zero
bottleneck distance with respect to that of LUMÁWIGR. In contrast, relative differences between the
two implementations of LUMÁWIG can be attributed to rounding differences between PYTHON and R.
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(b) LUMÁWIGPY versus LUMÁWIGR .
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Figure 6. (a,b) Boxplots of relative differences between the bottleneck computation outputs of the
indicated pair of implementations. (c) Heat map of the median running times of LUMÁWIGR . Each pixel
represents the median running time (in seconds) for 100 computations of dimension zero bottleneck
distance between diagrams. The number of points in the diagrams are in units of 1000.

3.3. Complexity Analysis

Figure 6c shows a heat map of the median running time of LUMÁWIGR over 100 computations
per pixel of the bottleneck distance between pairs of persistence diagram with varying number of
points: for i ≤ j, pixel (i, j) represents the median running time for the computation of the bottleneck
distance between a diagram with i thousands of points and another diagram with j thousands of
points, such that each set of points has death times uniformly chosen from the interval range (0, 2000i)
and (0, 2000j) respectively. It can be inferred from this figure that the best running times happen
along the main diagonal, as well as the upper and left portions of the heat map. These correspond
to two specific cases: when the diagrams have equal number of points, or when one diagram has
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overwhelmingly more points than the other. In contrast, regions in the heat map that show increased
running times correspond to the case when a diagram that has a large number of points is compared
to another that has about half as many points. This observation is supported in the next figure.

Figure 7 shows several scatter plots with fitted curves of the median running times of LUMÁWIGR

over 100 computations of dimension zero bottleneck distance. The label in each scatterplot represents
the number of points in the fixed base diagram, and a point in the scatterplot at the k thousand mark
along the horizontal axis represents the median running time over 100 computations of the bottleneck
distance between the base diagram and another diagram with k thousand points whose death times
are uniformly chosen from the interval range (0, 2k).
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Figure 7. Scatter plots with fitted curves of the median running times (in seconds) of LUMÁWIGR over
100 computations of dimension zero bottleneck distance between a base diagram with the labeled
number of points and a diagram with k thousands of points, for k = 1, 2, . . . , 100.

To further investigate the observations above, we examine the performance of LUMÁWIGR in the
computation of dimension zero bottleneck distance in four pairs of settings for size of the diagrams
and the range of values the death times are drawn from. The first is when LUMÁWIGR is tasked to
compare two persistence diagrams with the same number of points whose death times are drawn
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from the same range of values. We calculate the dimension zero bottleneck distance over 100 pairs of
persistence diagrams of equal sizes starting from 1000 to 1,000,000 points. Every diagram is simulated
in the same manner as the previous experiments. Median running times are then plotted and fitted
with a regression curve. Midspread and range for every 100 computations at every unit of 1000 points
are superimposed to illustrate the distribution of running times. Figure 8a shows an excellent linear
fit (R2 = 0.99) for the running time. We also highlight the observed experimental result that the
running time between two diagrams each with 1 million points with death times drawn from the range
(0, 2,000,000) averages to between 2 and 3 tenths of a second.
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(b) Equal size but different range.
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(c) Different size but equal range.

Radj
2  = 0.87 Radj

2  = 0.87

0

2

4

6

0e+00 1e+05 2e+05 3e+05 4e+05

Number of Points

Av
er

ag
e 

Ru
nt

im
e 

(s
ec

on
ds

)

(d) Different size and range.

Figure 8. Median running time in the computation of bottleneck distance between two diagrams with
varying size and range settings fitted with regression curves. Superimposed are the minimum and
maximum running times over the 100-run simulation per unit of 1000 points to illustrate the running
time range, and the narrow darker blue band to show the midspread.
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The second setting involves two diagrams of the same size but the range of death values for the
second is half as wide as the first. In this case, we see in Figure 8b that the running time trend is
perfectly fitted with a linear curve. The third setting considers two diagrams where the second has
half as many points as the first. We remark that this setting differs from that performed for Figure 6c in
that the range where the death times are drawn from for the simulated diagrams in this experiment
is the same for the two diagrams.We do this to ensure that any observed significant difference in
performance is attributable only to fixed difference in the number of points between the diagrams.
As we observe an increased running time for LUMÁWIGR in this case, we compute only to until there
are 100,000 points in the larger diagram. Figure 8c shows two fitted regression curves: a quadratic
fit with R2 = 1 and a linear fit with R2 = 0.95. We highlight that even for the case where LUMÁWIGR

evidently takes longer to compute the dimension zero bottleneck distance, a linear model provides a
very good fit for the trend.

The final setting is where the second of two diagrams has half as many points with death values
drawn from a range half as wide as that for the first. Regression curves are again shown in Figure 8d
with linear and quadratic fit both achieving R2 = 0.87.

4. LUMÁWIG in Digit Classification

With new access to a fast algorithm for computing dimension zero bottleneck distance,
we leverage persistence and other clustering-based diagrams to craft features for digit classification.
This application illustrates how the significant computational speed-up for the dimension 0 bottleneck
distance affords a way to examine intrinsic differences in the multi-scale clustering dynamics of point
clouds from the perspective of persistent homology and in conjuction with hierarchical clustering
algorithms. In addition, we will show that information captured by dimension 0 bottleneck distance
can be a source of a good feature base for point cloud classification.

We classify 10,000 28×28-pixel digit images in the MNIST data set via a random forest classifier.
Similar to Garin and Tauzin [16], we train the classifier using features based on topological summaries.
However, we depart from Garin and Tauzin’s approach in that we only extract features from dimension
zero persistence diagrams and other related clustering-based diagrams. In particular, we craft
statistical summaries from distributions of bottleneck distances computed from diagrams resulting
from dimension zero persistent homology and clustering of multiple sub-collections of points. It is in
this light that the eventual classifier performance must be viewed — the classification of digits, viewed
as point clouds with higher dimensional characteristics, is done using lower dimensional clustering
information. We summarize this procedure next. For a detailed account of this procedure, we point
the interested reader to [21] where it is used to recover higher dimensional shape information of digits
from intrinsic clustering behavior.

The first step in the procedure is to generate multiple collections of points from the digits via
samples extracted based on point distributions referenced from nine pre-selected landmark points.
We use the same landmark points introduced in [16]. Sampling is also done across multiple resolutions
by varying the number of points selected in every bin of every distribution histogram. Then, for each
sampled sub-collection of points in each sampling resolution, persistent homology and clustering
algorithms are respectively used to generate persistence and clustering diagrams. We gather diagrams
by their sampling setting and compute pairwise bottleneck distances using LUMÁWIG. Finally,
we compute statistical summaries from the distributions of computed bottleneck distances, and use
these to train a random forest classifier with 1000 trees.

We perform a 10-fold cross validation on our training set of 10,000 digit images from MNIST,
and report the summary of obtained F1 scores in Table 2. The average class predictions of the random
forest are summarized in the confusion matrix in Figure 9.

The results above show that the random forest classifier is able to use our crafted bottleneck-based
features to classify, at a respectable level of accuracy, the 10 digits in the MNIST data set despite
all digits possessing the same dimension zero topological signature of having only one connected
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component. In particular, we infer from the exceptionally high score on the classification of the simplest
digit 1, that differences captured by the bottleneck distance in the clustering behavior across multiple
point samples of this digit is outstandingly subtle, and hence different, from the rest.

Table 2. Summary of F1 scores on a 10-fold cross validation.

Digit 0 1 2 3 4 5 6 7 8 9 Overall

Mean 0.841 0.940 0.678 0.727 0.687 0.709 0.847 0.754 0.745 0.754 0.768
Std. Dev. 0.030 0.011 0.033 0.019 0.032 0 .037 0.030 0.020 0.015 0.032 0.011

Figure 9. Confusion matrix for the average prediction of the random forest over a 10-fold cross validation.

5. Discussions and Conclusions

Our benchmarking experiments reveal that LUMÁWIG outperforms, by several orders of
magnitude, all currently available implementations of dimension zero bottleneck distance in terms
of running time. LUMÁWIG also recovers the exact bottleneck distance produced by DIONYSUS.
We believe this is a significant contribution as it affords a viable tool to process and use dimension zero
persistence diagrams in comparing evolving connectivity information between large data sets in a
manner that goes beyond the simple use of the most persistent components. Even now, a truly
comprehensive and holistic treatment of information embedded in dimension zero persistence
diagrams has been left unexplored due primarily to the lack of feasible machinery that can handle
significant scaling up in data size. In fact, this note presents the first instance that the bottleneck
distance is used in practice for data of magnitude and scale in the order of up to a million. In particular,
we see that LUMÁWIG only takes an average of 2 to 3 tenths of a second to compute the bottleneck
distance between diagrams each with one million points.

A natural question to ask is whether a similar strategy of methodically modifying a specific initial
bijection to recover all possible cases that yield the best matching for the general case, where birth times
of features need not be at the beginning of the filtration (this covers the bottleneck distance for higher
dimensional features) is possible. We note that an important first step is to induce an appropriate
partial order on the points in each diagram that can accommodate a case-exhaustive approach to
optimize the norm. Moreover, the added degree of freedom will naturally introduce cases we have not
considered in our optimization step. We are currently exploring generalization strategies that leverage
shift-invariant versions of the bottleneck distance due to Cavanna et al. [22].

Our empirical tests suggest that LUMÁWIG enjoys linear complexity for the case where both
diagrams have equal number of points. Moreover, we also see that even for the special case revealed
by Figure 7, where there is an apparent slowdown in computational time, the trend seen when data
size scales up is also practically linear (see Figure 8c,d). In a future note, we plan to provide a more
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comprehensive analysis for complexity. Nevertheless, we are confident that LUMÁWIG can be useful in
practical applications of TDA at this stage.

Finally, our application on digit classification showcases, in the same significant way as Weber et al.
did in [17], the potential in leveraging persistence diagrams and bottleneck distance as sources of novel
features for machine learning tasks. It is our hope that LUMÁWIG contributes in paving the way for
this direction in TDA research.

6. Repository for LUMÁWIG

LUMÁWIG will be hosted and maintained in https://github.com/paulsamuelignacio/Lumawig.
git as soon as licences (BSD), copyright certificates, and other clearances are secured.
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