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Abstract: In this work, a tracking control strategy is developed to achieve finite-time stability
of quadrotor Unmanned Aerial Vehicles (UAVs) subject to external disturbances and parameter
uncertainties. Firstly, a finite-time extended state observer (ESO) is proposed based on the nonsingular
terminal sliding mode variable to estimate external disturbances to the position subsystem. Then,
utilizing the information provided by the ESO and the nonsingular terminal sliding mode control
(NTSMC) technique, a dynamic surface controller is proposed to achieve finite-time stability of the
position subsystem. By conducting a similar step for the attitude subsystem, a finite-time ESO-based
dynamic surface controller is proposed to carry out attitude tracking control of the quadrotor UAV.
Finally, the performance of the control algorithm is demonstrated via a numerical simulation.

Keywords: nonsingular terminal sliding mode control; finite-time stability; quadrotor UAV; dynamic
surface control

1. Introduction

The advantages of Quadrotor Unmanned Aerial Vehicles (UAVs) hare their small size,
low energy consumption, and great flexibility. Therefore, they have extensive applications,
including environmental monitoring, aerial photography, logistics distribution, and so on.
Recently, the quadrotor UAV has been studied extensively. Many scholars have researched
control problems regarding the quadrotor UAV, including trajectory tracking control [1],
formation control [2], obstacle avoidance control [2], and fault tolerant control [3]. High-
accuracy trajectory tracking control is the basis for allowing the quadrotor UAV to complete
tasks. Hence, the tracking control trajectory is one of the most important aspects of a
quadrotor UAV. However, external disturbances and parameter uncertainties will have
negative impacts on the tracking control system. Therefore, studies on the trajectory
tracking control problem are becoming increasingly significant for quadrotor UAVs subject
to synthetic disturbances [1,4,5].

There are many methods to solve the control problem, including sliding mode control
(SMC) [6–8], proportional-integral-derivative (PID) or proportional-derivative (PD) [9]
control, adaptive control (AC) [10,11], backstepping control [12,13], dynamic surface control
(DSC) [14], neural network [15], and model predictive control [16]. Backstepping control
is one of the most effective control methods. In [17], a backstepping-technique-based
controller was designed for a typical multi-input multi-output (MIMO) system class to
address the tracking problem. In [18], an integral backstepping control strategy was
proposed for a quadrotor with unknown modeling uncertainties and disturbances to ensure
that the system was asymptotically stable. By utilizing the backstepping and fuzzy control
techniques, a new sliding mode controller was presented by [19] and used to determine
the robustness of the differential wheeled mobile robot. However, backstepping has the
disadvantage of leading to an “explosion of complexity” after multiple iterations. The
DSC technique can overcome this drawback by introducing a filter. The filter can estimate
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the derivative of the virtual control law. A DSC-based trajectory tracking controller was
designed by [20] for a quadrotor UAV by introducing a first-order low-pass filter. However,
the aforementioned scheme did not take into account the estimation error of the filter.
In [21], an error compensation signal was designed to compensate for the estimation error.
To design a backstepping recursive control scheme for MIMO nonlinear systems, a new
finite-time filter was proposed to obtain command signals and their derivatives by [22],
where the system was practically finite-time stable.

SMC is also one of the most commonly used methods to deal with the tracking con-
trol problem. SMC has a history of more than 60 years, and it has the characteristics of
simplicity and robustness [23]. SMC has a wide range of applications [24]. However,
the bulk of SMC techniques can only ensure asymptotic stability of the system. In order
to obtain a fast convergence rate, terminal sliding mode control (TSMC) was developed.
In [25], a nonsingular terminal sliding mode control (NTSMC)-based control input was
designed to guarantee the fixed-time stability of a second-order nonlinear system. In [26],
a continuous integral terminal sliding mode variable was designed to solve the singularity
and chattering problems, and the sliding mode variable based control algorithm was pro-
posed to guarantee fixed-time stability of second-order nonlinear systems. To obtain a fast
response from the system, a fast terminal sliding mode control (FTSMC)-based controller
was designed by [27] for quadrotor UAVs subject to external disturbances and parameter
uncertainties. In [28], a FTSMC-based trajectory tracking strategy for autonomous under-
water vehicles was proposed to improve the convergence rate. An adaptive PID-SMC
method was proposed for quadrotor UAVs subject to external disturbances to achieve
finite-time stability of the tracking control system in [29].

In applications, disturbances in the system will reduce the accuracy of the control
scheme. One of the most effective ways to overcome this is to use an observer-based
approach. To estimate the external disturbances, an AC-based terminal sliding mode
observer for quadrotor UAVs was proposed to achieve appointed-fixed-time stability of
the attitude system [30]. A disturbance observer (DO) based tracking control strategy was
proposed to ensure the asymptotic stability of a wheeled mobile robot in [31]. For typical
nonlinear systems, the authors of [32] presented a DO-based control framework to achieve
asymptotic stability of the closed-loop tracking system. In [33], a DO was designed for
mechanical systems to estimate the total uncertainty, and a controller was proposed to
ensure the stability of the system. In [34], an extended state observer (ESO) for robot
manipulators was proposed to estimate the velocity measurement uncertainty in finite time.
In [35,36], a finite-time ESO was designed based on the NTSMC technique to address the
fault tolerant control problem, and this could be used to estimate the lumped uncertainties
of the spacecraft. For a quadrotor with disturbances and model uncertainties, a filtered
observer-based Interconnection and Damping Assignment-Passivity Based Control scheme
was designed to address the tracking problem [37]. Utilizing the filter to attenuate noise, a
tracking controller was proposed to achieve asymptotic stability of the closed-loop system
for quadrotor UAVs [38].

This paper addresses the tracking control problem associated with quadrotor UAVs
subject to external disturbances and parameter uncertainties. The main contributions
of this paper are as follows: (1) For the position and attitude subsystems, two NTSMC-
based finite-time ESOs are proposed to estimate external disturbances and/or parameter
uncertainties. Compared with the asymptotically stable nonlinear ESO presented in [39],
the proposed ESO is finite-time stable. The finite-time scheme is not only robust and highly
precise, it can also estimate the upper bound of the settling time. (2) Inspired by [14], two
finite-time controllers based on NTSMC and DSC are designed for the position and attitude
subsystems. The estimation error of the filter converged to a neighborhood of the origin
in [14]. The advantage of this paper is that the filter can precisely estimate the derivative of
the virtual control law, and the estimation error can converge to zero in finite time. Hence,
the convergence rate and the tracking error are improved in the proposed control scheme.
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The rest of this paper is organized as follows. In Section 2, the quadrotor model
is established. In Section 3, the NTSMC technique-based finite-time ESOs and dynamic
surface controllers are proposed, and the stabilities are analyzed in detail using the Lya-
punov criteria. A numerical simulation of the proposed control algorithm is performed in
Section 4. The conclusions are drawn in Section 5.

Notation. The superscript T represents the transpose of a matrix. Denote sigbpxq “
|x|bsignpxq, where signp¨q is a standard symbolic function and | ¨ | is the absolute value. } ¨ }
stands for the Euclidean norm of a vector. R and R` respectively represent the sets of
real numbers and positive real numbers. Rn denotes an n-dimensional real vector. Uzt0u
represents the set, where t0u is removed from the set U.

2. Quadrotor Model

As shown in Figure 1, four motors are used to generate thrust for the quadrotor UAV.
The four types of thrust can be expressed as Fi (i = 1, 2, 3, 4), and these can be controlled by
adjusting the steering of the motors. The dynamics of the quadrotor UAV are represented
as [40]:
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:x “ uF
m pcosφsinθcosψ` sinφsinψq ´ k1

m 9x` d1

:y “ uF
m pcosφsinθsinψ´ sinφcosψq ´ k2

m 9y` d2

:z “ uF
m pcosφcosθq ´ g´ k3

m 9z` d3

J1 :φ “ ´k4l 9φ` d4 ` lu1 ´ ∆J1 :φ

J2 :θ “ ´k5l 9θ ` d5 ` lu2 ´ ∆J2 :θ

J3 :ψ “ ´k6 9ψ` d6 ` cu3 ´ ∆J3 :ψ

(1)

where px, y, zq and pφ, θ, ψq represent the position and attitude of the quadrotor UAV,
respectively; ψ P p´π, πq is yaw; θ P p´π{2, π{2q is pitch; φ P p´π{2, π{2q is roll; m P R`
is the mass of the quadrotor UAV; di P Rpi “ 1, 2, . . . , 6q is the external disturbance;
Ji P R` pi “ 1, 2, 3q is the moment of inertia; ki P R`pi “ 1, 2, . . . , 6q represents the
aerodynamic damping coefficient; ∆Ji P R pi “ 1, 2, 3q is the uncertainty of the moment
of inertia; l P R` is the distance from the motor to the center of mass; c P R` denotes
the force-to-moment factor; and uF, u1, u2, u3 are the control inputs of the position and
attitude subsystems, respectively.

Figure 1. The structure of the quadrotor UAV.

Lemma 1 ([41]). Consider the following system

9δ “ f pδq, δp0q “ δ0, f p0q “ 0, δ P Rn (2)

where δ “ rδ1, δ2, . . . , δns
T is the state vector. Suppose there is a positive definite Lyapunov

function Vpδq, which is defined on a neighborhood U Ă Rn of the origin. For any δ P Uzt0u, if
the inequality

9Vpδq ` ν1Vpδqp ď 0 (3)
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is satisfied with ν1 ą 0, 0 ă p ă 1. The system is finite-time stable, and the settling time is

t1 ď
1

ν1p1´ pq
|Vpδ0q|

1´p (4)

Lemma 2 ([42]). Consider the system in p2q. For p P p0, 1q, ν1 ą 0 and ν2 ą 0, suppose a positive
definite Lyapunov function Vpδq exists, which satisfies

9Vpδq ď ´ν1Vpδq ´ ν2Vpδqp (5)

such that the origin of the system is finite-time stable. The settling time is

t2 ď
1

ν1p1´ pq
ln

ν1Vpδ0q
1´p

` ν2

ν2
(6)

Lemma 3 ([43]). Consider the system in p2q. If a Lyapunov function Vpδq exists, which satisfies

9Vpδq ď ´ν1Vpδqp ` ν2 (7)

with p P p0, 1q, ν1 ą 0, ν2 ą 0. The system is finite-time stable in a neighborhood of the origin. The
settling time t3 is given by

t3 ď
Vpδ0q

1´p

ν1θ1p1´ pq
, θ1 P p0, 1q (8)

Lemma 4 ([25]). Consider a general second-order system
#

9δ1 “ δ2
9δ2 “ f pt, δq ` gpt, δqpu` dpt, δqq

(9)

where δ “ rδ1, δ2s
T is the state vector; u denotes the control input; f pt, δq and gpt, δq satisfy

f pt, 0q “ 0 and gpt, δq ‰ 0, respectively; and dpt, δq represents the lumped disturbance.
The following sliding mode variable is designed as

s “ δ2 ` 2ζ
a

|arctanpδ1q|p1` δ2
1qsignpδ1q (10)

with ζ ą 0. If s “ 0 is satisfied, the system will converge to zero in fixed time.

Lemma 5. Consider the sliding mode variable p10q, the following nonsingular terminal sliding
mode variable tackles the singularity problem.

s “ 9δ` 2ζ
b

ρ` |arctanpδq|p1` δ2qsignpδq (11)

where ρ is a small constant. The nonsingular terminal sliding mode variable p11q is finite-time stable.

Proof. Consider the Lyapunov function Vs “ |arctanpδq|$1 . By differentiating Vs, one
can obtain

9Vs “$1|arctanpδq|$1´1
p´2ζ

b

ρ` |arctanpδq|q

ď´ 2ζ$1
?

ρ|arctanpδq|$1´1

ď´MV
1´ 1

$1
s

(12)

with M “ 2ζ$1
?

ρ. According to Lemma 1, the nonsingular terminal sliding mode variable

will converge to origin after finite time t4 with t4 ď
$1
M |Vsp0q|

1
$1 .
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Assumption 1. The derivatives of the terms d3 and d̄jpj “ 4, 5, 6q are 9d3 and 9̄dj, respectively.

Suppose there is a known constant µ such that | 9d3| ă µ and | 9̄dj| ă µ.

3. Finite-Time ESO and DSC-Based Control Algorithm Design
3.1. Finite-Time ESO for External Disturbances

In practice, various disturbances impact quadrotor UAVs. These disturbances will
have negative impacts on the performance of the control system, for example, by reducing
the precision of trajectory tracking, increasing the chattering, and so on. In order to solve
these problems, the finite-time ESO was designed to estimate the disturbances.

Define the following variables

x1 “ z, x2 “ 9z (13)

In order to design the observer and controller, one can rewrite the altitude of the
position subsystem as [14]

#

9x1 “ x2

9x2 “ f1uF ´ g´ k3
m x2 ` d3

(14)

with f1 “ pcosφcosθq{m.
Considering the system p14q, we designed an ESO to estimate d3. First of all, we

designed the following nonsingular terminal sliding mode variable

sx “ x2 ` 2ζ
b

ρ` |arctanpx1q|p1` x2
1qsignpx1q (15)

Combining p14q and p15q, the derivative of p15q is

9sx “ 9x2 ` f2

“ f1uF ´ g´
k3

m
x2 ` d3 ` f2

(16)

where f2 can be expressed as

f2 “

$

’

’

’

&

’

’

’

%

ζx2p1`4x1parctanpx1q´ρqq?
ρ´arctanpx1q

, if x1 ă 0

0, if x1 “ 0
ζx2p1`4x1parctanpx1q`ρqq?

ρ`arctanpx1q
, if x1 ą 0

(17)

Denote A1 “ f2 ´ g´ k3
m x2, B1 “ f1, one can get

9sx “ A1 ` B1uF ` d3 (18)

By using the ESO technique, one can define a new state variable Z1 “ sx. Meanwhile,
an extended state variable Z2 “ d3 can also be defined. Then, one can get

#

9Z1 “ A1 ` B1uF ` Z2
9Z2 “

9d3
(19)

According to Assumption 1, | 9Z2| ď µ is reasonable.
If we let Ẑi be the observation of Zi, then the observation error is Z̃i “ Ẑi´Zi pi “ 1, 2q.

The finite-time ESO is designed as
#

9̂Z1 “ Ẑ2 ´ r1sigb1pZ̃1q ´ L1Z̃1 ` A1 ` B1uF
9̂Z2 “ ´r2signpZ̃1q ´ L2Z̃1

(20)
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where the gains satisfy 0 ă b1 ă 1, ri ą 0 and Li ą 0pi “ 1, 2q.
Considering the system in p19q and the ESO in p20q, the error system of observer can

be written as
#

9̃Z1 “ Z̃2 ´ r1sigb1pZ̃1q ´ L1Z̃1
9̃Z2 “ ´r2signpZ̃1q ´ L2Z̃1 ´ 9Z2

(21)

Theorem 1. Considering the system in p14q and Assumption 1, the finite-time ESO is proposed
as p20q. The appropriate parameters L1 and L2 exist, which satisfy

L2
1 ě 4L2 (22)

such that observation errors Z̃ “
“

Z̃1, Z̃2
‰T can converge into a small residual region in finite time.

Proof. Select a Lyapunov function

V1 “
1
2

Z̃TZ̃ (23)

From p21q and p23q, 9V1 can be calculated as

9V1 “Z̃1
9̃Z1 ` Z̃2

9̃Z2

“Z̃1rZ̃2 ´ r1sigb1pZ̃1q ´ L1Z̃1s ` Z̃2r´r2signpZ̃1q´

L2Z̃1 ´ 9Z2s

ďZ̃1Z̃2 ´ r1|Z̃1|
b1`1 ´ L1Z̃2

1 ` r2|Z̃2| ´ L2Z̃1Z̃2`

µ|Z̃2|

ď´ Z̃TQZ̃` pr2 ` µq}Z̃}

(24)

with Q “

„

L1 ´1
L2 0



. The characteristic equation of Q can be written as

D “ |λI2 ´Q|

“

ˇ

ˇ

ˇ

ˇ

λ´ L1 1
´L2 λ

ˇ

ˇ

ˇ

ˇ

“ λ2 ´ L1λ` L2

(25)

where I2 denotes the two-dimensional identity matrix, and λ represents a Laplase variable.
The parameters L1 and L2 satisfy

L2
1 ě 4L2 (26)

such that all eigenvalues of the matrix Q are positive constants. By utilizing the basic
properties of matrix, the inequality

λminpQq}Z̃}2 ď Z̃TQZ̃ ď λmaxpQq}Z̃}2 (27)

holds, where λminpQq denotes the minimum eigenvalue of Q, and λmaxpQq represents the
maximum eigenvalue of Q. Then, substituting p27q into p24q yields

9V1 ď ´λminpQq}Z̃}2 ` pr2 ` µq}Z̃}

“ r´
1
2
ppλminpQqq}Z̃} ´ 2pr2 ` µqqs}Z̃} ´

1
2

λminpQq}Z̃}2
(28)
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If the condition }Z̃} ě 2pr2 ` µq{λminpQq is satisfied, one can get 9V1 ď 0. When
}Z̃} ě 2pr2 ` µq{pθ1λminpQqqwith 0 ă θ1 ă 1, one can obtain

9V1 ď ´M1V
1
2

1 ´M2V1 (29)

with M1 “ min
?

2pr2`µqp1´θ1q
θ1

, M2 “ λminpQq.
Therefore, the observation error Z̃ will converge into the set tZ̃|}Z̃} ď 2pr2 ` µq{λminpQqu

after finite-time t f 1. According to Lemma 2, the time t f 1 is given by

t f 1 ď
2

M2
ln

M2
a

V1p0q `M1

M1
(30)

The proof is completed.

Remark 1. The ESO in p20q is comprised of two parts: a linear part and a nonlinear part. The
ESO has a fast response for the linear part with a small damping ratio. When the observation
error tends to zero, the nonlinear linear part increases the damping ratio and reduces the overshoot
caused by the linear part. Although the nonlinear part has no effect on the proof process, it has
an important impact on the performance of ESO [39]. It can be seen for the ESO p20q that the
composite nonlinear ESO [39] is uniformly ultimately bounded, while the ESO p20q presented in
this paper can guarantee the practically finite-time stability of the error system.

3.2. NTSMC and DSC-Based Finite-Time Position Controller Design

In this section, a NTSMC and a DSC-based control scheme are used to design the
finite-time position tracking controller. At the same time, this scheme is applied to the
attitude subsystem. In order to decrease the negative impacts of the ESO error on the
stability of the position subsystem, we introduce an adaptive law to compensate for the
observation error.

Step1: Define the dynamic errors ez1 “ x1´ x1d and ez2 “ x2´ β f , where x1d denotes
the desired altitude and β f is the output of finite-time filter. Construct the following virtual
control law

β “ 9x1d ´ l1|ez1|
c1signpez1q (31)

with l1 ą 0, 0 ă c1 ă 1.
To address the problem of “explosion of complexity” in the traditional backstepping

design, the finite-time filter is introduced as
#

9β f “ ϕ1 ´ λ1|β f ´ β|p1signpβ f ´ βq

9ϕ1 “ ´λ2|β f ´ β|p2signpβ f ´ βq
(32)

with 0 ă p1 ă 1, p2 “ 2p1 ´ 1. λ1 and λ2 are positive constants. From [44], it is known that
β f converges to β after finite time, namely |β f ´ β| “ 0 after finite time.

Considering a Lyapunov function V2 “ 0.5e2
z1, taking the time derivative of V2 yields

9V2 “ez1 9ez1

“ez1pez2 ` β f ´ 9x1dq
(33)

When β f converges to β, by substituting (31) into (33), one can obtain

9V2 ď´ l1|ez1|
c1`1

` ez1ez2 (34)

Step2: Design the following nonsingular terminal sliding mode variable

s1 “ ez2 ` 2ζ
b

ρ` |arctanpez1q|p1` e2
z1qsignpez1q (35)
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The proposed position control law is

uF “´
1
f1
r´g´

k3

m
x2 ` Ẑ2 ´ 9β f ` f

1

2 ` ε|s1|
c1signps1q ` ez1 ` â1signps1qs (36)

where ε is a positive constant, â1 is the estimation of a1, and a1 is the upper bound of the
observation error Z̃2. â1 is defined as

9̂a1 “ m1|s1| ´ n1 â1 (37)

with â1p0q ě 0, m1 ą 0 and n1 ą 0. According to Lemma 2 in [45], one can get 0 ă â1 ă ā1,
where ā1 is positive scalar. The function f

1

2 is given by

f
1

2 “

$

’

’

’

&

’

’

’

%

ζ 9ez1p1`4ez1parctanpez1q´ρqq?
ρ´arctanpez1q

, if ez1 ă 0

0, if ez1 “ 0
ζ 9ez1p1`4ez1parctanpez1q`ρqq?

ρ`arctanpez1q
, if ez1 ą 0

(38)

Theorem 2. Consider the position subsystem presented in p14q and finite-time ESO in p20q. If the
NTSMC-based finite-time dynamic surface controller is designed as p36q, then the states of system
can be practically finite-time stabilized.

Proof. Consider a Lyapunov function V3 “ V2 ` 0.5s2
1 ` pâ1 ´ a1q

2{2m1. By differentiating
V3, one can obtain

9V3 “ 9V2 ` s1 9s1 `
1

m1
pâ1 ´ a1q 9̂a1 (39)

Considering the control law presented in p36q, the derivative of the nonsingular
terminal sliding mode manifold is

9s1 “ 9ez2 ` f
1

2

“´ ε|s1|
c1signps1q ´ ez1 ´ â1signps1q ´ Z̃2

(40)

By substituting (34) and (40) into (39), one can obtain

9V3 “ 9V2 ` s1r´ε|s1|
c1signps1q ´ ez1 ´ â1signps1q ´ Z̃2s `

1
m1
pâ1 ´ a1q 9̂a1

“ 9V2 ` s1r´ε|s1|
c1signps1q ´ ez1 ´ â1signps1q ´ Z̃2s ` pâ1 ´ a1q|s1|

´
n1

m1
pâ1 ´ a1qâ1

ď´ l1|ez1|
c1`1 ` ez1ez2 ´ ε|s1|

c1`1 ´ s1ez1 ` |s1||Z̃2| ´ â1|s1|

` pâ1 ´ a1q|s1| ´
n1

m1
pâ1 ´ a1qâ1

ď´ l1|ez1|
c1`1 ´ ε|s1|

c1`1 ´
n1

m1
pâ1 ´ a1qâ1

“´ l1|ez1|
c1`1 ´ ε|s1|

c1`1 ´
n1

m1
|â1 ´ a1|

c1`1 `
n1

m1
|â1 ´ a1|

c1`1 ´
n1

m1
pâ1 ´ a1qâ1

(41)

The following inequality holds because â1 ą 0.

n1

m1
|â1 ´ a1|

c1`1 ´
n1

m1
pâ1 ´ a1qâ1

“
n1

m1
r|â1 ´ a1|

c1`1 ´ pâ1 ´ a1q
2 ´ pâ1 ´ a1qa1s

ď
n1

m1
r|â1 ´ a1|

c1`1 ´ |â1 ´ a1|
2s `

n1

m1
a2

1

(42)
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(1) When 0 ă |â1 ´ a1| ă 1, one can get

0 ď |â1 ´ a1|
c1`1 ´ |â1 ´ a1|

2 ď ς (43)

with ς “ b
b

1´b ´ b
1

1´b , b “ c1`1
2 .

(2) When |â1 ´ a1| ą 1, the inequality

|â1 ´ a1|
c1`1 ´ |â1 ´ a1|

2 ă 0 (44)

holds.
Hence, it is apparent that the inequality |â1 ´ a1|

c1`1 ´ |â1 ´ a1|
2 ď ς is guaranteed in

any case. Further, one can obtain

n1

m1
|â1 ´ a1|

c1`1 ´
n1

m1
pâ1 ´ a1qâ1 ď

n1

m1
pς` a2

1q (45)

Therefore, 9V3 can be expressed as

9V3 ď ´l1|ez1|
c1`1 ´ ε|s1|

c1`1 ´
n1

m1
|â1 ´ a1|

c1`1 `
n1

m1
pς` a2

1q

ď ´M3V
c1`1

2
3 `

n1

m1
pς` a2

1q

(46)

with M3 “ 2
c1`1

2 mintl1, ε, n1m1
c1´1

2 u and n1pς` a2
1q{m1 ą 0.

It can be seen from Lemma 3 that the system in p14q is practically finite-time stable.

Remark 2. When s1ptq “ 0 is satisfied, one can obtain

ez2 “ ´2ζ
b

ρ` |arctanpez1q|p1` e2
z1qsignpez1q (47)

Consider the derivative of V2, the inequality

9V2 ď ´l1|ez1|
c1`1

´ F1|ez1| (48)

holds with F1 “ 2ζ
a

ρ` |arctanpez1q|p1` e2
z1q ą 0. Then, one can get

9V2 ď ´2
c1`1

2 l1V
c1`1

2
2 (49)

According to Lemma 1, the nonsingular terminal sliding mode variable s1 is finite-time stable.

Remark 3. The traditional DSC [20] introduces a first-order low-pass filter to address the “ex-
plosion of complexity”, which can only achieve the uniform ultimate boundedness of the control
system. A filter p32q is introduced to ensure the finite-time stability of the system. Meanwhile,
the estimation error of filter can converge to origin after finite time. Therefore, the accuracy and
convergence rate of the control system are improved.

3.3. Finite-Time ESO for External Disturbances and Parameter Uncertainties

Denote ι “ rι1, ι2, ι3s
T “ rφ, θ, ψsT, y1i “ ιi, y2i “ 9ιi pi “ 1, 2, 3q. The new variables

f3i “ J´1
i and d̄j “ f3ipdj ´ ∆Ji 9y2iq pi “ 1, 2, 3; j “ 4, 5, 6q are defined. Then, the attitude

dynamics in p1q can be rewritten as
#

9y1i “ y2i

9y2i “ ´ f3ik jξ1y2i ` f3iξ2ui ` d̄j
(50)
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with ξ1 “

#

l, if i “ 1, 2
1, if i “ 3

, ξ2 “

#

l, if i “ 1, 2
c, if i “ 3

.

Firstly, the nonsingular terminal sliding mode manifold is as follows

syi “ y2i ` 2ζ
b

ρ` |arctanpy1iq|p1` y2
1iqsignpy1iq (51)

with i “ 1, 2, 3. Taking the derivative of syi, one gets

9syi “ 9y2i ` f2i

“ ´ f3ik jξ1y2i ` f3iξ2ui ` d̄j ` f2i
(52)

where f2ipi “ 1, 2, 3q is represented as

f2i “

$

’

’

’

&

’

’

’

%

ζy2ip1`4y1iparctanpy1iq´ρqq?
ρ´arctanpy1iq

, if y1i ă 0

0, if y1i “ 0
ζy2ip1`4y1iparctanpy1iq`ρqq?

ρ`arctanpy1iq
, if y1i ą 0

(53)

Then, p52q can be rewritten as

9syi “ A1i ` B1iui ` d̄j (54)

with A1i “ f2i ´ f3ik jξ1y2i, B1i “ f3iξ2pi “ 1, 2, 3q.
By utilizing the ESO technique, one can define two new variables Z3i “ syi and

Z4i “ d̄j. According to Assumption 1, one can get | 9Z4i| ď µ. The system in p54q can be
expressed as

#

9Z3i “ A1i ` B1iui ` Z4i
9Z4i “

9̄dj
(55)

with i “ 1, 2, 3. The observations of Z3i and Z4i are Ẑ3i and Ẑ4i. Then, the observation
errors of Z3i and Z4i are Z̃3i “ Ẑ3i ´ Z3i and Z̃4i “ Ẑ4i ´ Z4i, respectively. A finite-time ESO
is designed as

#

9̂Z3i “ Ẑ4i ´ r3isigb3pZ̃3iq ´ L3iZ̃3i ` A1i ` B1iui
9̂Z4i “ ´r4isignpZ̃3iq ´ L4iZ̃3i

(56)

with 0 ă b3 ă 1, r3i ą 0, r4i ą 0, L3i ą 0 and L4i ą 0pi “ 1, 2, 3q.
Considering p55q and p56q, the observation error dynamics can be written as

#

9̃Z3i “ Z̃4i ´ r3isigb3pZ̃3iq ´ L3ipZ̃3iq
9̃Z4i “ ´r4isignpZ̃3iq ´ L4ipZ̃3iq ´ 9Z4i

(57)

Theorem 3. Considering the attitude subsystem presented in p50q and Assumption 1, the proposed
finite-time ESO is p56q. The proper parameters L3i and L4i are chosen, which satisfy

L2
3i ą 4L4i (58)

such that observation errors Z̃yi “
“

Z̃3i, Z̃4i
‰T
pi “ 1, 2, 3q can converge into a small residual

region in finite time.

Proof. The proof is omitted to save space, as it is similar to Theorem 1. Eventually, the
estimation error Z̃yi will converge to the neighborhood of the origin after finite time.
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3.4. NTSMC and DSC-Based Finite-Time Attitude Controller Design

Considering the system in (50), a controller based on the NTSMC and DSC techniques
was designed.

Step1: Define the following auxiliary variables

eι1i “ y1i ´ y1di, eι2i “ y2i ´ α f i (59)

where y1dipi “ 1, 2, 3q denotes the desired attitude and α f i is the output of the finite-time
filter. Construct the following virtual control law

αi “ 9y1di ´ l2i|eι1i|
c2i signpeι1iq (60)

with l2i ą 0, 0 ă c2i ă 1pi “ 1, 2, 3q.
To solve the problem of the “explosion of complexity” in the traditional backstepping

design, the finite-time filter is introduced
#

9α f i “ ϕ2i ´ λ3i|α f i ´ αi|
p3i signpα f i ´ αiq

9ϕ2i “ ´λ4i|α f i ´ αi|
p4i signpα f i ´ αiq

(61)

with 0 ă p3i ă 1, p4i “ 2p3i ´ 1, λ3i ą 0, λ4i ą 0pi “ 1, 2, 3q. As shown in [44], α f i will
converge to αi in finite time, namely |α f i ´ αi| “ 0 after finite time.

Consider the Lyapunov function V4i “ 0.5e2
ι1i with i “ 1, 2, 3. The proof is similar

to p33q, and one can obtain

9V4i ď ´l2i|eι1i|
c2i`1 ` eι1ieι2i (62)

Step2: Design the nonsingular terminal sliding mode variable as

s2i “eι2i ` 2ζ
b

ρ` |arctanpeι1iq|p1` e2
ι1iqsignpeι1iq (63)

with i “ 1, 2, 3. According to Remark 2, the finite-time stability of the nonsingular terminal
sliding mode variable s2i is guaranteed.

The attitude controller is designed as

ui “´
1

f3iξ2
r´ f3ik jξ1y2i ` Ẑ4i ´ 9α f i ` f

1

2i ` ε2i|s2i|
c2i signps2iq ` eι1i ` â2isignps2iqs (64)

with ε2i ą 0 and i “ 1, 2, 3. â2i is the estimation of a2i, a2i is the upper bound of the
estimation error Z̃4i, â2i is developed as

9̂a2i “ m2i|s2i| ´ n2i â2i (65)

with â2ip0q ě 0, m2i ą 0 and n2i ą 0. According to Lemma 2 in [45], one can get 0 ă â2i ă

ā2i, where ā2i is positive scalar. f
1

2i can be expressed as

f
1

2i “

$

’

’

’

&

’

’

’

%

ζ 9eι1ip1`4eι1iparctanpeι1iq´ρqq?
ρ´arctanpeι1iq

, if eι1i ă 0

0, if eι1i “ 0
ζ 9eι1ip1`4eι1iparctanpeι1iq`ρqq?

ρ`arctanpeι1iq
, if eι1i ą 0

(66)

Theorem 4. Consider the attitude subsystem presented in p50q. If the NTSMC-based finite-time
dynamic surface controllers is designed as p64q, then the states of the system can be practically
finite-time stabilized.
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Proof. Choose a Lyapunov function

V5i “ V4i `
1
2

sT
2is2i `

1
2m2i

pâ2i ´ a2iq
2 (67)

with i “ 1, 2, 3. The proof process of Theorem 4 is similar to Theorem 2, and the attitude
tracking control system will also converge into a small residual region after finite time. In
order to save space, the certification step is omitted.

Remark 4. The second Lyapunov method is used to judge the stability of the system. That is,
a positive definite scalar function Vpxq is defined as an imaginary generalized energy function,
and then the stability of the system is judged according to the symbolic characteristics of 9Vpxq.
According to Lemmas 1–3, the finite-time stability of the system is proved in this paper.

4. Simulation and Analysis
4.1. Numerical Simulation Results

In this section, numerical simulations are applied to validate the effectiveness of
the presented control algorithm. The quadrotor UAV model parameters are described
as m “ 1.1 kg, kipi “ 1, 2, 3q “ 0.01 Ns{m, Jipi “ 1, 2q “ 1.22 kg ¨m2, g “ 9.81 m{s2,
l “ 1 m, c “ 1.5, kipi “ 4, 5, 6q “ 0.012 Ns{m and J3 “ 2.2 kg ¨m2. It is assumed
that the external disturbances and parameter uncertainties are respectively given as
d “

“

0.1cosp0.2tqN, 0.5sinp0.1tqN.m, 0.6cosp0.5tqN.m, 0.2sinp0.2tqN.m
‰T, and ∆pJq “

“

0.1cosp0.2tqkg ¨m2, 0.2sinp0.3tqkg ¨m2, 0.2cosp0.5tqkg ¨m2 ‰T.
The parameters of ESO presented in p20q are ζ “ 0.0001, ρ “ 0.0001, r1 “ 2, r2 “ 0.02,

b1 “ 0.9, L1 “ 1, L2 “ 0.2. The gains of position control law are chosen as l1 “ 1, c1 “ 0.8,
λ1 “ 0.2, λ2 “ 0.3, p1 “ 0.6, p2 “ 0.2, ε “ 0.5, m1 “ 0.1, and n1 “ 0.1. The main parameters
of the attitude subsystem are r31 “ 2, r32 “ 1, r33 “ 0.6, r41 “ 0.05, r42 “ 0.5, r43 “ 0.2,
b3 “ 0.8, ε21 “ 2, ε22 “ 5, ε23 “ 1, c21 “ 0.9, c22 “ 0.9, and c23 “ 0.8.

To illustrate the superiority of the proposed control scheme, a finite-time dynamic
surface control (FTDSC) scheme [14] is introduced. External disturbances and parameter
uncertainties are restricted to the same values in the proposed algorithm and FTDSC to
make a fair comparison. Figure 2 shows a comparison of trajectory/attitude tracking under
the proposed scheme and the FTDSC scheme. It is observed that the proposed scheme
obtains a better performance in terms of tracking the desired trajectory/attitude. Figure 3
compares the tracking errors. It is shown that the proposed scheme has better convergence
performance. A comparison of the linear/angular velocity is shown in Figure 4. It can
be concluded that the proposed scheme provides better stability. Figure 5 illustrates the
control inputs under the proposed scheme and the FTDSC scheme. It can be clearly seen
that the control inputs of the proposed scheme are appropriate. Figure 6 describes the
convergence performance of the observation errors of the ESOs. It is obvious that the
proposed ESOs can estimate the actual disturbances successfully with a settling time of
less than 10 s. Therefore, highly precise tracking control can be accomplished via the
proposed scheme.

The root-mean-square error (RMSE) and the mean absolute error (MAE) were used as
performance indicators to assess the results of the comparison simulation. The results are
listed in Table 1. Overall, the proposed scheme performs better than the FTDSC. Although
the RMSE of the tracking errors of φ and θ in the proposed scheme are larger than that of
FTDSC, the tracking errors of φ and θ in the proposed scheme have better stability.



Algorithms 2021, 14, 315 13 of 18

0 10 20 30 40 50
0

3

6

z
(m

)

 

 
Desired trajectory
Proposed tracking
FTDSC tracking

40 50

2.9

3

3.1

0 10 20 30 40 50
−20

0

20

φ
(d

e
g)

40 50

−0.1

0

0.1

0 10 20 30 40 50
−35

0

35

θ
(d

e
g)

40 50

−1

0

1

0 10 20 30 40 50
−35

0

35

Time(s)

ψ
(d

e
g)

40 50

10

20

Figure 2. Time response of trajectory/attitude tracking.

0 10 20 30 40 50
−5

0

5

e
z1
(m

)

 

 
Proposed scheme
FTDSC

40 50

−0.1

0

0.1

0 10 20 30 40 50
−10

0

10

20

e
ι1
1
(d

e
g)

40 50

−1

0

1

0 10 20 30 40 50
−10

0

10

20

30

e
ι1
2
(d

e
g)

40 50

−1

0

1

0 10 20 30 40 50
−10

0

10

20

30

Time(s)

e
ι1
3
(d

e
g)

40 50

−1

0

1

Figure 3. Time response of trajectory/attitude tracking errors.



Algorithms 2021, 14, 315 14 of 18

0 10 20 30 40 50
−1.5

0

1.5

ż
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Table 1. Trajectory tracking performance evaluation.

Index Control Schemes z (m) φ (deg) θ (deg) ψ (deg)

MAE Proposed scheme 0.0870 0.1322 0.9053 0.7940
FTDSC 0.2032 0.2789 1.0750 1.6784

RMSE Proposed scheme 0.4258 0.9800 3.8043 3.5587
FTDSC 0.5119 0.8936 2.8448 4.2335

Remark 5. The parameters of the proposed control strategy affect the settling time and convergence
accuracy of the control system. According to Lyapunov’s theory, some parameters have a range of
values, and other parameters are obtained by a trial and error approach.
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Figure 6. Time response of observation errors of ESO.

4.2. Monte Carlo Results

This subsection describes a Monte Carlo simulation with 50 runs that was carried
out for attitude control to further verify the effectiveness of the proposed algorithm. The
random external disturbances and random parameter uncertainties are added in the form of

d “

»

—

—

–

0.1cosprand ˚ 0.2tqN
rand ˚ 0.2sinprand ˚ 0.1tqN.m
rand ˚ 0.1cosprand ˚ 0.1tqN.m
rand ˚ 0.2sinprand ˚ 0.2tqN.m

fi

ffi

ffi

fl

(68)

∆pJq “

»

–

rand ˚ 0.1cosprand ˚ 0.2tq
rand ˚ 0.1sinprand ˚ 0.1tq
rand ˚ 0.1cosprand ˚ 0.5tq

fi

flkg ¨m2 (69)

The tracking errors are shown in Figure 7, and it can be seen that the tracking errors
converge to zero in finite time. In other words, the desired attitude commands can be
tracked by the proposed control scheme. The observation errors are depicted in Figure 8.
Tt can be seen that the proposed ESO can achieve a satisfactory performance, even under
exposure to random external disturbances and random parameter uncertainties.
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Figure 8. Time response of the observation errors in the MC simulation.

5. Conclusions

This work addresses the problem of finite-time trajectory tracking of quadrotor UAVs
in the presence of external disturbances and parameter uncertainties. Two NTSMC
technique-based finite-time ESOs for position and attitude subsystems are developed
to estimate the external disturbances and/or the parameter uncertainties caused by wind
disturbances. Based on the DSC and NTSMC techniques, two trajectory tracking con-
trollers, which ensure that the tracking errors can converge to a small residual region
after finite time, are presented. Finally, numerical simulation results show the satisfactory
performance of the proposed control strategy. However, the proposed control scheme is
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capable of handling the disturbances under Assumption 1. This is also a problem that
should be addressed in future work.
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