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Abstract: In machine learning, ensembles of models based on Multi-Layer Perceptrons (MLPs) or
decision trees are considered successful models. However, explaining their responses is a complex
problem that requires the creation of new methods of interpretation. A natural way to explain the
classifications of the models is to transform them into propositional rules. In this work, we focus on
random forests and gradient-boosted trees. Specifically, these models are converted into an ensemble
of interpretable MLPs from which propositional rules are produced. The rule extraction method
presented here allows one to precisely locate the discriminating hyperplanes that constitute the
antecedents of the rules. In experiments based on eight classification problems, we compared our
rule extraction technique to “Skope-Rules” and other state-of-the-art techniques. Experiments were
performed with ten-fold cross-validation trials, with propositional rules that were also generated
from ensembles of interpretable MLPs. By evaluating the characteristics of the extracted rules in
terms of complexity, fidelity, and accuracy, the results obtained showed that our rule extraction
technique is competitive. To the best of our knowledge, this is one of the few works showing a rule
extraction technique that has been applied to both ensembles of decision trees and neural networks.

Keywords: ensembles; bagging; boosting; model explanation; decision trees; perceptrons; rule extraction

1. Introduction

Deep learning has been very successful in the last decade. Particularly, in domains
such as computer vision, deep neural network models have improved their performance
significantly over that of Multi-Layer Perceptrons (MLPs), Support Vector Machines (SVMs),
Decision Trees (DTs), and ensembles. However, for structured data, deep models do not
offer a significant advantage over well-established “classical” models, which therefore
remain indispensable. A major problem with MLPs is that it is difficult to interpret their
responses; MLPs are therefore very often considered as black boxes. However, a number
of works aimed at transforming the knowledge stored in connections and activations
into propositional rules. Andrews et al. introduced a nomenclature encompassing all
methods for explaining neural network responses with symbolic rules [1]. For SVMs that
are functionally equivalent to MLPs, rule extraction methods were also proposed [2].

Ensembles of models often provide better accuracy than a single model. Many learning
methods for ensembles were introduced, such as bagging [3] and boosting [4]. They have
been applied to decision trees and neural networks. However, even decision trees that
are models that are directly translatable into propositional rules lose their interpretability
when combined in an ensemble. Solving the interpretability problem is crucial for machine
learning models to be well accepted by society. For instance, in Europe, with the General
Data Protection Regulation (GDPR), an individual has the right to an explanation when
an algorithm makes a decision about her or him, such as denying credit. The purpose
of this work is to demonstrate that an existing rule extraction technique that is applied
to ensembles of neural networks can also be applied to ensembles of decision trees. In
addition, our second purpose is to describe the characteristics of the rulesets generated in
terms of fidelity, accuracy, and complexity.
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With ensembles of DTs, two main strategies are applied to generate propositional
rules. The first tries to reduce the number of DTs by increasing their diversity. Thus, with
a reduced number of trees, all of the rules generated by each tree are taken into account.
Examples of algorithms for the optimization of diversity are reported in [5]. In the second
group of methods, the basic strategy is to remove as many rules as possible. Regarding
neural network ensembles, few works have been performed for rule extraction, including
the one applied to the DIMLP model (Discretized Interpretable Multi-Layer Perceptron) [6].
Unlike MLPs, in DIMLPs, the discriminative hyperplanes are precisely localized. This
makes it possible to define the antecedents of propositional rules. As shown in this work, a
DT is transformed into a DIMLP network; hence, the rule extraction technique used for
DIMLP ensembles can also be applied to DT ensembles. Specifically, here, this method is
applied to Random Forests (RFs) [7] and DT ensembles trained by gradient boosting [8].

We apply rule extraction to both DT and DIMLP ensembles on eight classification
problems. The characteristics of the generated rules are compared to those of “Skope-
Rules” [9] and other rule extraction techniques. The results obtained by our method were
found to be competitive. In the following sections, we briefly present the state of the art
of rule extraction from ensembles, the models used, and the experiments, followed by a
discussion and the conclusion.

2. Rule Extraction from Ensembles

Since Saito and Nakano’s early work on single MLPs [10], only a few papers have
addressed rule extraction from neural network ensembles. As an historical example
of a rule extraction technique, Saito and Nakano presented a method that generated
rules from changes in levels of input and output neurons. Specifically, their algorithm
checked whether a rule could be generated or not. To avoid combinatorial explosion,
meaningless combinations of inputs were excluded, and only a limited number of inputs
in the antecedents were taken into account.

The author proposed DIMLP networks to generate unordered propositional rules from
ensembles [11–14]. With the DIMLP model, rule extraction is performed by determining
the precise location of axis-parallel discriminative hyperplanes. Zhou et al. introduced
the REFNE algorithm (Rule Extraction from a Neural Network Ensemble) [15]. In REFNE,
a trained ensemble generates additional samples and then extracts propositional rules.
Furthermore, attributes are discretized during rule extraction, and it also uses particular
fidelity evaluation mechanisms. Finally, rules are limited to only three antecedents. Johans-
son used a genetic programming technique to produce rules from ensembles of 20 neural
networks [16]. Here, rule extraction from ensembles was viewed as an optimization prob-
lem in which a trade-off between accuracy and comprehensibility had to be taken into
account. Hara and Hayashi introduced a rule extraction technique for a limited number of
MLPs in an ensemble [17,18]. In [19], Sendi et al. trained DIMLP ensembles by optimizing
their diversity. Then, rule extraction was carried out for each single network, and for each
sample, the rule that was chosen was the one with the highest confidence score.

A well-known representative technique for an ensemble of DTs is RuleFit [20]. Here,
trees are trained on random subsets of the learning set, the main idea being to define a
linear function that includes rules and features that approximate the whole ensemble of
DTs. At the end of the process, this linear function represents a regularized regression
of the ensemble responses with a large number of coefficients that are equal to zero.
Node Harvest (NH) is another rule-based representative technique [21]. Its purpose is to
find suitable weights for rules by performing a minimization on a quadratic program
with linear inequality constraints. In [22], the rule extraction problem was viewed as a
regression problem using the sparse group lasso method [23], such that each rule was
assumed to be a feature and the aim was to predict the response. Subsequently, most of
the rules were removed by trying to keep the accuracy and fidelity as high as possible.
“Skope-Rules” is a recent technique [9], the main objective being to provide propositional
rules that verify precision and recall conditions. Similar or duplicated rules are removed
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based on a similarity threshold of their supports. The final rules are associated to weights
that are simply proportional to their out-of-bag precision. For all of the previous rule
extraction techniques, questions remain about the interpretability of the coefficients that
are different from zero with respect to the rules. In a different approach, Sagi and Rokach
proposed a method of transforming a decision forest into a single decision tree, aiming
at approximating the predictive performance of the original decision forest [24]. Finally,
in [25], rules extracted from a tree ensemble were summarized into a rule-based learner in
which all of the original rules were selected in a compact set of relevant and non-redundant
rules and then pruned and ranked.

3. Materials and Methods

The key idea in this work is to transform ensembles of DTs into ensembles of in-
terpretable MLPs. Therefore, by being able to generate propositional rules from neural
networks, we are also in a position to generate rules for ensembles of DTs. Figure 1 il-
lustrates an example of transformation of an ensemble of three DTs into an ensemble of
neural networks. First, from each DT, a number of rules are generated (R11, R12, etc.);
second, each rule is inserted into a single neural network (NN11, NN12, etc.); third, the
final classification is the result of all of the neural networks’ classifications. Hence, rule
extraction is performed at the ensemble level, which can be considered as a unique neural
network with an additional layer represented by the two green neurons on the right.

Figure 1. Transformation of an ensemble of three DTs into an ensemble of neural networks. First,
from each DT, a number of rules are generated (R11, R12, etc.); second, each rule is inserted into
a single neural network (NN11, NN12, etc.); third, the final classification is the result of all of the
neural networks’ classifications.

3.1. Ensembles of Decision Trees

A binary decision tree is a recursive structure containing nodes and edges. Each node
represents a predicate with respect to an attribute. Depending on its value, the path taken
to classify a sample continues to the left or right branch until a terminal node is reached.
Every path from the root to a terminal node defines a propositional rule. Specifically, the
format of a symbolic rule is given as: “If tests on antecedents are true, then class C”, where
“tests on antecedents” are in the form:

• xi ≤ ti; or
• xi ≥ ti;

with xi as the ith input variable (or attribute) and ti as a real number. Class C designates a
class among several possible classes. Figure 2 illustrates an example of a decision tree. The
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learning phase of such a model consists in determining at each node of the tree the best
attribute for accurately dividing the learning samples. Many possible criteria can be used
to determine the best splitting attribute; for more details, see [26,27].

x1

<=t1 >t1

x2

<=t2
<=t3 >t3

x3

C1 C1C2

Figure 2. An example of a tree with two depth levels. Each path from the root to a leaf represents a
propositional rule of two different classes (C1 and C2).

The number of nodes in a shallow tree is very limited. It represents a “weak” learner
with limited power of expression. For instance, a tree with a unique node performs a
test only on an attribute. This type of DT is also called a decision stump. With the use
of boosting techniques [4], ensembles of weak learners become strong classifiers [28] that
are able to learn complex classification problems. In this work, we train ensembles of
Gradient-Boosted Trees (GB) [8].

Random Forests (RF) are ensembles of DTs [7] trained by bagging [3]. Specifically,
bagging selects for each classifier included in an ensemble a number of samples drawn
with a replacement from the original training set. Since many of the generated samples may
be repeated while others may be left out, a certain diversity of each single predictor proves
to be beneficial with respect to the whole ensemble of combined classifiers. In addition,
each tree can be constrained at each induction stage to select a small proportion of the
available attributes.

3.2. Transformation of Decision Trees into Interpretable MLPs

Since the key idea behind extracting rules from ensembles of DTs is their transforma-
tion into ensembles of interpretable MLPs, we first describe how to transform a rule with a
unique antecedent into an MLP. Then, we generalize to rules with many antecedents and
coefficient-weighted rules.

3.2.1. An Example with a Unique Antecedent

Figure 3 shows an MLP that represents a propositional rule with a unique antecedent.
Any neuron in the middle or output layer receives a signal, which is the result of a weighted
sum of inputs and weight values; here, this sum is x1 − t1.
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Figure 3. An interpretable MLP coding a propositional rule with a unique antecedent (x1 > t1).

Then, an activation function is applied; in the middle layer, it is a step function that is
given as:

t(x) =
{

1 if x > 0;
0 otherwise.

(1)

In the output layer, we have a sigmoid function that is given as:

σ(x) =
1

1 + exp(−x)
. (2)

Therefore, the MLP presented in Figure 3 represents the following propositional rule:

• (x1 > t1)→ C1; with C1 designating the first class coded by vector (1, 0).

3.2.2. An Example with Two Antecedents

Figure 4 shows an MLP that represents a propositional rule with two antecedents:
• (x1 > t1) AND (x2 ≤ t2) → C2, with C2 designating the second class coded by

vector (0, 1).

x1 x2

1

1

1

-t1

100

100

-190

0 0

-190

-1

t2

OUTPUT LAYER

HIDDEN LAYER

INPUT LAYER

Figure 4. An interpretable MLP coding a propositional rule with two antecedents, (x1 > t1) AND
(x2 ≤ t2).
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It should be noted that, between the hidden layer and the output layer, a logical “AND”
is performed. Therefore, when all of the rule antecedents are true (e.g., all of the hidden
neurons have an activation equal to one), then an output neuron related to a given class is
activated to a value very close to one.

3.2.3. Generalization to an Arbitrary Number of Antecedents

Generally, with a propositional rule involving A antecedents, to perform a logical
“AND” between the hidden layer and the output layer, we define bias values equal to
A · K− 10, with K = 100. Moreover, the values of the weights between the hidden neurons
and the output neuron encoding the class are equal to K; all other weight values are equal
to zero. Each rule generated from the root to a leaf of a DT is inserted into an MLP with the
coding described above.

3.2.4. Coefficient-Weighted Rules

Rules extracted from the DTs trained by GB present a coefficient, which somehow
represents the importance of the rules. This coefficient is inserted into an MLP by means of
an additional layer, as depicted in Figure 5. Specifically, at the top right, symbol w between
the second hidden layer and the output layer encodes a rule coefficient.

1

1
0

-90
-90

100

x1

0

0

0
w

INPUT LAYER

HIDDEN LAYER (1)

HIDDEN LAYER (2)

OUTPUT LAYER

-1

t1

Figure 5. An MLP with two hidden layers that represents a propositional rule with a unique
antecedent (x1 ≤ t1). The activation function of the output layer is the identity, with coefficient w
representing the rule weight.

3.3. Rule Extraction from Neural Network Ensembles

Particular MLPs, such as those shown in Figure 4, were reported in [29]. Their
precise name is Interpretable Multi-Layer Perceptrons (IMLPs). IMLPs often include two
hidden layers, with the feature that any neuron in the first hidden layer receives only
one connection from an input neuron and the bias neuron. Furthermore, the activation
function in the first hidden layer is a step function. Above the first hidden layer, neurons
are fully connected.
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With IMLPs, the training process was performed with a simulated annealing algo-
rithm, while rule extraction was carried out with the ESPRESSO logic minimizer [30]. More
precisely, the binary activations of the first hidden layer put into play a Boolean mini-
mization problem with respect to the IMLP network responses. Later, the step activation
function in the first hidden layer was generalized by the staircase activation function with
the DIMLP architecture [6]. The staircase function approximates the sigmoid function;
thus, it provides quantized values of the sigmoid. With DIMLPs, the training algorithm is
a modified back-propagation algorithm [6,12].

The rule extraction algorithm for a single DIMLP is briefly described here; it includes
three main steps, the details of which are reported in [6,12]. In the first step, the relevance
of axis-parallel hyperplanes is calculated. Specifically, this relevance measure corresponds
to the number of samples viewing a hyperplane as the transition to a different class. In the
second step, a decision tree is built with all of the training samples. The class represented
at the leaves is the one provided by the neural model. In the third step, all of the paths
between the root and the leaves are represented as propositional rules. At this point, rules
are disjointed, and generally, their number is large, as is their number of antecedents.
Then, a pruning strategy is applied; it removes as many antecedents and as many rules
as possible.

Rule extraction from ensembles of DIMLPs is achieved with the rule extraction algo-
rithm that was briefly described above, as it can be applied to any DIMLP with any number
of hidden layers. It is worth noting that an ensemble of DIMLP networks can be viewed as
a single DIMLP with an additional hidden layer [12]. Hence, rule extraction can also be
performed for a DIMLP ensemble.

4. Experimental Results

In the experiments, we first describe the characteristics of the eight selected classi-
fication problems; secondly, we explain the assessment measures and the values of the
learning parameters, and then we show the results obtained through cross-validation.
Finally, we illustrate an example of a generated ruleset. In this part, a key research question
is whether the proposed rule extraction technique provides good results with respect to
other known algorithms.

4.1. Classification Problems

We applied a number of models to classification problems of two classes. We retrieved
eight datasets from the Machine Learning Repository at the University of California, Irvine
(https://archive.ics.uci.edu/ml/index.php) [31] (accessed on: 14 September 2021). Table 1
describes their main characteristics.

Table 1. Datasets used in the experiments. From left to right, the columns designate: number of
samples; number of input features; types of features (Boolean, categorical, integer, real); proportion
of samples in the majority class; references.

Dataset #Samp. #Attr. Attr. Types Maj. Class (%) Ref.

Australian Credit Appr. 690 14 bool., cat., int., real 55.5 [32]
Breast Cancer 683 9 int. 65.0 [33]
Divorce Prediction 170 54 bool. 50.6 [34]
Heart Disease 270 13 bool, cat., int., real 55.6 [31]
Ionosphere 351 34 int., real 64.1 [35]
Mammographic Mass 830 5 int., cat. 51.4 [36]
Student Perf. (Math) 649 32 bool., cat., int. 67.1 [37]
Voting Records 435 16 bool. 61.4 [38]

4.2. Learning Parameters and Assessment Measures

Training sets were normalized through Gaussian normalization. The following models
were trained with the eight classification problems used in this work:

https://archive.ics.uci.edu/ml/index.php
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• DIMLP ensembles trained by bagging (DIMLP);
• Random Forests (RF);
• Shallow decision trees trained by Gradient Boosting (GB);
• Skope-Rules (SR) [9].

All DIMLP ensembles were trained through back-propagation with the default learn-
ing parameters:

• Learning parameter = 0.1;
• Momentum = 0.6;
• Flat spot elimination = 0.01;
• Number of stairs in the staircase activation function = 50.

The DIMLP architectures were defined with two hidden layers. The default number
of neurons in the first hidden layer was equal to the number of input neurons. For the
second hidden layer, this number was empirically defined in order to obtain a number of
connections less than or similar to the number of training samples. For each classification
problem, the number of neurons in the second hidden layer was:

• Australian Credit Appr.: 20;
• Breast Cancer: 20;
• Divorce Prediction: 2;
• Heart Disease: 10;
• Ionosphere: 10;
• Mammographic Mass: 50;
• Student Performance (Math): 6;
• Voting Records: 10.

Finally, out-of-bag samples were used to avoid the overtraining phenomenon by
applying an early-stopping technique. Specifically, the out-of-bag set constituted a subset
of the training dataset that was not used to fit the weight values of the neural networks.

Ensembles of DTs were trained with the Scikit Python Library [39]. For GB, the
depth of the trees was varied from one to three, while for RF, the depth parameter was
unconstrained or fixed to three (RF-3). Furthermore, for all of the random forests, the
number of attributes that were taken into account at each induction step was, by default,
the square root of the total number of attributes.

For comparison purposes, the “Skope-Rules” rule extractor [9] was also included in
this work. Specifically, its propositional rules were generated from ensembles of RFs. Three
important parameters were used:

• Minimal recall of rules;
• Minimal precision of rules;
• Maximal depth of the trees.

The minimal recall parameter influences the number of rules generated. Specifically,
recall is defined as TP/(TP + FN), with TP designating the number of true positives and
FN denoting the number of false negatives. Precision is defined as TP/(TP + FP), with FP
representing the number of false positives. In order to approach the performance of the other
models used in this work, we carried out several preliminary tests. We noticed that when
the maximum tree depth was not limited, the average number of antecedents per rule was
too high. We found that a maximal depth of three was a good value. Furthermore, with a
low value of the minimal rule accuracy, the predictive accuracy tended to be too weak. After
several preliminary experiments, we determined that 95% was an appropriate value for the
eight selected datasets. Finally, too high of a value of the minimal recall parameter meant that
many samples were not covered by the rules, and too low of a value generated a high number
of rules. After several trials, we found that a value equal to 5% was a good compromise. In all
of the experiments, the number of classifiers in an ensemble varied from 25 to 150.

With predictive accuracy being defined as the ratio of correctly classified samples on
the total number of samples of a testing set, from left to right, the columns in the following
tables designate:
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• Average predictive accuracy of the model (correctly classified samples in the testing
set divided by the number of samples);

• Average fidelity on the testing set, which is the degree of matching between the
generated rules and the model. Specifically, with P samples in the testing set and Q
samples for which the classification of the rules corresponds to the classification of the
model, the fidelity is Q/P.

• Average predictive accuracy of the rules;
• Average predictive accuracy of the rules when the rules and model agree. Specifically,

it is the proportion of correctly classified samples among the Q samples defined above.
• Average number of rules extracted;
• Average number of rule antecedents.

4.3. Cross-Validation Experiments

We conducted experiments based on ten repetitions of stratified 10-fold cross-validation
trials. Table 2 illustrates the results for the “Australian” dataset; between brackets are
shown the standard deviations. For the DIMLP ensembles, we observed that the numbers
in each column were quite stable, although the number of predictors in an ensemble in-
creased from 25 to 150. This was also true for RFs to a lesser extent. For GB and SR, the
average complexity of the rules increased with an increasing number of predictors (last
two columns).

Note also that the highest average fidelity was obtained with the simplest ensembles;
e.g., decision stumps trained by gradient boosting with 25 and 50 predictors. RF ensembles
with 50 predictors provided the highest average predictive accuracy (87.2%), but the
generated rulesets were among the most complex (76.8 rules on average). Interestingly,
the average predictive accuracy obtained by the decision stumps was very close, with an
average of 87.1% (see GB (1, 100)), but with less complex rulesets (13.2, on average). As
a general observation, the average predictive accuracy of the ensembles tended to be a
bit higher than that obtained by the extracted rules. Nevertheless, the average predictive
accuracy of the extracted rules, when rules and ensembles agreed (fifth column) tended to
be a bit higher than that obtained by the models (first column).

Table 2. Average results obtained on the “Australian” dataset. From left to right are presented the
average results on predictive accuracy, fidelity on the testing sets, predictive accuracy of the rules,
predictive accuracy of the rules when ensembles and rules agreed, number of rules, and number of
antecedents per rule. Standard deviations are given between brackets. For DIMLP, RF, RF-3, and
RS, the number of predictors is given between brackets (first column). For GB, the first number in
brackets is the depth of the trees and the second is the number of predictors. For each column, the
highest average accuracy or average fidelity is represented in bold, along with the lowest average
number of rules or average number of antecedents.

Model Acc. Fid. Acc. R. (a) Acc. R. (b) Nb. R. Nb. Ant.

DIMLP (25) 86.8 (0.6) 98.1 (0.4) 86.5 (0.7) 87.4 (0.6) 22.2 (0.4) 3.6 (0.1)
DIMLP (50) 86.9 (0.4) 98.2 (0.4) 86.5 (0.6) 87.4 (0.4) 22.8 (0.4) 3.7 (0.0)
DIMLP (100) 86.8 (0.3) 97.9 (0.5) 86.4 (0.3) 87.4 (0.2) 22.5 (0.6) 3.7 (0.1)
DIMLP (150) 86.9 (0.3) 98.0 (0.3) 86.5 (0.4) 87.4 (0.4) 22.4 (1.0) 3.7 (0.1)

RF (25) 86.9 (0.4) 95.1 (0.6) 85.1 (0.6) 87.9 (0.4) 76.6 (0.9) 4.6 (0.1)
RF (50) 87.2 (0.6) 95.5 (1.0) 85.9 (0.5) 88.3 (0.4) 76.8 (0.8) 4.6 (0.0)
RF (100) 87.1 (0.4) 96.0 (0.4) 85.7 (0.7) 87.9 (0.4) 77.1 (0.9) 4.7 (0.0)
RF (150) 87.1 (0.4) 95.3 (0.5) 85.8 (0.9) 88.3 (0.5) 76.9 (0.9) 4.6 (0.0)

RF-3 (25) 85.9 (0.8) 98.7 (0.3) 85.8 (0.7) 86.3 (0.7) 17.2 (1.1) 3.4 (0.1)
RF-3 (50) 86.1 (0.4) 98.5 (0.5) 86.1 (0.5) 86.7 (0.4) 18.1 (1.1) 3.5 (0.1)
RF-3 (100) 86.4 (0.6) 98.7 (0.4) 86.1 (0.6) 86.7 (0.6) 17.6 (0.7) 3.6 (0.1)
RF-3 (150) 86.1 (0.4) 98.4 (0.4) 86.0 (0.3) 86.6 (0.3) 17.7 (0.6) 3.6 (0.1)
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Table 2. Cont.

Model Acc. Fid. Acc. R. (a) Acc. R. (b) Nb. R. Nb. Ant.

GB (1,25) 85.6 (0.2) 100.0 (0.0) 85.6 (0.2) 85.6 (0.2) 2.0 (0.0) 1.0 (0.0)
GB (1,50) 85.6 (0.2) 100.0 (0.0) 85.6 (0.2) 85.6 (0.2) 2.1 (0.3) 1.0 (0.1)
GB (1,100) 87.1 (0.4) 99.3 (0.3) 86.6 (0.5) 87.2 (0.4) 13.2 (0.7) 2.8 (0.1)
GB (1,150) 86.9 (0.5) 98.8 (0.3) 86.5 (0.4) 87.2 (0.5) 20.7 (0.7) 3.3 (0.1)

GB (2,25) 85.8 (0.4) 99.8 (0.1) 85.7 (0.4) 85.8 (0.4) 7.3 (0.4) 2.2 (0.0)
GB (2,50) 86.6 (0.3) 99.2 (0.5) 86.4 (0.5) 86.8 (0.4) 22.3 (0.8) 3.3 (0.1)
GB (2,100) 86.9 (0.5) 97.7 (0.5) 86.2 (0.6) 87.4 (0.6) 34.1 (0.8) 3.9 (0.0)
GB (2,150) 86.7 (0.5) 97.3 (0.7) 86.1 (0.5) 87.4 (0.5) 40.1 (0.7) 4.1 (0.0)

GB (3,25) 85.9 (0.5) 99.0 (0.4) 85.4 (0.5) 86.0 (0.5) 21.9 (0.4) 3.4 (0.0)
GB (3,50) 86.7 (0.3) 97.9 (0.4) 85.9 (0.6) 87.1 (0.5) 35.3 (1.1) 4.0 (0.0)
GB (3,100) 86.8 (0.5) 96.6 (0.9) 86.1 (0.8) 87.8 (0.6) 48.6 (0.5) 4.2 (0.0)
GB (3,150) 86.7 (0.8) 96.4 (0.9) 86.0 (0.7) 87.7 (1.0) 57.2 (0.7) 4.3 (0.0)

SR (25) — — 85.4 (0.2) — 13.2 (0.8) 3.0 (0.0)
SR (50) — — 85.5 (0.3) — 19.3 (0.8) 3.0 (0.0)
SR (100) — — 85.2 (0.5) — 28.3 (1.4) 3.0 (0.0)
SR (150) — — 85.5 (0.4) — 35.3 (1.3) 3.0 (0.0)

Table 3 presents the results for the “Breast Cancer” classification problem. As in
the previous table, the results provided by DIMLPs and RFs were quite stable with the
increasing number of predictors in an ensemble. For GB and SR, the complexity of the
extracted rulesets tended to be augmented as the number of predictors increased, but to
a lesser extent with the decision stumps (trees with only one node). Again, the highest
average predictive accuracy of the model and the extracted rules was provided by RF (97.4%
and 96.9%). The average highest fidelity was reached by the decision stumps (99.0%). For
this model, the average predictive accuracy attained by the rules was equal to 96.7%, and
the complexity of the rules was less than half that obtained by RF (11.2 versus 24.3). Finally,
the average predictive accuracy obtained by SR decreased as the number of trees in an
ensemble increased. Moreover, with SR, the rules were, on average, the most complex.

Table 3. Average results obtained on the “Breast Cancer” dataset. For each column, the highest
average accuracy or average fidelity is represented in bold, along with the lowest average number of
rules or average number of antecedents.

Model Acc. Fid. Acc. R. (a) Acc. R. (b) Nb. R. Nb. Ant.

DIMLP (25) 97.0 (0.2) 98.7 (0.2) 96.4 (0.4) 97.3 (0.2) 12.4 (0.6) 2.7 (0.1)
DIMLP (50) 97.2 (0.2) 98.6 (0.4) 96.3 (0.4) 97.4 (0.2) 12.5 (0.7) 2.6 (0.1)
DIMLP (100) 97.1 (0.1) 98.8 (0.4) 96.4 (0.4) 97.3 (0.2) 12.7 (0.3) 2.7 (0.1)
DIMLP (150) 97.2 (0.2) 98.8 (0.4) 96.4 (0.4) 97.3 (0.3) 12.7 (0.2) 2.7 (0.1)

RF (25) 97.0 (0.3) 98.5 (0.4) 96.7 (0.6) 97.6 (0.3) 24.6 (0.7) 3.4 (0.1)
RF (50) 97.1 (0.3) 98.5 (0.4) 96.7 (0.3) 97.6 (0.3) 24.3 (0.5) 3.4 (0.0)
RF (100) 97.2 (0.2) 98.4 (0.5) 96.6 (0.5) 97.7 (0.2) 24.2 (0.5) 3.4 (0.0)
RF (150) 97.4 (0.1) 98.5 (0.2) 96.9 (0.2) 97.9 (0.2) 24.3 (0.5) 3.3 (0.0)

RF-3 (25) 97.0 (0.4) 98.9 (0.4) 96.3 (0.4) 97.1 (0.4) 10.9 (0.7) 2.6 (0.1)
RF-3 (50) 97.1 (0.4) 98.7 (0.5) 96.4 (0.4) 97.4 (0.3) 11.0 (0.4) 2.6 (0.0)
RF-3 (100) 97.3 (0.2) 98.7 (0.5) 96.5 (0.3) 97.5 (0.3) 11.2 (0.4) 2.6 (0.1)
RF-3 (150) 97.3 (0.2) 98.8 (0.3) 96.5 (0.4) 97.5 (0.2) 11.1 (0.6) 2.6 (0.0)

GB (1,25) 97.3 (0.2) 99.0 (0.3) 96.7 (0.3) 97.4 (0.2) 11.2 (0.4) 2.6 (0.0)
GB (1,50) 96.8 (0.2) 98.7 (0.2) 96.1 (0.4) 97.1 (0.3) 11.8 (0.4) 2.7 (0.0)
GB (1,100) 96.7 (0.2) 98.9 (0.5) 96.3 (0.4) 97.0 (0.3) 12.0 (0.3) 2.7 (0.1)



Algorithms 2021, 14, 339 11 of 22

Table 3. Cont.

Model Acc. Fid. Acc. R. (a) Acc. R. (b) Nb. R. Nb. Ant.

GB (1,150) 96.8 (0.1) 98.7 (0.3) 96.3 (0.4) 97.1 (0.3) 12.0 (0.4) 2.7 (0.1)

GB (2,25) 96.7 (0.2) 99.0 (0.5) 96.1 (0.5) 96.9 (0.3) 10.8 (0.5) 2.6 (0.0)
GB (2,50) 96.7 (0.1) 99.1 (0.2) 96.3 (0.3) 97.0 (0.3) 12.2 (0.4) 2.7 (0.1)
GB (2,100) 96.9 (0.2) 98.9 (0.2) 96.3 (0.4) 97.1 (0.3) 15.3 (0.4) 3.0 (0.0)
GB (2,150) 96.8 (0.3) 98.8 (0.3) 96.1 (0.4) 97.1 (0.2) 17.8 (0.5) 3.1 (0.1)

GB (3,25) 96.4 (0.3) 99.0 (0.3) 96.0 (0.3) 96.7 (0.3) 11.4 (0.5) 2.5 (0.1)
GB (3,50) 96.7 (0.4) 98.9 (0.2) 96.2 (0.4) 97.0 (0.3) 14.8 (0.6) 2.9 (0.1)
GB (3,100) 96.9 (0.4) 98.8 (0.3) 96.2 (0.5) 97.1 (0.5) 22.6 (0.6) 3.3 (0.0)
GB (3,150) 96.9 (0.3) 98.8 (0.3) 96.2 (0.4) 97.1 (0.4) 23.5 (0.6) 3.4 (0.0)

SR (25) — — 94.4 (0.2) — 31.2 (1.7) 2.7 (0.0)
SR (50) — — 93.5 (0.4) — 49.5 (2.1) 2.7 (0.0)
SR (100) — — 93.0 (0.5) — 74.9 (2.6) 2.8 (0.0)
SR (150) — — 92.5 (0.4) — 92.5 (3.9) 2.8 (0.0)

Table 4 depicts the results for the “Divorce” dataset. The highest predictive accuracy
was obtained by the DIMLP ensembles (98.1%) with 5.5 rules, on average. GB provided the
highest fidelity with 99.5% and 3.8 rules, on average. Finally, the highest average predictive
accuracy of the rules was reached by ensembles of DTs trained by GB (3, 50) and RF-3
(97.3%). Note that for the latter model, a few more rules were produced (3.8 versus 5.1).

Table 4. Average results obtained on the “Divorce” dataset. For each column, the highest average
accuracy or average fidelity is represented in bold, along with the lowest average number of rules or
average number of antecedents.

Model Acc. Fid. Acc. R. (a) Acc. R. (b) Nb. R. Nb. Ant.

DIMLP (25) 98.1 (0.1) 98.6 (0.7) 96.7 (0.7) 98.1 (0.1) 5.5 (0.4) 1.9 (0.1)
DIMLP (50) 98.1 (0.1) 98.2 (0.8) 96.6 (1.0) 98.2 (0.3) 5.5 (0.6) 1.9 (0.1)
DIMLP (100) 98.1 (0.1) 98.3 (0.6) 96.5 (0.8) 98.1 (0.1) 5.3 (0.4) 1.9 (0.1)
DIMLP (150) 98.1 (0.1) 98.5 (0.8) 97.0 (0.8) 98.3 (0.3) 5.3 (0.4) 1.9 (0.1)

RF (25) 97.6 (0.4) 98.7 (1.2) 96.7 (1.3) 97.8 (0.4) 8.1 (0.5) 2.3 (0.1)
RF (50) 97.5 (0.2) 98.8 (0.6) 96.8 (0.7) 97.7 (0.4) 9.4 (0.7) 2.4 (0.1)
RF (100) 97.5 (1.5) 98.7 (0.8) 97.1 (0.5) 98.0 (0.5) 10.2 (0.5) 2.4 (0.1)
RF (150) 97.5 (1.5) 98.7 (1.0) 96.6 (1.2) 97.7 (0.4) 10.2 (0.6) 2.4 (0.1)

RF-3 (25) 97.7 (0.3) 99.0 (0.9) 96.8 (0.7) 97.7 (0.3) 4.6 (0.5) 1.8 (0.1)
RF-3 (50) 97.5 (0.2) 98.7 (0.6) 97.3 (1.1) 98.0 (0.7) 5.1 (0.6) 1.8 (0.1)
RF-3 (100) 97.5 (0.2) 99.2 (0.7) 97.1 (0.5) 97.7 (0.3) 4.8 (0.8) 1.8 (0.1)
RF-3 (150) 97.5 (0.2) 99.0 (0.6) 96.9 (0.4) 97.7 (0.4) 4.8 (0.5) 1.8 (0.1)

GB (1,25) 97.4 (0.3) 99.1 (0.8) 96.5 (0.7) 97.4 (0.3) 3.6 (0.1) 1.5 (0.1)
GB (1,50) 97.2 (0.3) 99.4 (0.6) 96.9 (0.5) 97.4 (0.4) 5.4 (0.2) 2.0 (0.1)
GB (1,100) 96.9 (0.3) 98.5 (0.7) 96.7 (0.8) 97.6 (0.2) 6.3 (0.3) 2.1 (0.1)
GB (1,150) 97.1 (0.4) 98.1 (0.9) 96.0 (0.9) 97.5 (0.2) 6.5 (0.4) 2.1 (0.1)

GB (2,25) 96.4 (0.8) 99.2 (0.5) 96.9 (0.7) 97.0 (0.8) 3.9 (0.2) 1.5 (0.0)
GB (2,50) 96.5 (0.6) 99.3 (0.6) 96.2 (0.6) 96.6 (0.6) 4.1 (0.3) 1.5 (0.1)
GB (2,100) 96.4 (0.9) 99.4 (0.5) 96.2 (0.8) 96.6 (0.8) 4.3 (0.4) 1.6 (0.1)
GB (2,150) 96.4 (0.9) 99.4 (0.5) 96.2 (0.8) 96.6 (0.8) 4.3 (0.4) 1.6 (0.1)

GB (3,25) 97.4 (0.8) 99.4 (0.3) 97.2 (0.9) 97.6 (0.7) 3.8 (0.0) 1.5 (0.0)
GB (3,50) 97.6 (1.1) 99.5 (0.3) 97.3 (1.0) 97.7 (1.0) 3.8 (0.0) 1.5 (0.0)
GB (3,100) 97.8 (0.8) 98.9 (0.7) 97.1 (0.8) 98.0 (0.6) 3.8 (0.0) 1.5 (0.0)
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Table 4. Cont.

Model Acc. Fid. Acc. R. (a) Acc. R. (b) Nb. R. Nb. Ant.

GB (3,150) 97.5 (0.8) 98.6 (0.8) 96.9 (1.0) 97.9 (0.7) 3.8 (0.0) 1.5 (0.0)

SR (25) — — 96.5 (0.7) — 13.9 (1.0) 2.7 (0.0)
SR (50) — — 96.1 (0.8) — 21.5 (1.4) 2.6 (0.0)
SR (100) — — 95.7 (0.8) — 32.6 (2.2) 2.7 (0.0)
SR (150) — — 94.4 (0.9) — 41.0 (1.8) 2.7 (0.0)

As shown in Table 5, on the “Heart Disease” classification problem, the DIMLP
ensembles achieved the highest predictive accuracy (85.8%), the highest predictive accuracy
of the rules (84.4%), and the highest predictive accuracy of the rules when ensembles and
rules agreed (86.8%), on average. The decision stumps provided the highest average fidelity
(99.0%) and the lowest average complexity of the rules (11.0 rules with 2.6 antecedents). It
is worth noting that the average predictive accuracy obtained by the DIMLPs and GB (1, 50)
was very close (84.4 versus 84.3), but GB produced fewer rules (15.2 versus 20.4). The
average predictive accuracy attained by SR was the lowest; moreover, it decreased as the
number of trees increased.

Table 5. Average results obtained on the “Heart Disease” dataset. For each column, the highest
average accuracy or average fidelity is represented in bold, along with the lowest average number of
rules or average number of antecedents.

Model Acc. Fid. Acc. R. (a) Acc. R. (b) Nb. R. Nb. Ant.

DIMLP (25) 85.6 (0.6) 95.5 (0.9) 83.8 (1.3) 86.3 (1.1) 20.7 (0.4) 3.2 (0.1)
DIMLP (50) 85.8 (0.6) 95.5 (1.0) 84.4 (1.1) 86.8 (0.9) 20.4 (0.5) 3.2 (0.0)
DIMLP (100) 85.7 (0.5) 95.7 (1.0) 83.9 (0.6) 86.4 (0.6) 20.1 (0.4) 3.2 (0.0)
DIMLP (150) 85.7 (0.5) 95.8 (1.0) 83.5 (0.9) 86.1 (0.7) 20.0 (0.5) 3.2 (0.0)

RF (25) 81.9 (2.1) 93.8 (1.6) 81.0 (1.8) 83.6 (1.6) 39.0 (0.9) 4.0 (0.0)
RF (50) 82.3 (1.7) 93.1 (2.0) 80.5 (1.5) 83.7 (1.1) 40.0 (0.6) 4.1 (0.0)
RF (100) 82.7 (1.6) 93.2 (1.7) 81.4 (1.6) 84.4 (1.1) 39.7 (1.1) 4.1 (0.0)
RF (150) 83.3 (1.5) 94.7 (1.3) 81.9 (1.5) 84.5 (0.9) 39.8 (1.1) 4.1 (0.0)

RF-3 (25) 83.7 (1.3) 95.9 (1.2) 82.0 (1.4) 84.2 (1.4) 18.8 (0.6) 3.1 (0.0)
RF-3 (50) 83.7 (1.3) 95.6 (1.3) 82.8 (1.3) 84.9 (1.1) 17.6 (0.6) 3.1 (0.0)
RF-3 (100) 83.7 (0.8) 96.0 (0.9) 82.4 (1.1) 84.5 (0.7) 18.0 (0.5) 3.1 (0.0)
RF-3 (150) 84.7 (1.1) 96.1 (1.3) 82.8 (1.9) 85.1 (1.1) 18.1 (0.5) 3.1 (0.0)

GB (1,25) 84.7 (0.8) 99.0 (0.6) 84.0 (0.7) 84.7 (0.8) 11.0 (0.3) 2.6 (0.0)
GB (1,50) 84.9 (1.1) 98.1 (0.8) 84.3 (1.0) 85.2 (0.9) 15.2 (0.5) 2.8 (0.0)
GB (1,100) 84.0 (1.3) 95.5 (1.6) 82.0 (1.0) 84.5 (1.3) 20.9 (0.7) 3.2 (0.0)
GB (1,150) 83.2 (1.2) 95.1 (1.0) 81.7 (0.9) 84.1 (1.0) 21.9 (0.5) 3.2 (0.0)

GB (2,25) 81.3 (1.1) 96.0 (1.1) 81.3 (1.4) 82.6 (1.0) 17.0 (0.7) 3.0 (0.0)
GB (2,50) 81.6 (1.1) 95.3 (1.3) 80.6 (1.6) 82.7 (1.1) 22.7 (0.8) 3.3 (0.1)
GB (2,100) 81.6 (1.1) 95.1 (1.6) 79.9 (1.7) 82.3 (1.3) 27.5 (0.6) 3.6 (0.0)
GB (2,150) 80.8 (1.2) 95.1 (1.6) 80.0 (1.3) 82.0 (1.0) 30.8 (0.7) 3.7 (0.0)

GB (3,25) 80.8 (1.3) 95.5 (1.4) 80.3 (1.1) 82.1 (1.4) 22.8 (0.6) 3.4 (0.0)
GB (3,50) 80.4 (1.5) 94.1 (0.9) 80.0 (1.4) 82.2 (1.3) 28.4 (0.5) 3.6 (0.0)
GB (3,100) 79.9 (1.9) 94.1 (1.5) 79.7 (1.9) 81.7 (2.1) 34.8 (0.7) 3.8 (0.0)
GB (3,150) 79.8 (1.4) 94.2 (1.8) 78.8 (2.3) 81.1 (1.8) 37.3 (1.2) 3.8 (0.0)

SR (25) — — 77.1 (1.4) — 23.2 (0.9) 3.0 (0.0)
SR (50) — — 75.2 (2.1) — 36.3 (1.7) 3.0 (0.0)
SR (100) — — 71.4 (0.7) — 54.9 (2.0) 3.0 (0.0)
SR (150) — — 69.6 (1.4) — 69.5 (2.9) 3.0 (0.0)
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With the “Ionosphere” dataset, the results illustrated in Table 6 show that the highest
average predictive accuracy was obtained by both the DIMLP ensembles and RFs (93.4%).
Moreover, the same models provided the highest average predictive accuracy of the rules
when ensembles and rulesets agreed (94.5%). However, rulesets generated from DIMLPs
were less complex than those extracted from RFs, on average (18.3 versus 32.6). The highest
average fidelity was attained by GB (99.6%), with the least complex rulesets (6.5 rules with
1.9 antecedents).

Table 6. Average results obtained on the “Ionosphere” dataset. For each column, the highest average
accuracy or average fidelity is represented in bold, along with the lowest average number of rules or
average number of antecedents.

Model Acc. Fid. Acc. R. (a) Acc. R. (b) Nb. R. Nb. Ant.

DIMLP (25) 93.4 (0.5) 96.3 (0.8) 92.1 (0.8) 94.4 (0.4) 18.5 (0.6) 2.9 (0.0)
DIMLP (50) 93.0 (0.6) 95.8 (0.8) 92.3 (1.1) 94.5 (0.6) 18.3 (0.6) 2.9 (0.1)
DIMLP (100) 93.0 (0.6) 95.9 (0.7) 92.1 (0.7) 94.4 (0.5) 18.8 (0.7) 2.9 (0.0)
DIMLP (150) 93.1 (0.7) 96.1 (0.9) 91.6 (0.8) 94.1 (0.6) 18.2 (0.8) 2.9 (0.0)

RF (25) 93.2 (0.7) 95.7 (1.0) 91.5 (0.8) 94.3 (0.6) 30.2 (1.2) 3.6 (0.1)
RF (50) 93.4 (0.5) 95.2 (1.6) 91.3 (1.4) 94.5 (0.5) 32.6 (1.4) 3.8 (0.2)
RF (100) 93.2 (0.4) 95.3 (1.0) 91.5 (1.3) 94.4 (0.6) 33.2 (1.2) 4.0 (0.1)
RF (150) 93.4 (0.4) 95.9 (1.3) 91.7 (1.1) 94.4 (0.4) 32.2 (0.7) 4.0 (0.1)

RF-3 (25) 91.9 (0.5) 97.2 (0.5) 91.6 (1.0) 93.0 (0.5) 13.7 (0.6) 2.8 (0.1)
RF-3 (50) 92.5 (0.8) 97.2 (0.7) 91.6 (0.7) 93.3 (0.4) 13.9 (0.4) 2.8 (0.0)
RF-3 (100) 92.9 (0.7) 96.5 (0.9) 91.8 (0.8) 93.9 (0.8) 14.2 (0.6) 2.8 (0.1)
RF-3 (150) 92.9 (0.4) 96.8 (0.9) 91.6 (0.9) 93.6 (0.5) 14.5 (0.7) 2.8 (0.1)

GB (1,25) 90.2 (0.4) 99.6 (0.3) 90.0 (0.5) 90.3 (0.5) 6.5 (0.4) 1.9 (0.1)
GB (1,50) 92.2 (0.7) 98.6 (0.6) 91.9 (0.8) 92.6 (0.7) 12.0 (0.3) 2.5 (0.0)
GB (1,100) 92.8 (0.6) 98.2 (0.6) 92.0 (1.0) 93.2 (0.7) 14.7 (0.5) 2.7 (0.1)
GB (1,150) 92.5 (0.7) 97.4 (0.9) 91.7 (1.2) 93.2 (0.9) 17.1 (0.3) 2.9 (0.0)

GB (2,25) 91.7 (0.4) 99.0 (0.6) 91.4 (0.5) 92.0 (0.4) 11.4 (0.5) 2.5 (0.0)
GB (2,50) 92.3 (0.6) 97.9 (0.9) 91.6 (0.8) 92.9 (0.6) 17.4 (0.6) 2.9 (0.1)
GB (2,100) 93.0 (0.4) 96.6 (1.0) 91.3 (1.1) 93.6 (0.8) 21.4 (1.0) 3.2 (0.1)
GB (2,150) 93.2 (0.5) 96.3 (0.8) 91.3 (0.8) 93.9 (0.5) 24.8 (0.9) 3.4 (0.1)

GB (3,25) 91.6 (0.6) 97.3 (0.7) 91.4 (0.8) 92.6 (0.5) 16.9 (0.9) 2.7 (0.1)
GB (3,50) 92.6 (0.5) 97.0 (1.1) 91.5 (0.8) 93.3 (0.4) 22.6 (0.7) 3.1 (0.1)
GB (3,100) 92.8 (1.0) 96.5 (1.0) 91.0 (1.1) 93.4 (0.9) 29.5 (1.2) 3.5 (0.2)
GB (3,150) 93.0 (0.7) 95.8 (1.4) 91.5 (1.4) 94.1 (0.6) 33.4 (0.8) 4.0 (0.1)

SR (25) — — 88.4 (0.8) — 14.1 (0.9) 3.0 (0.0)
SR (50) — — 87.2 (0.7) — 23.1 (0.9) 3.0 (0.0)
SR (100) — — 86.8 (1.5) — 40.9 (1.3) 3.0 (0.0)
SR (150) — — 85.6 (0.6) — 54.5.9 (2.1) 3.0 (0.0)

Table 7 depicts the results for the “Mammographic” classification problem. The
highest average predictive accuracies were achieved by the DIMLPs for both ensembles
and their generated rulesets. Moreover, the lowest predictive accuracy averages were
provided by RF. The reason could be that the RFs were overtrained in this particular case.
Indeed, for the average predictive accuracy, the difference from the DIMLPs was greater
than five points, with almost eight times more rules generated. Finally, the rules extracted
from the decision stumps provided the highest average fidelity (99.9%) and the lowest
complexity (5.4 rules with 2.0 antecedents).
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Table 7. Average results obtained on the “Mammographic” dataset. For each column, the highest
average accuracy or average fidelity is represented in bold, along with the lowest average number of
rules or average number of antecedents.

Model Acc. Fid. Acc. R. (a) Acc. R. (b) Nb. R. Nb. Ant.

DIMLP (25) 84.6 (0.2) 99.4 (0.2) 84.6 (0.2) 84.8 (0.2) 12.0 (0.4) 2.6 (0.0)
DIMLP (50) 84.6 (0.4) 99.3 (0.2) 84.6 (0.3) 84.8 (0.3) 12.1 (0.4) 2.6 (0.0)
DIMLP (100) 84.6 (0.3) 99.4 (0.3) 84.5 (0.2) 84.7 (0.2) 12.1 (0.4) 2.6 (0.0)
DIMLP (150) 84.6 (0.3) 99.4 (0.2) 84.5 (0.2) 84.7 (0.3) 12.0 (0.4) 2.6 (0.0)

RF (25) 79.3 (0.8) 97.6 (0.5) 78.7 (1.2) 79.7 (1.0) 93.0 (0.8) 3.8 (0.0)
RF (50) 79.1 (0.7) 97.4 (0.6) 78.8 (0.7) 79.7 (0.6) 94.6 (1.5) 3.8 (0.0)
RF (100) 79.2 (0.7) 97.7 (0.2) 78.8 (0.9) 79.7 (0.8) 95.6 (0.8) 3.8 (0.1)
RF (150) 79.0 (0.7) 97.6 (0.4) 78.4 (0.8) 79.4 (0.8) 95.6 (0.8) 3.8 (0.2)

RF-3 (25) 83.8 (0.5) 99.8 (0.2) 83.7 (0.5) 83.8 (0.5) 9.1 (0.6) 2.4 (0.0)
RF-3 (50) 84.1 (0.5) 99.7 (0.2) 83.9 (0.4) 84.1 (0.4) 9.5 (0.7) 2.5 (0.0)
RF-3 (100) 83.9 (0.4) 99.8 (0.2) 84.0 (0.5) 84.1 (0.5) 10.0 (0.6) 2.5 (0.0)
RF-3 (150) 84.0 (0.3) 99.7 (0.2) 84.1 (0.3) 84.1 (0.3) 10.4 (0.5) 2.6 (0.0)

GB (1,25) 84.1 (0.3) 99.9 (0.1) 84.1 (0.3) 84.1 (0.3) 5.4 (0.3) 2.0 (0.0)
GB (1,50) 84.2 (0.3) 99.8 (0.1) 84.1 (0.2) 84.2 (0.3) 10.5 (0.4) 2.4 (0.0)
GB (1,100) 84.0 (0.2) 99.7 (0.1) 84.1 (0.3) 84.2 (0.3) 12.7 (0.6) 2.6 (0.0)
GB (1,150) 83.8 (0.3) 99.6 (0.2) 83.9 (0.3) 84.0 (0.3) 14.2 (0.7) 2.6 (0.0)

GB (2,25) 84.3 (0.3) 99.9 (0.1) 84.3 (0.3) 84.3 (0.3) 8.8 (0.4) 2.4 (0.0)
GB (2,50) 83.7 (0.3) 99.5 (0.2) 83.9 (0.3) 84.0 (0.3) 12.9 (0.8) 2.6 (0.0)
GB (2,100) 83.1 (0.3) 99.1 (0.1) 83.4 (0.4) 83.5 (0.3) 18.1 (1.0) 2.8 (0.0)
GB (2,150) 82.7 (0.3) 98.8 (0.1) 82.9 (0.4) 83.2 (0.3) 21.2 (1.0) 3.0 (0.0)

GB (3,25) 84.1 (0.3) 99.7 (0.3) 84.1 (0.3) 84.2 (0.4) 13.0 (0.4) 2.6 (0.0)
GB (3,50) 83.3 (0.3) 99.3 (0.3) 83.4 (0.3) 83.6 (0.4) 18.9 (0.4) 2.8 (0.0)
GB (3,100) 82.6 (0.6) 98.7 (0.3) 82.6 (0.5) 83.1 (0.6) 29.2 (0.8) 3.1 (0.0)
GB (3,150) 82.3 (0.4) 98.2 (0.4) 82.2 (0.6) 82.8 (0.5) 37.9 (0.6) 3.3 (0.0)

SR (25) — — 81.7 (0.9) — 6.5 (0.4) 3.0 (0.0)
SR (50) — — 82.7 (0.5) — 9.5 (0.7) 3.0 (0.0)
SR (100) — — 83.1 (0.5) — 14.2 (1.1) 3.0 (0.0)
SR (150) — — 82.2 (0.7) — 17.3 (1.1) 3.0 (0.0)

Table 8 illustrates the results for the “Students-on-Math” prediction problem. The
highest average predictive accuracy was provided by the DIMLP ensembles (92.2%). Again,
the most complex rulesets were provided by RFs, on average. With decision stumps
trained by GB, we obtained the highest average fidelity (100%) with the simplest extracted
rulesets (two rules, on average). Finally, it is worth noting that the rulesets with an average
predictive accuracy of 91.8% generated from the DIMLPs had 18.5 rules, on average.

Table 8. Average results obtained on the “Students-on-Math” dataset. For each column, the highest
average accuracy or average fidelity is represented in bold, along with the lowest average number of
rules or average number of antecedents.

Model Acc. Fid. Acc. R. (a) Acc. R. (b) Nb. R. Nb. Ant.

DIMLP (25) 92.2 (0.5) 97.1 (0.8) 91.8 (0.6) 93.3 (0.5) 18.5 (1.0) 3.2 (0.1)
DIMLP (50) 92.2 (0.3) 97.5 (0.9) 91.6 (0.8) 93.0 (0.4) 18.1 (0.9) 3.2 (0.0)
DIMLP (100) 92.1 (0.4) 97.1 (0.7) 91.3 (0.4) 93.0 (0.6) 18.1 (0.9) 3.2 (0.1)
DIMLP (150) 92.0 (0.4) 96.7 (0.8) 91.5 (0.7) 93.2 (0.5) 18.2 (0.6) 3.2 (0.0)

RF (25) 90.6 (0.8) 94.3 (2.2) 89.1 (1.5) 92.2 (1.1) 37.7 (4.4) 4.0 (0.1)
RF (50) 91.0 (0.8) 90.7 (1.9) 84.8 (2.2) 91.8 (1.0) 66.4 (9.3) 4.8 (0.2)
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Table 8. Cont.

Model Acc. Fid. Acc. R. (a) Acc. R. (b) Nb. R. Nb. Ant.

RF (100) 91.4 (0.4) 89.6 (1.8) 83.5 (1.5) 91.9 (0.7) 78.4 (3.6) 5.1 (0.1)
RF (150) 91.0 (0.6) 89.3 (1.5) 83.4 (1.4) 91.7 (0.6) 78.1 (3.1) 5.1 (0.1)

RF-3 (25) 86.1 (1.6) 97.3 (0.6) 86.8 (1.3) 87.5 (1.4) 18.5 (1.3) 3.4 (0.2)
RF-3 (50) 87.0 (1.4) 97.6 (0.9) 87.1 (1.2) 88.0 (1.3) 17.4 (1.3) 3.4 (0.1)
RF-3 (100) 87.3 (1.1) 97.5 (0.7) 87.4 (1.0) 88.3 (1.2) 17.2 (0.7) 3.4 (0.1)
RF-3 (150) 87.3 (0.8) 97.1 (0.8) 87.5 (1.3) 88.6 (1.2) 16.6 (0.9) 3.3 (0.1)

GB (1,25) 92.0 (0.2) 100.0 (0.0) 92.0 (0.2) 92.0 (0.2) 2.0 (0.0) 1.0 (0.0)
GB (1,50) 91.8 (0.3) 100.0 (0.1) 91.8 (0.2) 91.8 (0.3) 2.4 (0.1) 1.1 (0.0)
GB (1,100) 91.7 (0.4) 99.2 (0.4) 91.3 (0.5) 91.8 (0.4) 9.1 (0.5) 2.3 (0.1)
GB (1,150) 91.4 (0.6) 98.3 (0.5) 90.8 (0.5) 91.8 (0.5) 14.1 (0.6) 2.7 (0.0)

GB (2,25) 92.0 (0.2) 100.0 (0.0) 92.0 (0.2) 92.0 (0.2) 2.0 (0.1) 1.0 (0.0)
GB (2,50) 91.6 (0.3) 99.3 (0.3) 91.1 (0.4) 91.7 (0.3) 10.0 (0.8) 2.3 (0.1)
GB (2,100) 91.4 (0.6) 97.6 (0.9) 90.8 (0.7) 92.1 (0.6) 20.5 (0.6) 3.2 (0.0)
GB (2,150) 91.4 (0.6) 96.6 (0.9) 90.2 (0.9) 92.3 (0.4) 25.8 (0.3) 3.5 (0.1)

GB (3,25) 91.0 (0.4) 99.1 (0.5) 90.7 (0.6) 91.2 (0.4) 10.7 (0.8) 2.5 (0.1)
GB (3,50) 91.1 (0.8) 97.6 (0.5) 90.8 (1.1) 92.0 (0.8) 19.8 (0.8) 3.2 (0.0)
GB (3,100) 91.2 (0.8) 97.0 (0.7) 90.2 (0.9) 92.0 (0.7) 28.1 (0.6) 3.6 (0.0)
GB (3,150) 91.0 (0.7) 96.2 (0.9) 90.0 (1.0) 92.1 (1.0) 32.8 (3.0) 3.8 (0.1)

SR (25) — — 91.0 (0.4) — 13.9 (0.8) 2.5 (0.0)
SR (50) — — 90.9 (1.0) — 21.2 (1.3) 2.6 (0.0)
SR (100) — — 90.9 (0.5) — 29.5 (1.0) 2.6 (0.0)
SR (100) — — 90.7 (0.8) — 35.8 (1.0) 2.6 (0.0)

For the “Voting” dataset, the results are illustrated in Table 9. The highest average
predictive accuracy for both the model and the rules was obtained by GB (96.6% and
96.2%, respectively).

Table 9. Average results obtained on the “Voting” dataset. For each column, the highest average
accuracy or average fidelity is represented in bold, along with the lowest average number of rules or
average number of antecedents.

Model Acc. Fid. Acc. R. (a) Acc. R. (b) Nb. R. Nb. Ant.

DIMLP (25) 96.1 (0.6) 98.3 (0.5) 95.8 (0.9) 96.7 (0.6) 11.8 (0.4) 2.9 (0.1)
DIMLP (50) 96.2 (0.6) 98.1 (0.4) 95.6 (0.5) 96.7 (0.5) 12.0 (0.4) 2.9 (0.0)
DIMLP (100) 96.2 (0.5) 98.3 (0.7) 95.9 (0.6) 96.9 (0.6) 11.8 (0.4) 2.9 (0.0)
DIMLP (150) 96.2 (0.5) 98.1 (0.6) 95.7 (0.7) 96.8 (0.5) 11.8 (0.4) 2.8 (0.0)

RF (25) 96.3 (0.3) 98.1 (0.5) 95.2 (0.6) 96.6 (0.4) 23.1 (0.4) 3.5 (0.1)
RF (50) 96.0 (0.4) 97.4 (0.8) 94.6 (1.1) 96.5 (0.5) 24.0 (0.5) 3.6 (0.0)
RF (100) 96.1 (0.6) 98.1 (0.7) 94.7 (0.9) 96.3 (0.6) 24.0 (0.8) 3.6 (0.0)
RF (150) 96.3 (0.3) 98.1 (0.6) 94.5 (0.7) 96.3 (0.3) 24.1 (0.7) 3.6 (0.0)

RF-3 (25) 94.8 (0.6) 99.2 (0.5) 94.3 (0.8) 94.9 (0.6) 9.8 (1.3) 2.5 (0.1)
RF-3 (50) 94.9 (0.6) 98.9 (0.4) 94.4 (0.6) 95.1 (0.6) 8.6 (0.9) 2.4 (0.1)
RF-3 (100) 95.0 (0.5) 99.1 (0.3) 94.8 (0.6) 95.3 (0.6) 8.2 (0.8) 2.3 (0.1)
RF-3 (150) 95.2 (0.3) 99.1 (0.4) 94.8 (0.6) 95.4 (0.6) 7.6 (0.6) 2.3 (0.1)

GB (1,25) 95.2 (0.3) 99.8 (0.2) 95.0 (0.3) 95.2 (0.3) 3.2 (0.4) 1.3 (0.1)
GB (1,50) 95.3 (0.3) 99.5 (0.2) 95.0 (0.4) 95.4 (0.4) 6.4 (0.6) 1.9 (0.1)
GB (1,100) 95.7 (0.3) 99.3 (0.3) 95.5 (0.3) 95.9 (0.3) 9.2 (0.3) 2.5 (0.0)
GB (1,150) 95.7 (0.3) 98.8 (0.7) 95.8 (0.3) 96.3 (0.5) 10.3 (0.2) 2.7 (0.0)

GB (2,25) 95.3 (0.3) 99.8 (0.2) 95.2 (0.4) 95.3 (0.3) 4.1 (0.4) 1.6 (0.1)
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Table 9. Cont.

Model Acc. Fid. Acc. R. (a) Acc. R. (b) Nb. R. Nb. Ant.

GB (2,50) 95.8 (0.3) 99.4 (0.4) 95.6 (0.5) 96.0 (0.3) 9.0 (0.3) 2.4 (0.1)
GB (2,100) 96.4 (0.4) 98.7 (0.3) 96.1 (0.5) 96.8 (0.4) 14.1 (0.3) 3.0 (0.0)
GB (2,150) 96.6 (0.5) 98.9 (0.4) 96.2 (0.4) 96.9 (0.4) 16.0 (0.5) 3.1 (0.0)

GB (3,25) 95.7 (0.3) 99.3 (0.4) 95.4 (0.4) 95.9 (0.4) 10.2 (0.4) 2.5 (0.0)
GB (3,50) 96.4 (0.4) 98.5 (0.4) 96.2 (0.4) 97.0 (0.4) 13.2 (0.5) 2.9 (0.0)
GB (3,100) 96.3 (0.6) 98.7 (0.6) 95.8 (0.6) 96.6 (0.7) 19.2 (0.6) 3.2 (0.0)
GB (3,150) 95.9 (0.6) 98.4 (0.5) 95.3 (0.6) 96.4 (0.6) 22.7 (0.8) 3.4 (0.0)

SR (25) — — 94.9 (0.5) — 17.5 (0.9) 3.0 (0.0)
SR (50) — — 94.7 (0.5) — 23.9 (1.6) 3.0 (0.0)
SR (100) — — 94.5 (0.4) — 31.7 (0.9) 3.0 (0.0)
SR (150) — — 94.3 (0.6) — 37.7 (1.6) 3.0 (0.0)

Table 10 presents a comparison between the best average accuracies of the rulesets
produced by two groups of models. In the first group, we had ensembles of DIMLPs or
DTs, while the second included Skope-Rules. A Welch t-test was performed to compare the
average accuracies obtained by the two groups, with p-values in the last column. Numbers
in bold represent significantly better average predictive accuracies. Overall, in seven of
the eight classification problems, the average predictive accuracy obtained by the rulesets
generated from the approach proposed in this work was significantly better.

Table 10. Summary of the best average accuracies of rulesets produced by ensembles of DIMLPs or
DTs. A comparison with SR (fourth column) was achieved through a Welch t-test; p-values are illus-
trated in the last column. A bold number represents a significantly better average predictive accuracy.

Dataset Model Acc. R. Acc. R. (SR) p-Value

Australian Credit Appr. GB (1,100) 86.6 (0.5) 85.5 (0.3) 2.8× 10−5

Breast Cancer RF (150) 96.9 (0.2) 94.4 (0.2) 2.2× 10−16

Divorce Prediction GB (3,50) 97.3 (1.0) 96.5 (0.7) 5.5× 10−2

Heart Disease DIMLP (50) 84.4 (1.1) 77.1 (1.4) 2.9× 10−10

Ionosphere DIMLP (50) 92.3 (1.1) 88.4 (0.8) 8.4× 10−8

Mammographic Mass DIMLP (25) 84.6 (0.2) 83.1 (0.5) 1.6× 10−6

Student Perf. (Math) GB (1,25) 92.0 (0.2) 91.0 (0.4) 7.6× 10−6

Voting Records GB (3,50) 96.2 (0.4) 94.9 (0.5) 6.0× 10−6

The average number of rules generated from the most accurate rulesets provided by
ensembles of DIMLPs or DTs is presented in Table 11. Again, a Welch t-test was performed
to compare our ensembles to SR. It turned out that on only one classification problem, the
average number of rules was significantly lower with SR.

4.4. Related Work

We compare our results with those of other state-of-the-art approaches. For the
“Australian” classification problem, Table 12 illustrates the results provided by several rule
extraction techniques applied to ensembles of DTs (ET-FBT, RF-FBT, AFBT, and InTrees).
Moreover, G-REX is a rule extraction method that is applied to ensembles of MLPs. Finally,
the last row indicates our results with respect to Gradient-Boosted Trees (GB-DIMLP).
The second column describes the evaluation method. Specifically, “10 × RS” signifies
that the random sampling of the training and testing sets was applied ten times, while
“1 × 10-fold-CV” indicates one repetition of ten-fold cross-validation. Here, the highest
average predictive accuracy was given by our rule extraction method. However, a strict
comparison of results is difficult because not all evaluation procedures are completely
the same.
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Table 11. Summary of the average number of rules extracted from the most accurate rulesets
produced by DIMLPs or DTs. A comparison with SR was carried out with a Welch t-test, with
p-values in the last column. A bold number represents a significantly lower number of rules.

Dataset Model Nb. R. Nb. R. (SR) p-Value

Australian Credit Appr. GB (1,100) 13.2 (0.7) 19.3 (0.8) 7.1× 10−13

Breast Cancer RF (150) 24.3 (0.5) 31.2 (1.7) 1.4× 10−7

Divorce Prediction GB (3,50) 3.8 (0.0) 13.9 (1.0) 1.4× 10−10

Heart Disease DIMLP (50) 20.4 (0.5) 23.2 (0.9) 5.6× 10−7

Ionosphere DIMLP (50) 18.3 (0.6) 14.1 (0.9) 1.9× 10−9

Mammographic Mass DIMLP (25) 12.0 (0.4) 14.2 (1.1) 8.6× 10−5

Student Perf. (Math) GB (1,25) 2.0 (0.0) 13.9 (0.8) 4.4× 10−12

Voting Records GB (3,50) 13.2 (0.5) 17.5 (0.9) 2.5× 10−9

Table 12. Other results on the “Australian” dataset. A bold number represents a highest average
accuracy of the rules.

Model Evaluation Acc. R. Nb. R. Nb. Ant.

ET-FBT [24] 10 × RS 83.8 (2.1) — —
RF-FBT [24] 10 × RS 83.6 (2.5) — —
AFBT [24] 10 × RS 83.5 (2.0) — —
InTrees [25] 100 × RS 84.3 (—) — —

G-REX [16] 1 × 10-fold-CV 85.9 (—) — —
GB-DIMLP (1,100) 10 × 10-fold-CV 86.6 (0.5) 13.2 (0.7) 2.8 (0.1)

Table 13 depicts the results for the “Breast Cancer” classification problem. The first
five rows show a number of rule extraction techniques applied to an ensemble of DTs (NH,
RuleFit, RF-DHC, RF-SGL, and RF-mSGL). The last row indicates our results obtained with
ensembles of RFs transformed into ensembles of DIMLPs. The highest average predictive
accuracies were provided by RuleFit and RF-DIMLP (97% and 96.9%, respectively), with
fewer rules generated by RF-DIMLP, on average (24.3 versus 38). It is also important to
keep in mind that each rule generated by RuleFit, RF-SGL, or RF-mSGL has a coefficient
that makes rule interpretability more difficult, which is not the case for RF-DIMLP.

We carried out a Welch t-test on the average predictive accuracies provided by RF-
DIMLP and RuleFit. The number of samples for the former model was equal to 100, while
for the latter, it was ten, corresponding to only one repetition of 10-fold cross-validation.
The difference in their average predictive accuracies was not big enough to be statistically
significant (p-value = 0.88). Then, for the same models, we conducted a Welch t-test with
respect to the average number of rules. The difference between the values provided by
RF-DIMLP and RuleFit was big enough to be statistically significant (p-value = 1.0× 10−5).
Statistical comparisons between random sampling evaluations and cross-validations were
not performed, since they were not fully comparable.

The results on the “Ionosphere” classification problem are compared in Table 14.
Rulefit gave the highest average predictive accuracy (93%), with the ensembles of DIMLP
networks providing slightly lower values (92.3%), but with the lowest number of extracted
rules (18.3 versus 25), on average. Note also that the rule extractors that produced rules
without multiplicative coefficients were NH, RF-DHC, and G-Rex. They provided average
predictive accuracies equal to 89%, 89%, and 91.4%, which were below that yielded by
the DIMLPs.

We performed a Welch t-test for the average predictive accuracies provided by the
DIMLP ensembles and RuleFit. The difference in their average predictive accuracies was
not big enough to be statistically significant (p-value = 0.68). Then, for the same models,
we carried out a Welch t-test with respect to the average number of rules. The difference
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between the values of the DIMLPs and RuleFit was big enough to be statistically significant
(p-value = 3.9× 10−5).

Table 13. Other results on the “Breast Cancer” dataset. A bold number represents a highest average
accuracy of the rules.

Model Evaluation Acc. R. Nb. R. Nb. Ant.

NH [22] 1 × 10-fold-CV 96 (2) 44 (4) —
RuleFit [22] 1 × 10-fold-CV 97 (2) 38 (5) —
RF-DHC [22] 1 × 10-fold-CV 96 (2) 22 (9) —
RF-SGL [22] 1 × 10-fold-CV 96 (2) 43 (9) —
RF-mSGL [22] 1 × 10-fold-CV 96 (3) 20 (3) —

ET-FBT [24] 10 × RS 94.7 (0.7) — —
RF-FBT [24] 10 × RS 95.6 (1.3) — —
AFBT [24] 10 × RS 95.5 (1.2) — —
InTrees [25] 100 × RS 95.2 (—) — —

G-REX [16] 1 × 10-fold-CV 95.5 (—) — —
RF-DIMLP (150) 10 × 10-fold-CV 96.9 (0.2) 24.3 (0.5) 3.3 (0.0)

Table 14. Other results on the “Ionosphere” dataset. A bold number represents a highest average
accuracy of the rules.

Model Evaluation Acc. R. Nb. R. Nb. Ant.

NH [22] 1 × 10-fold-CV 89 (6) 37 (6) —
RuleFit [22] 1 × 10-fold-CV 93 (5) 25 (3) —
RF-DHC [22] 1 × 10-fold-CV 89 (5) 28 (10) —
RF-SGL [22] 1 × 10-fold-CV 93 (5) 39 (8) —
RF-mSGL [22] 1 × 10-fold-CV 91 (5) 21 (4) —

G-REX [16] 1 × 10-fold-CV 91.4 (—) — —
DIMLP (50) 10 × 10-fold-CV 92.3 (0.2) 18.3 (0.6) 2.9 (0.1)

For the “Mammographic” dataset, Table 15 depicts some results obtained by other
rule extractors from ensembles of DTs. The DIMLP ensembles obtained the highest average
accuracy, with that of AFBT being a bit lower (84.6% versus 83.4%). Nevertheless, the
evaluation protocol was different. Hence, these results are rather indicative.

Table 15. Other results on the “Mammographic” dataset. A bold number represents a highest average
accuracy of the rules.

Model Evaluation Acc. R. Nb. R. Nb. Ant.

ET-FBT [24] 10 × RS 79.3 (5.0) — —
RF-FBT [24] 10 × RS 82.2 (0.9) — —
AFBT [24] 10 × RS 83.4 (0.8) — —

DIMLP (25) 10 × 10-fold-CV 84.6 (0.2) 12.0 (0.4) 2.6 (0.0)

4.5. An Example of a Ruleset Generated from the “Divorce” Dataset

Listing 1 illustrates a ruleset generated from the “Divorce” classification problem
for gradient-boosted DTs (GB (3, 50)). It was produced during the cross-validation trials.
Specifically, the classification problem consisted in determining whether, based on 54
attributes, a divorce had been declared for a married couple. Each attribute ai corresponds
to a sentence with a certain degree of truth on a scale of zero to four, with the maximal
value indicating “true”.
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Listing 1. A ruleset generated from the “Divorce” dataset.

Rule 1: (a18 ≤ 1) ∧ (a26 ≤ 1) ∧ (a40 ≤ 2)→ DIVORCE (76/10)
Rule 2: (a18 ≥ 2)→ NO DIVORCE (71/10)
Rule 3: (a40 ≥ 3)→ NO DIVORCE (69/10)
Rule 4: (a26 ≥ 2)→ NO DIVORCE (69/9)

The accuracy of the rules was 100% for both the training set and on the testing set,
respectively. In parentheses at the end of each line is given the number of training/testing
samples covered. We enumerate the following specified attributes for the extracted ruleset:

• a18: “My spouse and I have similar ideas about how marriage should be”.
• a26: “I know my spouse’s basic anxieties”.
• a40: “We are just starting a discussion before I know what is going on”.

5. Discussion

The rule extraction method proposed in this work can be applied to any decision
tree. In this work, we applied it to ensembles of MLPs and DTs. Although agnostic rule
extraction algorithms can be applied to any model, we are not aware of any other scholars
that have applied a rule extraction method to both ensembles of neural networks and
decision trees. The average fidelity during our cross-validation trials was often well above
95%, with the lowest value being 89.3%. In addition, it can be qualitatively observed that,
very often, the less complex the propositional rules are, the higher the average fidelity
will be.

During cross-validation experiments, the highest average predictive accuracy of the
rules was provided four times by GBs, three times by DIMLP ensembles, and once by RFs.
To compare the generated rules with those of another rule extraction technique under the
same cross-validation settings, we used Skope-Rules. The average predictive accuracy
of the rules produced by Skope-Rules was always lower than that obtained by our rule
extraction technique. Finally, the results were compared to those obtained in the state of
the art, although it was difficult to actually find results from similar evaluation procedures.
On three out of four datasets, we obtained rules with similar or higher accuracy, on
average. On only the “Ionosphere” classification problem, the average predictive accuracy
of our generated rules was a bit lower than that of another rule extraction technique.
Nevertheless, the difference was not statistically significant. On this same dataset, on
average, we generated a significantly lower number of rules; we thus obtained rulesets
with better comprehensibility. Finally, unlike those of many other algorithms, our extracted
rules do not have any coefficients that make their interpretation difficult.

Each learning model learns in a different way. Hence, the extracted rules very often
present different characteristics in terms of complexity. For instance, in the “Breast Cancer”
problem, the highest predictive accuracy of the rules was achieved by RFs with a value
equal to 96.9%. That of GB was a bit lower with a value equal to 96.7%, but GB generated
more than half as many rules (11.2 versus 24.3), on average. If one is looking for simplicity
in explanations, GB could be considered more interesting than RF in this case. A similar
example was given with the “Heart Disease” dataset. Here, the highest average predictive
accuracy reached by the rules produced by the ensembles of DIMLPs was 84.4%, and the
average number of rules was 20.4. With GB (1,50), the same measures were equal to 84.3%
and 15.2, respectively. Therefore, GB generated fewer rules with a very similar average
predictive accuracy.

For the eight classification problems related to this work, the average predictive
accuracy provided by the rules when the models agreed with the extracted rules was the
highest with DIMLPs five times, twice with RFs, and once with GBs. These average values
were higher than the highest average predictive accuracies provided by the models. An
intuitive reason is that test samples for which the extracted rules and the model disagreed
are the most difficult samples to classify. Hence, when these more difficult cases are left out
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(which is the case when we calculate this type of accuracy), the average predictive accuracy
increases. By excluding difficult cases, we also lose the ability to explain them, but with
fidelity above 95%, the loss of explanation would occur in less than 5% of cases.

A question arising is whether it is possible to find a way to increase the predictive
accuracy of the rules and the fidelity. By combining the symbolic rules of five models
among SVMs, ensembles of DTs with several parameterizations, and ensembles of DIMLPs,
the author obtained 99.9% average fidelity and 87.5% average predictive accuracy for
the “Australian” dataset [13]. For the “Breast” classification problem, the average fidelity
was 100%, with an average predictive accuracy of 97.4%. Finally, with the “Ionosphere”
dataset, an average fidelity of 99.9% and an average predictive accuracy of 94.2% were
reached. Hence, the average predictive accuracy and average fidelity improved; however,
the number of rules increased by a factor of between five and ten times the number of rules
produced by a DIMLP ensemble, making interpretation more complicated.

In the future, we will apply our rule extraction technique to Convolutional Neural
Networks (CNNs). Specifically, a CNN includes kernels that calculate distinct feature
maps. Since each feature map represents a new version of the original dataset, we could
imagine an ensemble of MLPs that learn all of these maps. Very accurate results have been
obtained in this respect with support vector machines [40], but without the possibility of
interpretation. With the use of DIMLPs, propositional rules will be able to be produced.

6. Conclusions

A rule extraction technique that is normally used for DIMLP neural networks was
applied to random forests and gradient-boosted decision trees. This was made possible by
considering that a DT represents a special case of a DIMLP. Through cross-validation trials
on eight classification problems, the experiments revealed competitive results with respect
to the characteristics of the generated rules. To the best of our knowledge, this is one of the
rare works showing a rule extraction technique that is applied to ensembles of both DTs
and MLPs. In future work, we will aim to increase the predictive accuracy by combining
rulesets generated by models with a high diversity.
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