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Abstract: Many mixed datasets with both numerical and categorical attributes have been collected
in various fields, including medicine, biology, etc. Designing appropriate similarity measurements
plays an important role in clustering these datasets. Many traditional measurements treat various
attributes equally when measuring the similarity. However, different attributes may contribute
differently as the amount of information they contained could vary a lot. In this paper, we propose a
similarity measurement with entropy-based weighting for clustering mixed datasets. The numerical
data are first transformed into categorical data by an automatic categorization technique. Then, an
entropy-based weighting strategy is applied to denote the different importances of various attributes.
We incorporate the proposed measurement into an iterative clustering algorithm, and extensive
experiments show that this algorithm outperforms OCIL and K-Prototype methods with 2.13% and
4.28% improvements, respectively, in terms of accuracy on six mixed datasets from UCI.

Keywords: automatic categorization; clustering analysis; mixed datasets; similarity measurement;
information entropy

1. Introduction

The main purposes of clustering analyses are to discover the implicit class structure
in the data and divide the physical or abstract objects into different classes, where the
similarity between a pair of objects in the same class is large and in different classes
is small. As a major exploratory data analysis tool, clustering analysis has been widely
researched and applied in many fields, such as sociology, biology, medicine, etc. [1–3]. Most
current methods are designed to address single dataset types (numerical or categorical).
For example, classical clustering methods, such as the k-means algorithm [4,5], the EM
algorithm [6], etc., are limited to numerical datasets, while some algorithms are also
proposed for clustering categorical datasets [7,8]. However, in the medical and biology
fields, many datasets are collected with both numerical and categorical attributes. Hence,
many researchers are dedicated to discovering clustering algorithms for mixed types of
datasets with categorical and numerical attributes [9,10].

Many unsupervised clustering algorithms for mixed datasets have been proposed over
the years, which can be classified into two types. The first type designs different similarity
measurements for numerical and categorical data and then calculates the weighted sum of
the two parts. For example, the K-Prototypes algorithm [11] for clustering mixed datasets
was put forward simply by combining the k-means algorithm and the K-Modes algorithm,
which are used for single types of numerical and categorical datasets, respectively. Ad-
ditionally, the OCIL algorithm proposed by Cheung and Jia [12] is an iterative clustering
learning algorithm based on object-cluster similarity metrics.

In the second type, the algorithms transform categorical attributes into numerical
ones, and then the algorithms apply clustering methods designed for purely numerical
datasets to the transformed dataset or vice versa. The most direct method is to map
categorical values into numerical vectors. If a categorical attribute contains n unique
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values, then each value is mapped into a n-dimensional vector. This strategy increases the
dataset dimensions, resulting in higher computational complexity. It could also transform
numerical attributes into categorical ones. For instance, SpectralCAT, proposed by David
and Averbuch [13], automatically transforms high-dimensional data into categorical data
and then applies spectral clustering [14] to reduce the dimensionality of the transformed
datasets through automatic non-linear transformations.

When designing clustering algorithms, the similarity or dissimilarity measurement
plays an important role. Due to the different nature of numerical attributes and categorical
attributes, they should be handled differently. Numerical data use a continuous variable
to represent the values of each attribute, and a common distance such as the Euclidean
distance usually measures the similarity between numerical objects. However, the values
of the categorical data have neither a natural ordering nor a common scale. Due to this
distinct nature of these two different data types, methods designed for single-type datasets
cannot be applied to other types of datasets. The most direct way is the second of the
two types mentioned above. However, this method ignores the similarity information in
the categorical attribute values [15]. Therefore, the Hamming distance is used in many
dissimilarity measurements. For example, in the K-Prototypes algorithm, the dissimilarity
measurement uses the Euclidean distance for the numerical attributes and the Hamming
distance for the categorical attributes. This algorithm also controls the contribution of the
numerical attributes and the categorical attributes through a user-defined parameter. The
K-Prototypes algorithm is simple and easy to implement, so it has been widely used in
clustering mixed datasets. However, when implementing similarity measurements for
categorical attributes, the Hamming distance is rough, and the clustering result is very
sensitive to this parameter in the K-Prototypes algorithm. Subsequently, some improved
similarity measurements for categorical attributes are proposed, which are based on the
frequency of categorical values, the co-occurrence, and the conditional probability esti-
mate [7,16,17]. Based on these improved similarity measurements for categorical attributes,
some combined similarity measurements for both categorical and numerical datasets have
been developed. For instance, the OCIL algorithm [12] uses the frequency of categorical
object values that occur in the cluster for categorical attributes and the numerical distance
for numerical attributes when measuring similarity.

It can be found that each attribute often contributes differently to the desired cluster-
ing results in many practical applications, which should be considered when measuring
the similarities. For example, we want to cluster a mammographic mass dataset into two
groups, corresponding to benign types and malignant types. In this task, the age attribute
may play a more important role than the mass density attribute. Therefore, it is very
important to identify different attribute contributions to improve the quality of the cluster-
ing results. Actually, some researchers have realized this problem and proposed several
strategies. However, most research focuses on single-type datasets; e.g., for categorical
attributes, the weights could be assigned based on the overall distribution of attribute
values [18] or based on the frequency the class center appearances and the average distance
between objects and the clustering center [19]. When handling mixed datasets, current
algorithms only assign weights for single-type attributes. For example, when the OCIL
algorithm [12] measuring the similarity, which only assigns weight for each categorical
attribute based on information entropy, and it lets each numerical attribute take the same
weight. The result is to weakens the importance of the numerical attributes. Ahmad
and Dey proposed an algorithm for mixed datasets by adding weights to only numerical
attributes [20]. Actually, both the numerical attributes and the categorical attributes should
be evaluated when designing the similarity, and the weight strategy should be applied to
both types of attributes in order to simplify the computational complexity.

In this paper, we propose a similarity measurement with entropy-based weighting for
mixed datasets with both categorical and numerical attributes. First, a similarity metric
for the categorical attributes is designed by assigning a different weight to each attribute
based on information entropy theory. Second, we present an automatic categorization
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technique that transforms numerical data into categorical data, which is achieved by
automatically discovering the optimal number of categorizations for each attribute based
on the Calinski-Harabasz index. Then, the similarity metric for categorical data can be used
to measure the similarity for transformed data. In this way, this similarity measurement
can be applied to the mixed dataset containing both numerical and categorical attributes.
Subsequently, this similarity measurement with entropy-based weighting is applied to the
k-means framework. We accessed several datasets from UCI and compared the proposed
algorithm with the OCIL and K-Prototype methods on mixed datasets as well as with the
k-means algorithm on numerical datasets. The experimental results show that the iterative
clustering algorithm based on the proposed similarity measurement is superior to these
three algorithms.

The remainder of this paper is organized as follows. Section 2 introduces the problem
formulation and then proposes a similarity measurement with entropy-based weighting
for mixed datasets and applies this similarity measurement to the k-means algorithm
framework. In Section 3, experiments are conducted to compare the proposed algorithm
with three existing methods. Finally, we draw conclusions in Section 4.

2. Methods
2.1. Problem Formulation

Clustering means classifying the given unlabeled objects into several clusters accord-
ing to certain criteria, so similar objects are classified as one cluster, and dissimilar objects
are assigned to different clusters.

For a given mixed dataset X consisting of m objects, denoted as {x1, x2, . . . , xm},
suppose X has dc categorical attributes and du numerical attributes. Then, xi(1 ≤ i ≤ m)
can be denoted as [xc

i , xu
i ], with xc

i = [xc
i,1, xc

i,2, . . . , xc
i,dc

] and xu
i = [xu

i,1, xu
i,2, . . . , xu

i,du
]. The

requirement is to cluster the dataset X into k different clusters, denoted as C1, C2, . . . , Ck,
with C = {C1, C2, . . . , Ck}, and Ci ∩ Cj = ∅, ∪k

i=1Ci = C(i, j = 1, 2, . . . , k; i 6= j). The
optimal partition matrix T∗ can be found through the following objective function:

T∗ = argmaxT [
k

∑
j=1

m

∑
i=1

tijs(xi, Cj)] (1)

where s(xi, Cj) is the similarity between object xi and cluster Cj, T = (tij) is an m × k
partition matrix with tij ∈ {0, 1} and ∑k

j=1 tij = 1, i = 1, 2, . . . , m, j = 1, 2, . . . , k. tij = 1
indicates that object xi is assigned to cluster j.

According to Equation (1), the clusters can be obtained as long as the metric function
of similarity between object xi and cluster Cj is determined. Because implied information
of each attribute is different, the contribution to cluster result is also different., we define
a new similarity, in which each attribute is assigned a weight, denoted as wr, satisfying
0 ≤ wc

r ≤ 1,0 ≤ wu
r ≤ 1 and ∑dc

r=1 wc
r + ∑du

r=1 wu
r = 1. Then the similarity between object xi

and cluster Cj can be measured by the following equation:

s(xi, Cj) =
dc

∑
r=1

wc
rsc(xc

i,r, Cj) +
du

∑
r=1

wu
r su(xu

i,r, Cj) (2)

where wc
r and sc(xc

i,r, Cj) are the weight and similarity on the categorical attribute, respec-
tively, wu

r and su(xu
i,r, Cj) are the weight and similarity on the numerical attribute, respec-

tively. sc(xc
i , Cj) = ∑dc

r=1 wc
rsc(xc

i,r, Cj) represents the similarity on categorical attributes and

su(xu
i , Cj) = ∑du

r=1 wu
r su(xu

i,r, Cj) represents the similarity on numerical attributes. In the
following sections, we study how to calculate the weight and similarity on each attribute.
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2.2. Similarity Measurement for Categorical Attributes

For categorical attributes, each pair of values chosen from the value domain are
considered to have the same distance as they do not have a natural ordering. By contrast,
each pair of values of a numerical attribute has a numerical distance. Due to this different
characteristic, it is not appropriate to use the Euclidian distance to evaluate categorical
attributes-clustering similarity. Hereby, we adopt the frequency that the value xc

i,r appears
in the cluster Cj for the categorical attribute Ac

r , where Ac
r (r = 1, 2, . . . , dc) represents the

rth categorical attribute.

Definition 1. The similarity between a categorical attribute value xc
i,r and cluster Cj, where

i ∈ {1, 2, . . . , m}, r ∈ {1, 2, . . . , dc}, j ∈ {1, 2, . . . , k}, is defined as

sc(xc
i,r, Cj) =

σAc
r=xc

i,r
(Cj)

σAc
r 6=NULL(Cj)

(3)

where σAc
r=xc

i,r
(Cj) represents the number of objects in cluster Cj, whose value for the

categorical attribute Ac
r is equal to xc

i,r, NULL means empty, and σAc
r 6=NULL(Cj) represents

the number of objects in cluster Cj, whose value for the categorical attribute Ac
r is not empty.

From Definition 1, we can find the following properties:

1. 0 ≤ sc(xc
i,r, Cj) ≤ 1;

2. sc(xc
i,r, Cj) = 0 only if none of the attribute Ac

r’s values of the objects belonging to
cluster Cj are equal to xc

i,r;
3. sc(xc

i,r, Cj) = 1 only if all of the Non NULL attribute Ac
r’s values of the objects

belonging to cluster Cj are equal to xc
i,r.

Optimizing attribute weights can improve the clustering performance. In information
theory, the inhomogeneity degree of the dataset with respect to an attribute can be used to
measure the significance of this attribute. In addition, according to Measure III proposed
in [21], the higher the information content of an attribute, the higher the inhomogeneity
degree of this attribute.

Definition 2. Since the value domain of each attribute is definite, values of each attribute can be
regarded as discrete and independent. The significance of an arbitrary categorical attribute A in
dataset X can be quantified by the following entropy metric:

H(A) = −
h

∑
g=1

p(ag)logp(ag) (4)

where A has a value domain, denoted as dom(A), which consists of all the possible
values that attributes A can choose, and dom(A) can be represented with dom(A) =

{a1, a2, . . . , ah}, h is the total number of values in dom(A). p(ag) =
σA=ag (X)

σA 6=NULL(X)
, where ag

is a value of attribute A, ag ∈ dom(A), g = 1, 2, . . . , h. Therefore, p(ag) is the probability
density function of ag in dataset X for attribute A. According to Equation (4), an attribute
with more varying values has higher significance. However, in practice, an attribute with
too many different values may have little clustering contribution, such as the instance
ID number, which is unique for each instance; however, this information is useless for
clustering analysis [12]. Thus, Equation (4) can be modified with Equation (5),

H(Ac
r) = −

1
h

h

∑
g=1

p(ag)logp(ag) (5)



Algorithms 2021, 14, 184 5 of 12

Then, the weight of each attribute based on information entropy is defined as in Equa-
tion (6),

wc
r =

H(Ac
r)

∑dc
r=1 H(Ac

r) + ∑du
r=1 H(Au

r )
, r = 1, 2, . . . , dc (6)

where ∑du
r=1 H(Au

r ) denotes the sum of modified information entropy of all the numeric
attributes, which will be described in detail in the next section. Therefore, the metric
function of similarity between object xc

i and cluster Cj on categorical attributes is modified
as Equation (7).

sc(xc
i , Cj) =

dc

∑
r=1

H(Ac
r)

∑dc
r=1 H(Ac

r) + ∑du
r=1 H(Au

r )

σAc
r=xc

i,r
(Cj)

σAc
r 6=NULL(Cj)

(7)

2.3. Similarity Measurement for Numerical Attributes

Since the entropy-based weighting strategy proposed in Section 2.2 is not applicable
to numerical attributes, we made numerical data discrete at first. Then, the similarity mea-
surement was used for the discretized data which are categorical data now. Discretization
of numerical data is gaining more attention from the machine learning community [22].
Discretization of a given continuous attribute is also called quantization, which divides
the range of attributes into intervals. Then, an interval label marks each interval. As a
result, interval labels replace the original continuous data. Obviously, discretization can
reduce the number of continuous attribute values [23], thereby simplifying the original
data. Discretization also makes it possible for methods of categorical data clustering to
be applied to cluster numerical or mixed datasets. There are many methods for numeri-
cal dataset discretization, such as discretization by intuitive division, histogram analysis,
cluster analysis and entropy-based discretization. This section defines a smart way to
automatically discretize numerical data by cluster analysis so that numerical data are
transformed into categorical data. This method also provides a measure to find the optimal
clusters to discretize the original data.

In order to transform numerical data into categorical data, we transformed numerical
data by each attribute. Formally, let Xl = [xu

1,l , xu
2,l , . . . , xu

m,l ] be a single numerical attribute
in X. Xl is transformed into the categorical values X̂l = [x̂1,l , x̂2,l , . . . , x̂m,l ], (l = 1, 2, . . . , du).
As a result, each point xi ∈ X(i = 1, 2, . . . , m) is transformed into x̂i = [xc

i,1, xc
i,2, . . . ,

xc
i,dc

, x̂i,1, x̂i,2, . . . , x̂i,du ].
Before categorizing numerical data by applying a clustering method to the data, the op-

timal number of categories is required, which is critical for the success of the categorization
process.

Different methods have been proposed to find the optimal number of clusters for
numerical attribute data [24,25]. The most common way is to apply a clustering algorithm
to the data and calculate the cluster validity index. This process is repeated with an
increasing number of clusters until it achieves the first local maxima. The number of clusters
corresponding to the first local maxima is chosen as the optimal number of categories.

Let q be the number of clusters, which is unknown at first, and let fq be a clustering
function that assigns each xu

i,l ∈ Xl(i = 1, 2, . . . , m) to one of the q clusters in Zl , where
Zl = {zl

1, zl
2, . . . , zl

q} and zl
j = {xu

i,l | fq(xu
i,l) ∈ zl

j, i = 1, 2, . . . , m, zl
j ∈ Zl}. The total sum

of squares of Xl is defined as Sl = ∑m
i=1(xu

i,l − xl)(xu
i,l − xl)T , where xl is the mean of

Xl , which is defined as xl = 1/m ∑m
i=1 xu

i,l . The within-cluster sum of squares is defined
as Sl

w(q) = ∑
q
j=1 ∑xl∈zl

j
(xl − ul

j)(xl − ul
j)

T , where the mean of each cluster ul
j is defined

as ul
j = (1

/
|zl

j| )∑xl∈zl
j
xl . It can be found that Sl

w(q) denotes the sum of deviations

from each point to the center of their associated clusters, and the Sl
w(q) of a good cluster

should be a small value. The between-cluster sum of squares is defined as Sl
b(q) =

∑
q
j=1 |z

l
j|(ul

j − xl)(ul
j − xl)T , which denotes the sum of the weighted distances between
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each center of the q clusters and the center of data, and Sl
b(q) of a good cluster result should

be of a large value. It is clear that Sl = Sl
w(q) + Sl

b(q); thus, the total sum of squares equals
the sum of the within-cluster sum of squares and the between-cluster sum of squares.

The Calinski-Harabasz index is adopted to evaluate the clustering validity, which

is defined as Sl
q,m =

(m−q)Sl
b(q)

(q−1)Sl
w(q)

. The proof of the effectiveness of the Calinski-Harabasz

index is shown in [13]. We applied a clustering method fq to the data Xl and calculated
the corresponding Calinski-Harabasz index Sl

q,m of clusters, q = 2, 3, . . .. When the validity
index Sl

q,m achieved the first local maximum, we chose the corresponding q as the optimal
number of categories, denoted as ql

best.
To demonstrate the automatic categorization process, an example of the Calinski-

Harabasz index calculation results is shown as Figure 1. In this example, the k-means
method was chosen as fq. When q = 2, 3, . . . , 100, the k-means method was applied to the
data and the validity index of the corresponding cluster result was calculated. When q = 8,
the first local maxima of the Calinski-Harabasz index is found; therefore, ql

best = 8. The
automatic categorization process can be summarized as Algorithm 1.

Figure 1. The Calinski-Harabasz index for q = 2, 3, . . . , 100, the first local maxima of Calinski-
Harabasz index is marked by the arrow.

Algorithm 1 Automatic categorization for numerical attributes.

Input: Xl = [xu
1,l , xu

2,l , . . . , xu
m,l ]: the lth numerical attribute in the dataset X; fq: a clustering

function that partitions Xl into q clusters and returns the corresponding assignments;
qmax: maxmum number of categories to examine;

Output: X̂l = [x̂u
1,l , x̂u

2,l , . . . , x̂u
m,l ]: the categorical values of Xl ;

1: for q = 2 to qmax do
2: S(q) = CalinskiHarabasz( fq(Xl), Xl) (the Calinski-Harabasz index of the clustering

result);
3: qbest = minq∈{2,3,...,qmax}{localMax(S(q)) = True} (the first q for which S(q) achieves a

local maxmum)
4: X̂l = fqbest(Xl)

5: return X̂l

When the optimal number of categories ql
best is found, each xu

i,l ∈ Xl , i = 1, 2, . . . , m is
allocated to one of ql

best clusters zl
j ∈ Zl by clustering method f(ql

best), then the correspond-
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ing categorical value of xu
i,l is set as j. This process repeats for each numerical attribute Xl

in dataset X, l = 1, 2, . . . , du. After this automatic categorization process, we found the
optimal number of categories of each numerical attribute and transformed the original
numerical data into categorical data, with x̂u

i = [x̂u
i,1, x̂u

i,2, . . . , x̂u
i,du

], (i = 1, 2, . . . , m).
Since the numerical data of the original dataset X is transformed into categorical data,

we can use the similarity measurement for categorical data to the transformed data. The
weight of each numerical attribute is calculated based on Equation (8):

wu
r =

H(Au
r )

∑dc
r=1 H(Ac

r) + ∑du
r=1 H(Au

r )
, r = 1, 2, . . . , du (8)

where Au
r , (r = 1, 2, . . . , du) represents each attribute of transformed data. Therefore, the

metric function of similarity between object xu
i and cluster Cj on numerical attribute is

defined as:

su(xu
i , Cj) =

du

∑
r=1

wu
r su(xu

i,r, Cj) (9)

=
du

∑
r=1

wu
r su(x̂u

i,r, Cj)

=
du

∑
r=1

wu
r

σAu
r =x̂u

i,r
(Cj)

σAu
r 6=NULL(Cj)

2.4. Similarity Measurement for Mixed Data

Combining Sections 2.2 and 2.3, the similarity measurement for mixed data is defined as:

s(xi, Cj)=
dc

∑
r=1

wc
rsc(xc

i,r,Cj)+
du

∑
r=1

wu
r su(xu

i,r, Cj)

=
dc

∑
r=1

wc
rsc(xc

i,r, Cj)+
du

∑
r=1

wu
r su(x̂u

i,r, Cj)

=
dc

∑
r=1

wc
r

σAc
r=xc

i,r
(Cj)

σAc
r 6=NULL(Cj)

+
du

∑
r=1

wu
r

σAu
r =x̂u

i,r
(Cj)

σAu
r 6=NULL(Cj)

(10)

2.5. Iterative Clustering Algorithm

Based on Equation (10), the similarity measurement with entropy-based weighting
applied to the k-means framework can be conducted as Algorithm 2.

Steps 1–3 utilize the automatic categorization process to obtain transformed categorical
datasets based on Algorithm 1. Since the attributes of the transformed dataset are all
categorical, the weight of each attribute can be calculated with the entropy-based weighting
strategy, and Steps 4–9 show the process. Steps 10–21 are the iterative process that applies
the similarity measurement based on Equation (10) into the k-means algorithm framework
to address the transformed dataset.
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Algorithm 2 Iterative clustering algorithm with entropy-based weighting.
Input: X = {x1, x2, . . . , xm} (dataset to cluster with dc categorical attributes and du numer-

ical attributes);
k (number of clusters);
fq (a clustering function that partitions Xl into q clusters and returns the corresponding
assignments);
qmax (maximum number of categories to examine);

Output: idx = {idx1, idx2, . . . , idxm} (an assignment of each point in X to one of k clusters);
1: for l = 1 to du do
2: X̂l = Categorize(Xl , fq, qmax) (automatic categorization of Xl);

3: for r = 1 to dc do
4: wc

r =
H(Ac

r)

∑dc
r=1 H(Ac

r)+∑du
r=1 H(Au

r )
(calculate the importance of each categorical attribute);

5: for r = 1 to du do
6: wu

r = H(Au
r )

∑dc
r=1 H(Ac

r)+∑du
r=1 H(Au

r )
(calculate the importance of each numerical attribute);

7: Set idx = {0, 0, . . . , 0} and select k initial objects randomly as k initial centroids for each
cluster

8: noChange = true;
9: repeat

10: for i = 1 to m do
11: idx(new)

i = argmaxj∈{1,2,...,k}[s(xi, Cj)];

12: if idx(new)
i 6= idx(old)

i then
13: noChange = f alse;
14: Update the information of clusters C(new)

idxi
and C(old)

idxi
, including the frequency

of each categorical value.
15: until (noChange = true)
16: return idx

3. Results and Discussion

To test the effectiveness of the similarity measurement with the entropy-based weight-
ing proposed in this paper, two different types of datasets, mixed and numerical datasets,
were selected from the UCI Machine Learning Data Repository [26], and most datasets
were collected from the field of biology and medicine. The iterative clustering algorithm
based on the proposed similarity measurement was compared with existing clustering
algorithms, including OCIL [12], K-Prototype [9] and k-means [4]. k-means was used for
dataset made of numerical variables only. In the experiments, the clustering accuracy [27]
was adopted to evaluate the three mentioned methods. The clustering accuracy is defined

as AC = ∑m
i=1 δ(li ,map(idxi))

m , where m denotes the number of instances of the dataset, li
denotes the provided label, idxi denotes the obtained cluster label, map(idxi) is a mapping
function that maps idxi to the equivalent label from the data corpus, and the function
δ(li, map(idxi)) = 1 only if li = map(idxi); otherwise, the value is 0. Correspondingly, the
clustering error rate is defined as error = 1− AC.

In the experiments, considering that the clustering results are affected by the selected
initial centroids, we set the same initial centroids for all methods during each test, and
the following experimental results were averaged from 100 random runs. In addition,
k-means was chosen as the clustering method in the automatic categorization process that
transforms numerical attributes into categorical attributes. Before using k-means method
to cluster, the original data were normalized to be between 0 and 1.

3.1. Experiments on Mixed Datasets

In this section, we investigated the performance of the iterative clustering algorithm
based on the proposed similarity measurement on mixed datasets. Table 1 shows the
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information of each dataset. Note that the second column presents the number of samples,
the third column presents the number of the two types of attributes, and the last column
presents the probability distribution of samples in different classes.

To evaluate the performance of the iterative clustering algorithm based on the pro-
posed similarity measurement, we compare its clustering results with OCIL and K-Prototype.
The average value and standard deviation of the clustering error of these clustering algo-
rithms are statistically summarized in Table 2. In the experiments, the weight parameter γ
was set to 1.5 for the K-Prototypes algorithm.

Table 1. Description of mixed datasets.

Dataset Instance Attribute (dc + du) Class Class Distribution

Statlog(Heart) 270 7 + 6 2 55.56%, 44.44%
Hepatitis 155 13 + 6 2 20.65%, 79.35%
Cylinder Bands 540 19 + 20 2 42.33%, 57.67%
Australian 690 8 + 6 2 55.51%, 44.49%
Dermatology 366 33 + 1 6 30.60%, 16.67%, 19.67%, 13.39%, 14.21%, 5.46%
Zoo 101 16 + 1 7 40.59%, 19.80%, 4.95%, 12.87%, 3.96%, 7.92%, 9.90%

Australian denotes Statlog (Australian Credit Approval) Dataset.

Table 2. Comparison of cluster accuracy for the proposed algorithm with OCIL and K-Prototype on
mixed datasets.

Dataset OCIL K-Prototype The Proposed Algorithm

Statlog (Heart) 0.1891± 0.0029 0.2192± 0.0662 0.1606± 0.0288
Hepatitis 0.2065± 0.0000 0.2065± 0.0000 0.1810± 0.0074
Cylinder Bands 0.2743± 0.0861 0.2852± 0.0749 0.2676± 0.1168
Australian 0.2579± 0.1286 0.2218± 0.0678 0.2136± 0.0686
Dermatology 0.1953± 0.0510 0.3063± 0.0792 0.1855± 0.0555
Zoo 0.1449± 0.0376 0.1578± 0.0520 0.1318± 0.0341

From Table 2, it can be observed that the iterative clustering algorithm based on the
proposed similarity measurement outperforms the OCIL and K-Prototype methods for six
datasets, although the ratios of the numbers of categorical attributes to numerical attributes
differ greatly, as shown in Table 1. Compared to the other two methods, the iterative
clustering algorithm can improve the accuracies of clustering results by 2.13% and 4.28%,
respectively. Especially in the Heart dataset, the iterative clustering algorithm improves the
accuracy by 2.85% and 5.86%, respectively. This result indicates that the proposed similarity
measurement is applicable to mixed datasets of variant compound styles and does not need
any parameter to give weights to the two types of attributes. Furthermore, for datasets
that have very uneven class distributions, the proposed similarity measurement can also
achieve adequate clustering results.

To study why the iterative clustering algorithm based on the proposed similarity
measurement outperforms the OCIL and K-Prototype methods, we analyzed the correlation
between each attribute and the label attribute in the dataset by calculating the correlation
coefficients in statistics. Since the label attribute is a categorical attribute, the Pearson
correlation coefficient and the Spearman correlation coefficients are not suitable. The
Kendall correlation coefficient requires that the categorical attribute be ordered; therefore,
it also cannot be used to calculate the correlation between the categorical attribute and the
label attribute. Here, we adopt the ReliefF algorithm, which can estimate the quality of
dependencies between each attribute and label attribute [28].

To see whether the correlation between the dependencies and weights affects the
clustering results, we calculate the Pearson correlation coefficient between the dependencies
calculated by the ReliefF algorithm and the weights calculated by Equations (6) and (8) in
each dataset. The result is shown in Table 3. Since the Dermatology dataset as well as the
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Zoo dataset have only one numerical attribute, calculating the correlation for numerical
attribute is meaningless.

Table 3. The correlation coefficient between dependencies and weights in each mixed dataset.

Dataset Correlation Coefficient for
Categorical Attributes

Correlation Coefficient for
Numerical Attributes

Statlog (Heart) −0.2602 0.3885
Hepatitis −0.0151 0.7953
Cylinder Bands 0.3648 0.3955
Australian 0.9314 0.7281
Dermatology 0.7822 \
Zoo −0.2878 \

Comparing Tables 2 and 3, it can be seen that the Dermatology dataset, with a good
clustering result, has a strong correlation between dependencies and weights for categorical
attributes. In addition, the Australian dataset has a strong correlation not only for categori-
cal attributes but also for numerical attributes; this dataset also has a good clustering result.
However, in the Hepatitis dataset it has a strong correlation for categorical attributes, but
has a weak correlation for numerical attributes. There are only six numerical attributes
and 13 categorical attributes in the Hepatitis dataset. The influence of category attributes
is much greater than that of numerical attributes. So, the clustering result of Hepatitis
dataset is not good, which does not violate the theory in the article. Therefore, a good
clustering result may be obtained due to the reasonable weight assigned to each attribute
by the proposed similarity measurement.

3.2. Experiments on Numerical Datasets

Then, we further investigated the performance of the proposed similarity measure-
ment on pure numerical datasets. Table 4 shows the information of six numerical datasets,
including the number of samples, attributes and classes, and class distribution. To evaluate
the performance of the proposed similarity measurement applied to k-means on numerical
datasets, we also conducted experiments compared to the most classical numerical data
clustering algorithms, k-means algorithms. These two clustering algorithms were applied
to different numerical datasets; Table 5 shows the mean and variance of the clustering
error of clustering by applying different algorithms. In addition, before using the k-means
method to cluster, the dataset was normalized to between 0 and 1.

Table 4. Description of numerical datasets.

Dataset Instance Attribute Class Class Distribution

Waveform 5000 40 3 33.84%, 33.06%, 33.10%
Wine 178 13 3 33.15%, 39.89%, 26.97%
Mass 961 5 2 53.69%, 46.31%
Seeds 210 7 3 33.33%, 33.33%, 33.33%
Iris 150 4 3 33.33%, 33.33%, 33.33%
Fertility 100 9 2 88.00%, 12.00%

Waveform denotes waveform-+noise Dataset in Waveform Database Generator (Version 1)
Mass denotes Mammographic Mass Dataset.
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Table 5. Comparison of the proposed algorithm with k-means on numerical datasets.

Dataset k-Means The Proposed Algorithm

Waveform 0.4764± 0.0002 0.4654± 0.0097
Wine 0.0378± 0.0031 0.0660± 0.0451
Mass 0.4631± 0.0000 0.1962± 0.0740
Seeds 0.3857± 0.0000 0.3813± 0.0310
Iris 0.1677± 0.0859 0.0563± 0.0651
Fertility 0.1200± 0.0000 0.1200± 0.0000

It can be seen that except for the Wine dataset and the Fertility dataset, the proposed
similarity measurement applied to k-means outperforms the k-means method on other
datasets. Normally, the clustering accuracy of the iterative clustering algorithm based on
the proposed similarity measurement is 6.09% higher than that of k-means, especially for
the Mass dataset, with a similarity that is 26.69% higher than that of k-means.

Similarly, the correlation coefficient between dependencies and weights was calculated
to analyze why the iterative clustering algorithm outperforms the k-means method, and
the correlation coefficient of each dataset is shown in Table 6. It can be found that the Mass
dataset with the best clustering result has the highest correlation coefficient. Perhaps the
weights of this dataset are well allocated according to the contribution of each clustering
attribute.

Table 6. The correlation coefficient between dependencies and weights in each numerical dataset.

Dataset Correlation Coefficient

Waveform 0.1200
Wine −0.1458
Mass 0.9245
Seeds 0.0944
Iris −0.6511
Fertility 0.5526

4. Conclusions

In this paper, a similarity measurement with entropy-based weighting is proposed for
mixed datasets with numerical and categorical attributes. For categorical datasets, a similar-
ity metric is designed by assigning different weights to each attribute based on information
entropy theory. For numerical datasets, the original high-dimensional numerical data are
transformed to categorical data by an automatic categorization technique, so the similarity
metric for categorical datasets can be applied to numerical datasets. Then, a similarity mea-
surement for mixed datasets was obtained. Extensive experimental results show that the
iterative clustering algorithm based on the proposed similarity measurement can achieve
higher clustering accuracy and is superior to the existing clustering algorithms on datasets
from UCI. The results also validate the feasibility of handling different types of attributes
and verify that various attributes contribute differently in similarity measurements when
clustering.

Author Contributions: Conceptualization, X.Q. and S.J.; methodology, J.Y.; software, S.J.; writing—
original draft preparation, J.Y. and S.J.; writing—review and editing, J.Y. and X.Q.; supervision, N.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported partially by the National Natural Science Foundation of China
(No. 61502135), the Programme of Introducing Talents of Discipline to Universities (No. B14025), and
the Anhui Provincial Key Technologies R&D Program (No. 1804b06020378). The funding bodies had
no role in study design, data collection and analysis, or preparation of the manuscript.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Algorithms 2021, 14, 184 12 of 12

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jiawei, H.; Micheline, K. Data Mining: Concepts and Techniques. Data Min. Concepts Model. Methods Algorithms Second Ed. 2006, 5,

1–18.
2. Rodoshi, R.T.; Kim, T.; Choi, W. Resource Management in Cloud Radio Access Network: Conventional and New Approaches.

Sensors 2020, 20, 2708. [CrossRef]
3. Khorraminezhad, L.; Leclercq, M.; Droit, A.; Bilodeau, J.F.; Rudkowska, I. Statistical and Machine-Learning Analyses in Nutritional

Genomics Studies. Nutrients 2020, 12, 3140. [CrossRef] [PubMed]
4. Macqueen, J. Some Methods for Classification and Analysis of Multivariate Observations. Berkeley Symp. Math. Stat. Probab. 1967,

1, 281–297.
5. Ahmad, A.; Hashmi, S. K-Harmonic means type clustering algorithm for mixed datasets. Appl. Soft Comput. 2016, 48, 39–49.

[CrossRef]
6. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum Likelihood from Incomplete Data via the EM Algorithm. J. R. Stat. Soc. 1977,

39, 1–38.
7. Cao, F.; Liang, J.; Li, D.; Bai, L.; Dang, C. A dissimilarity measure for the k-Modes clustering algorithm. Knowl. Based Syst. 2012,

26, 120–127. [CrossRef]
8. Guha, S.; Rastogi, R.; Shim, K. ROCK: A robust clustering algorithm for categorical attributes. Inf. Syst. 1999, 25, 345–366.

[CrossRef]
9. Huang, Z. Clustering large data sets with mixed numeric and categorical values. In Proceedings of the 1st Pacific-Asia Conference

on Knowledge Discovery and Data Mining, Singapore, 23–24 February 1997; pp. 21–34.
10. Ahmad, A.; Khan, S. Survey of State-of-the-Art Mixed Data Clustering Algorithms. IEEE Access 2019, 7, 31883–31902. [CrossRef]
11. Huang, Z. Extensions to the k-means Algorithm for Clustering Large Data Sets with Categorical Values. Data Min. Knowl. Discov.

1998, 2, 283–304. [CrossRef]
12. Cheung, Y.M.; Jia, H. Categorical-and-numerical-attribute data clustering based on a unified similarity metric without knowing

cluster number. Pattern Recognit. 2013, 45, 2228–2238. [CrossRef]
13. David, G.; Averbuch, A. SpectralCAT: Categorical spectral clustering of numerical and nominal data. Pattern Recognit. 2012, 45,

416–433. [CrossRef]
14. Ng, A.; Jordan, M.; Weiss, Y. On spectral clustering: Analysis and an algorithm. Adv. Neural Inf. Process. Syst. 2001, 14 849–856.
15. Hsu, C.C. Generalizing self-organizing map for categorical data. IEEE Trans. Neural Netw. 2006, 17, 294–304. [CrossRef]
16. Liang, J.; Chin, K.S.; Dang, C.; Yam, R.C. A new method for measuring uncertainty and fuzziness in rough set theory. Int. J. Gen.

Syst. 2002, 31, 331–342. [CrossRef]
17. Ng, M.K.; Li, M.J.; Huang, J.Z.; He, Z. On the impact of dissimilarity measure in k-modes clustering algorithm. IEEE Trans.

Pattern Anal. Mach. Intell. 2007, 29, 503. [CrossRef]
18. Chen, L.F.; Guo, G.D. Non-mode clustering of categorical data with attributes weighting. J. Softw. 2013, 14, 2628–2641. [CrossRef]
19. Bai, L.; Liang, J.; Dang, C.; Cao, F. A novel attribute weighting algorithm for clustering high-dimensional categorical data. Pattern

Recognit. 2011, 44, 2843–2861. [CrossRef]
20. Ahmad, A.; Dey, L. A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl. Eng. 2007, 63, 503–527.

[CrossRef]
21. Basak, J.; Krishnapuram, R. Interpretable Hierarchical Clustering by Constructing an Unsupervised Decision Tree. IEEE Trans.

Knowl. Data Eng. 2005, 17, 121–132. [CrossRef]
22. Dougherty, J.; Kohavi, R.; Sahami, M. Supervised and Unsupervised Discretization of Continuous Features. Mach. Learn. Proc.

1995, 2, 194–202.
23. Grzymala-Busse, J.W. Data reduction: Discretization of numerical attributes. Handbook of Data Mining and Knowledge Discovery;

Oxford University Press, Inc.: Oxford, UK, 2002; pp. 218–225.
24. Jung, Y.; Park, H.; Du, D.Z.; Drake, B.L. A Decision Criterion for the Optimal Number of Clusters in Hierarchical Clustering. J.

Glob. Optim. 2003, 25, 91–111. [CrossRef]
25. Bayati, H.; Davoudi, H.; Fatemizadeh, E. A heuristic method for finding the optimal number of clusters with application in

medical data. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008, 2008, 4684–4687.
26. UCI Machine Learning Repository. Available online: http://archive.ics.uci.edu/ml (accessed on 15 June 2021).
27. Zhu, L.; Miao, L.; Zhang, D. Iterative Laplacian Score for Feature Selection. In Chinese Conference on Pattern Recognition; Springer:

Berlin/Heidelberg, Germany, 2012; pp. 80–87.
28. Kononenko, I. Estimating attributes: Analysis and extensions of RELIEF. In European Conference on Machine Learning; Springer:

Berlin/Heidelberg, Germany, 1994; pp. 171–182.

http://doi.org/10.3390/s20092708
http://dx.doi.org/10.3390/nu12103140
http://www.ncbi.nlm.nih.gov/pubmed/33066636
http://dx.doi.org/10.1016/j.asoc.2016.06.019
http://dx.doi.org/10.1016/j.knosys.2011.07.011
http://dx.doi.org/10.1016/S0306-4379(00)00022-3
http://dx.doi.org/10.1109/ACCESS.2019.2903568
http://dx.doi.org/10.1023/A:1009769707641
http://dx.doi.org/10.1016/j.patcog.2013.01.027
http://dx.doi.org/10.1016/j.patcog.2011.07.006
http://dx.doi.org/10.1109/TNN.2005.863415
http://dx.doi.org/10.1080/0308107021000013635
http://dx.doi.org/10.1109/TPAMI.2007.53
http://dx.doi.org/10.3724/SP.J.1001.2013.04470
http://dx.doi.org/10.1016/j.patcog.2011.04.024
http://dx.doi.org/10.1016/j.datak.2007.03.016
http://dx.doi.org/10.1109/TKDE.2005.11
http://dx.doi.org/10.1023/A:1021394316112
http://archive.ics.uci.edu/ml

	Introduction
	Methods
	Problem Formulation
	Similarity Measurement for Categorical Attributes
	Similarity Measurement for Numerical Attributes
	Similarity Measurement for Mixed Data
	Iterative Clustering Algorithm

	Results and Discussion
	Experiments on Mixed Datasets
	Experiments on Numerical Datasets

	Conclusions
	References

