
algorithms

Article

A Pathfinding Problem for Fork-Join Directed Acyclic Graphs
with Unknown Edge Length

Kunihiko Hiraishi

����������
�������

Citation: Hiraishi, K. A Pathfinding

Problem for Fork-Join Directed

Acyclic Graphs with Unknown Edge

Length. Algorithms 2021, 14, 367.

https://doi.org/10.3390/a14120367

Academic Editor: Frank Werner

Received: 18 December 2021

Accepted: 15 Decembre 2021

Published: 17 Decembre 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahiday,
Nomi 923-1292, Ishikawa, Japan; hira@jaist.ac.jp; Tel.: +81-761-51-1281

Abstract: In a previous paper by the author, a pathfinding problem for directed trees is studied under
the following situation: each edge has a nonnegative integer length, but the length is unknown in
advance and should be found by a procedure whose computational cost becomes exponentially
larger as the length increases. In this paper, the same problem is studied for a more general class of
graphs called fork-join directed acyclic graphs. The problem for the new class of graphs contains
the previous one. In addition, the optimality criterion used in this paper is stronger than that in the
previous paper and is more appropriate for real applications.

Keywords: shortest path problem; planning problem; online algorithm

1. Introduction

In a previous paper by the author [1], a pathfinding problem for directed trees is
studied under the following situation: each edge has a nonnegative integer length, but the
length is unknown in advance and should be found by a procedure whose computational
cost becomes exponentially larger as the length increases. Such a situation arises in an oper-
ation synthesis problem for reconfigurable cloud computing systems [2,3]. This problem is
described as follows. A typical reconfigurable cloud computing system consists of multiple
physical servers interconnected via network switches. Servers may have different com-
puting resources such as CPU, memory, and hard disk drives. Multiple virtual machines
are running under the virtual machine monitor in each server, and application software
runs on each virtual machine. Such an arrangement of virtual machines, operating systems,
and application software on physical servers is called a configuration. Then, the problem
is to find a sequence of operations that leads the system from the initial configuration
to a given goal configuration. Since the problem becomes harder as the length of the
operation sequence becomes longer, implementing subgoals is proposed to shorten the
total computation time. The number of necessary operations between two subgoals is not
known in advance and can be known by applying some search procedure. This situation is
formulated as the above graph problem.

In this paper, the same problem is studied for a more general class of graphs called
fork-join directed acyclic graphs. We call this problem PFJUEL (Pathfinding in an FJ-DAG
with Unknown Edge Length). There is a remaining problem in the previous paper, which
is the optimality criterion used for evaluating the solution method. The optimality criterion
used in this paper is stronger than that in the previous paper and is more appropriate for
real applications. Moreover, the argument to derive the optimality becomes clearer for this
generalized class of graphs.

Solution methods to the problem involve a procedure whereby the next action to be
taken is determined by the current knowledge of the target. We call this type of procedure a
strategy. Such a problem has been studied as the planning problem in artificial intelligence,
and there are a variety of algorithms in this area. Typical algorithms are the A∗ algorithm [4]
and its variants such as [5–7]. In the research field of graph algorithms, many algorithms
have been proposed for solving shortest path problem in varieties of situations. Well-known

Algorithms 2021, 14, 367. https://doi.org/10.3390/a14120367 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1750-1891
https://doi.org/10.3390/a14120367
https://doi.org/10.3390/a14120367
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14120367
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14120367?type=check_update&version=1

Algorithms 2021, 14, 367 2 of 15

algorithms for finding a shortest path, such as Dijkstra’s algorithm and the Bellman–Ford
algorithm, cannot be applied because the length of each edge is unknown in advance.
There exist studies on graphs with uncertainty. Algorithms to solve such problems with
uncertainty include online algorithms [8]. The Canadian traveler problem [9,10] is one of
these algorithms. In the Canadian traveler problem, whether each edge (vi, vj) is available
or not is known only when the vertex vi is visited. Solution methods to this problem
are strategies, and the cost of a strategy is defined as the sum of the lengths of all edges
traversed. Online shortest path problems for graphs with uncertainty are also studied [11],
and there are many applications such as route finding in transit networks [12]. In these
problems, the weight of each edge can change in an arbitrary way. Such a situation occurs in
real transit networks because of traffic jams. There are several differences between PFJUEL
and the existing online graph problems with uncertainty. Although most of the graph
problems with uncertainty are defined in stochastic domain [8,13–15], PFJUEL is defined
in a fully deterministic way. Moreover, the edge length does not change (but is not known
in advance). In some online shortest path problems, the existence of an agent that traverses
the network is assumed. The agent makes decisions based on the information around the
agent and its history. In PFJUL, no agent is assumed, and the operation can be done for any
point in the graph. The evaluation method of the algorithm is also different. To evaluate
the performance of online algorithms, the competitive ratio [16] is often used. This is the
ratio between the performance of an online algorithm and that of an offline algorithm.
From the motivated examples shown in [2,3], we assume that the computational cost of
the procedure for finding the length of each edge is dominant in the total computational
cost. Therefore, it suffices to consider the number of procedure calls for the evaluation. The
detail of the evaluation method will be described later.

The paper is organized as follows. In Section 2, the problem studied in the paper
is formally described. In Section 3, how to evaluate solution methods is presented. The
current knowledge on the graph is summarized as the estimate, and the optimality of a
method is evaluated by the estimate the method finally gives. In Section 4, we define a
special form of estimates that gives the optimal estimate. In Section 5, a solution method
to the problem is presented. The method gives an optimal solution under an assumption.
For the case without the assumption, the difference between the obtained solution and the
optimal one is evaluated. Section 6 presents the conclusion.

2. Problem Formulation

We first formally define a class of graphs called fork-join directed acyclic graphs
(FJ-DAGs). An FJ-DAG is a directed acyclic graph G = (V, E), where V is the set of vertices
and E ⊆ V ×V is the set of edges, with two special vertices the top vertex vt ∈ V and the
bottom vertex vb ∈ V. We denote G = (V, E, vt, vb) to indicate the two special vertices.

Definition 1. FJ-DAGs are recursively defined as follows:

1. A single vertex G = ({v}, ∅, v, v) is an FJ-DAG;
2. Let Gi = (Vi, Ei, vt

i , vb
i), i = 1, · · · , m be FJ-DAGs. Then, the graph

G =

(
m⋃
i

Vi ∪ {vt, vb},
m⋃
i

Ei ∪ {(vt, vt
i), (v

b
i , vb) | i = 1, · · · , m}, vt, vb

)

is an FJ-DAG, where vt and vb do not belong to any Vi. Each Gi is called a child of G;
3. No other graphs defined as above are not FJ-DAGs.

Each edge et
i = (vt, vt

i) is called a top edge of G and each edge eb
i = (vb

i , vb) is called
a bottom edge of G. An FJ-DAG has a nested structure. We introduce the level of an
FJ-DAG G, denoted by level(G), as follows: (i) the level of a single vertex G is 0; (ii) if
Gi, i = 1, · · · , m are children of G, then level(G) = maxi level(Gi). Any FJ-DAG contained
in an FJ-DAG G as a subgraph is called a sub FJ-DAG of G. Figure 1 shows an FJ-DAG,

Algorithms 2021, 14, 367 3 of 15

where the level of each sub FJ-DAG is indicated. We also define the level of each edge.
The level of an edge is defined as the level of a sub FJ-DAG that contains the edge as a
top or bottom edge. Such a class of graphs is well studied in the research field of queuing
networks since it appears in various applications such as parallel computing and flexible
manufacturing systems [17].

0 0 0

1

2

Figure 1. An FJ-DAG. The level of each sub FJ-DAG is indicated.

In an FJ-DAG G = (V, E, vt, vb), a path from vt to vb is called a goal path of G. Now, we
define a graph problem, Pathfinding in an FJ-DAG with Unknown Edge Length (PFJUEL),
as follows:
Given

• An FJ-DAG G = (V, E, vt, vb);
• Oracle searchc(vi, vj): given two vertices vi, vj and a nonnegative integer c, the oracle

answers whether the length of edge (vi, vj) is less than or equal to c or not.

Assumption

• Each edge has a nonnegative integer length, but the length is unknown in advance
and should be found by calling the oracle.

Find

• A shortest goal path.

PFJUEL is an online problem since the length of each edge is known only by calling
oracles. As we have mentioned in the introduction, any procedures that solve such an
online problem should be adaptive; i.e., the next action (i.e., an oracle call) to be taken is
determined by the current knowledge of the target. Such a procedure is called a strategy.
Roughly speaking, the objective of PFJUEL is to find a strategy that is optimal for the total
cost of oracle calls. The formal statement of an optimal strategy to PFJUEL is given after
we introduce the required concepts and terminology.

We note that PFJUEL is a generalization of the problem PSTUEL studied in [1]. The
targets of PSTUEL are directed trees. Given a directed tree, we can make an FJ-DAG such
that the shortest goal path of the FJ-DAG contains the shortest goal path of the directed
tree, where a goal path of a tree is a path from the root to a leaf. To do this, we add edges
with length 0 so that the tree becomes an FJ-DAG (Figure 2).

At some step of a strategy for PFJUEL, the set of edges E is partitioned into two sets
EK and EU , where the length w(vi, vj) of each edge (vi, vj) ∈ EK is already known, and the
length of each edge in EU is unknown. An edge (vi, vj) moves from EU to EK when its
length has been found. Moreover, for each edge (vi, vj) ∈ EU , a lower bound ŵ(vi, vj) of
the edge length is obtained by previous oracle calls. The initial lower bound is 0, and if
searchc(vi, vj) returns “no”, then c + 1 is set to ŵ(vi, vj).

Algorithms 2021, 14, 367 4 of 15

Definition 2. A strategy that does not call searchc(vi, vj) for c > w(vi, vj) is called conservative.

In conservative strategies, an edge (vi, vj) moves from EU to EK when searchc(vi, vj)
returns “yes” for c = w(vi, vj). Since calling the oracle for a large c is dominant in the
total computational cost, we concentrate on conservative strategies only. In this class of
strategies, calling searchc(vi, vj) for all c = 0, 1, · · · , w(vi, vj) in this order is mandatory to
know the correct edge length.

2

11

3

2

0

11

0

0

3

0

Figure 2. A tree and the constructed FJ-DAG.

3. Estimate and Characteristic Vector

For conservative strategies, the current knowledge about the graph is represented by a
pair F = (FK, FU), where FK is the set of all pairs 〈(vi, vj), w(vi, vj)〉 with (vi, vj) ∈ EK, and
FU is the set of all pairs 〈(vi, vj), ŵ(vi, vj)〉 with (vi, vj) ∈ EU . We call such F an estimate
of G. Let F denote the set of all estimates. A strategy for PFJUEL is formally defined
as a mapping S from F to EU ×N (this definition of strategies means that strategies are
deterministic; i.e., any strategy gives the same response to the same estimate). Based on
the previous results on oracle calls, strategy S gives the next edge in EU and nonnegative
integer c for which the oracle is called. The current lower bound of the path length is given
by the sum of ŵ(vi, vj) for all edges (vi, vj) on the path. We call this the estimated length of
the path.

When a shortest goal path is found, the estimate has to satisfy the following require-
ments in order to guarantee the correctness of the result.

Definition 3. An estimate is called terminal if the following two conditions hold:

R1. All the edges on a shortest goal path π∗ are in EK;
R2. For any goal path other than π∗, its estimated length is no less than the length of π∗.

In what follows, oracle calls that return “no” are called fail calls and oracle calls that re-
turn “yes” are called success calls. Given an estimate F, we define a vector
#F = [a0, a1, · · · , as] called the characteristic vector of F, where each ak is the number
of edges with ŵF(vi, vj) = k + 1, and s is the largest integer such that as 6= 0. In con-
servative strategies, the number of fail calls searchc(·, ·) is given by ∑s

i=c ai, because if
searchc(vi, vj) fails, then searchc′(vi, vj) fails for all 0 ≤ c′ < c.

To define the optimality of strategies, we introduce a lexicographical order � on
the set of characteristic vectors. For two characteristic vectors #F1 = [a0, a1, · · · , as] and
#F2 = [b0, b1, · · · , bt], we write #F1 ≺ #F2 if (i) s < t or (ii) s = t and aj < bj holds for
j = max{i ∈ {0, 1, · · · , s} | ai 6= bi}, and define #F1 � #F2 to be #F1 ≺ #F2 or #F1 = #F2 .

Definition 4. A terminal estimate F is called optimal if for any other terminal estimate F′, #F � #F′

holds.

Algorithms 2021, 14, 367 5 of 15

The characteristic vectors do not reflect the number of success calls, since the lower
bound is not updated for any success call. In the conservative strategies, however, every
success call searchc(vi, vj) for c = w(vi, vj) is preceded by a fail call searchc−1(vi, vj). This
means that the number of success calls searchc(·, ·) is no greater than the number of fail
calls searchc−1(·, ·). For this reason, the optimality defined above can be a measure of the
total computational cost.

We have assumed that the cost of calling oracles is dominant in the total computation
time and it becomes exponentially larger as the length c increases. Since we give no exact
computational cost of oracle calls, the optimality of a strategy should be defined by the
number of oracle calls. Under the assumption of the computational cost of oracle calls, the
above definition is reasonable. In our previous paper, we initially intended to use the same
evaluation measure as that used in this paper. However, we could not prove the optimality
for it and could prove the optimality for a weaker measure in which only the number of
oracle calls for the largest c is considered.

If all goal paths have the same estimated length h, then the estimate is called homoge-
neous with length h.

Lemma 1. Any optimal estimate is homogeneous.

Proof. Assume that there exists an optimal estimate having at least one goal path with
length h > h∗, where h∗ is the length of the shortest goal path. Choose a goal path π with
length h. π has the form

et
(1) · · · e

t
(k)e

b
(k) · · · e

b
(1)

where (i) denotes the index of a sub FJ-DAG G(i). If π does not share edges with any
goal path with length h∗, then we choose one edge with a nonzero estimated length (since
h > h∗, such an edge exists) and decrement the estimated length by one. Suppose that π
shares an edge et

(i) or eb
(i) with goal paths having length h∗. From the structure of FJ-DAGs,

edges et
(1), · · · , et

(i), eb
(i), · · · , eb

(1) are also shared. Since π is longer than such paths with

length h∗, there exists an edge et
(j) or eb

(j) , j > i that is not shared by such goal paths and
has a nonzero estimated length. Then, we decrement the estimated length of the edge by
one. As a result, the length of π can be decreased by one. The estimate is still terminal after
this procedure. This contradicts to the assumption that the estimate is optimal.

4. Canonical Estimate

In this section, we introduce a special class of estimates, called canonical estimates,
that gives optimal estimates. We first introduce some terminology. An edge (vi, vj) is called
saturated if ŵ(vi, vj) = w(vi, vj), and is called unsaturated if ŵ(vi, vj) < w(vi, vj). A cut is
a subset of edges such that it contains exactly one edge on every goal path. Let F be the
characteristic vector of an estimate. Then, the characteristic vector of a cut is the restriction
of F to the edges in the cut. A cut is called maximum if its characteristic vector is maximum
with regard to � in all cuts. A cut is called unsaturated if it consists of unsaturated edges
only. An unsaturated minimum cut is an unsaturated cut such that its characteristic vector
is minimum with regard to � in all unsaturated cuts. Figure 3 shows a maximum cut
with characteristic vector [1, 1, 1] and an unsaturated minimum cut with characteristic
vector [2, 1].

Definition 5. (Canonical Estimate)
Let F be an estimate of an FJ-DAG G. If level(G) = 0, then F is canonical. Suppose that G

has children Gi(i = 1, · · · , m) as shown in Figure 4. Then, F is called canonical if it is homogeneous
and the following conditions hold for all i = 1, · · · , m:

C1. F is canonical for Gi;
C2. If et

i (e
b
i) is unsaturated, then ŵ(eb

i) ≤ ŵ(et
i) + 1 (ŵ(et

i) ≤ ŵ(eb
i) + 1) holds;

Algorithms 2021, 14, 367 6 of 15

C3. If level(Gi) ≥ 1 and et
i (e

b
i) is unsaturated, then ŵ(et

i) ≥ ŵ(Gi)
↑ (ŵ(eb

i) ≥ ŵ(Gi)
↑) holds,

where ŵ(Gi)
↑ is the largest estimated length in Gi;

C4. If level(Gi) ≥ 1 and Gi has at least one unsaturated cut, then ŵ(et
i) ≤ ŵ(Gi)

↓ + 1 and
ŵ(eb

i) ≤ ŵ(Gi)
↓ + 1 hold, where ŵ(Gi)

↓ is the largest estimated length in all unsaturated
minimum cuts of Gi.

2/2

1/2

1/12/2

1/2

2/1

3/4

2/3

[1,1,1]

[2,1]

maximum cut

unsaturated

minimum cut

Figure 3. Maximum/minimum cut (for each edge (vi, vj), ŵ(vi, vj)/w(vi, vj) is indicated).

G
1

G
m

. . .

e
1

t

e
1

b

e
m

t

e
m

b

G

v t

vb

Figure 4. Structure of FJ-DAG.

Since any canonical estimate is homogeneous, all goal paths have the same estimated
length. We take a canonical estimate with length h to indicate that the estimated length is h.

By reassigning the estimated lengths of some edges, the characteristic vector of a
non-canonical estimate may decrease without changing its length. We show examples. The
estimate shown in Figure 5a does not satisfy C2. By the reassignment shown in Figure 5b,
the characteristic vector decreases. The estimate shown in Figure 6a does not satisfy C3
because the maximum estimated length of the sub FJ-DAG is 6, which is greater than the
value of 3 of the bottom edge. As shown in Figure 6b, the characteristic vector decreases
by adding one to the bottom edge and removing one from every edge on the maximum
cut. The estimate shown in Figure 7a does not satisfy C4 because the maximum estimated
length on the unsaturated minimum cut of the sub FJ-DAG is 4, and 4 + 1 = 5 is less than
the value of 6 of the bottom edge. As shown in Figure 7b, the characteristic vector decreases
by removing one from the bottom edge and adding one to every edge on the unsaturated
minimum cut. These operations are used to prove the optimality of canonical estimates.

Algorithms 2021, 14, 367 7 of 15

3/3 4/6

3/4 4/6

1/3 5/6

2/46/6

(a) (b)

Figure 5. Reassignment for violation of C2: (a) before the reassignment, (b) after the reassignment
(for each edge (vi, vj), ŵ(vi, vj)/w(vi, vj) is indicated).

4/5

1/1 3/4

4/4

3/5

6/7

maximum cut

4/5

1/1 3/4

3/4

4/5

5/7

(a) (b)

Figure 6. Reassignment for violation of C3: (a) before the reassignment, (b) after the reassignment
(for each edge (vi, vj), ŵ(vi, vj)/w(vi, vj) is indicated).

4/5

1/1

3/4

2/4

6/6

4/6

unsaturated

minimum cut

4/5

1/1 3/4

3/4

5/6

5/6

(a) (b)

Figure 7. Reassignment for violation of C4: (a) before the reassignment, (b) after the reassignment
(for each edge (vi, vj), ŵ(vi, vj)/w(vi, vj) is indicated).

Algorithms 2021, 14, 367 8 of 15

Lemma 2. Let G be an FJ-DAG shown in Figure 4, and let F be a canonical estimate for G with
length h. Then, for each i = 1, · · · , m, ŵ(et

i) and ŵ(eb
i) are unique up to their exchange.

Proof. We first consider the case that level(Gi) = 0. Then, ŵ(et
i) + ŵ(eb

i) = h holds. If
both et

i and eb
i are saturated, then the value assignment is unique. If both et

i and eb
i are

unsaturated, then by C2, |ŵ(et
i)− ŵ(eb

i)| ≤ 1 holds and the value assignment to these edges
are unique up to exchange of them. Suppose that et

i is saturated and eb
i is unsaturated. Then,

by C2, ŵ(et
i) ≤ ŵ(eb

i) + 1 holds. If ŵ(et
i) < ŵ(eb

i) + 1, then this is the unique assignment
to these two edges. If ŵ(et

i) = ŵ(eb
i) + 1, then we can obtain another assignment by

decrementing ŵ(et
i) by one and incrementing ŵ(eb

i) by one. No other assignments are
possible. Therefore, the value assignment is unique up to their exchange. This also holds
for the case that et

i is unsaturated and eb
i is saturated.

Next, we consider the case that level(Gi) > 0. Suppose that Gi has no unsaturated cut.
Then, Gi has a goal path with saturated edges only. Let hi be the length of such a saturated
goal path. Note that hi is uniquely determined, and all goal paths of Gi have the same
estimated length since F is homogeneous. Therefore, ŵ(et

i) + ŵ(eb
i) = h− hi is also unique.

By the same argument as in the case level(Gi) = 0, we can prove the lemma.
Suppose that Gi has at least one unsaturated cut. Let ex

(s) (x is t or b) be an unsaturated

edge in Gi such that it is on a minimum unsaturated cut C of Gi and ŵ(ex
(s)) = ŵ(Gi)

↓.
Let G(s) be the sub FJ-DAG having ex

(s) as the top or bottom edge. By C3, every edge in
G(s) is with an estimated length no greater than ŵ(ex

(s)). We claim that G(s) has a goal path
such that all unsaturated edges on the path are with estimated length ŵ(ex

(s)). Assume
that G(s) has no such goal paths. Then, G(s) has an unsaturated cut C′ with a characteristic
vector smaller than that of {ex

(s)}. By replacing ex
(s) with C′ in the cut C, we obtain an

unsaturated cut of Gi with a smaller characteristic vector than C, which is a contradiction.
Since G(s) is homogeneous, any goal path in G(s) has the same estimated length, and it is
uniquely determined.

Let π be a goal path that goes through ex
(s). π has the form

et
(1) · · · e

t
(s) · · · e

t
(r)e

b
(r) · · · e

b
(s) · · · e

b
(1)

where et
(1) = et

i and eb
(1) = eb

i . Note that subpaths et
(1) · · · e

t
(s) and eb

(s) · · · e
b
(1) are uniquely

identified. We consider the case that x is t. The case that x is b is similarly proved. We make
the following observations:

• The estimated length of the subpath

et
(s+1) · · · e

t
(r)e

b
(r) · · · e

b
(s+1)

in G(s) is uniquely determined; [by the fact that F gives the unique estimated length
to goal paths of G(s) as shown above]

• ŵ(Gi)
↓ ≤ ŵ(eb

(s)) ≤ ŵ(Gi)
↓ + 1 if w(eb

(s)) > ŵ(Gi)
↓; ŵ(eb

(s)) = w(eb
(s)) ≤ ŵ(Gi)

↓

otherwise; [by the fact that et
(s) is on a minimum unsaturated cut of Gi (This exclude

that case ŵ(et
(s)) > ŵ(eb

(s))), ŵ(et
(s)) = ŵ(Gi)

↓ as we have assumed, and C2]

• ŵ(Gi)
↓ ≤ ŵ(ex

(j)) ≤ ŵ(Gi)
↓ + 1 if w(ex

(j)) > ŵ(Gi)
↓; ŵ(ex

(j)) = w(ex
(j)) ≤ ŵ(Gi)

↓

otherwise (x is t or b, 1 ≤ j < s); [by C3 and C4]
• max(ŵ(et

(j)), ŵ(eb
(j))) ≤ ŵ(ex

(k)) if ex
(k) is unsaturated (x is t or b, 1 ≤ k < j ≤ s). [by C3]

The estimate for et
(1) · · · e

t
(s) and eb

(s) · · · e
b
(1) that satisfies the above properties is ob-

tained by the following procedure.

1. Assign ŵ(Gi)
↓ to ex

(j) if w(ex
(s)) ≥ ŵ(Gi)

↓; otherwise, make ex
(j) saturated (x is t or b,

j = 1, · · · , s);

Algorithms 2021, 14, 367 9 of 15

2. At this moment, the current estimate is the minimum estimate that satisfies all the
properties. If the length of π is h, then halt;

3. From outmost unsaturated edges et
(j) and eb

(j), increment the estimated length by one
until the length of π reaches h.

Figure 8 shows an estimate obtained by this procedure, where s = 5. When the
procedure terminates, ŵ(et

(1)) and ŵ(eb
(1)) are unique up to their exchange.

3 3 1 2 2 1 2 1 2 2 2 3

G
i

3 4 1 3 3 1 3 1 4 5 2 4

estimated

length

length

�

G(5)

Figure 8. A canonical estimate obtained by the procedure.

Proposition 1. Let G be an FJ-DAG. Any canonical estimate for G with length h has the same
characteristic vector.

Proof. Let F be a canonical estimate for G, as shown in Figure 4. The proposition is obvious
when level(G) = 0. Suppose that level(G) > 0. We can consider each i separately. By
Lemma 2, ŵ(et

i) and ŵ(eb
i) are unique up to their exchange. Therefore, the length of F in

Gi is also the same in any canonical estimate. By the induction hypothesis, any canonical
estimate for Gi has the same characteristic vector, and therefore any canonical estimate for
G has the same characteristic vector as well.

Lemma 3. Let F be any homogeneous estimate for G with length h. Then, there exists a canonical
estimate F∗ with the same length h and #F∗ � #F.

Proof. If a homogeneous estimate is not canonical, then at least one of C2, C3, and C4 is
not true in some sub FJ-DAG of G. We introduce procedures to make the estimate canonical.

Violation of C2: Let Gi be a sub FJ-DAG in which C2 is false. This means that et
i (eb

i) is
unsaturated and ŵ(eb

i) > ŵ(et
i) + 1 (ŵ(et

i) > ŵ(eb
i) + 1). Then, increment ŵ(et

i) (ŵ(eb
i)) by

one and decrement ŵ(eb
i) (ŵ(et

i)) by one (see Figure 5).
The following holds:

• The estimate is still homogeneous with the same length after the update;
• By repeating this procedure, C2 eventually becomes true in Gi;
• The characteristic vector decreases after the update;
• If C2 is true in another sub FJ-DAG G(j) of G, then C2 is still true in G(j) after

the update.

Violation of C3: We assume C2 is true in any sub FJ-DAG. Let Gi be a sub FJ-DAG
in which C3 is false. Then, et

i (eb
i) is unsaturated and ŵ(et

i) < ŵ(Gi)
↑ (ŵ(eb

i) < ŵ(Gi)
↑).

Choose a maximum cut of Gi. Then, the cut contains an edge with estimated length
ŵ(Gi)

↑ > 0. We claim that every edge on this cut has a positive estimated length. This
is proved as follows. Assume that the cut has an estimated length of 0. Since the cut is
maximum, there exists a sub FJ-DAG of Gi with top and bottom edges in which all edges
have an estimated length of 0 (the minimal case is a single vertex with top and bottom
edges). Let G(k) be a maximal such sub FJ-DAG of Gi. G(k) 6= Gi since Gi has an edge with
a positive estimated length. Then, there exists a sub FJ-DAG of Gi that shares top and
bottom vertices with G(k) and has a positive length. This contradicts the assumption that F
is homogeneous.

Algorithms 2021, 14, 367 10 of 15

Decrement the estimated length of every edge on the cut by one. If et
i (eb

i) is saturated
and eb

i (et
i) is unsaturated, then increment ŵ(eb

i) (ŵ(et
i)) by one. If both et

i and eb
i are

unsaturated, then increment ŵ(et
i) or ŵ(eb

i) by one if ŵ(et
i) = ŵ(eb

i); increment ŵ(et
i) by

one if ŵ(et
i) < ŵ(eb

i); increment ŵ(eb
i) by one if ŵ(et

i) > ŵ(eb
i) (see Figure 6).

The following holds:

• The estimate is still homogeneous with the same length after the update;
• By repeating this procedure, C3 eventually becomes true in Gi;
• If Gi has more than one children, then the characteristic vector decreases after the

update. If Gi has only one child, then the characteristic vector decreases or does not
change after the update;

• If C2 is true in a sub FJ-DAG G(j) of G, then C2 is still true in G(j) after the update. This
is because the decrement is applied to edges on the maximum cut, and the increment
is applied in such a way that C2 still holds;

• ŵ(G(j))
↑ may decrease in some FJ-DAG G(j) of G. This change does not make C3 false

in any sub FJ-DAG.

Violation of C4: We assume C2 and C3 are true in any sub FJ-DAG. Let Gi be a sub FJ-
DAG in which C4 is false. Then, ŵ(et

i) > ŵ(Gi)
↓ + 1 or ŵ(eb

i) > ŵ(Gi)
↓ + 1 holds. Choose

an unsaturated minimum cut of Gi. Increment every edge on the cut by one. Decrement et
i

or eb
i by one if ŵ(et

i) = ŵ(eb
i); decrement et

i by one if ŵ(et
i) > ŵ(eb

i); decrement eb
i by one if

ŵ(et
i) < ŵ(eb

i) (see Figure 7).
The following holds:

• The estimate is still homogeneous with the same length after the update;
• By repeating this procedure, C4 eventually becomes true in Gi;
• The characteristic vector decreases after the update;
• If C2 is true in a sub FJ-DAG G(j) of G, then C2 is still true in G(j) after the update. This

is because the increment is applied to edges on the minimum cut, and the decrement
is applied in such a way that C2 still holds;

• ŵ(G(j))
↑ may decrease in some FJ-DAG G(j) of G. This change does not make C3 false

in any sub FJ-DAG;
• ŵ(G(j))

↓ may increase in some FJ-DAG G(j) of G. This change does not make C4 false
in any sub FJ-DAG;

• When ŵ(Gi)
↑ = ŵ(Gi)

↓, ŵ(Gi)
↑ increases and C3 may become false. We show that

this does not happen. Since C3 is true in Gi before the update, ŵ(et
i) ≥ ŵ(Gi)

↑

(ŵ(eb
i) ≥ ŵ(Gi)

↑) holds if et
i (eb

i) is unsaturated. Suppose that et
i is updated. By the

procedure, ŵ(et
i) ≥ ŵ(eb

i) holds before the update. If eb
i is saturated, then C3 is still

true after the update. Suppose that eb
i is unsaturated. Then, ŵ(et

i) ≤ ŵ(eb
i) + 1 holds

by C2. Since ŵ(et
i) > ŵ(Gi)

↓ + 1 = ŵ(Gi)
↑ + 1 before the update, ŵ(et

i) ≥ ŵ(Gi)
↑

holds after the update. Moreover, ŵ(eb
i) + 1 ≥ ŵ(et

i) > ŵ(Gi)
↑ + 1 holds before the

update, and therefore ŵ(eb
i) ≥ ŵ(Gi)

↑ holds after the update. Hence, C3 is still true in
Gi even when ŵ(Gi)

↑ is incremented by one. This also holds when eb
i is updated.

By applying these procedures, we eventually obtain a canonical estimate F∗ with the
same length such that #F∗ � #F.

By Proposition 1 and Lemma 3, we have the following theorem that characterizes the
optimal estimates.

Theorem 1. The characteristic vector of any canonical estimate with length h is minimum with
regard to � in all homogeneous estimates with length h.

Using Lemma 1, we have the following corollary.

Corollary 1. Let F is a terminal estimate for an FJ-DAG G. If F is canonical, then it is optimal.

Algorithms 2021, 14, 367 11 of 15

5. A Solution to PFJUEL

In this section, we present a solution method to PFJUEL that gives a canonical estimate
for FJ-DAGs. It is a strategy defined as follows Algorithm 1:

Algorithm 1: Shortest Path Increment from Outmost Edges (SPIOE):

1: While all goal paths have at least one unsaturated edge:
2: Let S be the set of such an unsaturated edge e that
3: (i) e is on a goal path with the shortest estimated length, and
4: (ii) e is not in any sub FJ-DAG for which the current
5: estimate is terminal;
6: If |S| > 1, then let S′ be the set of edges in S
7. having the estimated length minimum in S;
8: else S′ := S;
9: If |S′| > 1, then let S′′ be the set of edges in S′

10: having the level highest in S′;
11: else S′′ := S′;
12: Choose one edge from S′′ and issue an oracle call to it;
13: endwhile.

Remark 1. At line 12, there may be more than one edge in S′′. To make the strategy deterministic,
we need some rule to select one edge; e.g., introducing a total order to the set of edges.

Let h∗ be the length of a shortest goal path. Suppose that an edge (vi, vj) is selected in
the while loop, and (vi, vj) is on a goal path π whose estimated length already reaches h∗.
If ŵ(v(i), v(i+1)) < w(v(i), v(i+1)), then searchc(v(i), v(i+1)) returns “no” and the estimated
length of π becomes h∗+ 1. Such an oracle call is unnecessary for satisfying the requirement
R2. We call such a fail call a waste fail call. Waste fail calls are unavoidable if the length of
each edge is initially unknown.

Lemma 4. If waste fail calls do not occur, then the estimate given by SPIOE is canonical.

Proof. If the oracle call is not a success call, then SPIOE increments the length of a goal
path with the shortest estimated length by one. Since waste fail calls do not occur, the
estimated length of every goal path does not exceed the length of the shortest goal path,
and therefore SPIOE gives a homogeneous estimate when it terminates.

We show that the violation of C2–C4 does not occur in any sub FJ-DAG during the
execution of SPIOE. This is proved by mathematical induction in the number of iterations.
Initially, the estimate is canonical.

Assume that the current estimate satisfies C2–C4 in any sub FJ-DAG. Suppose that
the estimated length of the upper edge et

i of a sub FJ-DAG Gi has been updated; i.e.,
incremented by one.

We first show that C2–C4 still hold in Gi after the update.
C2: If eb

i is saturated just before the update, then a violation of C2 does not occur.
Suppose that eb

i is unsaturated just before the update. Note that every goal path that
contains et

i also contains eb
i . Then, by line 7, ŵ(et

i) ≤ ŵ(eb
i) holds just before the update.

Therefore, C2 is still true after the update.
C3: Since ŵ(et

i) ≥ ŵ(Gi)
↑ holds just before the update, then C3 is still true after the

update.
C4: If ŵ(et

i) < ŵ(Gi)
↓ + 1 just before the update, then C4 is still true after the update.

Suppose that ŵ(et
i) = ŵ(Gi)

↓ + 1 just before the update. Any goal path that contains et
i

also contains an edge in a minimum unsaturated cut of Gi. Then, the path contains an
unsaturated edge with an estimated length no greater than ŵ(Gi)

↓. By line 7, SPIOE does
not choose et

i because ŵ(et
i) is not minimum in unsaturated edges on the path.

Algorithms 2021, 14, 367 12 of 15

The case that eb
i has been updated is similar. Next, we show that C2–C4 are still true

in other sub FJ-DAGs after the update. Since C2 is the condition for the top and the bottom
edge of each sub FJ-DAG, C2 is still true in any sub FJ-DAG after the update. In any sub
FJ-DAG that does not contain et

i , C3 and C4 are still true after the update. Thus, we need to
check the conditions for sub FJ-DAGs that contain et

i . Let G(j) be such a sub FJ-DAG. Then,
ŵ(G(j))

↑ and ŵ(G(j))
↓ may be incremented by one. Suppose that ŵ(G(j))

↑ is incremented.
This occurs when ŵ(et

i) = ŵ(G(j))
↑ just before the update. C3 becomes false after the

update only if for the top or bottom edge ex
(j) of G(j), ŵ(ex

(j)) = ŵ(et
i) holds just before the

update. Every goal path that contains et
i also contains ex

(j) because ex
(j) is in a level higher

that that of et
i . Therefore, SPIOE does not choose et

i by line 10, and this case does not occur.
Clearly, C4 is still true when ŵ(G(j))

↓ is incremented. Thus, C3 and C4 are still true in other
sub FJ-DAGs.

By the above arguments, C2–C4 are still true in all sub FJ-DAGs after the update.
Hence, we can conclude that the obtained estimate is canonical.

Remark 2. The condition at line 4–5 is not used in the above proof. Dropping this condition may
cause waste fail calls and unnecessary success calls.

From Corollary 1 and Lemma 4, we obtain the main theorem.

Theorem 2. If waste fail calls do not occur, then SPIOE always gives an optimal estimate.

The detailed complexity analysis of the SPIOE is omitted for the following reasons.
The analysis can be done for (i) the characteristic vector of the optimal terminal estimate
obtained by SPIOE and (ii) the total computational time of SPIOE. The optimal terminal
estimate is characterized by Corollary 1 (i.e., canonical estimate) and is determined by the
given FJ-DAG. It may be possible to give trivial lower/upper bounds of the characteristic
vector, but they are meaningless. The total computational time of SPIOE is obtained by
evaluating operations in each iteration and the total number of iterations. Operations in
each iteration consist of maintaining shortest goal paths and finding an edge with the
minimum estimated length in the highest level. They can be done in polynomial time.
Furthermore, we can give an upper bound of the number of iterations, which is determined
by the optimal terminal estimates. This is apparently polynomial in the size of the graph
and edge length. Such detailed complexity analysis is not very valuable under the above
cost assumption on calling oracles. Moreover, the goal of the paper is to develop an optimal
strategy that can be applied to real problems. In this sense, the goal has been achieved.

Finally, we analyze the number of waste fail calls. Let h∗ be the length of the shortest
goal path. We introduce a special class of strategies. Strategies that always issue oracle
calls to unsaturated goal paths with the shortest estimated length are called rational. In
the terminal estimate obtained by any rational strategy, the estimated length of every goal
path is always less than or equal to h∗ + 1, and therefore the number of waste fail calls is
less than the number of goal paths.

Lemma 5. Let g be the number of goal paths. Then, g− 1 is an upper bound of the number of
waste fail calls by any rational strategy.

For a strategy that is not rational, the estimated length of some goal path may become
greater than h∗ + 1. Suppose that the estimated length of the current shortest goal path
has reached h∗ and the strategy issues an oracle call to a goal path with length h∗ + 1. We
can make an instance of FJ-DAGs for which the oracle call fails and the estimated length
becomes h∗ + 2.

There exists an FJ-DAG for which any rational strategy gives g− 1 waste fail calls; i.e.,
g− 1 is the tight upper bound for rational strategies. Let us consider an FJ-DAG shown in
Figure 9, where every edge has length 1. At each round, any rational strategy picks up one

Algorithms 2021, 14, 367 13 of 15

unsaturated edge on a goal path with the shortest estimated length and issues an oracle
call to it. Then, we will eventually reach the following situation: all edges are saturated but
are in EU . The next oracle call is issued to some edge and it succeeds. Then, we consider
an instance having a length of 2 for this edge. The strategy shows the same behavior for
the new instance before this oracle call, but now the oracle call fails. Since the strategy is
rational, the next oracle call is issued to an edge on a goal path with an estimated length of
2. We can repeat this g− 1 times. After that, we obtain a goal path with a length of 2 such
that all edges on it are in EK. When a terminal estimate is obtained, the number of waste
fail calls issued so far is g− 1. Hence, we have the following result.

Lemma 6. Given any rational strategy, there is an instance of FJ-DAGs for which the the number
of waste fail calls is g− 1, where g is the number of goal paths.

1

11

1

. . .

Figure 9. An FJ-DAG that gives g− 1 waste fail calls.

We demonstrate the execution of strategy SPIOE. Consider an FJ-DAG in Figure 10a.
The obtained terminal estimate by SPIOE is shown in Figure 10b. Bold arrows indicate that
success calls occur at the edges. The shortest goal path is (1, 2, 3, 6, 7).

The execution trace is shown in Table 1, where each column indicates the estimated
length of the current shortest goal path, the number c and the edge (vi, vj) in oracle call
serachc(vi, vj), and the result. In this trace, no waste fail calls occur.

2

2

11

1

1

3

3

1

2

3 4

6

7

5

2/2

1/2

1/11/1

1/1

1/1

2/3

3/3

1

2

3 4

6

7

5

(a) (b)

Figure 10. (a) An FJ-DAG and (b) an optimal estimate.

Algorithms 2021, 14, 367 14 of 15

Table 1. An execution trace of SPIOE.

Step Length c Edge Result

1 0 0 (6, 7) no
2 0 0 (1, 5) no
3 1 0 (1, 2) no
4 1 0 (5, 7) no
5 2 0 (2, 3) no
6 2 0 (2, 4) no
7 2 1 (5, 7) no
8 3 0 (3, 6) no
9 3 0 (4, 6) no

10 3 1 (1, 5) no
11 4 1 (1, 2) no
12 4 2 (5, 7) no
13 5 1 (6, 7) yes
14 5 1 (3, 6) yes
15 5 1 (2, 3) yes
16 5 2 (1, 2) yes

6. Conclusions

We have studied a pathfinding problem of FJ-DAGs with unknown edge length and
have proposed a strategy that gives a shortest path. The strategy is optimal in the sense
that the characteristic vector consisting of the number of fail oracle calls for each length is
minimized with respect to a lexicographical order, provided that there are no waste fail
calls. Theoretical upper bounds on the number of waste fail calls are also given. As a
result, several technical problems that remained in the previous paper have been solved;
i.e., showing optimality for a stronger criterion, which was initially intended to use in the
previous paper, and making the discussion clearer.

Although PFJUEL is a purely theoretical problem, solution methods for it can con-
tribute to reducing the cost of configuration change in reconfigurable cloud computing
systems. The proposed strategy is an optimal one under a reasonable assumption; i.e., no
other strategy is better than this. This is a notable result. Extending the targets to graphs
with cycles remains as future work. In real applications, if the upper bound of the edge
length is known, then the average computational cost may be reduced by non-conservative
strategies. This issue should be also studied in the future.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Hiraishi, K.; Kobayashi, K. A Pathfinding Problem for Search Trees with Unknown Edge Length. J. Discret. Algorithms 2018, 49,

1–7. [CrossRef]
2. Kikuchi, S.; Tsuchiya, S. Configuration Procedure Synthesis for Complex Systems Using Model Finder. In Proceedings of the 15th

IEEE International Conference on Engineering of Complex Computer Systems (ICECCS 2010), Oxford, UK, 22–26 March 2010;
pp. 95–104.

3. Kikuchi, S.; Tsuchiya, S.; Hiraishi, K. Synthesis of Configuration Change Procedure Using Model Finder. IEICE Trans. Inf. Syst.
2013, E-96-D, 1696–1706. [CrossRef]

4. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci.
Cybern. 1968, 4, 100–107. [CrossRef]

5. Korf, R. Depth-first Iterative-Deepening: An Optimal Admissible Tree Search. Artif. Intell. 1985, 27, 97–109. [CrossRef]

http://doi.org/10.1016/j.jda.2018.04.002
http://dx.doi.org/10.1587/transinf.E96.D.1696
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1016/0004-3702(85)90084-0

Algorithms 2021, 14, 367 15 of 15

6. Björnsson, Y.; Enzenberger, M.; Holte, R.C.; Schaeffer, J. Fringe Search: Beating A∗ at Pathfinding on Game Maps. In Proceedings
of the 2005 IEEE Symposium on Computational Intelligence and Games, Colchester, Essex, UK, 4–6 April 2005; pp. 125–132.

7. Russell, S. Efficient Memory-bounded Search Methods. In Proceedings of the 10th European Conference on Artificial Intelligence,
Vienna, Austria, 3–7 August 1992; pp. 1–5.

8. Nikolova, E.; Kelner, J.A.; Brand, M.; Mitzenmacher, M. Stochastic Shortest Paths via Quasi-convex Maximization. Theor. Comput.
Sci. 2006, 4168, 552–563.

9. Papadimitriou, C.H.; Yannakakis, M. Shortest Paths Without a Map. In Lecture Notes in Computer Science; (Proc. 16th ICALP);
Springer: Berlin/Heidelberg, Germany, 1989; Volume 372, pp. 610–620.

10. Karger, D.; Nikolova, E. Exact Algorithms for the Canadian Traveler Problem on Paths and Trees; MIT CSAIL Technical Report; MIT:
Cambridge, MA, USA 2008; MIT-CSAIL-TR-2008-004.

11. Gyögy, A.; Linder, T.; Lugosi, G.; Ottucsák, G. The On-Line Shortest Path Problem Under Partial Monitoring. J. Mach. Learn. Res.
2007, 8, 2369–2403.

12. Khani, A. An Online Shortest Path Algorithm for Reliable Routing in Schedule-based Transit Networks Considering Transfer
Failure Probability. Transp. Res. Part B 2019, 126, 549–564. [CrossRef]

13. Blei, D.; Kaelbling, L. Shortest Paths in a Dynamic Uncertain Domain. In Proceedings of the IJCAI Workshop on Adaptive Spatial
Representations of Dynamic Environments, Stockholm, Sweden, 31 July–2 August 1999.

14. Boyan, J.; Mitzenmacher, M. Improved Results for Route Planning in Stochastic Transportation Networks. In Proceedings of the
Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, Washington, DC, USA, 7–9 July 2001; pp. 895–902.

15. Nikolova, E.; Brand, M.; Karger, D.R. Optimal Route Planning Under Uncertainty. In Proceedings of the International Conference
on Automated Planning and Scheduling, Cumbria, UK, 6–10 June 2006; pp. 131–140.

16. Karp, R.M. On-Line Algorithms Versus Off-Line Algorithms: How Much is it Worth to Know the Future? In Proceedings of
the IFIP 12th World Computer Congress on Algorithms, Software, Architecture-Information Processing ’92, Madrid, Spain,
7–11 September 1992; Volume 1, pp. 416–429.

17. Baccelli, F.; Massey, W.A.; Towsley, A. Acyclic Fork-join Queuing Networks. J. ACM 1989, 36, 615–642. [CrossRef]

http://dx.doi.org/10.1016/j.trb.2019.04.009
http://dx.doi.org/10.1145/65950.65957

	Introduction
	Problem Formulation
	Estimate and Characteristic Vector
	Canonical Estimate
	A Solution to PFJUEL
	Conclusions
	References

