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Abstract: In this paper, we present a decentralized unmanned aerial vehicle (UAV) swarm formation
control approach based on a decision theoretic approach. Specifically, we pose the UAV swarm motion
control problem as a decentralized Markov decision process (Dec-MDP). Here, the goal is to drive the
UAV swarm from an initial geographical region to another geographical region where the swarm must
form a three-dimensional shape (e.g., surface of a sphere). As most decision-theoretic formulations
suffer from the curse of dimensionality, we adapt an existing fast approximate dynamic programming
method called nominal belief-state optimization (NBO) to approximately solve the formation control
problem. We perform numerical studies in MATLAB to validate the performance of the above
control algorithms.

Keywords: swarm intelligence; formation control; decentralized Markov decision process; approxi-
mate dynamic programming

1. Introduction

Unmanned Aerial Vehicle (UAV) swarm formation has applications in many areas
of research, such as infrastructure inspection [1], surveillance [2,3], target tracking [4],
and precision agriculture [5]. There are existing methods in the literature to control UAV
swarms using centralized methods [6–11], where there is a command center (centralized
system) computing optimal motion commands for the UAVs. Centralized methods are rela-
tively easy to develop and implement, but computational complexity grows exponentially
with the size of the swarm. To address this challenge, we present a decentralized UAV
swarm formation control approach using decentralized Markov decision process frame-
work. The main goal this study is to drive the swarm fly and hover in a certain geographical
region while forming a certain geometrical shape. The motivation for studying such prob-
lems comes from data fusion applications with UAV swarms where the fusion performance
depends on the strategic relative separation of the UAVs from each other [12,13]. We previ-
ously studied decentralized decision making frameworks for UAV swarm formation in
two-dimensional (2D) scenarios [14], while in this study, we decentralized control strategies
in three-dimensional (3D) scenarios.

The formation control of vehicle swarms has many applications in areas including
infrastructure inspection, precision agriculture, intelligent transportation, and surveillance.
In many applications in these domains, strategic placement of the vehicles (forming a
certain geometrical shape, e.g., points on the surface of a sphere) can lead to significant
gains in data fusion performance due to the different vantage points of the sensors on-board
the vehicles observing a target of interest [10]. Suppose the vehicles carry optical cameras
generating 2D images of a 3D object, and if the goal is to reconstruct the 3D shape of the
object via the 2D images (i.e., tomography-based methods), the strategic placements of
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the vehicles around the object can have significant impact on the performance of the 3D
shape reconstruction.

Different formation control settings have been studied in the past: ground
vehicles [15–17], unmanned aerial vehicles (UAVs) [18,19], surface and underwater au-
tonomous vehicles (AUVs) [20,21]. Regardless of settings, there are many different method-
ologies developed by the researchers to tackle formation control problem, e.g., behavior-
based, virtual structure, and leader following. The authors of [22,23] developed a behavior-
based approach in which they described the desired behavior for each robot, e.g., collision
avoidance, formation keeping, and target seeking. The control commands for the robot is
determined by weighing the relative importance of each behavior. The virtual structure ap-
proach [24,25] takes a physical object shape as a reference and mimics the formation of that
shape. The robots are required to communicate with each other in order to achieve a for-
mation in this approach which requires significant communication costs (e.g., bandwidth).
The leader following approach [15] requires a robot, assigned as a leader, which moves
according to a predetermined trajectory. The other robots, the followers, are designed to
follow the leader, maintaining a desired distance and orientation with respect to the leader.
The main drawback of this approach is that the followers are dependent on the leader to
achieve the goal (formation). The system may collapse if the leader fails when the leader
possibly runs short on power or when the communications link fails. Considering the
aforementioned limitations of formation control, which specifically stem from centralized
approaches, we develop a decentralized Markov decision process (Dec-MDP)-based forma-
tion control approach for a UAV swarm. Our decentralized control strategies are robust to
failures of individual UAVs in the swarm and also robust to communications link failures.

Centralized control strategies for UAV swarm control are well studied [7–9,11,26].
For instance, the authors of [6,7] developed UAV control strategies for target tracking in a
centralized setting. In centralized systems like these, typically, there exists a notional fusion
center (a computing node) that collects and fuses the sensor measurements (e.g., using
Bayes’ theorem) from all the UAVs and runs a tracking algorithm (e.g., Kalman filter) to
maintain and update the estimate of the state of the system. More importantly, the fusion
center computes the combined optimal control commands for all the UAVs to maximize the
system performance. For instance, the authors of [10] used the notion of fusion center to
control fixed-wing UAVs for multitarget tracking while accounting for collision avoidance
and wind disturbance on UAVs. Although, these centralized control and fusion strategies
are easy to implement, they are computationally expensive especially if the swarm is large.
Specifically, the computational complexity increases exponentially with the number of
UAVs in the swarm.

To tackle these challenges, a few studies in the literature developed decentralized
control strategies [14,26–29]. The authors of [26] used the decentralized partially observable
Markov decision process (Dec-POMDP) to formulate and solve a target tracking problem
with a swarm of decentralized UAVs. As solving decentralized POMDP is very difficult
(as is the case with solving any decision-theoretic methods), the authors introduced an
approximate dynamic programming method called nominal belief-state optimization (NBO)
to solve the control problem. The authors in [30] developed a UAV formation control
approach using decentralized Model Predictive Control (MPC). In their work, the UAVs
were able to avoid collisions with multiple obstacles in a decentralized manner. They used
a figure of eight as a reference trajectory; their results show that the UAVs were able to
avoid collision with obstacles and among themselves. Several recent papers describe the
formation control of different geometric shapes, e.g., multi-agent circular shape with a
leader [9]. The authors of [9] propose centralized formation control, which is not suitable
for swarm control when the number of UAVs in the swarm is large. Although decentralized
control methods exist in the literature, our method is novel in the sense that each UAV
in the swarm optimizes its own control commands and its nearest neighbor’s controls
over time. Then, each UAV implements its own optimized controls, and discards the
neighbor’s controls. We anticipate, from this decentralized control optimization approach,
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a global cooperative behavior among the UAVs emerges mimicking a centralized control
approach. The authors of [31] demonstrated a successful use of a distributed UAV control
framework for wildfire monitoring while avoiding in-flight collisions. The authors of [32]
introduced path tracking and desired formation for networked mobile vehicles using non-
linear control theory to maintain the formation in the network. They have showed that path
tracking error of each vehicle is reduced to zero and formation is achieved asymptotically.
As centralized control strategies suffer from exponential computational complexity and
high memory usage, the decentralized control methods are being actively pursued in the
context of swarm control, especially when the size of the swarm is large. A survey of these
decentralized control strategies can be found in [29].

In this paper, we develop a novel decentralized UAV swarm formation control ap-
proach using Dec-MDP formation. In this problem, the goal is to optimize the UAV control
decisions (e.g., waypoints) in a decentralized manner, such that the swarm forms a certain
geometrical shape while avoiding collisions. We use dynamic programming principles to
solve the decentralized swarm motion control problem. As most dynamic programming
problems suffer from the curse of dimensionality, we adapt a fast heuristic approach called
nominal belief-state optimization (NBO) [10,33] to approximately solve the formation control
problem. We perform simulation studies to validate our control algorithms and compare
their performance with centralized approaches for bench marking the performance.

Key Contributions

• We formulate the UAV swarm formation control problem as a decentralized Markov
decision process (Dec-MDP).

• We extend an approximate dynamic programming method called nominal belief-state
optimization (NBO) to solve the formation control problem.

• We perform numerical studies in MATLAB to validate the swarm formation control
algorithms developed here.

• One of the key contributions of this paper is to induce cooperative behavior among the
UAVs in the swarm via the following novel decentralized control
optimization strategy:

– Each UAV i optimizes the control vector [ai
k, ann

k ] at time k, where ai
k is the control

vector for UAV i, and ann
k is the control vector for its nearest neighbor.

– Next, UAV i discards the optimized controls for its neighbor and implements just
its own controls ai

k.
– Each UAV in the system implements the above approach.

The rest of the paper is organized as follows. Section 2 provides the problem specifica-
tion and objectives. We also formulate the problem using decentralized Markov decision
process in Section 2 followed by the discussion on the NBO approach in Section 3. UAV
motion model and dynamics are provided in Section 4. In Section 5, we discuss simulation
results to evaluate the performance of our method.

2. Problem Formulation

Unmanned aerial vehicles: We consider quadrotor motion dynamics in 3D, as mod-
eled in [34,35]. In this study, our goal is to optimize the waypoints (position coordinates in
3D space) for the quadrotors to guide the UAVs to their destination formation shape while
avoiding collisions.

Communications and Sensing: We assume that UAVs are equipped with sensing
systems and wireless transceivers with which each UAV learns the exact location and the
velocity of the nearest neighboring UAV. Our decentralized control method requires only
the kinematic state (location and velocity) of the nearest neighbor to optimize the control
commands of the local UAV.

Objective: The goal is to control the swarm (optimizing waypoints) in a decentralized
manner, such that the swarm arrives at a certain pre-determined 3D geometrical surface in
the shortest time possible while avoiding collisions.
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We formulate the swarm formation control problem as a decentralized Markov de-
cision process (Dec-MDP). Dec-MDP is a mathematical formulation useful for modeling
control problems for decentralized decision making. This formulation has the following ad-
vantages: (1) allows us to efficiently utilize the computing resources on-board all the UAVs,
(2) requires less computational time compared to centralized approaches, (3) as UAVs are
decentralized, point of failure of the entire mission is minimal, (4) decentralized approach
provides robustness to addition or deletion of UAVs to the swarm, (5) UAVs do not need to
rely on a central command center for evaluating optimal control commands. We define the
key components of Dec-MDP as follows. Here, k represents the discrete-time index.

Dec-MDP Ingredients

Agents/UAVs: We assume there are N UAVs in our system. The set of UAVs is given
by an index vector I = {1, ...., N}. This index vectors may be referred to as a set of agents
or set of independent decision makers. Here, a UAV can be considered an agent or a
decision maker.

States: We model the system dynamics in discrete time, where k represents the time
index. The state of the system sk includes the locations and velocities of all the UAVs in
the system.

Actions: The actions are the controllable aspects of the system. We define action
vector ak = (a1

k , . . . , aN
k ), where ai

k represents the action vector at UAV i, which includes the
position coordinates in 3D for the UAV.

State Transition Law: State transition law describes how the state evolves over time.
Specifically, the transition law is a conditional probability distribution of the next state given
the current state and the current control actions (assuming the Markovian property holds).
The transition law is given by sk+1 ∼ pk(·|sk, ak), where pk is the conditional probability
distribution. Since the state of the system only includes the states of the UAVs, the state
transition law is completely determined by the dynamics of the UAVs (discussed in the next
section). In other words, the transition law is given by si

k+1 = ψ(si
k, ai

k) +W
i
k, i = 1, . . . , N,

where si
k represents the state of the ith UAV and ai

k indicates the local dynamic controls
(position coordinates) of ith UAV, ψ represents the motion model as discussed in Section 4,
andW i

k represents noise, which is modeled as a zero-mean Gaussian random variable.
Cost Function: The cost function C(sk, ak) deals with cost of being in a given state sk

and performing actions ak. Here, sk represents the global state, i.e., the state of all the UAVs
in the system. Since the problem is decentralized, each UAV only has access to its local state
and the state of the nearest neighboring UAV. Let bi

k = (si
k, snn

k ) represent that local system
state at UAV i, where snn

k is the state of the nearest neighboring UAV, and nn ∈ I\{i}.
Let di be the destination location UAV i must reach, and dcoll,thresh is the distance

between the UAVs below which the UAVs are considered to be at the risk of collision. We
now define the local cost function for UAV i, as follows:

c(bi
k, ai

k, ann
k ) = w1

[
dist(si,pos

k , di) + dist(snn,pos
k , dnn)

]
+ w2

[
dist(si

k, snn
k )−1I

(
dist(si

k, snn
k ) < dcoll,thresh

)] (1)

where si,pos
k represents the location of the ith UAV, w1 and w2 are weighting parameters,

dist(a, b) represents the distance between locations a and b, and I(a) is the indicator
function, i.e., I(a) = 1 if the argument a is true and 0 otherwise.

By minimizing the above cost function, each UAV optimizes its own control commands
and that of its neighbor, but only implement its own local control commands and discards
the commands optimized for its neighbor. The first part of the cost function lets the UAV
reach its destination, while the second part minimizes the risk of collisions between UAVs.

The Dec-MDP starts at an initial random state s0 and the state of the system evolves
according to the state-transition law and the control commands applied at each UAV.
The overall objective is to optimize the control commands at each UAV i such that the
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expected cumulative local cost over a horizon H (shown below) is minimized. where bi
0 is

the initial local state at UAV i, and the expectation E[·] is over the stochastic evolution of the
local state over time (due to the random variables present in the UAV dynamic equations).

min
{ai

k ,ann
k },k=0,...,H−1

E

[
H−1

∑
k=0

c(bi
k, ai

k, ann
k )

∣∣∣∣∣bi
0

]
(2)

3. NBO Approach to Solve Dec-MDP

It is well know in the literature that solving Equation (2) exactly is computationally
prohibitive and not practical. For this reason, we extend a heuristic approach called nominal
belief-state optimization (NBO) [10]. As discussed in the previous section, we let a UAV
optimize its own and its nearest neighbor’s controls over the time horizon H. Once the UAV
calculates local controls for itself and its neighbors, the UAV implements its own controls
and discards its neighbors controls at each time step. Since obtaining the expectation in
Equation (2) exactly is not tractable, the NBO approach approximates this expectation by
assuming that all the future random variables (over which the expectation is supposed
to be evaluated) assume the nominal values, i.e., the mean values. Since we model the
above-mentioned random variable as zero-mean Gaussian, the nominal values are simply
zeros. In summary, the NBO approach approximates the cumulative cost function in
Equation (2) by replacing the expectation with the random trajectory of the states over time
by a sequence of states obtained by replacing future random variables with zeros. In the
NBO method, the objective function at agent i is approximated as follows:

J(bi
0) ≈

H−1

∑
k=0

c(b̂i
k, ai

k, ann
k ), (3)

where b̂i
1, b̂i

2, . . . , b̂i
H−1 is a nominal local state sequence.

4. UAV Motion Model

The state of the ith UAV at time k is given by si
k =

(
xi

k, yi
k, zi

k, φi
k, θi

k, ψi
k
)
, where(

xi
k, yi

k, zi
k
)

are position coordinates and
[
φi

k, θi
k, ψi

k
]
= [bank angle, pitch angle, heading angle]

are the Euler angles. The UAV motion dynamics are given by the following equations.

uk+1 = T(−g sin(θk) + rkvk − qkwk) + uk +Wu
k

vk+1 = T(g sin(φk) cos(θk)− rkuk + pkwk) + vk +Wv
k

wk+1 = T
(

1
m
(−Fz) + g cos(φk) cos(θk) + qkuk − pkvk

)
+ wk +Ww

k

pk+1 = T
(

1
Ixx

(L + (Iyy − Izz)qkrk)

)
+ pk +W

p
k

qk+1 = T
(

1
Iyy

(M + (Izz − Ixx)pkrk)

)
+ qk +W

q
k

rk+1 = T
(

1
Izz

(N + (Ixx − Iyy)pkqk)

)
+ rk +W r

k

φk+1 = T(pk + (qk sin φk + rk cos φk) tan θk) + φk +W
φ
k

θk+1 = T(qk cos φk − rk sin φk) + θk +W θ
k

ψk+1 = T((qk sin φk + rk cos φk) sec θk) + ψk +W
ψ
k

xk+1 = T
(

cθk cψk ub + (−cφk sψk + sφk sθk cψk )v
b + (sφk sψk + cφk sθk cψk )w

b
)
+ xk +W x

k
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yk+1 = T
(

cθk sψk ub + (cφk cψk + sφk sθk sψk )v
b + (−sφk cψk + cφk sθk sψk )w

b
)
+ yk +W

y
k

zk+1 = T
(
−1 ∗ (−sθk ub + sφk cθk vb + cφk cθk wb)

)
+ zk +W z

k

where,Wk is a zero-mean Gaussian random variables, [uk, vk, wk] = [longitudinal velocity,
lateral velocity, normal velocity] are the linear velocity, and [pk, qk, rk] = [roll rate, pitch rate, yaw
rate] represent the angular velocity of the vehicle at time k. [Fx, Fy, Fz] are linear translation
forces and [L, M, N] are angular moments.

UAV Motion Control

We implement a linear controller [36] to produce the appropriate torque and thrust in
order to drive the UAV to the desired state in SO(3), governed by the optimized waypoints.
The Figure 1 shows how the waypoints generator works with the controller. We make the
following assumptions for the linear controller.

• We linearize the trigonometric functions assuming roll angle φ and pitch angle θ small
enough, i.e., cos φ = 1, sin φ = φ, cos θ = 1, sin θ = θ

• The angular velocity of the UAV is also considered small enough

 

Waypoint 

optimizer 

NBO Dec-MDP 

Controller Dynamics 

Sensor Data 

(states) 

Figure 1. UAV formation shape control architecture.

The linear controller is described extensively in [37,38]. The control problem is to
calculate the inputs u1 = ∑4

i=1 Fi and u2 required to track a set of waypoints rw
k . The input

u2 is given by the following equation.

u2 =

 0 L 0 −L
−L 0 L 0
γ γ γ γ




F1
F2
F3
F4


where, [F1, F2, F3, F4] are propeller forces and γ is the drag coefficient.

Position control. The position control method use the bank and the pitch angles as
inputs to drive the position of the UAV. The position controller determines the desired
bank angle φdes and desired pitch angle θdes. The desired bank and pitch angles are used to
calculate the desired speed of the UAV [37].

5. Simulation Results

We assume that each UAV has its own on-board computer to compute the local optimal
control decisions. We implement the above-discussed NBO approach to solve the swarm
control problem in MATLAB. We test our methods in two scenarios—a spherical shape
with and without an obstacle. The UAVs are aware of the shape dimensions and the exact
location of shape. Each UAV randomly picks a location on the formation shape, and uses
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the NBO approach to arrive at this location. We use MATLAB’s fmincon to solve the NBO
optimization problem. Here, we set the horizon length to H = 3 time steps.

We define the following metrics to measure the performance of our formation control
approach: (1) Tc-average computation time to evaluate the optimal control commands and (2) Tf :
time taken for the swarm to arrive on the formation shape. As a benchmark method, we use
a centralized approach to solve the above-discussed swarm formation control problem.
In other words, we use a single NBO algorithm, which optimizes the motion control
commands for all the UAVs together based on the global state of the system. We implement
this centralized algorithm in MATLAB.

We implement the Dec-MDP approach with a spherical formation shape with and
without an obstacle. The resulting swarm motion is shown in Figure 2 for the spheri-
cal formation shape in the absence of any obstacle using the cost function described in
Equation (1). The scenario with an obstacle considers the following cost function.

c(bi
k, ai

k, ann
k ) = w1

[
dist(si,pos

k , di) + dist(snn,pos
k , dnn)

]
+ w2

[
dist(si

k, snn
k )−1I(dist

(
si

k, snn
k ) < dcoll,thresh

)]
+ w3

[
dist(si

k, sobstacle
k )−1I(dist

(
si

k, sobstacle
k ) < dcoll,obstacle

)]
where sobstacle

k is the location of an obstacle, dcoll,obstacle is a collision threshold with the
obstacle, and w3 is a weighting parameter. The indicator function I(b) = 1, if the argument
b is true and 0 otherwise. The resulting motion of the scenario with the obstacle is shown
in Figure 3. For this scenario, we also plot the distance between every pair of UAVs in the
swarm, as shown in Figure 4. Here, we assume that there is a collision risk between a pair
of UAVs when the distance between them is less than 5 m. Clearly, the Figures 3 and 4
demonstrate that our decentralized algorithm drives the swarm to the destination while
successfully avoiding collisions between the UAVs.

Figure 2. UAV swarm converging to the spherical formation shapes in 3D.
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Figure 3. UAV swarm converging to the spherical formation shapes avoiding obstacle.

2 4 6 8 10 12 14
0

2

4

6

8

10

12

Distance threshold for collision (5 m)

Figure 4. Distance between each pair of UAVs.

We calculate the Tc and Tf values for both the centralized and the decentralized
algorithms for 10 UAVs. Figure 5 and Table 1 clearly demonstrate that our decentralized
method significantly outperforms the centralized method with respect to both the metrics
Tc and Tf .

Table 1. Average time taken by the swarm to arrive at the formation shape.

Dec-MDP Centralized

Tf (sec) 16.7 25.98
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Figure 5. Computation time (Tc): centralized vs decentralized method

Dec-MDP Centralized
Tf (sec) 16.7 25.98

Table 1. Average time taken by the swarm to arrive at the formation shape.

Clearly, the Figures 3, and 4 demonstrate that our decentralized algorithm drives the swarm to the
destination while successfully avoiding collisions between the UAVs.

We calculate the Tc and Tf values for both the centralized and the decentralized algorithms
for 10 UAVs. Figure 5 and Table I clearly demonstrate that our decentralized method significantly
outperforms the centralized method with respect to both the metrics Tc and Tf .

We now compute average computation time and average pairwise distance with respect to
neighborhood threshold where each UAV communicates with other UAVs within the radius of
neighborhood threshold. If neighborhood threshold is infinity, a UAV can communicate with all
other UAVs in the swarm. UAVs optimize its decision together with neighbors which depends
on neighborhood threshold and implement its own control. We expect that with the increase of
neighborhood threshold, average computation time rises and after certain neighborhood threshold,
average computation time saturates. Figure 6 shows average computation time rise until neighborhood
threshold reach 240 m and then waves between 20 to 25 sec.

We also expect that with the increase of neighborhood threshold, average pairwise distance drops.
The reason we are interested in analyzing average pairwise distance is, we expect the swarm to be as
closely as possible while avoiding collision between UAVs. Small average pairwise distance allows
the swarm to be more cooperative while saving battery life as communication distance depends on
distance between UAVs. Figures 7 and 6 suggest that neighborhood threshold more than 130 m allows
UAVs to stay closely in the swarm with reasonable computation cost.

Figure 5. Computation time (Tc): centralized vs. decentralized method.

We now compute average computation time and average pairwise distance with
respect to neighborhood threshold where each UAV communicates with other UAVs
within the radius of neighborhood threshold. If neighborhood threshold is infinity, a UAV
can communicate with all other UAVs in the swarm. UAVs optimize their decisions
together with neighbors, which depend on neighborhood threshold and implement its own
control. We expect that, with the increase in neighborhood threshold, average computation
time rises and, after certain neighborhood threshold, average computation time saturates.
Figure 6 shows average computation time rise until neighborhood threshold reach 240 m
and then waves between 20 to 25 s.
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Figure 6. Average computation time with respect to neighborhood threshold.
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We also expect that with the increase of neighborhood threshold, average pairwise
distance drops. The reason we are interested in analyzing average pairwise distance is,
we expect the swarm to be as close as possible while avoiding collision between UAVs.
Small average pairwise distance allows the swarm to be more cooperative while saving
battery life as communication distance depends on distance between UAVs. Figures 6 and 7
suggest that a neighborhood threshold of more than 130 m allows UAVs to stay close in the
swarm with reasonable computation cost.

0 50 100 150 200 250 300
Neighborhood threshold (m)
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40
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60
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 p
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rw
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e 
di

st
an

ce
 (

m
)

Figure 7. Average pairwise distance with respect to neighborhood threshold.

6. Conclusions

In this paper, we developed decentralized control method for UAVs in the context
of formation control. Specifically, we extended a decision-theoretic formulation called
decentralized Markov decision process (Dec-MDP) to develop near real-time decentralized
control methods to drive a UAV swarm from an initial formation to a desired formation
in the shortest time possible. As decision-theoretic approaches suffer from the curse of
dimensionality, for computational tractability, we extended an approximate dynamic pro-
gramming method called nominal belief-state optimization (NBO) to approximately solve
the Dec-MDP. For benchmarking, we also implemented a centralized approach (Markov
decision process-based) and compared the performance of our decentralized control meth-
ods against the centralized methods. In the context of the formation control problem, our
results show that the average computation time for obtaining the optimal controls and the
time taken for the swarm to arrive at the formation shape are significantly less with our
Dec-MDP approach compared with that of the centralized methods. We also studied the
impact of neighborhood threshold on multiple performance metrics in a UAV swarm.

The formation control approach discussed in this thesis can be extended to 3D forma-
tion, and these formations can be used to sense the environments for 3D reconstruction of
a scene. The vantage points of the UAVs in the swarm in 3D formation can be exploited
for the efficient reconstruction of the scene in 3D, while extending tomography-type ap-
proaches. The decentralized control strategies presented in this thesis can be extended to
control the motion of the UAVs in the swarm to maximize the efficiency of the above 3D
scene reconstruction process. These methods have several applications, including the use
of drones to map unexplored and unsafe regions (e.g., caves, underground mines, toxic
environments).
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