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Abstract: Transactional memory has been receiving much attention from both academia and industry.
In transactional memory, program code is split into transactions, blocks of code that appear to execute
atomically. Transactions are executed speculatively and the speculative execution is supported
through data versioning mechanism. Lazy versioning makes aborts fast but penalizes commits,
whereas eager versioning makes commits fast but penalizes aborts. However, whether to use eager
or lazy versioning to execute those transactions is still a hotly debated topic. Lazy versioning
seems appropriate for write-dominated workloads and transactions in high contention scenarios
whereas eager versioning seems appropriate for read-dominated workloads and transactions in
low contention scenarios. This necessitates a priori knowledge on the workload and contention
scenario to select an appropriate versioning method to achieve better performance. In this article,
we present an adaptive versioning approach, called ADAPTIVE, that dynamically switches between
eager and lazy versioning at runtime, without the need of a priori knowledge on the workload
and contention scenario but based on appropriate system parameters, so that the performance of
a transactional memory system is always better than that is obtained using either eager or lazy
versioning individually. We provide ADAPTIVE for both persistent and non-persistent transactional
memory systems using performance parameters appropriate for those systems. We implemented our
adaptive versioning approach in the latest software transactional memory distribution TinySTM and
extensively evaluated it through 5 micro-benchmarks and 8 complex benchmarks from STAMP and
STAMPEDE suites. The results show significant benefits of our approach. Specifically, in persistent
TM systems, our approach achieved performance improvements as much as 1.5× for execution
time and as much as 240× for number of aborts, whereas our approach achieved performance
improvements as much as 6.3× for execution time and as much as 170× for number of aborts in
non-persistent transactional memory systems.

Keywords: transactional memory; persistent memory; versioning; conflicts; concurrency; switching

1. Introduction

Concurrent processes (threads) need to synchronize to avoid introducing inconsisten-
cies while accessing shared data objects. Traditional synchronization mechanisms such as
locks and barriers have well-known limitations and pitfalls, including deadlock, priority
inversion, reliance on programmer conventions, and vulnerability to failure or delay. Trans-
actional memory (TM) [1,2] has emerged as an attractive alternative. Several commercial
processors provide direct hardware support for TM, including Intel’s Haswell [3] and
IBM’s Blue Gene/Q [4], zEnterprise EC12 [5], and Power8 [6]. There are proposals for
adapting TM to clusters of GPUs [7–9].

Using TM, program code is split into transactions, blocks of code that appear to execute
atomically. Transactions are executed speculatively: synchronization conflicts or failures
may cause an executing transaction to abort: its effects are rolled back and the transaction is
restarted. In the absence of conflicts or failures, a transaction typically commits, causing
its effects to become visible. Supporting this speculative execution requires data version
management mechanism.
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Many TM systems have been designed using the transactional concept in persistent
memories as well as non-persistent (volatile) memories. Those designed TM systems can
be distinguished on how they implement data version management. This distinction is
true for TM systems implemented in hardware, called hardware TMs (HTMs) [10–13], as
well as implemented in software, called software TMs (STMs) [14–16].

In this paper, we present a technique that improves on the existing data version man-
agement mechanisms used in both persistent and non-persistent TM systems. Essentially,
a versioning mechanism handles data versions, i.e., the simultaneous storage of both new
data (to be visible if transaction commits) and old data (retained if transaction aborts). At
most one of these values can be stored “in place” (the original memory location), while the
other value must be stored “on the side” (e.g., in cache or persistent/non-persistent main
memory). On a store, a TM system can either use eager versioning and put the new value in
place or use lazy versioning to (temporarily) leave the old value in place. Figures 1 and 2
depict how a transaction Tx is executed using eager and lazy versioning in persistent
and non-persistent (volatile) TM systems, respectively. Due to the working principle, in
both the systems, lazy versioning makes aborts fast but penalizes commits, whereas eager
versioning makes commits fast but penalizes aborts.

Figure 1. An illustration of how a transaction Tx is executed in persistent memory using (a) eager
versioning and (b) lazy versioning. Figure (a) depicts two kinds of operations in eager versioning.
The first operation is to copy the data from original memory locations to a log area (called undo log) in
the persistent main memory and the second is to copy the data back from the log area to the original
memory locations, in case Tx aborts. If Tx commits, the data in the log area is simply discarded.
Figure (b) depicts three kinds of operations in lazy versioning. The first operation is to copy the data
from original memory locations to a log area (called redo log). Transaction Tx updates on this redo
log. The second operation is to persist the redo log in persistent memory and the third operation is to
copy the updated data back from redo log to the original memory locations. The second and third
operations are required only in case Tx commits. If Tx aborts, the data in the redo log area in cache is
simply discarded.

Although both eager and lazy versionings are studied heavily in the literature (details
in Section 2) for both persistent [17–20] and non-persistent TM systems [10–16,21], whether
to use eager or lazy versioning is still in hot debate for both the systems. In fact, there
is no study in persistent/non-persistent TM systems that elaborates the performance
gap between eager and lazy versioning with comprehensive practical evaluations, with
one notable exception [22] which elaborates on the performance gap partially only for
persistent TM systems. The conclusion from [22] is that lazy versioning is appropriate for
write-dominated workloads and high contention scenarios whereas eager versioning is
appropriate for read-dominated workloads and low contention scenarios. However, to
improve performance using lazy or eager versioning, a priori knowledge on the workload
as well as the contention scenario is needed.
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Figure 2. An illustration of how a transaction Tx is executed in non-persistent memory using (a) eager
versioning and (b) lazy versioning. Figure (a) depicts two kinds of operations in eager versioning.
The first operation is to copy the data from original memory locations to a log area (called undo log)
in cache. Transaction Tx then performs in-place updates to the original memory locations. Now,
the second operation is to copy the data back from the log area to the original memory locations, in
case Tx aborts. If Tx commits, the data in the log area is simply discarded. Figure (b) depicts two
kinds of operations in lazy versioning. The first operation is to copy the data from original memory
locations to a log area (called redo log) in cache. Transaction Tx updates on this redo log. Then, the
second operation is to copy updated data from the log area to the original memory locations, in case
Tx commits. If Tx aborts, the data in the log area is simply discarded.

We conducted a study to validate whether the conclusion from [22] also applies to
non-persistent TM systems. Particularly, we executed genome and kmeans benchmarks from
STAMP benchmark suite [23] using lazy and eager versioning and measured performance
through execution time and number of aborts under varying number of threads (Refer to
Section 6 for details on the experimental setup and implementation). The results obtained
are shown in Figure 3.

Figure 3. An illustration of performance discrepancies in execution time (left) and number of
aborts (right) in genome and kmeans benchmarks using eager and lazy versioning in non-persistent
TM systems.

The results show that lazy versioning performs well for genome whereas the opposite
is true for kmeans, which is in line of the conclusion drawn in [22]. Again, this discrepancy
in performance is mainly because of the fact that the versioning used is not appropriate for
the workload and caused more number of aborts, subsequently increasing the execution
time. This raises the question of how to choose the versioning method that is appropriate
for an application, without a priori knowledge on the workload and contention scenario.
However, this is a challenging issue, particularly due to the fact that (i) to select an appropri-
ate versioning, a priori knowledge on the workload (write-dominated or read-dominated)
and contention scenario (low or high) is needed, and (ii) such knowledge is difficult to
obtain prior to runtime.
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1.1. Contributions

In this article, we demonstrate that we can obtain the best of both worlds without any
a priori knowledge on the workload and contention scenario. Particularly, we present an
adaptive versioning for TM systems, which we call ADAPTIVE, that dynamically switches the
execution using either lazy or eager versioning at runtime, always achieving performance
on any workload and contention scenario better than that is obtained using either lazy
or eager versioning individually. We provide two different models of ADAPTIVE, one
for persistent TM systems and another for non-persistent TM systems. We reported
a preliminary version of ADAPTIVE for persistent TM systems in [24]. We reported a
preliminary version of ADAPTIVE for non-persistent TM systems in [25]. This article
combines and extends those preliminary versions with a full set of experimental results.
For the experimental evaluation in both the systems, we incorporated ADAPTIVE in the
latest TinySTM implementation [26,27] and ran experiments against a diverse set of TM
benchmarks [26–28]. Specifically, we used 5 micro-benchmarks (bank, red black tree, hash
set, linked list, and skip list) and 8 complex benchmarks (yada, vacation, ssca2, labyrinth,
kmeans, intruder, genome, and bayes) from STAMP and STAMPEDE benchmarks [23,29]).
We measured the performance of ADAPTIVE w.r.t. four crucial performance metrics.

• execution time: the total time to complete executing a set of transactions. This is
the time interval from the beginning of the first transaction executed until the last
transaction finishes and commits. In a dynamic setting, the execution time translates
to throughput, the number of committed transactions per time step.

• number of aborts: the total number of transaction aborts until the current time. If
compared with the total number of transaction commits until the current time, it
provides abort-to-commit ratio (ACR), a useful metric. The number of aborts directly
affect execution time since it is likely that the execution time increases with the
increasing number of aborts requiring more number of transaction restarts.

• total number of data movements (for persistent TM systems only): the total number
of movements of data to and from the original memory addresses. The execution
time of transactions in persistent memory is directly affected by the number of reads
and writes to the PM. The total number of reads and writes to the persistent memory
addresses can also be defined as the total number of movements of data to and
from the memory addresses. Thus, minimizing the total number of data movements
decreases the total execution time of the transactions in PM.

• total number of stores to persistent memory (for persistent TM systems only): the
total number of writes to the persistent memory addresses. The motivation behind this
performance metric is as follows. It has been heavily advocated that persistent memo-
ries significantly outperform traditional dynamic random access memories (DRAMs)
due to low standby power, higher memory density, and much lower cost/bit [30,31].
However, persistent memories suffer from the write endurance problem, i.e., every
persistent memory (PM) unit can sustain a very limited number of writes (i.e., stores)
before it wears-out. Minimizing the total number of stores to the PM helps in mitigat-
ing the write-endurance problem in PM.

In persistent TM systems, the results suggest that, when using lazy versioning with
encounter time locking (the two variants encounter-time-locking and commit-time-locking of
the lazy versioning are described in Section 6.1), ADAPTIVE achieves up to 1.21× better
performance (i.e., 17% less execution time) than eager versioning and up to 1.27× better
performance (i.e., 21% less execution time) than lazy versioning. When using lazy version-
ing with commit time locking, ADAPTIVE achieves up to 1.39× better performance (i.e.,
28% less execution time) than eager versioning and up to 1.5× better performance (i.e.,
33% less execution time) than lazy versioning. Moreover, ADAPTIVE has up to 240× and
17× less number of aborts compared to that in eager and lazy versioning, respectively.

In non-persistent TM systems, the results show that, when using lazy versioning
with encounter time locking, ADAPTIVE achieves up to 6.3× better performance than lazy
versioning and up to 5.5× better performance than eager versioning. When using lazy
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versioning with commit time locking, ADAPTIVE achieves up to 3.7× better performance
than lazy versioning and up to 5× better performance than eager versioning. The minimum
performance gain for ADAPTIVE is 1.12.

These results suggest that switching between eager and lazy versioning dynamically
at runtime provides a way to exploit the positive aspects of both versioning methods
for both persistent memory and non-persistent TM systems. In summary, we have the
following three contributions.

• (Section 4) We introduce a novel versioning approach, ADAPTIVE, that switches
between eager and lazy versioning dynamically at runtime, and provide two models
of ADAPTIVE that are suitable for persistent memory and non-persistent TM systems,
respectively.

• (Section 5) We discuss the limitations of basic design of ADAPTIVE for non-persistent
TM system and present two optimizations.

• (Section 6) We evaluate experimentally the performance of ADAPTIVE in both per-
sistent and non-persistent TM systems using five micro-benchmarks and 8 complex
benchmarks from STAMP and STAMPEDE suites, report the results, and provide
observations.

1.2. Organization

We discuss related work in Section 2. We discuss the memory model and some
preliminaries in Section 3. We present our basic adaptive versioning approach in Section 4
and provide two models suitable for persistent and non-persistent TM systems, respectively.
We discuss the limitation of the design of basic ADAPTIVE in a non-persistent TM system
in Section 5 and present some optimizations. We evaluate the performance of ADAPTIVE in
both the systems in Section 6. Finally, we provide concluding remarks in Section 7 with a
short discussion on possible future work.

2. Related Work

We discuss here the persistent and non-persistent TM systems proposed in the litera-
ture, the use of eager and lazy versioning in those systems, and the conflict detection and
resolution mechanisms. Table 1 summarizes the advantages and disadvantages of eager
and lazy versioning in persistent and non-persistent TM systems.

Table 1. A comparison of eager and lazy versioning in persistent and non-persistent TM systems (the row in bold text is only
for persistent TM systems).

Constraint Eager Versioning Lazy Versioning

Memory Update performs in-place memory update updates are written to memory at the
commit time

allows to read most recent data reads are intercepted and redirected
Reading Overhead directly from in-place to the redo log area to read recent

memory uncommitted data

Persist Ordering requires to ensure persist ordering for requires only one persist ordering
(only for persistent TMs) each memory write in a transaction [19] for each transaction [19,21]

transaction aborts are costly as the transaction commits are costly as the
Data Movement memory updates need to be rolled back updates need to be written back to

to consistent state using undo log original memory using redo log

2.1. Non-Persistent (Volatile) TM Systems

There are several previous studies in non-persistent TM systems, e.g., [10–12,14–16].
Table 2 shows the versioning mechanisms used in some widely-popular non-persistent
TM systems. The previous studies used either eager or lazy versioning individually.
There is no work that elaborates on the impact of using eager and lazy versioning on
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the performance of non-persistent TM systems. In fact, the majority of well-known non-
persistent TM systems make contradictory conclusions on whether to use eager versioning
or lazy versioning. For example, consider two widely popular HTM implementations
LOGTM [12] and UTM [10]. They advocate that TM should ideally use eager versioning
and eager conflict detection (discussed in Section 3.5) since in eager versioning transaction
commits are faster than transaction aborts. Moreover, commits are much more common
than aborts in practical applications. In addition, eager conflict detection finds conflicts
early and reduces the wasted work by conflicting transactions. On the other hand, consider
another widely popular HTM implementation TCC [11]. They use lazy versioning and lazy
conflict detection. Other HTMs such as VTM [13] and LTM [10] advocate lazy versioning
with eager conflict detection. This is also the case in STMs as some use eager, some use
lazy, and some use the combination of eager and lazy approaches of versioning and conflict
detection methods, e.g., [14–16].

The other line of work is Hybrid TM systems (HyTMs) [32–37] where transactions are
dynamically executed either in HTM or STM implementation. However, it is challenging
and complicated to manage the concurrent execution of both hardware and software
transactions in HyTM [33]. Therefore, to address this, in 2007, Lev et al. [38] proposed
Phased Transactional Memory (PhTM) system to allow the execution of transactions in
phases such that each phase is run in the same mode (HTM or STM) and the switching
between them is supported seamlessly. PhTM benefits as it does not require coordination
between transactions running in different modes. Recently, Carvalho et al. presented
an improved version (PhTM*) [39] and its effectiveness in [40] by avoiding unnecessary
switches to software mode. Both approaches, HyTM and PhTM, focus on getting better
performance by dynamically switching between the HTM and STM implementations. This
is different from the approach we present in this article since we deal with dynamically
switching between eager and lazy versioning method at runtime to improve performance
of a TM implementation, whereas the HyTM and PhTM approaches deal with switching
between HTM and STM implementations.

Table 2. Versioning and conflict detection mechanisms used in some non-persistent TM systems.

Versioning

Lazy Eager

Conflict
Lazy TCC [11], Norec [15], RSTM [14], SwissTM [16] None

Eager UTM [10], VTM [13], RSTM [14], SwissTM [16] UTM [10], LogTM [12], RSTM [14]

2.2. Persistent TM Systems

The performance gap of using eager and lazy versioning is relatively well-studied in
persistent TM systems. The most closely related work is due to Wan et al. [22], where they
empirically evaluated eager and lazy versioning on the open source non-volatile memory
library (NVML), PMDK, Ref. [41] for some constrained workloads, and suggested that
“one versioning method does not fit all workloads”. Particularly, they reported that (i) lazy
versioning significantly outperforms eager versioning for workloads in which a transaction
updates large number of different objects, while it underperforms eager versioning for
read-dominated workloads, and (ii) eager versioning is more sensitive to read-to-write ratios
whereas lazy versioning is less sensitive to those ratios [22]. The other works mostly pro-
posed methods through either eager or lazy versioning, and there is no work that elaborates
the performance gap between eager and lazy versioning. For example, Coburn et al. [18]
suggested an STM implementation for persistent memory, called NV-HEAPS, using eager
versioning. Volos et al. [19] suggested a TinySTM [26,27] variation, called MNEMOSYNE,
for persistent memory using lazy versioning. NV-HEAPS [18] and MNEMOSYNE [19] drew
absolutely opposite conclusions on whether eager or lazy versioning is better for persistent
memories. The former prefers to use eager versioning, and the latter opts to use lazy



Algorithms 2021, 14, 171 7 of 39

versioning. Furthermore, many other persistent TM systems such as [20,42] suggested
using eager versioning.

Avni et al. [43] studied HTM-based transactions using lazy versioning. DUDETM [21]
incorporates lazy versioning in their design where a transaction first runs in volatile
memory using any HTM or STM implementation and produces a redo log for that trans-
action. The redo log is then flushed to persistent memory satisfying atomicity of data
and then modify the original data in persistent memory according to the persistent redo
log. Notice that this approach is different from ours and needs a shared shadow memory,
besides persistent memory where that data is. Genc et al. [44] proposed a low overhead
HTM compatible persistent transactional system, called Crafty, using eager versioning.
Joshi et al. [45] proposed a persistent HTM system providing a hardware support for lazy
versioning to reduce the performance overhead compared to software based implementa-
tions. Recently, Castro et al. [46] studied the scalability issues with the experimental results
on Intel Optane DC [47] persistent memory and proposed scalable persistent hardware
transactions (SPHT). Baldassin et al. [48] have introduced a phase based persistent TM
system, NV-PhTM, where the transaction execution mode is switched between two phases,
HTM and STM. The best execution mode among the two is selected according to the
application’s characteristics. This is different than our approach where we switch between
the versioning methods within a TM system instead of switching between hardware or
software transaction execution mode.

The other related works in persistent memory study latency, scalability and order-
ing constraints problems. Krishnan et al. [49] proposed a persistent TM system, called
TimeStone, that has minimal writes and low memory footprints. Gu et al. [50] presented a
read-friendly persistent TM system, called Pisces, that maintains up to two versions of the
data using dual-version concurrency control (DVCC) protocol and provides non-blocking
reads. Kolli et al. [51] studied the ordering constraint problem for transactions in persistent
memories and proposed deferred commit transactions (DCT) to achieve minimal ordering
constraints. Lu et al. [52] proposed a system for reducing ordering constraints among
persistent writes by distributing the commit status of a transaction among the data blocks.
In [53], Memaripour et al. studied the latency overhead in byte addressable non-volatile
memories and propose Kamino-Tx without requiring copying of data in the critical path.

Other several recent papers, e.g., [17,20,54–58], provided techniques to improve the
time to log the data (e.g., through coalescing, through persistent cache, through hardware
support, through eager+lazy versioning methods, etc.) for both undo and redo logs.
However, our focus is on taking a different approach of dynamically switching between
eager and lazy versioning at runtime to exploit advantages of both the versioning methods
and our extensive experimental evaluation detailed in Section 6 confirms this exploitation.
Our approach obviates the need of a priori knowledge on the workload as well as contention
scenario to decide whether to use eager versioning or lazy versioning.

3. Model and Preliminaries

We assume that the execution starts at time t0 = 0. We measure in execution time the
time for all the transactions within a benchmark to finish execution and commit, except for
micro-benchmarks where we consider time to execute and commit 10,000 transactions. We
also assume that only a single-version of data is stored in each eager, lazy, and adaptive
versioning, which is essentially different from techniques, such as those given in [59], of
storing multiple versions.

3.1. Persistent Memory Model

We consider a computer system with unlimited persistent memory, many processing
cores, and no hard disk drive (HDD). All persistent memory is cache-able and caches
are volatile and coherent. The system may include limited size DRAM (but we do not
assume its necessity). We assume that all the writes of a committed transaction can be
accommodated in the volatile cache, i.e., once a transaction commits but before the commit
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is reflected in original memory locations in persistent memory, all its newly modified data
is in volatile cache. The system restarts and resumes its computation after experiencing
failures/crashes. Therefore, the task after restart is to bring the data to a consistent state,
removing effects of uncommitted transactions and applying the missing effects of the com-
mitted ones. In the experimental evaluation, we simulate crashes by periodically wiping
out the volatile logs, and use the data stored in undo or redo logs in persistent memory to
recover consistency. We employ a function that checks and maintains consistency while
under execution.

3.2. Non-Persistent Memory Model

We consider a computer system with volatile shared main memory, many processing
cores, and a HDD. All shared main memory is cache-able and caches are volatile and
coherent. We assume that all the writes of a committed transaction can be accommodated
in the cache, i.e., once a transaction commits but before the commit is reflected in original
memory locations in main memory, all its newly modified data is in volatile cache. We run
workloads using the TinySTM execution model [26,27].

3.3. Eager Versioning

Eager versioning is supported through so-called undo logs. Undo logs are stored in
cachable main memory. In this method, a transaction works by first copying the data
in original memory locations to a undo log area and then performs updates in-place in
the original data locations (in main memory). In the event the transaction aborts, any
modifications to the original memory locations are rolled back using the old data stored in
the undo log. Figures 1a and 2a illustrate eager versioning in persistent and non-persistent
TM systems, respectively.

3.4. Lazy Versioning

Lazy versioning is supported through so-called redo logs. The operation of lazy ver-
sioning is slightly different in persistent and non-persistent TM systems. In non-persistent
memories, redo logs are stored only in cache. But, in persistent memories, the redo logs are
also persisted in the persistent memory before updating on original memory locations.

Using lazy versioning in non-persistent memories, a transaction copies all the data
that it is going to write from original memory location to a redo log area, appends all
its data updates to that log area, and then writes the updated data back to the original
memory locations when the transaction commits. In persistent memories, the transaction
additionally copies the updated data from redo log area in cache to the redo log area in
persistent memory before writing back to the original memory locations. If the transaction
fails, the updates in log area in cache are simply discarded. Therefore, the writing of
data in redo log back to the original memory locations happens only when transaction
commits. Figures 1b and 2b illustrate lazy versioning in persistent and non-persistent
memories, respectively.

3.5. Conflict Detection and Resolution

Conflict detection and resolution comes into play when concurrently executing transac-
tions on both persistent/non-persistent TM systems read/write the same memory locations
and certain combinations of read/write patterns cannot allow multiple transactions to
proceed to commit. Conflict detection mechanism signals such an overlap between the
write set (data written) of one transaction and the write set or read set (data read) of other
concurrent transactions. Conflict detection is called eager if it detects offending loads or
stores immediately and lazy if it defers detection until later when transactions commit.
Conflict detection depends on whether lazy versioning is used or eager versioning. Table 2
illustrates some existing non-persistent TM systems that use lazy versus eager conflict
detection with the versioning mechanism (lazy or eager) they use. For example, TCC [11]
uses lazy conflict detection with lazy versioning and LOGTM [12] uses eager conflict de-
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tection with eager versioning. Contention management technique is then used to decide on
which conflicting transaction(s) to continue and which transaction(s) to wait (or abort and
restart) the execution. This is typically done through a contention management strategy.
There is a huge amount of work in this area giving many different strategies with and
without provable properties on the guarantees they provide, e.g., [26,60–68].

3.6. Supporting Durable Transactions in TinySTM

We implemented durable transactions using TinySTM [26], a widely used lightweight
STM implementation, as follows. For eager versioning, we maintain a undo log in persistent
memory. When a transaction starts, each variable accessed by the transaction is added to
the log before any modification is performed to it. Any update to the variable during the
execution of the transaction is written directly to the variable’s original address. When the
transaction commits, respective log records for the transactions are freed and the memory
is made available to use by other transactions. If the transaction aborts, all the changes
made by the transaction to the variables are written back with the previous values stored
in the respective undo logs. Then the log records are flushed.

For lazy versioning, when a transaction starts, all the variables accessed by the trans-
action are loaded to volatile cache and modified. The new (or updated) values written by
the transactions are then added to a redo log in persistent memory and also buffered in
the volatile cache before the transaction commits. When the transaction commits, the new
values are written back to the original memory addresses and the log records are flushed.
We attach a timestamp based version number to each transactional log to make sure that
the last committed value is used in the restart process.

4. Basic Adaptive Versioning

We now describe our approach, ADAPTIVE, that runs transactions using either eager or
lazy versioning, switching between them dynamically at runtime. Figure 4 compares ADAPTIVE

with eager and lazy versioning. The pseudocode of ADAPTIVE is given in Algorithm 1.

Figure 4. An illustration of (a) eager, (b) lazy, and (c) basic adaptive versioning. The time gap σ∗
while switching from eager (lazy) to lazy (eager) is to let finish executing in-flight transactions. This
helps in avoiding potential data versioning inconsistencies.
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Algorithm 1: ADAPTIVE for a transaction T at any time t ≥ 0

1 NEcommit ← number of transaction commits until t executed using Eager
versioning;

2 NLcommit ← number of transaction commits until t executed using Lazy
versioning;

3 NEabort ← number of transaction aborts until t executed using Eager versioning;
4 NLabort ← number of transaction aborts until t executed using Lazy versioning;
5 Ncommit ← NEcommit + NLcommit; Nabort ← NEabort + NLabort;
6 Vcur ← current versioning method for transactions running in a thread;

// Vcur ∈ {Eager, Lazy}
7 tms← Transactional Memory System type; // tms ∈ {persistent, non_persistent}
/* Initially, at t = 0, choose the versioning method based on

workload size (if available), otherwise randomly */
8 if Ncommit + Nabort = 0 then
9 if information on read and write sets is available then

10 Wset(T)← write set of transaction T;
11 Rset(T)← read set of transaction T;
12 if |Wset(T)| > |Rset(T)| then
13 Vcur ← Lazy; Execute T using Lazy versioning;
14 else Vcur ← Eager; Execute T using Eager versioning;
15 else Execute T using either eager or lazy versioning;

/* At any time t > 0, choose the versioning method based on
abort-to-commit ratio (ACR) */

16 else if tms == persistent then // ADAPTIVE for persistent memories
17 AAR← Nabort

Ncommit+Nabort
, AAREager ← NEabort

NEcommit+NEabort
;

18 ACREager ← NEabort
NEcommit

, ACRLazy ← NLabort
NLcommit

;
19 if (AAR ≥ 2

3 ) ∨ ((ACREager > ACRLazy) ∧ (AAREager ≥ 2
3 )) then

20 Execute T using Lazy versioning;
21 else
22 Execute T using Eager versioning;
23 else if tms == non_persistent then // ADAPTIVE for non-persistent

memories
24 ACREager ← NEabort

NEcommit
, ACRLazy ← NLabort

NLcommit
;

25 if ((Vcur = Eager) ∧ (ACREager >
1
2 )) then

26 Vcur ← Lazy;
27 else if ((Vcur = Lazy) ∧ (ACRLazy < 2)) then
28 Vcur ← Eager;
29 Execute T using Vcur versioning method;

4.1. High Level Overview

The high level idea in ADAPTIVE is to switch the versioning method depending on
performance. That is, if the versioning method currently used is hampering the perfor-
mance, then switch the versioning to improve the performance. The fundamental question
is how to identify and measure an indicator that reflects appropriately the effect of the
versioning method on performance. Fortunately, in TM systems, if the number of aborts
are increasing compared to the number of commits, then it is be a valid indicator of per-
formance degradation due to the versioning method currently in use. Therefore, we pick
abort to commit ratio (ACR) as a performance indicator. ACR has also been used quite
heavily in the TM literature as a vital indicator of performance, for example, see [69].
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Formally, ACR can be defined at any time t > 0 as follows:

ACR =
Nabort

Ncommit
, (1)

where Nabort is the total number of aborted transactions and Ncommit is the total number
of committed transactions from time 0 up to t. Ideally, the goal is to have no aborts, i.e.,
ACR = 0. However, in practice, this may not be feasible and the goal is to minimize ACR
as much as possible.

Let T be a transaction that comes to the system at time t ≥ 0; we assume that the
execution starts at time t0 = 0. Let NEcommit(NLcommit) be the number of transaction
commits in ADAPTIVE from time t0 = 0 until the current time t > t0 executed using eager
(lazy) versioning. Similarly, let NEabort(NLabort) be the total number of transaction aborts
in ADAPTIVE from time t0 = 0 until time t > t0 executed using eager (lazy) versioning.
Furthermore, let Ncommit and Nabort be the total number of commits and aborts in ADAPTIVE

from t0 = 0 until time t > t0. Notice that

Ncommit = NEcommit + NLcommit

and
Nabort = NEabort + NLabort.

The concept in ADAPTIVE is to decide on which versioning method to use for ex-
ecuting T based on the parameters NEcommit, NLcommit, NEabort, and NLabort learned from
the system at runtime. However, if T comes to the system at time t0 = 0, we have all
NEcommit, NLcommit, NEabort, and NLabort zero. We treat this as a special case. In the special
case of t0 = 0, a simple approach is to execute T using either lazy or eager versioning. How-
ever, if some information regarding the workload is available, then we can decide on which
versioning method to use. Suppose, the read and write sets of T are available. Let Wset(T)
be the write set of T which is essentially the memory locations that T would modify while ex-
ecuting. Similarly, let Rset(T) be the read set of T which is essentially the memory locations
that T would read (but not modify) while executing. RW(T) = Rset(T) + Wset(T), where
RW(T) denotes the total number of memory locations that T reads and modifies while
executing. If |Wset(T)| > |Rset(T)|, then T is executed using lazy versioning, otherwise
using eager versioning.

For any transaction T arriving at time t > t0, we have two different models of
ADAPTIVE described in the following sub-sections, one for persistent memories and another
for non-persistent memories.

4.2. ADAPTIVE for Persistent Memories

The idea we employ in ADAPTIVE for persistent memories is to compute the number
of data movements for eager and lazy versioning, separately, and switch between these
methods when the data movement increases. Ideally, we would like to use the versioning
method that gives optimum data movement performance for any specific workload. We
use the following notions. Let N be the total number of transactions in any workload. When
the workload finishes execution and all transactions commit, we have Ncommit = N number
of commits and Nabort ≥ 0 number of aborts (if each transaction commits without even
aborting a single time, then Nabort = 0, otherwise Nabort > 0). Suppose each transaction T
has read write set RW(T) of size S.

If T comes to the system at time t > t0 after at least a transaction finishes executing
one time (irrespective of whether that transaction aborts or commits), then it is executed
based on the following parameters computed in ADAPTIVE from time t = 0 until time t.

i. AAR = Nabort
Ncommit+Nabort

; average abort ratio of transactions in ADAPTIVE (using total
aborts in both eager and lazy versioning).
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ii. AAREager =
NEabort

NEcommit+NEabort
; average abort ratio of transactions in ADAPTIVE executed

using eager versioning.
iii. ACREager =

NEabort
NEcommit

; abort to commit ratio of transactions in ADAPTIVE executed using
eager versioning.

iv. ACRLazy = NLabort
NLcommit

; abort to commit ratio of transactions in ADAPTIVE executed using
lazy versioning.

At any time t ≥ 0, 0 ≤ AAR ≤ 1 and 0 ≤ AAREager ≤ 1.
At any time t > t0 in ADAPTIVE, T is executed using lazy versioning if (i) AAR ≥ 2

3
or (ii) ACREager > ACRLazy and AAREager ≥ 2

3 . Otherwise, T is executed using eager
versioning. We call the value 2

3 switching threshold and we describe later how this switching
threshold 2

3 is computed. The motivation behind using 2
3 as switching threshold in ADAP-

TIVE for persistent memories is that it works on all the benchmarks we experimented our
framework against. We now discuss how the switching threshold is computed.

Computation of Switching Threshold in Persistent Memories

The computation of switching threshold is based on the total movements of data from
one memory location to the other (i.e., total number of loads and stores). The motivation
behind using this metric for the computation of switching threshold is that the time spent
by a transaction to load and store data from and to the memory addresses plays significant
role in total execution time. Our objective in the design of ADAPTIVE is to dynamically
switch between the two versioning methods to obtain less number of data movements, and
in return minimize execution time.

Let WEager be the total number of operations of moving data in eager versioning (i)
from the original persistent memory locations to the undo log area and (ii) from the undo
log area back to the original persistent memory locations. The first kind of moves are
shown as 1© in Figure 1a and the second kind of moves are shown as 2© in Figure 1a. The
first kind of moves are always done in eager versioning and the second kind of moves are
done only when the transaction aborts. Therefore,

WEager = (Ncommit + 2Nabort) · S (2)

Let WLazy be the total number of operations of moving data in lazy versioning (i) from
the original persistent memory locations to the redo log area (in volatile cache), (ii) from
the redo log area (in volatile cache) to persistent memory locations to persist the redo log,
and (iii) finally, writing the data back to the original persistent memory locations either
from redo log area in persistent memory after restart or from redo log area in volatile cache.
The first kind of moves are shown as 1© in Figure 1b, and the second and third kind of
moves are shown as 2© and 3© in Figure 1b, respectively. The first kind of moves are always
done in lazy versioning and the second and third kind of moves are done only when the
transaction commits. Therefore,

WLazy = (3Ncommit + Nabort) · S (3)

Notice that a transaction can run using either eager or lazy versioning when WEager = WLazy
as the selection of a versioning method does not have impact on the total number of movements.
Therefore, from Equations (2) and (3), we have that

(Ncommit + 2Nabort) · S = (3Ncommit + Nabort) · S (4)

Ncommit + 2Nabort = 3Ncommit + Nabort (5)

Nabort = 2Ncommit (6)
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Also, we have that N ≤ Nabort + Ncommit. This implies that

Nabort
N

+
Ncommit

N
≥ 1 (7)

2Ncommit
N

+
Ncommit

N
≥ 1 (8)

Ncommit
N

≥ 1
3

(9)

Therefore, Nabort
N < 2

3 . That is, if the value of Nabort is such that Nabort
N is higher than or equals

to 2
3 , then WEager > WLazy. Thus, ADAPTIVE switches execution to lazy versioning when

Nabort
N ≥ 2

3 and stays with eager versioning, otherwise.

4.3. Computation of Total Number of Stores to Persistent Memories

The total number of writes (i.e., stores) to the persistent memories are different when
transactions are executed using different versioning methods.

In eager versioning, transactional (undo) logs are stored in the persistent memory and
in-place memory updates are performed. Each memory location accessed by a transaction
is added to the log. Thus, in default, there are two stores for each memory location accessed
by a transaction. Additionally, if the transaction aborts, it needs to be rolled back to the
previous consistent state using the undo log, which requires two additional stores to the
persistent memory. Let STEager be the total number of stores to the persistent memory in
eager versioning, Ncommit be the total number of commits and Nabort be the total number of
aborts, then,

STEager = (2Ncommit + 2Nabort) · S (10)

where S is the size of RW set of the transactions.
In lazy versioning, all the computations are performed in volatile cache. If a transaction

commits, then the changes are first persisted to the transactional (redo) logs and then
updated to the original memory locations. That means, in lazy versioning, only committing
transactions account for PM stores. Let STLazy be the total number of stores to the persistent
memory in lazy versioning and Ncommit be the total number of commits, then,

STLazy = (2Ncommit) · S (11)

From Equations (10) and (11), we can see that the total number of PM stores in lazy
versioning is always less than that in eager versioning. So, from the perspective of minimizing
total stores to persistent memories, lazy versioning seems better. However, this metric alone
can not guarantee the better performance of transactions. Thus, we also consider other
performance metrics such as execution time, abort rate and total data movements.

4.4. ADAPTIVE for Non-Persistent Transactional Memories

The idea in the design of ADAPTIVE for non-persistent memories is to compute the
total time spent by transactions executing using eager and lazy versioning, separately, and
switch between the versioning methods when the execution time increases. Ideally, again,
we would like to use the versioning method in ADAPTIVE that gives optimum performance
in terms of execution time for any specific workload. From the working principle of a
TM system, we can see that a transaction spends significant amount of time on moving
data between the original memory location and the log areas in addition to the constant
computation time. Figure 2 illustrates the working principle of a TM system. Moreover, it
is likely that the total execution time increases with the increase in total number of aborts
requiring more number of transaction restarts. Thus, we use abort to commit ratio (ACR)
in the design of ADAPTIVE for non-persistent memories.
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For eager (and lazy) versioning, we can compute ACREager (and ACRLazy) based on
the number of transactions committed and aborted using eager (lazy) versioning as follows.

ACREager =
NEabort

NEcommit
(12)

ACRLazy =
NLabort

NLcommit
(13)

To facilitate when to switch from one to another, we identify a threshold on ACR for
both eager and lazy. We denote them by ThresholdEager and ThresholdLazy, respectively.
Let a transaction T be running at current time t using lazy versioning. If ACRLazy <
ThresholdLazy, then the versioning method is switched to Eager for transactions that start
(or restart) execution after time t′ > t. An analogous approach is used if currently T is
executing using eager versioning.

Based on NEcommit, NLcommit, NEabort, and NLabort, we compute ACREager and ACRLazy
at each time step t > t0. These ratios ACREager and ACRLazy are then compared with
ThresholdEager and ThresholdLazy parameters (computed in the next section). Therefore, at
any time t > t0, the transaction T that is ready-to-execute will be executed as follows.

• Suppose the versioning currently used is Vcur = Eager. If ACREager > ThresholdEager,
then Vcur is switched to Lazy (i.e., Vcur ← Lazy) and T will be executed using lazy
versioning.

• Suppose the versioning method currently used is Vcur = Lazy. If ACRLazy <
ThresholdLazy, then Vcur is switched to Eager (i.e., Vcur ← Eager) and T will be exe-
cuted using eager versioning.

Computing Switching Thresholds ThresholdEager and ThresholdLazy

Let N be the total number of transactions in any workload. When the workload
finishes execution and all transactions commit, we have that Ncommit = N and Nabort ≥ 0
(if each transaction commits without aborting, then Nabort = 0, otherwise Nabort > 0).

Suppose, each transaction T spends α amount of time while moving data from one
memory location to other. Consider the case of executing T using eager versioning. Let
τEager be the total amount of time spent while (i) versioning data from the original memory
locations to the undo log area and (ii) updating data from the undo log area back to the
original memory locations. The first kind of operations are shown as 1© in Figure 2a and
the second kind of operations are shown as 2© in Figure 2a. The first kind of operations are
always done in eager versioning and the second kind of operations are done only when the
transaction aborts. That means, for an aborted transaction, data movement is performed
two times, one for versioning, other for rollback. Therefore, for eager versioning,

τEager = (Ncommit + 2Nabort) · α (14)

Similarly, consider the case of executing T using lazy versioning. Let τLazy be the total
amount of time spent while (i) versioning data from the original memory locations to the
redo log area and (ii) writing the data from the redo log area back to the original memory
locations. The first kind of operations are shown as 1© in Figure 2b and the second kind
of operations are shown as 2© in Figure 2b, respectively. The first kind of operations are
always done in lazy versioning and the second kind of operations are done only when
the transaction commits. That means, for a committed transaction, data movement is
performed two times. Therefore, for lazy versioning,

τLazy = (2Ncommit + Nabort) · α (15)

Based on 3 different cases below, we can see 3 scenarios for τEager and τLazy:

• Case 1: If Ncommit = Nabort, then τEager = τLazy

• Case 2: If Ncommit > Nabort, then τEager < τLazy
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• Case 3: If Ncommit < Nabort, then τEager > τLazy

Moreover, equation for τEager suggests that in eager versioning, total time spent for an
aborted transaction is twice as much as the time spent for a committed transaction. Then it
is immediate that the eager versioning performs better until Ncommit ≥ 2Nabort; i.e.,

Nabort
Ncommit

≤ 1
2

(16)

Thus, we get ThresholdEager =
1
2 and switch to lazy versioning when ACREager >

1
2 .

Equation for τLazy suggests that the lazy versioning performs better until 2Ncommit ≤
Nabort; i.e.,

Nabort
Ncommit

≥ 2 (17)

Then, we get ThresholdLazy = 2 and switch to eager versioning when ACRLazy < 2.

4.5. Contention Management

A transaction T is said to be conflicted with another transaction Tj in two cases:
(i) Rset(T) shares at least a memory location with Wset(Tj), i.e., Rset(T) ∩Wset(Tj) 6= ∅,
and (ii) Wset(T) shares at least a memory location either with Rset(Tj) (i.e., Wset(T) ∩
Rset(Tj) 6= ∅) or with Wset(Tj) (i.e., Wset(T) ∩Wset(Tj) 6= ∅). Any contention manage-
ment technique requires at least x− 1 transactions out of the x ≥ 2 conflicted transactions
to abort. There has been an extensive study on contention management and several tech-
niques with different performance properties are available, e.g., [26,27,60–68]. We use the
following strategies for resolving conflict of a transaction T with transaction Tj, which are
discussed in detail in [26,27,65].

• suicide: T aborts and restarts immediately.
• kill (aka aggressive): T kills Tj and continues its execution.
• delay: T aborts immediately but waits until the contended memory location is released

before restarting. This increases the chance of the transaction to commit with no
interruption upon retry, but may increase total execution time.

• back-off: T uses an exponential back-off mechanism to resolve conflict.

4.6. Time Barrier Requirement and Design

The ideal scenario in ADAPTIVE is to let each transaction T run Algorithm 1 and
decide which versioning (eager or lazy) to use for it to execute individually based on
the parameters obtained at runtime. Let Sj be a set of transactions arrived before T.
Suppose current versioning method for executing the transactions in Sj is Vcur = Lazy
and the transaction T satisfies for switching the versioning method to Vnew = Eager.
Suppose the versioning changed to Eager from Lazy after the transactions in Sj started
execution but before T. If we run T using Eager immediately and T conflicts with any of
the transaction Tj ∈ Sj, then the conflict detection and resolution mechanisms interfere,
hampering consistency. A simple approach to handle this situation is to ask T to wait
until all transactions in Sj finish execution, which we call a basic time barrier (as shown
in Figure 4). The pseudocode is given in Algorithm 2. The barrier reduces total number of
aborts but due to a time delay before switching, it may increase total execution time [24].
We provide a better time barrier design appropriate for non-persistent TM systens (described
in Section 5) that will minimize this overhead.
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Algorithm 2: Basic Time Barrier Design

1 T ← new transaction arrived for execution;
2 Sj ← set of other transactions arrived before T;
3 Vcur ← versioning method for currently running transactions ;
4 Vnew ← new versioning method computed for the transaction T;
5 if (Vnew 6= Vcur) then // i.e., Vcur and Vnew are complement of each
other in the set {Eager, Lazy}

6 if (there is no transaction Tj ∈ Sj such that Tj is executing using Vcur when T wants
to execute) then

7 Vcur ← Vnew;
8 Start executing T using Vnew;
9 else

10 Wait until each transaction Tj ∈ Sj finish execution;

5. Optimizations on Basic Adaptive Versioning
5.1. Limitation of Basic ADAPTIVE in Non-Persistent Memories

In basic ADAPTIVE, no two transactions can execute simultaneously with different
versioning methods, i.e., if a new transaction tries to execute with a different versioning
method than the currently executing one, the basic time barrier prevents it to execute
simultaneously. The design of basic time barrier in ADAPTIVE requires a transaction T to
wait until all the previous transactions finish their executions if T wants to execute with
different versioning method than the previous transactions. This also prevents to execute
two non-conflicting transactions concurrently with different versioning methods. Thus,
to alleviate these problems, we provide two optimizations to basic ADAPTIVE. The first
optimization is on time barrier design. The second optimization is on switching mechanism.

5.2. Better Time Barrier Design

The pseudocode of the better time barrier design is given in Algorithm 3. The objective
of better time barrier design is to increase concurrency as opposed to the basic time
barrier design. For this, we allow each transaction to start its execution (with possibly
new versioning method) as soon as it becomes ready rather than waiting for other in-
flight transactions to complete. Figure 5 illustrates the idea of better time barrier design.
Consider a transaction T. Let Sj be a set of transactions arrived before T. Suppose current
versioning method for executing transactions in Sj is Vcur = Lazy and new versioning
method computed for transaction T is Vnew = Eager. Suppose the versioning method
changed to Eager from Lazy after the transactions in Sj started execution (but not completed
yet) and before T starts execution. In the basic time barrier design, T has to wait until all
the transactions in Sj finish execution. In the better time barrier design, we ask T to start
execution as soon as it is ready. If T does not conflict with any transaction in Sj, then T
continues its execution until it commits, otherwise, T aborts. In order to detect the possible
conflict of T with the transactions in Sj, we add a 1-bit modify flag to each memory address
that is going to be updated by the transactions in Sj. The modify bit associated to a memory
address is set to 1 at the start of a transaction if it is going to be updated and is reset back
to 0 at the time of commit. If T conflicts with T′ /∈ Sj, it is handled as per the contention
management technique adapted in the design (e.g., suicide, kill etc).
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Figure 5. An illustration of the better time barrier design. The interval δ∗ between Eager and Lazy
represents the time taken by in-flight transactions to finish their executions after versioning method
is switched. The new transaction that do not conflict with transactions using previous versioning can
execute concurrently with in-flight transactions.

Figure 6. An illustration of the better switching mechanism. λ∗ represents the time interval in which
versioning is not switched. δ∗ resembles better time barrier of Figure 5.

Algorithm 3: Better Time Barrier Design

1 T ← new transaction arrived for execution;
2 Sj ← set of other transactions arrived before T;
3 Vcur ← versioning method for currently running transactions;
4 Vnew ← new versioning method computed for the transaction T;
5 if (Vcur 6= Vnew) then
6 Vcur ← Vnew;
7 Execute T using Vcur;
8 if (T conflicts with Tj ∈ Sj) then
9 Abort T;

10 else if (T conflicts with T′ /∈ Sj) then
11 Handle conflict between T and T′ using the contention management

technique;

5.3. Better Switching Mechanism Design

Switching between Eager and Lazy versioning should ideally be done with no overhead.
However, there might be a possibility of continuous switching between the versioning
methods for every new transaction. This may result a significant amount of overhead in
total execution time of the transactions. Thus, the idea is to minimize the total number of
switching between the versioning methods without affecting the total execution time of the
transactions. The better switching mechanism avoids the possible continuous switching be-
tween the versioning methods for every new transaction, thus helps to reduce the overhead.
The versioning method is switched from one to another only if the switching condition is
satisfied continuously for a specified number of times (which we call a switching interval
threshold SW_INT). Let the current versioning method Vcur = Eager. Suppose at time t,
ADAPTIVE decides to switch to Vnew = Lazy. With better switching mechanism, ADAP-
TIVE does not switch to Vnew = Lazy at t but waits until a switching interval threshold
SW_INT. We define SW_INT as the number of transactions that execute using the current
versioning method Vcur before switching to the new versioning method Vnew after t. When
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SW_INT = 0, ADAPTIVE does not wait for switching the versioning method. We use
SW_INT > 0 in the better switching mechanism design. Let λ be the time interval dur-
ing which SW_INT number of transactions finish execution using the current versioning
method Vcur = Eager. For every next (new or restarted) transaction arrived during the
interval λ, if Vnew = Lazy satisfies (i.e., Vnew 6= Vcur), then the versioning method switches
to Vnew = Lazy at time t + λ. Otherwise, versioning method remains to Vcur. We determine
the switching interval threshold SW_INT by using an empirical method, i.e., varying the
value of SW_INT from 2 up to 10 and picking the one with the best performance. Note
that the time interval λ denotes the time elapsed until the consecutive SW_INT number of
transactions satisfy for the switching of the versioning method. So, the value of λ may not
be necessarily the same for all switching events. Figure 6 illustrates the design of the better
switching mechanism. The pseudocode is given in Algorithm 4.

6. Experimental Evaluation

We now evaluate the performance of ADAPTIVE using 5 micro-benchmarks and
8 complex benchmarks from STAMP and STAMPEDE benchmark suites. The evaluation
is performed in an STM implementation using TinySTM [26,27] modified appropriately
to incorporate ADAPTIVE. For persistent TM, the tests were executed on an Intel Core
i7-7700K 4.20 GHz, 64-bit Haswell processor with 4 cores, each with 2 hyper threads. Each
core has private L1 and L2 caches, whose sizes are 256 KB and 1 MB, respectively. There is
also an 8 MB L3 cache shared by all 4 cores and 32 GB main memory. The results reported
are the average of 10 runs varying the number of threads from 1 to 16. For non-persistent
TM, the tests were executed on an Intel Xeon(R) E5-2620 v4 @ 4.20 GHz, 64-bit processor
with 32 cores. Each core has private L1 and L2 caches, whose sizes are 64 KB and 256 KB,
respectively. There is also an 20 MB L3 cache shared by all 32 cores and 32 GB main
memory. The results reported are the average of 10 experimental runs. The results are
for varying number of threads from 1 to 32. First, we present the experimental results for
basic ADAPTIVE in persistent memories. We also provide the execution time overhead in
the basic ADAPTIVE. Later, we provide the experimental results for optimized ADAPTIVE

with better time barrier using suicide contention management technique in non-persistent
memories. And finally, we extend the results in non-persistent memories using both better
time barrier and switching mechanism. We also compare the performance of optimized
ADAPTIVE against four different contention management techniques.

6.1. Experimental Setup

We developed an STM-based implementation using TinySTM [26,27]. TinySTM has
implemented separately both lazy and eager versioning (called Lazy and Eager) through
Write_Back and Write_Through designs, respectively. With Write_Through design, trans-
actions directly write to original memory locations and revert their updates in case the
transactions abort. However, with Write_Back design, transactions work on a copy of
data and delay their updates to the original memory locations until commit [26,27]. Fur-
thermore, Write_Back design has two different implementations: Write_Back_ETL and
Write_Back_CTL. Encounter-time locking (ETL) detects conflicts early at the time of write
and acquires the lock on the memory address before it is written. Commit-time locking (CTL)
defers conflict detection on memory address until commit, i.e., the lock is acquired on the
memory address at the commit time. Therefore, there are two different implementations of
Lazy in TinySTM: one based on ETL called Lazy_ETL and another based on CTL called
Lazy_CTL. We obtain adaptive design Adaptive_ETL using Lazy_ETL and Eager ver-
sioning. Similarly, we obtain adaptive design Adaptive_CTL using Lazy_CTL and Eager
versioning. We run experiments with five different designs Lazy_ETL, Lazy_CTL, Eager,
Adaptive_ETL, and Adaptive_CTL.
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Table 3. Summary of five micro-benchmarks and eight complex benchmarks in STAMP (and STAMPEDE) benchmark suite,
including some of their properties.

Benchmark Application Description RW Set Contention

bank banking implements banking transactions small low

red black tree BST balances the nodes of binary tree small low

hash set data structure stores information using hashing medium low

linked list data structure maintains linear collection of data medium medium

skip list data structure maintains linked hierarchy of subsequences medium low

bayes machine learning learns a structure of a Bayesian network large high

genome bioinformatics performs gene sequencing medium low

intruder security detects network intrusions medium high

kmeans data mining implements k-means clustering small low

labyrinth engineering routes paths in maze large high

ssca2 scientific creates efficient graph representation small low

vacation OLTP emulates travel reservation system medium low/medium

yada scientific refines a Delaunay mesh large medium

Algorithm 4: Better Switching Mechanism Design

1 T ← new transaction arrived for execution;
2 Vcur ← versioning method for currently running transactions ;
3 Vnew ← new versioning method computed for the transaction T;
4 t← the timestamp at which the versioning satisfies to switch from Vcur to Vnew;
5 SW_INT ← switching interval threshold;
6 λ← time taken by the SW_INT transactions arrived on or after timestamp t to

finish their executions;
7 if (Vcur 6= Vnew for time t + λ) then
8 Vcur ← Vnew; // switch the versioning method to Vnew at timestamp

t + λ
9 Execute T using Vcur;

6.2. Persistent Memory Emulation

We emulate persistent memory using DRAM in our experiments following Avni et al. [43].
We separate 500 MB region of DRAM for the persistent memory emulation. All the original data
are kept in this region. Moreover, we use this region for keeping the persistent undo log when a
transaction runs using eager versioning and to persist the redo log when transaction runs using
lazy versioning. To emulate the power failure and crash in persistent memory, we leave the
power on and wipe out all the volatile log records so that the rollback (in case of abort in eager
versioning) and update (in case of commit but not yet written to memory in lazy versioning)
operations will be handled by those persistent log records. We use spin loop for this purpose
that runs for around 200 ms (which is sufficient to load and store the log records).

6.3. Benchmarks

We use both micro and complex benchmarks from the TM literature. A summary
of some prominent properties of these benchmarks such as targeted applications, short
description of the applications, the size of the read write (RW) set, and the amount of
contention is given in Table 3.
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Micro-Benchmarks: We use five micro-benchmarks, namely bank, red black tree, hash set,
linked list, and skip list used in several previous studies, e.g., [21,22,26–28]. These bench-
marks simulate the basic concurrent execution scenario for transactions with (relatively)
small read/write sets.
STAMP: STAMP is a well-known and widely-used benchmark. It consists of eight ap-
plications: bayes, genome, intruder, kmeans, labyrinth, ssca2, vacation, and yada of varying
complexity. These applications span a variety of computing domains as well as runtime
transactional characteristics such as varying transaction lengths, read and write set sizes,
and amounts of contention [23].
STAMPEDE: Recently, Nguyen et al. [29] argued that the programming model and data
structures used in STAMP benchmarks suffer from performance bottlenecks. They then
modified the programming structure of these benchmarks in a way the bottlenecks can
be removed. They finally provided a set of rewritten STAMP benchmarks calling them
STAMPEDE benchmarks.

6.4. Evaluation of ADAPTIVE in Persistent Memories

For persistent memories, we ran the experiments using up to 16 threads and report
the results accordingly with an average of 10 runs for each thread. We present 4 different
types of results for each benchmark suite: (i) total data movements (including both loads
from and stores to the persistent memory), (ii) total number of stores to the persistent
memory, (iii) total number of aborts, and (iv) total execution time. We first discuss results
for metrics (i)–(iii) separately for each benchmark suite and then we discuss results for
metric (iv) together for all the benchmark suites.
Results on Micro-benchmarks. All the transactions in these benchmarks were run with
update rate of 20%. When transactions were executed with less number of threads, we
found that the transaction commit rate is higher than the transaction abort rate and the
cost in lazy versioning is higher than the cost in eager versioning. With the increase in
number of threads, the abort rate is also increased. Figure 7–9 provide the experimental
results on all five micro-benchmarks for total data movements, total number of stores to
PM and total number of aborts, respectively. We noticed that Lazy_CTL has consistently
better performance than Lazy_ETL on all the five micro-benchmarks. This is because the
early detection of conflict and locking the memory addresses has increased abort rate than
detecting the conflicts and locking the memory addresses at the commit time. We observed
that the total number of aborts in ADAPTIVE versioning has been decreased compared
to that in both eager and lazy versioning. To be specific, Adaptive_ETL has up to 1.5×
less number of aborts than Lazy_ETL and up to 1.7× less number of aborts than Eager.
Similarly, Adaptive_CTL has upto 1.3× less number of aborts than Lazy_CTL and upto
3.8× less number of aborts than Eager. Figure 7 shows that the total data movements to
and from the persistent memory (i.e., loads and stores to the PM) has been decreased in
ADAPTIVE versioning. Adaptive_ETL has up to 3.4× less data movements than Lazy_ETL
and up to 1.1× less data movements than Eager. Adaptive_CTL has up to 3× and 1.3×
less number of data movements compared to that in Lazy_CTL and Eager, respectively.
Figure 8 shows the total number of stores to the PM. We can see that lazy versioning
has less number of stores to the persistent memory. This is because the aborts in lazy
versioning do not participate in stores to the persistent memory. On the other hand, in
eager versioning, an abort requires the memory addresses to be rolled back to the previous
consistent states, thus increasing the total number of stores to the PM. We observed that
the total number of stores in ADAPTIVE is always less than the Eager and is greater than
Lazy in most of the cases. Compared to Eager, Adaptive_ETL has up to 1.4× less number
of PM stores and Adaptive_CTL has up to 2.1× less number of PM stores. Compared to
Lazy, Adaptive_ETL has up to 1.8×more number of PM stores and Adaptive_CTL has up
to 1.6× more number of PM stores. We also noticed that Adaptive_CTL performs better
than Adaptive_ETL in each micro-benchmark. This is because Lazy_CTL performs better
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than Lazy_ETL and Adaptive_ETL was designed using Eager and Lazy_ETL whereas
Adaptive_CTL was designed using Eager and Lazy_CTL, respectively.

Figure 7. Data movements in micro-benchmarks and bayes from STAMP executing in persistent TM.

Figure 8. Total number of stores to the PM in micro-benchmarks and bayes from STAMP.
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Figure 9. Number of aborts in micro-benchmarks and bayes from STAMP in persistent TM.

Results on STAMP Benchmarks. Figure 10 provides total data movement results. It is
obvious that when transactions are executed with less number of threads, transaction
commit rate is higher and there is less number of total data movements Eager than Lazy.
With the increase in number of threads, transaction abort rate also increases and total
number of data movements in Eager also starts to increase due to the frequent requirement
of rollbacks. The results obtained for genome and kmeans-low show that Eager starts to
encounter more data movements than Lazy beyond 8 threads. The same scenario starts
beyond 4 threads in Intruder and yada. Irrespective of the abort rate change, ADAPTIVE

always has less number of total data movements compared to the respective eager and lazy
versioning. Specifically, Adaptive_ETL has up to 6× less data movements than Lazy_ETL
and up to 2× less data movements than Eager. Adaptive_CTL achieved up to 3× less
data movements compared to Lazy_CTL and up to 35× less data movements (in yada)
compared to Eager.

Figure 11 shows the results for total number of stores to the persistent memory. Similar to
micro-benchmarks, Lazy versioning has less number of PM stores than the Eager versioning in
STAMP benchmarks as well. In ADAPTIVE versioning, total number of PM stores decreases
compared to Eager (up to 28×) and increases compared to Lazy (up to 2×).

Figure 12 shows the results for total number of aborts. Similar to micro-benchmarks,
the total number of aborts in STAMP benchmarks also decreases when executing the
transactions using ADAPTIVE versioning. This is because the ADAPTIVE versioning always
tries to minimize the total data movements by adapting a suitable versioning method
between Eager and Lazy. In Adaptive_ETL, the total number of aborts are up to 3× and
17× less than Eager and Lazy_ETL, respectively. In Adaptive_CTL, the total number of
aborts are up to 240× and 2.8× less than Eager and Lazy_CTL, respectively.
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Figure 10. Data movements in STAMP benchmarks executing in persistent TM.

Figure 11. Total number of stores to the PM in STAMP benchmarks.
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Figure 12. Total number of aborts in STAMP benchmarks in persistent TM.

Results on STAMPEDE Benchmarks. Figure 13 provides the experimental results for total
data movements. Similar to micro- and STAMP benchmarks, ADAPTIVE has less number
of total data movements compared to Eager and Lazy in STAMPEDE benchmarks as well.
We observed that Adaptive_ETL has up to 3.6× less data movements than Lazy_ETL and
Adaptive_CTL phas up to 6× less data movements than Lazy_CTL. Compared to Eager,
Adaptive_ETL achieved up to 4.6× less data movements and Adaptive_CTL achieved up
to 3.1× less data movements.

Figure 14 shows the experimental results for total number of PM stores in STAMPEDE
benchmarks. It also follows the results obtained for micro- and STAMP benchmarks where
Lazy versioning has less number of PM stores than the Eager versioning and ADAPTIVE

versioning lies between the two values. To be precise, Adaptive_ETL has up to 64× less
number of PM stores than Eager and up to 2.7×more number of PM stores than Lazy_ETL
whereas Adaptive_CTL has up to 9× less number of PM stores than Eager and up to 18×
more number of PM stores than Lazy_CTL

The experimental results for the total number of aborts are shown in Figure 15. Again,
similar to micro- and STAMP benchmarks, the total number of aborts in ADAPTIVE ver-
sioning has been decreased compared to that in Eager and Lazy versioning. Precisely,
Adaptive_ETL has up to 14.3× and 14.7× less number of aborts compared to Eager and
Lazy_ETL, respectively. Similarly, Adaptive_CTL has up to 2.7× and 9.2× less number of
aborts compared to Eager and Lazy_CTL, respectively.

To summarize the above results, in all three benchmark suites, we observed that the
total movements of data (i.e., loads and stores) and the total number of aborts in ADAPTIVE

versioning decrease compared to that in Eager and Lazy versioning. This helps us to
achieve better execution time in ADAPTIVE. Particularly, as the number of aborts decrease
in ADAPTIVE design compared to the non-adaptive baselines, there will be less number of
transaction restarts as well as less number of data movements which ultimately reduces
the total execution time of the transactions. We present the execution time results for all
three benchmark suites in the next sub-section. We also observed that the total number of
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stores to persistent memories in ADAPTIVE versioning are decreased compared to Eager.
However, compared to Lazy, they are increased in ADAPTIVE versioning.

Figure 13. Data movements in STAMPEDE benchmarks executing in persistent TM.

Figure 14. Total number of stores to the PM in STAMPEDE benchmarks.
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Figure 15. Total number of aborts in STAMPEDE benchmarks in persistent TM.

Execution Time Results for Persistent Memories. Execution time is impacted in ADAP-
TIVE due to the switching between eager and lazy versioning at runtime. Additionally,
the design of time barrier also introduces time delay in some benchmarks. In most of the
benchmarks, the delay due to time barrier is compensated as ADAPTIVE lowers the data
movements and the number of aborts. We were interested to see the maximum increase on
time in any benchmark that we used in our experimentation.

The results obtained for micro-benchmarks are shown in Figure 16. Recall that,
for micro-benchmarks, we measured the execution time for 10,000 transactions, each
executed with an update rate of 20%. All the 5 micro-benchmarks were executed with
the five different versioning designs and the total number of transactions for each design
were counted.

We noticed that, in most of the applications, execution time in ADAPTIVE decreases
compared to that in both Eager and Lazy versioning. This is due to the decrease in total
number of data movements and total number of aborts in ADAPTIVE versioning. In
Adaptive_ETL, execution time decreases by up to 21% compared to Lazy_ETL and up
to 17% compared to Eager. In Adaptive_CTL, execution time decreases by up to 28%
compared to Lazy_CTL and up to 33% compared to Eager. However, in some applications
(for example see the results for bank and linked list), the execution time in ADAPTIVE

increases compared to that in Eager or Lazy versioning. This is because the decrease
in number of aborts is significantly less and is insufficient to compensate the overhead
due to barrier and switching between the versioning methods. In bank micro-benchmark,
we noticed that the execution time in Adaptive_CTL increases by up to 9% compared
to Lazy_CTL. In linked list, the execution time in Adaptive_CTL increases by up to 12%
compared to Lazy_CTL and the execution time in Adaptive_ETL increases by up to 10%
compared to Lazy_ETL.
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For the STAMP and STAMPEDE benchmarks, we measured the execution time for each
of the applications. Figures 17 and 18 illustrate the execution time results for the STAMP
and STAMPEDE benchmarks, respectively. As ADAPTIVE lowers the data movements and
the number of aborts, most of the applications (e.g., bayes, kmeans high, labyrinth, ssca2
and vacation high in Figures 17 and 18) have decreased execution time in ADAPTIVE than
in Eager or Lazy designs. However, in some applications (e.g., genome, intruder and yada),
we noticed that the execution time in ADAPTIVE increases by at most 16% more compared
to the execution time of Eager or Lazy.

We observed that the experimental results presented above for the execution time
in persistent TM barely scale in throughput beyond 8 threads. This occurred due to the
experimental environment used for conducting the tests. For persistent TM, the tests were
executed on an Intel Corei7-7700K 4.20 GHz, 64-bit Haswell processor with 4 cores, each
with 2 hyper threads. That means, it has 4 physical cores and 8 logical cores. Now, up
to 8 threads, each process core handles an individual thread. But when executing with
16 threads, threads spend more time waiting for their turn to be handled, thus increasing
execution time and decreasing throughput.

To summarize, in all of the benchmark suites, ADAPTIVE performs better for total
number of data movements and total number of aborts compared to individual Eager
and Lazy designs. Also, in most of the applications in each benchmark suite, the total
execution time in ADAPTIVE decreases compared to that in Eager and Lazy. However, in
some cases, the decrease in data movements and the number of aborts is insufficient to
lower the overhead due to barrier and switching between the versioning methods and that
increases the execution time in ADAPTIVE by at most 16% compared to that of using Eager
and Lazy designs.

Figure 16. Execution time in micro-benchmarks and bayes from STAMP executing in persistent TM.
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Figure 17. Execution time in STAMP benchmarks executing in persistent TM.

Figure 18. Execution time in STAMPEDE benchmarks executing in persistent TM.
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6.5. Evaluation of ADAPTIVE in Non-Persistent Memories

We report the results from experiments performed using up to 32 threads. The
evaluation is on performance metrics metrics execution time and number of aborts.

Results on Micro-benchmarks. The execution time results in five different micro-benchmarks
are provided in Figure 19. Figure 20 provides the result for the number of aborts. The results
are for 10,000 transactions, each executed with update rate of 20%. Figure 19 shows that the
execution time decreases notably in ADAPTIVE as compared to the other versioning methods
with the increase in number of threads for all the micro-benchmarks. Specifically, Adaptive_ETL
achieved up to 6.3× better execution time than Lazy_ETL and Adaptive_CTL achieved up
to 3.7× better execution time than Lazy_CTL. Compared to Eager, Adaptive_ETL achieved
up to 5.5× better execution time and Adaptive_CTL achieved up to 5× better execution time.
The minimum execution gain for Adaptive_ETL beyond 4 number of threads is 1.23 and
for Adaptive_CTL is 1.20. Due to high contention for memory access when transactions are
executed with more number of threads, the number of aborts increases with the increasing
number of threads. Figure 20 shows that ADAPTIVE minimizes number of aborts. Specifically,
Adaptive_ETL achieved up to 2.6× less number of aborts than Lazy_ETL and up to 5.8× less
number of aborts than Eager. Adaptive_CTL achieved up to 2.2× less number of aborts than
Lazy_CTL and up to 8× less number of aborts than Eager.

Results on STAMP Benchmarks. Figures 21 and 22, respectively, provide the execution
time and number of aborts results. Regarding execution time, Adaptive_ETL has up to
1.78× better time than Lazy_ETL and Adaptive_CTL has up to 1.74× better time than
Lazy_CTL. Compared to Eager, the execution time improvement in Adaptive_ETL and
Adaptive_CTL is up to 2.36× and 2×, respectively. The minimum execution gain obtained
in Adaptive_ETL is 1.13 and in Adaptive_CTL is 1.12 with the threads grater than 4. From
Figure 22, we observed that the number of aborts significantly increases in all the appli-
cations of STAMP benchmark when transactions are executed in more than 8 number
of threads. Still, ADAPTIVE has significantly less aborts compared to Lazy and Eager.
Adaptive_ETL has up to 16× less aborts than Lazy_ETL and up to 13× less aborts than
Eager. Similarly, Adaptive_CTL has up to 2.5× less aborts than Lazy_CTL and up to 170×
less aborts than Eager.

Figure 19. Execution time in micro-benchmarks and bayes from STAMP using better time barrier in
non-persistent TM.
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Figure 20. Number of aborts in micro-benchmarks and bayes from STAMP using better time barrier
in non-persistent TM.

Figure 21. Execution time in STAMP benchmarks using better time barrier in non-persistent TM.
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Figure 22. Number of aborts in STAMP benchmarks using better time barrier in non-persistent TM.

Results on STAMPEDE Benchmarks. Similar to micro and STAMP benchmarks, ADAP-
TIVE has better performance compared to Lazy and Eager in STAMPEDE benchmarks,
for both execution time and number of aborts (Figures 23 and 24). For execution time,
Adaptive_ETL performed up to 1.72× better than Lazy_ETL and Adaptive_CTL performed
up to 1.54× better than Lazy_CTL. Compared to Eager, Adaptive_ETL performed up to
1.68× better and Adaptive_CTL performed up to 1.91× better. The minimum execution
gain obtained in Adaptive_ETL is 1.14 and in Adaptive_CTL is 1.12 with the threads
greater than 4. For number of aborts, Adaptive_ETL performed up to 4.1× better than
Lazy_ETL and Adaptive_CTL performed up to 72× better than Lazy_CTL. Compared to
Eager, Adaptive_ETL performed up to 10× better and Adaptive_CTL performed up to
124× better.

In all the benchmarks, the minimum execution time gain for ADAPTIVE ranges be-
tween 1 and 1.16 when running with threads up to 4 numbers. It is interesting to mention
here that the ADAPTIVE versioning technique outperforms both eager and lazy versioning
for most of the applications in all the benchmark suites. This is mainly due to the decrease
in number of aborts and the better time barrier design where non-conflicting transactions
can execute and commit in parallel. Furthermore, the delay due to writing data in persis-
tent log is not the concern in non-persistent TMs which also helps in reducing the total
execution time.

Further Results. The results in Figures 19–24 only considered optimized ADAPTIVE w.r.t.
better time barrier. We also performed experiments for ADAPTIVE using both, better
time barrier and better switching mechanism. We varied the switching interval thresh-
old (SW_INT) from 2 up to 10. The results indicate that instead of switching versioning
immediately, using the better switch mechanism increases the performance. However,
for SW_INT > 2, the performance gradually reduces and becomes worse while reaching
SW_INT = 10. Figures 25 and 26 show the execution time and total number of aborts,
respectively for STAMP benchmarks when executed with both better time barrier and better
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switch mechanism (SW_INT = 2). The improvement is up to 1.09× compared to ADAP-
TIVE with better time barrier. Alongwith decreasing the total number of aborts, the better
switch mechanism decreases the total number of switches between the versioning methods
which helps to get the improvement on execution time. Figure 27 illustrates the reduction
of total number of switches using better switch mechanism for STAMP benchmarks. The
experiments on micro-benchmarks and STAMPEDE showed similar results.

Figure 23. Execution time in STAMPEDE benchmarks using better time barrier in non-persistent TM.

The experiments so far use ThresholdEager = 1
2 and ThresholdLazy = 2 as computed

in Section 4. It is natural to ask whether these are the ideal threshold values. Therefore, for
ThresholdEager, we used 1

4 and 3
4 , whereas for ThresholdLazy, we used 1 and 3. We performed

experiments by using two different combinations of ThresholdEager and ThresholdLazy, ( 1
4 , 1)

and ( 3
4 , 3). We noticed the increase in both execution time and number of aborts in all the

benchmarks for both the combinations. This suggests that the threshold values computed
in Section 4 are appropriate.
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Figure 24. Number of aborts in STAMPEDE benchmarks using better time barrier in non-
persistent TM.

Figure 25. Execution time in STAMP benchmarks using better barrier and better switch in non-
persistent TM.
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Figure 26. Aborts in STAMP benchmarks using better barrier and better switch in non-persistent TM.

Figure 27. Decrease in total number of switches between versioning methods using better switch
mechanism in non-persistent TM.
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The results reported in Figures 19–27 use suicide as a contention management tech-
nique. We were interested to see whether other strategies perform better than suicide.
Therefore, we performed experiments using 4 different contention management techniques
suicide, delay, back-off, and kill for the comparison. The execution time is shown in Figure 28
and the number of aborts is shown in Figure 29 for Adaptive_ETL in STAMP benchmarks.
The results showed not significant change on performance in some of the benchmarks,
while in the rest, the selection of contention management technique affected the perfor-
mance. For example, genome and intruder performed better with suicide whereas, kmeans
performed better with back-off. In overall, suicide performed better than the rest in most of
the benchmarks.

Finally, we performed experiments starting the execution initially using eager and lazy
versioning. We observed that the initial selection of versioning does not affect performance
significantly in both micro and complex benchmarks except intruder and kmeans from
STAMP in which ADAPTIVE performed better when starting with Eager than Lazy for
upto 4 threads. This is mainly because transactions have almost constant abort rate and
versioning method change is not necessary.

Figure 28. Execution time in STAMP benchmarks for Adaptive_ETL for four different contention
management techniques in non-persistent TM.
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Figure 29. Aborts in STAMP benchmarks for Adaptive_ETL for four different contention manage-
ment techniques in non-persistent TM.

7. Concluding Remarks

Transactional memory has been receiving much attention from both academia and
industry. One of the most challenging issues is how to ensure consistency of the shared
data through speculative execution. Eager and lazy versioning have been used individually
to support speculative execution in existing TM systems. However, whether to use eager
or lazy versioning is better is not clear and previous studies contradict on the recom-
mendations. In this article, we have presented an adaptive framework that dynamically
switches between eager and lazy versioning at runtime through appropriate transaction
abort/commit data collected at runtime, obviating the need of a priori knowledge on the
workload and contention scenario to pick the appropriate versioning method for better
performance. Our framework is quite simple and applicable in both persistent and non-
persistent TM systems. The framework achieves significantly better performance in terms
of execution time and number of aborts for both persistent and non-persistent memories
compared to eager and lazy versioning running individually in 5 micro-benchmarks and
8 applications from STAMP and STAMPEDE suites. In persistent TM systems, the adaptive
framework achieved performance improvements as much as 1.5× for execution time and
as much as 240× for number of aborts, whereas in non-persistent TM systems, it achieved
performance improvements as much as 6.3× for execution time and as much as 170× for
number of aborts. We believe that our results and techniques will be helpful in choosing
proper versioning for TM systems.

For the future work, it will be interesting to see whether there is a better technique
on making decision on when to switch between eager and lazy versioning and how to
minimize the time gap of switching from one versioning method to another. It will also be
interesting to run experiments on the real persistent memory such as Optane DC persistent
memory [47] and provide the comparison against more state-of-the-art STM, Durable STM,
and HTM implementations.
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