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Abstract: In this paper, we consider the effect of stochastic uncertainties on non-linear systems with
chaotic behavior. More specifically, we quantify the effect of parametric uncertainties to time-averaged
quantities and their sensitivities. Sampling methods for Uncertainty Quantification (UQ), such as the
Monte–Carlo (MC), are very costly, while traditional methods for sensitivity analysis, such as the
adjoint, fail in chaotic systems. In this work, we employ the non-intrusive generalized Polynomial
Chaos (gPC) for UQ, coupled with the Multiple-Shooting Shadowing (MSS) algorithm for sensitivity
analysis of chaotic systems. It is shown that the gPC, coupled with MSS, is an appropriate method for
conducting UQ in chaotic systems and produces results that match well with those from MC and
Finite-Differences (FD).

Keywords: uncertainty quantification; chaos; generalized polynomial chaos; multiple shooting
shadowing; sensitivity analysis; Monte–Carlo

1. Introduction

Over the past few decades, modern computational methods have been very successful in
predicting the evolution of systems of great complexity. However, in real–life applications, the system
behavior is significantly affected by parametric uncertainties. As an example, geometric uncertainties
in the shape of the front wing, diffuser, and the tip of a Formula (1) can affect its performance [1].
A small selection of other examples can be found in References [2–5].

Various techniques for the quantification of uncertainties have been developed. These include
sampling techniques, such as the Monte-Carlo [6], Latin Hypercube sampling [7], and quasi
Monte–Carlo [8]. However, despite their accuracy and ease of application, these methods become
computationally intractable for large, real world problems, such us high fidelity simulations of
turbulent flows. Other approaches, based on the spectral representation of uncertain quantities, have
also been developed. These techniques are referred to as Polynomial Chaos Expansion (PCE) methods.
They were first developed in Reference [9] for Gaussian uncertainties, and, later in Reference [10], they
were generalized for all Probability Density Functions (PDFs) in the Askey scheme. The ability of
generalized PCE (gPC) in quantifying uncertainties has been amply demonstrated in many applications,
for example, in Computational Fluid Dynamic (CFD) systems [11–13]. Recent developments in
Uncertainty Quantification (UQ) include using the PCE in data-driven approaches [14]. Spectral
approaches are computationally efficient for a small number of uncertain parameters, m, but their cost
increases exponentially with m (curse of dimensionality).

There are two major approaches to applying gPC, the intrusive (iPC) [5,15] and the non-intrusive
(niPC) [16]. In the intrusive approach, the state vector is written in spectral form using the gPC, and
a new set of state equations, the iPC equations, are extracted using Galerkin projection. On the other
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hand, the non-intrusive approach is based on the spectral representation of a Quantity of Interest (QoI),
such as the lift of an airfoil, and the spectral coefficients are calculated by repeated evaluations of the
QoI at specific quadrature locations.

For general unsteady systems, the iPC approach is not feasible for conducting UQ because the
accuracy of the spectral representation of the state variables starts to deteriorate after the system
starts to evolve from the initial condition. For this reason, we used the niPC approach and focused
on uncertainties of time-averaged quantities and their sensitivities with respect to input parameters.
Time-averaged quantities are of interest to many engineering applications, for example, in aeronautics
(lift and drag around an airfoil), energy generation (fuel consumption and pollutant formation), process
industries (average heat transfer, mixing rate), etc.

Although time-averages of state variables can be easily computed by collecting statistics over
long time integration, the evaluation of their sensitivities to input parameters is much more involved.
The adjoint sensitivity analysis approach [17] is based on a linearization of the evolution equation with
respect to one or more system parameters. This approach, however, breaks down in chaotic systems,
where the state variables display extreme sensitivity to minute variations in input conditions [18]. In
such cases, the adjoint variables diverge; this is popularly known as the ‘butterfly effect’, and it is due
to the presence of one or positive Lyapunov exponents.

The Least-Squares Shadowing (LSS) approach was developed in Reference [19] and resolves
this problem. It is based on the shadowing lemma for ergodic and uniformly hyperbolic dynamical
systems [20]. Although computationally expensive, the method can give values for the sensitivities
of time-averaged quantities that match well with finite differences. In this work, the preconditioned
Multiple-Shooting (MSS) [21,22], a computationally more efficient version of the LSS, is used to
evaluate sensitivities of time-averages.

In this paper, it is shown that the non-intrusive approach to the gPC is suitable for UQ of
time-averages of chaotic systems and their sensitivities, with respect to system parameters. Information
on the latter, i.e., UQ of sensitivities, is important in robust design applications, where the expectation
of a QoI is minimized under uncertainty. The present work follows on from previous work of the
authors in this area [23].

2. Sensitivity Analysis of Chaotic Systems Using MSS

In this work, we consider a non-linear dynamical system governed by the equation

du
dt

= f(u, s), (1)

where u denotes the state vector, and s a set of design parameters. This is a set of ordinary differential
equations (ODEs) that arise after spatial discretisation of partial differential equations (PDEs). The QoI
is the time average of some function G(u, s) of the state variables and design parameters, as in

G∞(s) = lim
T→∞

1
T

∫ T

0
G(u, s)dt. (2)

An example QoI from the field of aerodynamics is the time-average of the lift or the drag coefficient
of an airfoil.

The conventional adjoint sensitivity analysis to determine dG∞(s)
ds requires the formation of the

augmented Lagrangian

Λ =
1
T

∫ T

0
G(u, s) + λT

(
du
dt
− f(u, s)

)
dt + µT (u(0)− u0) . (3)
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After differentiation with respect to s and integration by parts, we arrive at the adjoint system

dλ

dt
= −

( ∂f
∂u

)T
λ +

∂G(u, s)
∂s

, (4)

which is integrated backwards in time with terminal condition λ(T) = 0. As mentioned in the
Introduction, if the system in Equation (1) is chaotic and has at least one positive Lyapunov exponent,
then marching Equation (4) backwards will result in an exponentially growing adjoint state vector λ.

To resolve the problem of diverging trajectories for s and s + δs, we formulate a minimization
problem that keeps the two trajectories close in phase space. To achieve this, we relax the requirement
of fixed initial condition for the two nearby values of s. However, for ergodic systems, this change does
not affect the time-average values and their sensitivities. Below, we state the minimization problem for
a single parameter s, but an adjoint version for multiple parameters can be also formulated.

min
v(t+i )

K

∑
i=0
‖v(t+i )‖

2
2, (5a)

subject to v(t+i ) = v(t−i ), (5b)

dv
dt
− ∂f

∂u
v− ∂f

∂s
− ηf = 0, (5c)

〈f(u(t), s), v(t)〉 = 0, (5d)

where ti < t < ti+1 (i = 0, ..., K− 1), (5e)

where

v(t) = lim
δs→0

u(τ(t); s + ds)− u(t; s)
δs

η(t) =
d
ds

(
dτ(t)

dt
− 1
)

.
(6)

The objective to be minimized, given in Equation (5a), is the L2 norm of the distance between the
two trajectories in phase space. This norm is computed using the distance at K + 1 discrete time points
t0, . . . , tK. Equation (5b) enforces the continuity of v across consecutive segments, Equation (5c) is the
linearized version of Equation (1) around s, and Equation (5d) enforces the direction v to be normal
to f. Finally, η is a time-dilation term between the reference and the shadowing trajectory. We briefly
describe the solution of the minimization problem in Equation (5), and more details can be found in
Reference [21,22]. We reformulate Equation (5) as

Minimize
vi

1
2

K

∑
i=0
‖vi‖2

2, (7a)

subject to Av = b, (7b)

where matrix A is

A =


−Φ1 I

−Φ2 I
. . . . . .
−ΦK I

 v =


v0

v1
...

vK

 b =


b1

b2
...

bK

 , (8)

and Φi+1 = Pti+1 φti ,ti+1 , bi+1 = Pti+1

∫ ti+1
ti

(φτ,t) ∂f
∂s dτ. Equation (8) is obtained by writing the state

vector v(t) in ti ≤ t < ti+1 as

v(t) = Pt

(
φt,τv(ti) +

∫ t

ti

φt,τ ∂f
∂s

dτ

)
, (9)
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where φ denotes the state transition matrix satisfying

dφt,τ

dτ
=

(
∂ f
∂u

∣∣∣∣
τ

)
φt,τ , (10)

and Pt is the projection operator which eliminates η from Equation (5)

Pt = I − f(t)f(t)T

f(t)Tf(t)
. (11)

Problem (7) is a standard minimization problem in linear algebra. It can be put into a Karush
Kuhn Tucker (KKT) form: [

−I AT

A 0

] [
v
w

]
=

[
0
b

]
. (12)

Introducing the Schur complement S = AAT , the above system takes the form:

Sw =


Φ1ΦT

1 + I −ΦT
2

−Φ2 Φ2ΦT
2 + I −ΦT

3
. . . . . . . . .

−ΦK ΦKΦT
K + I




w1

w2
...

wK

 = b. (13)

System (13) is solved with a Krylov solver, such as GMRES, by supplying matrix vector products
Sw. The system is usually ill-conditioned, and the Krylov solver requires a preconditioner to accelerate
its convergence. In this work, we use the preconditioner developed in Reference [21], which results in

(γI + ΓS)w = Γb. (14)

The introduction of matrix Γ and the regularization parameter γ reduces the condition number of
S by orders of magnitude and accelerates the convergence of the iterative Krylov solver. After solving
System (14), the sensitivity of G∞(s) is given by

dG∞(s)
ds

=
1
T

K−1

∑
i=0

∫ ti+1

ti

〈
∂G
∂u

∣∣∣∣
t
, v
〉

dt +
1
T

K−1

∑
i=0

〈fi+1, v(ti+1)〉
‖fi+1‖2

2
(G− Gi+1) +

∂ J̄
∂s

. (15)

This approach to sensitivity analysis in chaotic systems has been shown to produce sensitivities
that are representative of the physical properties of the underlying system and are in good
agreement with finite differences. All gradients in this paper will be evaluated using the
aforementioned algorithm.

3. Uncertainty Quantification with the gPC

In this section, we focus on the UQ methodology for chaotic systems described by Equation (1)
for the QoI (2). Uncertainty is introduced through s which is modeled by a vector of m random
independent variables ξ = (ξ1, . . . , ξm), where each ξi follows a given probability density function
(PDF) wi(ξi), defined in the domain Ei. Under these conditions, the QoI is also uncertain, becomes
a function of ξ, i.e., G∞ = G∞(ξ), and we are interested in evaluating the statistical moments of G∞.

The vector ξ follows a PDF given by the product W = ∏m
i=1 wi(ξi) defined in the domain

E = ∏m
i=1 Ei. The set of stochastic components ξi defines a set of stochastic orthonormal bases ψ(i)=

{ψ(i)
0 , ψ

(i)
1 , . . . } with a tensor product in the form Ψ := ⊗m

i=1Ψ(i) = {Ψ0, Ψ1, . . . } that is orthogonal to
the PDF W, i.e., 〈

Ψj, Ψk
〉
=
∫
E

ΨjΨkWdξ = δjk
〈
Ψj, Ψj

〉
, (16)
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where δjk denotes the Kronecker’s symbol, and repeated superscripts do not imply Einstein summation.
Using this approach, an uncertain quantity F = F(ξ) can be represented in spectral form as

F(ξ) =
∞

∑
i=0

FiΨi(ξ), (17)

which is commonly referred to as the PCE. This expansion is usually truncated after a finite number of
terms, given by

q + 1 =
(m + c)!

m!c!
, (18)

where c is a user defined quantity, known as chaos order. The computation of the statistics of F requires
computing the spectral coefficients Fi. These coefficients can be computed through Galerkin projection,
as in

Fi =
∫
E

FΨidξ. (19)

In practice, the Galerkin integral is approximated by a numerical quadrature technique,

∫
E

FΨidξ ≈
α

∑
j=1

ωj J(ξ j)Ψi(ξ j), (20)

that requires the evaluation of the QoI at points ξ j. The first 4 moments of F are computed through the
following expressions:

Mean value E[F] = F0 Standard deviation σ2[F] = E[F2]− E2[F]

Skewness S[F] =
E[F3]− 3E[F]σ2[F]− E3[F]

σ3[F]

Kurtosis K[F] =
E[F4]− 4E[F]E[F3] + 6E2[F]σ2[F] + 3E4[F]

σ4[F]

(21)

This framework can be used for conducting UQ either intrusively or non-intrusively. In this work,
all Galerkin integrals are computed using Gauss Quadrature due to its numerical accuracy, although it
is also common to use sparse grid approaches. For unsteady systems, that may or may not display
chaotic behavior, the intrusive approach is not guaranteed to converge to correct statistics [24]. We
illustrate this below with the aid of an example.

In the iPC method, the degrees of freedom are written as (refer to Equation (17)),

u(ξ) =
q

∑
i=0

uiΨi(ξ) (22)

and this expansion is inserted into the system equations as in

d
dt
(

q

∑
i=0

uiΨi(ξ)) = f(
q

∑
i=0

uiΨi(ξ), s). (23)

To find the spectral coefficients of the expansion, a new set of equations, called the iPCE equations
are derived by applying Galerkin projection to Equation (23),

d
dt

∫
E
(

q

∑
i=0

uiΨi(ξ))Ψidξ =
∫
E

f(
q

∑
i=0

uiΨi(ξ), s)Ψidξ. (24)
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We now apply iPCE to the Lorenz attractor, a chaotic system commonly used as a test case,

dx
dt

= σ(y− x),
dy
dt

= x(ρ− z)− y,
dz
dt

= xy− βz, (25)

where s = [σ, ρ, β] denotes the parameters vector (typical values are σ = 10, ρ = 28 and β = 8
3 ).

The system variables are written in their spectral form

[x(t), y(t), z(t)] = [
q

∑
i=0

xiΨi(ξ),
q

∑
i=0

yiΨi(ξ),
q

∑
i=0

ziΨi(ξ)]. (26)

For demonstration purposes, we take m = 1 and c = 1, and Equation (18) gives q = 1. Uncertainty
is introduced through β = β0 + β1ξ. Substituting into the Lorenz system and applying Galerkin
projections, we eventually get the system

dx0

dt
= σ(y0 − x0)

dx1

dt
= σ(y1 − x1)

dy0

dt
= x0ρ− x0z0 − x1z1 − y0 dy1

dt
= x1ρ− x0z1 − x1z0 − y1

dz0

dt
= x0y0 + x1y1 − β0z0 − β1z1 dz1

dt
= x0y1 + x1y0 − β0z1 − β1z0.

(27)

This coupled system is integrated explicitly with a variable time-step Runge Kutta and unit initial
conditions. We also performed MC simulations with N = 5000 samples over a time-frame T = 40,
which ensures the solution has become chaotic. The mean value (expectation) of the x(t) coordinate of
the trajectory obtained from iPCE and Monte–Carlo (MC) are compared in Figure 1.

0 10 20 30 40

-15

-10

-5

0

5

10

15

20

Figure 1. Comparison of the mean value of x coordinate of the trajectory, as computed by intrusive
Polynomial Chaos (iPC) and Monte–Carlo (MC) with N = 5000 samples. Uncertainty is introduced
through β = β0 + β1ξ, where ξ ∼ N (0, 1).

The MC result is obtained as follows. The Lorenz equations in (25) are integrated using N sample
values of β that follow the given distribution. At each time instant t, the expectation of x(t) is computed
from the N available samples and plotted as a function of time. Note that the expectation tends to
0 as t increases; this is due to the symmetry of the attractor. The iPC solution, however, starts to
deviate substantially from the MC at around t = 15. Increasing the chaos order c will not alleviate this
deviation; it will simply delay it at later time.
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4. Non-Intrusive PC in Chaotic Systems

In the niPC, instead of applying the PCE to the state variables, we apply it directly to the QoI,
as in

G∞(ξ) =
∞

∑
i=0

Gi
∞Ψi(ξ), (28)

and the spectral coefficients are evaluated using a quadrature approach,

Gi
∞ =

∫
E

G∞(ξ)Ψidξ =
α

∑
j=1

ωjG∞(ξ j)Ψi(ξ j). (29)

The niPC requires evaluations of the QoI at the required quadrature points ξ j and does not
suffer from the aforementioned problem of intrusive PC. This approach is therefore suitable to chaotic
systems. It is easy to apply, and most importantly, time-averaged quantities G∞(s) are (usually) smooth
functions of the parameters s and are therefore better suited for a spectral representation. This results
in a smooth convergence of the spectral expansion and allows the evaluation of the statistics with low
chaos orders c, which is important for keeping the computational cost low. More applications on niPC
on chaotic systems will be discussed in later sections.

The same approach can be implemented to compute the statistics of the sensitivity of G∞(s),

dG∞

ds
≈

q

∑
i=0

dG∞

ds

i

Ψi(ξ),
dG∞

ds

i

=
α

∑
j=1

ωj
dG∞

ds
(ξ j)Ψi(ξ j). (30)

The MSS algorithm, as described in Section 2, is employed in to evaluate dG∞
ds (ξ j) at the quadrature

points ξ j. In the following two sections, we apply niPC for time-averaged quantities and their
sensitivities on two test cases and compare the results with MC simulations.

5. Application on the Lorenz-96 Model

We apply the aforementioned methodology in the Lorenz-96 equations [25], which model the
evolution of atmospheric quantities, such as vorticity or temperature at a discrete periodic lattice
representing a latitude circle on earth. The model is given by the system of N equations

dXi
dt

= (Xi+1 − Xi−2)Xi−1 − Xi + F, (31)

where i = 1, . . . , N. In this system, −Xi is a damping term, F is an external force, and the quadratic
terms resemble the advection term and conserve kinetic energy. For more details on the solution of (31)
and the treatment of X−1, X0, and XN , the reader is referred to References [25,26]. This model is
excellent for testing, since it is exhibits different dynamics depending on F; thus, it is ergodic, and its
behavior displays similarities with turbulent fluid flows [26].

In Figure 2, we plot the maximum Lyapunov exponent of the system as a function of the forcing
term F. Notice that the exponents are positive in the range of F considered, indicating that the
Lorenz-96 model displays chaotic behavior. The exponents were computed using QR decomposition,
as in Reference [27], and match well with the results from Reference [28] .

The QoI considered is the time-averaged integral of the average value of Xi, defined as

J(F) =
1

NT

N

∑
i=1

∫ T

0
Xidt. (32)
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Figure 2. Maximum Lyapunov exponent of the Lorenz-96 model for different values of the forcing
term F (blue dots). The integration time is T = 500 and N = 40. The red dots represent the exponents
reported in Reference [28].

Uncertainty is introduced through F = 10 + 0.3ξ, where ξ ∼ N (0, 1) is Gaussian. To choose an
appropriate chaos order c, we perform a spectral convergence analysis for the first four moments of
Equation (32), which is shown in Figure 3. Notice that, for c = 4, all four moments stabilize to the
value predicted by a Monte–Carlo simulation with N = 10, 000 samples.
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Figure 3. Spectral convergence of the first four moments of the Quantity of Interest (QoI) (32) in the
Lorenz-96 system. Here, T = 100, F = 10 + 0.3ξ, where ξ ∼ N (0, 1).

In Figure 4, we compare the first four statistical moments of Equation (32) obtained using the
Monte–Carlo and gPC for c = 4. Notice that the Monte–Carlo is in good agreement with the gPC,
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indicating that this approach can be a valuable method for UQ in the time averages of chaotic systems.
Note that the skewness and kurtosis are close to 0 and 3, respectively, as the values for Gaussian
distribution. A possible explanation is that J(F) is the sum of random variables that follow the same
distribution, and from the central limit theorem, it follows that the PDF of J(F) is Gaussian.

0 2000 4000 6000 8000 10000

2.5

2.6

2.7

2.8

2.9

3

0 2000 4000 6000 8000 10000

0

0.02

0.04

0.06
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0.1

0 2000 4000 6000 8000 10000

-0.2

0

0.2

0.4

0.6

0.8

0 2000 4000 6000 8000 10000

1.5

2

2.5

3

3.5

4

Figure 4. Uncertainty Quantification (UQ) in the Lorenz-96 model (N = 40 and T = 100), for the
QoI (32). Comparison of statistical moments computed by Monte–Carlo and generalized Polynomial
Chaos (gPC) for (N = 40 and T = 100) c = 4.

The same principle applies in the UQ of the sensitivity of QoI (32) with respect to F. This sensitivity
is obtained using the MSS algorithm described in Section 2. To that end, Equation (31) is differentiated
with respect to F

dVi
dt

= Xi−1Vi+1 + (Xi+1 − Xi−2)Vi−1 − Xi−1Vi−2 −Vi + 1− η ((Xi+1 − Xi−2)Xi−1 − Xi + F) , (33)

where Vi =
dXi
dF . Equation (33) is used as a constraint in the MSS algorithm (refer to Equation (5c)).

Results can seen in Figure 5, where the sensitivity obtained from MSS is compared with FD.
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Figure 5. Comparison of sensitivities as computed by MSS and FD. The MSS was conducted for a
segment of size ∆T = 0.7, K = 35 total segments and N = 40 .

The convergence of the GMRes algorithm applied to system (14) is shown in Figure 6.
The residuals are reduced by more than 8 orders of magnitude in 13 iterations, which demonstrates
the effectiveness of the preconditioner.
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10
0

10
2

10
4

Figure 6. Convergence of the Multiple-Shooting Shadowing (MSS) algorithm for the Lorenz-96 system.
The MSS was conducted on K = 35 time segments on a trajectory of total length T = 50, for N = 40
and F = 8.

By coupling the gPC with the MSS, the statistics of the sensitivity of the QoI can be computed
efficiently. In Figure 7, the first four statistical moments of dJ

dF are computed and compared with
the results from Monte–Carlo. The gPC is found to be in good agreement with the results from the
Monte–Carlo simulation. Note that again the skewness and kurtosis are predicted to be close to the
values of the Gaussian distribution.
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Figure 7. UQ in the sensitivity of the QoI given by Equation (32) with respect to F. Comparison of
statistical moments, as computed by Monte–Carlo coupled with Finite-Differences and gPC (c = 4)
coupled with the MSS algorithm. Uncertainty is introduced through F = 10 + 0.3ξ where ξ ∼ N (0, 1).
Here, N = 40 and T = 100.

The PDF computed by the gPC coupled with the MSS can be compared with the one produced
by the Monte–Carlo where the sensitivities are evaluated using FD. The PDF predicted by the gPC is
computed as in Reference [14]. This is seen in Figure 8, where the PDF from the Monte–Carlo has been
approximated by connecting the midpoints of the bins of its histogram. Notice that the two PDFs are
in good agreement.

2.4 2.5 2.6 2.7 2.8
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-1 -0.5 0 0.5 1
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gPC

Figure 8. Probability Density Function (PDF) comparison between Monte–Carlo ( N = 10000 samples)
and gPC (c = 4). Left: PDF of (32). Right: PDF of the sensitivity of Equation (32) w.r.t. F. The PDF from
the Monte–Carlo is approximated by evaluating the histogram and connecting the bin midpoints. Here,
T = 100 and N = 40.
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6. Application on the van der Pol Oscillator

The UQ methodology is now applied to the van der Pol oscillator, given by

d2y
dt2 = −y + β(1− y2)

dy
dt

. (34)

This is a non–conservative oscillator, where the non-linearity is introduced through its damping
coefficient. It was initially used to model limit cycle oscillations in electrical circuits, but it has been
applied in other fields, as well, such us seismology and neuron modeling. The QoI is the L8 norm
of ω = dy

dt , which behaves similarly to the L∞ norm, and provides a metric for the magnitude of the
peaks of ω. The objective function is written as

〈J〉
1
8 =

(
lim

T→∞

1
T

∫ T

0
ω8dt

) 1
8
. (35)

Equation (34) is converted into a set of two, coupled ODEs [29] and integrated from an initial
condition at t = −50 until t = 0, which ensures that the state variable u = [y, ω] has reached the
attractor. Further integration then follows from 0 to T to obtain the reference trajectory. The attractor
of the state u is seen in Figure 9.

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

Figure 9. Attractor of the state vector of Equation (34), for different values of β. Here, T = 100.

Integrating Equation (34) forward in time is computationally inexpensive; therefore, we can easily
compute the variation QoI with β for a wide range of values. This is shown in Figure 10; 〈J〉 1

8 increases
in magnitude as β increases.
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1.8

2

2.2

2.4

2.6

Figure 10. Variation of the norm as in Equation (35) against β, for T = 500.
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The variation is smooth; therefore, it is expected that the gPC can be used to efficiently compute
the statistics of 〈J〉 1

8 . This is seen in Figure 11, where a comparison is made between the gPC and the
MC. Note that the selection of the number of samples for the MC and the chaos order c was made
through a spectral convergence study for the gPC and through a sample convergence study for the
MC, similarly to the Lorenz-96 case. Uncertainty is introduced through β = β0 + β1ξ, where β0 varies
in [0.2, 2] with a step of δb = 0.05, ξ ∼ N (0, 1) is Gaussian, and β1 = 0.5β0. Notice that the two
methods are again in good agreement. It is worth mentioning that there is a slight deviation with
respect to the value obtained in the absence of uncertainties (blue circles). This deviation, arising from
a deterministic approach to chaotic systems, is important and results in overestimation of the QoI if
uncertainties are not taken into account.

0 0.5 1 1.5 2

1.6

1.8

2

2.2

2.4

2.6

2.8

0 0.5 1 1.5 2
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0.7

0.8

0.9

Figure 11. Comparison of mean value (left) and standard deviation (right) of Equation (35), as
computed by the gPC coupled with MSS and the Monte–Carlo for N = 7500 samples. In both
cases, T = 100. The chaos order is c = 4.

The smooth behavior shown in Figure 10 implies also a smooth variation of the sensitivity
d〈J〉 1

8 /dβ with respect to β. This is verified in Figure 12 (left), where the mean value is computed with
FD for a time-length of T = 1000. In the same figure, a comparison is made between the gPC coupled
with MSS, and the Monte–Carlo for N = 5000 samples. Uncertainty conditions are the same as in
Figure 11.

0 0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2

0
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Figure 12. Comparison of mean value (left) and standard deviation (right) of the sensitivity of (35), as
computed by the gPC coupled with MSS and the Monte–Carlo for N = 7500 samples. In both cases,
T = 100. The chaos order is c = 4.

Notice that the gPC is in good agreement with the MC. A small deviation, similar to that found
in Figure 11, is also observed in the sensitivities. Here, the deviation is found for even smaller
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uncertainties, which indicates an even stronger influence of the non-linearity present in the design
space of Equation (35).

In Figure 13, we plot the reference trajectory and its shadowing counterpart, in phase space.
The difference between the two trajectories is exaggerated by two orders of magnitude so that a visual
can be produced. Notice that the two trajectories remain close, i.e., shadow, each other in phase space.
It is exactly this property that allows us to compute reliable sensitivities in chaotic systems.
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0
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Figure 13. Shadowing and reference trajectory. Here, βre f = 0.3, βshad = 0.301, and T = 20.

7. Discussion

The results from Sections 5 and 6 indicate that the non-intrusive gPC is a valid method for
quantifying uncertainties of time-averages and their sensitivities with respect to system parameters in
chaotic systems. The gPC is an established method in propagating and evaluating uncertainties, yet
the accuracy of the intrusive version deteriorates when applied to general unsteady (let alone chaotic)
systems. This was demonstrated in the Lorenz attractor, where it was shown that the statistics of the
trajectory cannot be captured correctly with an iPC approach. Approaches where the orthonormal
basis is recalculated and the spectral order of the expansion is increased have appeared in the
literature [30,31]; however, these approaches have high computational cost and increased complexity.

Non-intrusive approaches, on the other hand, do not suffer from the aforementioned problem.
This is demonstrated on the Lorenz-96 system and the van der Pol oscillator, where the statistics of
the time-averages are computed accurately for a low spectral chaos order c, the results being in good
agreement with the MC. The convergence of the gPC for low c is due to the fact that the time-averages
display smooth variation to system parameters, as well as due to ergodicity are independent of the
initial conditions used. The computational cost of this method scales with the number of stochastic
parameters. In such high-dimensional cases, correlations may exist between the uncertain parameters.
These issues are dealt with in the gPC literature with the use of sparse grids, data–driven techniques,
or variational approaches, [1,3,32].

Regarding the sensitivities, to properly evaluate their statistics, the gPC is coupled with the MSS
algorithm, which can accurately compute the sensitivities of time-averages, even for a large number of
uncertain parameters. The MSS algorithm is formulated in such a way to allow for the non-intrusive
nature of the niPC to be preserved and for already developed software conducting the sensitivity
analysis of the system to be employed. This coupling introduces a basic algorithmic framework for
conducting UQ in chaotic systems and can exist as a basis for developing an approach to robust design
in the presence of chaos.
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