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Abstract: The large−scale integration of wind power and PV cells into electric grids alleviates the
problem of an energy crisis. However, this is also responsible for technical and management problems
in the power grid, such as power fluctuation, scheduling difficulties, and reliability reduction. The
microgrid concept has been proposed to locally control and manage a cluster of local distributed
energy resources (DERs) and loads. If the net load power can be accurately predicted, it is possible
to schedule/optimize the operation of battery energy storage systems (BESSs) through economic
dispatch to cover intermittent renewables. However, the load curve of the microgrid is highly
affected by various external factors, resulting in large fluctuations, which makes the prediction
problematic. This paper predicts the net electric load of the microgrid using a deep neural network to
realize a reliable power supply as well as reduce the cost of power generation. Considering that the
backpropagation (BP) neural network has a good approximation effect as well as a strong adaptation
ability, the load prediction model of the BP deep neural network is established. However, there are
some defects in the BP neural network, such as the prediction effect, which is not precise enough and
easily falls into a locally optimal solution. Hence, a genetic algorithm (GA)−reinforced deep neural
network is introduced. By optimizing the weight and threshold of the BP network, the deficiency of
the BP neural network algorithm is improved so that the prediction effect is realized and optimized.
The results reveal that the error reduction in the mean square error (MSE) of the GA–BP neural
network prediction is 2.0221, which is significantly smaller than the 30.3493 of the BP neural network
prediction. Additionally, the error reduction is 93.3%. The error reductions of the root mean square
error (RMSE) and mean absolute error (MAE) are 74.18% and 51.2%, respectively.

Keywords: backpropagation (BP); electric load prediction; genetic algorithm (GA); microgrids; neural
network; renewable energy resources (RESs)

1. Introduction
1.1. Background

With the remarkable improvements in human living standards that have increased
electricity demand, various defects of super-large-scale power systems have become in-
creasingly prominent [1,2]. The power generation of traditional fossil fuel-based power
plants cannot efficiently meet the increase in electricity demand. The microgrid concept
was proposed in the early 21st century for the integration of clean renewable energy re-
sources (RESs) [3,4]. The microgrid is a small-scale local power system that is composed
of distributed energy resources (DERs), control systems, and electric loads [5–7]. The
power generation of the microgrid, i.e., DERs, includes renewable energy resources (RERs)
and energy storage systems (ESSs) [8–10]. The microgrid is regarded as a new type of
modern active power distribution system for the utilization and development of renewable
energy [11]. Additionally, it has become an indispensable and powerful supplement to the
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large power grid. Now, it has gradually become a vital and effective method to solve the
disadvantages of the power system in many countries.

The ESSs are the core of the microgrid. These can guarantee power quality and
microgrid reliability as well as reduce energy loss. Among all kinds of energy storage
technologies, battery energy storage systems (BESSs) have gradually become a very at-
tractive and prominent technology [12]. Its versatility, fast response speed, high energy
density, and high efficiency are the main reasons. By absorbing power from the grid during
off-peak hours and supplying it during peak hours, a BESS enables peak shifting/shaving,
improves power quality, and alleviates congestion. As a result, various types of BESS are
becoming increasingly integrated into modern energy systems. However, despite continu-
ous advances in electrochemical technology, the management and control of BESS remain
challenging problems [10].

The problem of how effectively maintaining the power generation and consumption
balance impacts the stable operation of the microgrid [12]. If the network topology or load
of the microgrid changes, appropriate control strategies must be adopted for the power
generation device to ensure its safe and reliable operation [13,14]. The output of wind
power, photo-voltaic, and other micro-power sources in the microgrid is very unstable, and
requires the coordination and cooperation of all DERs [15]. Meanwhile, load forecasting,
renewable power generation prediction, and electricity price forecasting are also important
factors affecting the performance of the management system in the microgrid [5]. Therefore,
it is an important prerequisite for realizing the intelligent management of microgrids [16]. If
the load, power, and electricity price of the microgrid can be relatively accurately predicted,
the stability and power quality of the power system can be guaranteed.

1.2. Current Research on Load Prediction

Many experts and scholars have made a lot of contributions to the development of
short-term load forecasting. Generally, the means of prediction could be classified as
traditional methods, classical prediction methods, and artificial intelligence prediction
methods. Classical methods include the exponential smoothing method and time series
method. Traditional methods include the trend extrapolation method and grey prediction
method. Intelligent prediction methods include the artificial neural network (ANN) method,
chaos theory method, SVM method, and combination prediction method [17]. ANN
methods are briefly introduced below.

The principle of ANN is proposed by studying the way of conveying neural signals
in the brain. The solving model of the problem is established by a computer, and then
the “neurons” are connected by weights according to the simulation of the brain learning
process. By constantly changing the weight of the connection through the computer, the
established model continuously approximates the nonlinear function of load prediction.
Since Park, D.C. et al. [18] first applied an ANN to load prediction in 1991, experts and
scholars have continuously deepened their research on neural networks in load prediction
and have made remarkable achievements.

For an object with a more complex mapping relationship, ANN can also be used to
describe it better and has a strong adaptive ability, so a large number of irregular data can
also be processed through its adaptive ability. The disadvantage of the ANN is that it will
have a slow convergence speed, and fall into local optimum solutions and overfitting issues.

In [19], the dynamic correction method was proposed to evaluate the weights of neural
networks, and the accuracy of load prediction can be effectively improved by using such
a correction method. The authors in [20] combined the Hadoop architecture of database
technology in the computer field with backpropagation (BP) neural networks. This has
also been applied in a study using massive original data to realize load prediction. The
combination of the two methods cannot only improve the accuracy of load prediction but
also break through the scale of load prediction data. In [21], a short-term load forecasting
model based on support vector regression (SVR) and the whale optimization algorithm
(WOA) was proposed. However, the initial value of the original WOA algorithm lacks equi-
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librium stability. It is possible to fall into local optimum and low convergence accuracy. In
literature [22], the fruit fly optimization algorithm (FOA) was improved, and the improved
FOA (IFOA) algorithm was combined with the backpropagation neural network (BPNN) to
build a wind power generation prediction model. The results show that the signal strength
decreases and the packet loss rate increases with the increase in the transceiver distance,
and the electromagnetic wave of the wind power plant will cause some interference with
the signal strength. The model has limitations on the signal receiving and receiving distance
and a high requirement in terms of equipment professionalism.

1.3. Contribution of the Paper

This paper aimed to improve the accuracy and effect of the load forecasting module
in microgrids. Firstly, after analyzing the operation strategy of BESSs and introducing
the structure and importance of the forecasting system, the concept of the BP deep neural
network is used to realize the function of load forecasting. Then, considering that the
BP neural network easily falls into local optimal solution and convergence speed is slow,
a method of improving the BP neural network by genetic algorithm (GA) is proposed.
The accuracy of prediction is improved by reducing the input dimension of the BP neural
network and optimizing the weight and threshold. Finally, the load forecasting model of
the microgrid based on a GA–BP neural network is established to achieve the improvement
of prediction accuracy and prediction effect.

2. Operational Strategy of BESS and Prediction System

The microgrid can be operated off-grid and grid-connected [23,24]. As shown in
Figure 1, the main components of the microgrid are distributed generations (DG), including
photovoltaic (PV), wind turbines (WT), fuel cells, (FC), diesel generators (DG), and BESSs [7].
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2.1. Operational Strategy of BESS

The energy management system (EMS) optimizes the operation of the microgrid and
schedules the power resources and BESSs in the microgrid, considering fluctuations in
renewable energy resources, the uncertainty of market price and demand, and the real−time
supply and demand balance of electric energy and other constraints in microgrids [25–27].
Optimization methods are used to reduce operating costs, increase energy efficiency, and
reduce the carbon emissions and peak load [28]. In the grid−connected mode, RESs supply
loads. As soon as the supply of load power cannot be fulfilled with RESs, it will determine
whether to choose battery or the distributed grid to supply according to the state of charge
(SOC) of BESS [12]. When the wind and PV power generation have a surplus after load
supply, it will also determine whether to sell electricity to the distribution grid or charge
the battery according to the SOC of the BESS.
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A considered model of the SOC of BESS is shown as follows. The SOC can be de-
scribed as

SoCt = SoCt−1 + η ∗ Pch,t −
1
η
∗ Pdis,t (1)

where η is the BESS efficiency of charging/discharging; Pch,t is the charging power; and
Pdis,t is the discharging power. Under ideal conditions, the constraint is

0 ≤ Pch,t ≤ Pb (2)

0 ≤ Pdis,t ≤ Pb (3)

where Pb is the installed power of BESS. After considering that the charging and discharging
process cannot be carried out simultaneously, there must be another constraint which is

Pch,t ∗ Pdis,t = 0 (4)

The charge and discharge depth should be considered as

α1Eb ≤ SOCt ≤ α2Eb (5)

where α1 and α2 represent the lower and upper limits of BESS; Eb represents the energy
capacity of BESS.

The following objective function is considered:

OF : min
PGp ,PDER ,PBESS

∑
h

[
(ρGPG − ρLPL) + ∑

nDER

(
fgen(PDER) + fOM(PDER)

)
+ ∑

nBESS

( fBESS(PBESS))

]
(6)

s.t. (1)–(5);
PG + ∑nDER

(PDER)+∑nBESS
(PBESS)− PL = 0, ∀h (7)

PG ∈
(

PG, PG
)
; PDER ∈

(
PDER, PDER

)
(8)

where h denotes hours; ρG and ρL denote the grid−purchased/sold energy (market) price
and load delivered power, respectively; PGp and PL are the amounts of grid−purchased/sold
and load delivered power, respectively; n, nDER, nBESS represent the number of all in-
stalled/invested units, number of generation units, and the number of BESSs, respectively;
PDER, fgen, fOM indicate the power generated by DERs, the fuel consumption rate of DERs
as functions of generated powers, and the operation and maintenance costs of DERs as
functions of generated powers, respectively; and PBESS, fBESS denote the power delivered
by BESS and the cost function of BESSs (to model the battery degradation and life cycle
effect), respectively. Constraint (7) maintains the production–consumption balance, and
constraint (8) imposes grid−power exchange and DER power generation capacity limits.

In islanded operation mode, the microgrid power supply is mainly offered by RESs
and BESS. The output of the whole microgrid should realize the real−time following of
load demand changes. In general, there is a large demand for BESS in this operation mode.
The EMS takes a load demand, distributed power generation, and SOC of storage battery
as input. At the same time, the data are managed and the signals are shown to control the
BESS operation. Its control mode mainly exists in the three following situations.

(1) If the difference between the distributed power generation and load demand is
positive and the battery is not fully charged, the control system will invoke the charging
operation. The remaining power will be distributed among all batteries until the battery is
charged to the SOC upper limit. When the battery is charged to the upper limit of SOC,
if the microgrid is in the grid−connected mode, the remaining electricity will be sold to
the distribution network. If the microgrid is in the islanded operation mode, the control
system will invoke the generation power limiting operation.



Algorithms 2022, 15, 338 5 of 19

(2) If the distributed power supply and demand on the load side are equal, there is
no need for the BESS to operate, and it may work in standby mode to provide ancillary
services such as dynamics frequency and voltage support.

(3) If the difference between the distributed power generation and load demand is
negative and the battery is not fully discharged to the lower limit of SOC, the control
system will invoke the discharge operation. When the battery is fully discharged to the
lower limit of SOC, if the microgrid is in the mode which is connected to the grid, and the
remaining required power can be supplied by the distribution grid. If the microgrid is in
island operation mode, the load shedding operation will be invoked by the control system.

For battery charge state detection using the neural network method, a large number of
corresponding outside factors such as current and voltage, as well as battery charge state
data can be applied using training datasheets. The neural network is repeatedly trained
and trialed by forwarding the propagation of input information and backpropagation of
error transmission. When the predicted charge state is within the error range required by
the design, the predicted value of the battery’s charge state could be obtained by inputting
new data.

The neural network algorithm has a strong nonlinear fitting ability, without consider-
ing the internal structure of the battery, for external excitation, the relationship between the
input and output can be obtained by training a large number of input and output samples,
so it can be that the dynamic characteristics of the battery are well fitted to realize the
SOC estimation of the battery. Additionally, it has high estimation accuracy. When there
are enough battery data samples, high accuracy can be obtained, and the neural network
estimates the SOC. It is suitable for a variety of power batteries and can effectively solve
the problems in background technology.

2.2. The Structure of the Prediction System

The basic requirement of the prediction system in a microgrid is to forecast the output
power of the RESs such as WT on the next day. It is required to forecast not only for
the output power individually but also to gather the output power of the whole region.
The wind power prediction system should have a good interface with the EMS system.
Meanwhile, the wind power prediction system needs to operate in the network of the
dispatching system. Its network structure and security protection scheme should meet the
requirements of system security protection regulations.

The structure and model of the whole system are shown in Figure 2. Here, are some
software functions:
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(1) The database of the forecasting system is the core of the system. Each software
module closely interreacts through the database. It stores the numerical weather forecasting
data from the numerical weather forecasting processing module. Additionally, the predic-
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tion program can generate the data of results, the real−time wind power load generated by
the EMS system interface program, the wind power data of the market price, etc.

(2) The numerical weather prediction module downloads the weather forecasting data
from the system of the weather prediction service provider. After processing, the numerical
weather forecast data of each predicted wind farm prediction period is formed and sent to
the database of the prediction system.

(3) The prediction module extracts the numerical weather prediction data from the
database. The forecasting model calculates the prediction results of the wind power plant
and sends them back to the database.

(4) The interface part of the EMS system transmits the real-time power data in every
wind turbine to the system database. Meanwhile, the forecasting results are taken from the
database and sent to the EMS system.

(5) The graphical user interface module realizes the interactions between the sys-
tem and users—including complete data and curve display, system management, and
maintenance functions.

3. BP and GA–BP Neural Network Modeling
3.1. BP Neural Network Modeling

The forecasting model of the BP algorithm is shown in Figure 3. The model consists
of three parts: the establishment of the BP deep neural network model, training, and
prediction. Firstly, modeling serves to analyze the required network topology and the
precise number of nodes in each layer of this topic to build a suitable BP network model
for this topic. The network is then initialized. Secondly, the relevant network parameters
are set and the training function of each layer and the transfer function of each layer are
selected. Then, the training of the network begins. If the training result reaches the expected
value, it will enter the test part. If the training result does not reach the expected value, it
will return to re−train. Then, the network is tested. Finally, the network prediction is made.
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BP neural network has a multi−input and multi−output model structure. This can
meet any intricate input to output with a non−linear map. By learning the samples, the
reasonable solution rules can be automatically extracted, and the complex system can be
adaptively modeled. After effective BP network training, the iteration time of the system
is less. It can be used in real−time processing. The constructed system also has good
robustness and generalization ability. However, a large number of research results show
that there are still many unsatisfying aspects of the BP network in both theoretical analysis
and practical operation. For example, the traditional BP algorithm uses the gradient descent
method. This is a local search optimization method [29]. This method can simply fall into
the local extremum during training, leading to the failure of the training. In addition, the
BP algorithm is difficult to solve the contradiction between the instance scale and network
scale of the application problem. This involves the relationship between the possibility and
feasibility of network capacity, that is, the problem of learning complexity. Moreover, the
newly added samples should affect the network that has been successfully learned.

The BP network also has the characteristics of “overfitting”. In general, the predictive
ability of the network is proportional to the training ability. With the improvement of
training ability, the prediction ability of the BP network will reach a limit. Additionally,
the prediction ability will then tend to decline, which is called “overfitting”. Even if there
are more samples for network learning, it cannot reflect the internal law contained in the
sample. This shows the gap ability to forecasting and the ability to train the network.

To mitigate the limitation of the traditional BP neural network in practical forecasting
applications due to the above defects, most people use an optimized algorithm based on
the heuristic standard gradient descent method when training the network, including
the additional momentum method and adaptive learning rate method—or improved
algorithms based on standard numerical optimization, such as genetic algorithm (GA),
conjugate gradient method, Bayesian regularization method and Levenberg–Marquardt
method (L–M method). The speed of the improved algorithms above varies according to
the model complexity, sample scale, network model, and error requirements. In general,
the training efficiency of the GA numerical optimization algorithm is higher than that of
the heuristic standard gradient descent method.

3.2. GA–BP Neural Network

The genetic algorithm (GA) is a heuristic search optimization method based on Dar-
win’s theory of biological evolution, which is used in various applications [30–33]. Selection,
crossover, and mutation are its core operations. Three operations are used to screen indi-
viduals from the initial population. During the period, the high fitness individuals are left,
whereas the low fitness individuals are deleted. Hence, the new group has the relevant
information from the previous generation. Additionally, the new group is better compared
to the previous generation. The operation is repeated until the conditions are met [32].

The flowchart of GA is introduced in Figure 4, as follows.
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The working process of GA is introduced below [33]:
(1) Initialization: calculate the counter of evolutionary algebra as t, let t = 0; the

maximum iteration number is T; the initial species population P (0) is M randomly selected
individuals. The following problems should be noted when setting the data of GA. For the
population size, when the initial population size is set relatively small, the performance will
deteriorate and it is difficult to obtain the best result. If the population size is set too high,
the computing time of the computer will be prolonged, and the convergence speed will
be slowed down, resulting in lower efficiency. Crossover probability plays an important
role in genetic algorithms. It can control the frequency of the renewal of individuals in a
population. If the crossover probability is too large, the renewal frequency of individuals in
the population will be fast, resulting in individuals with high fitness being quickly screened
out. If the crossover probability is too small, the search speed will be slow, so the crossover
probability is usually set between 0 and 1. For mutation probability, if it is set too high,
the search will become random and the convergence will be too slow. If it is too small,
the convergence is too fast and it is difficult to produce new excellent individuals, so it is
usually set between 0 and 1.

(2) Individual evaluation: calculate the fitness value. The fitness function can calculate
the fitness value, which is related to the selected probability individually. The better the
fitness value, the greater the chance of being selected and the stronger the viability.

(3) Selection operation: the selection operation can select individuals with good fitness
values and pass them on to the next generation. That is, some individuals from the old
group are selected for the new group with a specific probability, which is related to the
fitness function.

(4) Crossover operation: Crossover operations are core operations. Because of its
global search ability, the crossover operation can greatly enhance the searchability of the
genetic algorithm. Under the condition of maximizing the structure of chromosomes, two
randomly selected chromosomes were partially replaced and recombined to generate new
genes, so as to expand the search space. The crossover operator is used to swap and
recombine the partial genes of two individuals randomly selected from P (t), to produce
new excellent individuals. The crossover operation is shown in the following Figure 5.
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(5) Mutation operation: apply the mutation operator to P(t). An individual is ran-
domly selected from P(t), and some structures of this individual are mutated to obtain
a better individual. P(t) is going to obtain a new population P(t + 1) after all this. For
mutation probability, if it is set excessively high, the search will become random and the
convergence will be excessively slow. If it is too small, the convergence is too fast and it
is difficult to produce new excellent individuals, so it is usually set between 0 and 1. The
mutation operation is shown in Figure 6 below.
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(6) Determine the termination condition: if t = t or the result meets the desired standard,
then the individual is output as the best solution and the calculation is terminated.

The structure of the BP network is decided by the input–output factor numbers in
the sample data. Thus, the length of the individual in GA can be obtained. The network
optimization part refers to the optimization and correction of the initial weights and
thresholds of the BP network using GA. The defect of the BP network is largely due to its
initial weight and threshold being random. Additionally, genetic algorithms can solve this
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problem. In the training part of the sample data, the initial weights and thresholds of the
BP network are assigned after an individual optimal solution is obtained and following the
network’s training, testing, and prediction.

4. BP and GA–BP Neural Network Realization

The structure of the BP network is determined by the number of input and output
influencing factors in the sample data so that the length of individuals in GA can be
obtained. The network optimization part refers to the optimization and correction of the
initial weights and thresholds of the BP network using GA. Because a large part of the
defect of the BP network is due to its initial weight and the threshold value is random, the
genetic algorithm can solve this problem. In the training part of sample data, the initial
weights and thresholds of BP network are assigned after obtaining individual optimal
solutions, and then network training, testing and prediction are carried out.

4.1. BP Neural Network Model Design

(1) The input and output nodes are decided upon: this model selects the wind power
data of a wind power plant in Seville, Spain, within a total of 96 h in 4 days. Firstly, it is
necessary to make the data normalized. The normalization of sample data mainly serves to
eliminate the difference in the order of magnitude between the influencing factors, unify the
data processing, and improve the prediction accuracy. This topic adopts the normalization
method as shown in the following formula:

xgij =
xij − ximin

ximax − ximin
(9)

where xgij is the normalized value of the j sample data of the i influencing factor; xij
represents the j sample data of the i influencing factor; ximin is the minimum value of the i
influencing factor; and ximax is the maximum value of the i influencing factor.

For the normalization of the wind degree, the wind direction indicates the direction of
the wind, the circle is divided into 360 degrees, and north is 0 degrees. To distinguish wind
directions in every degree, the value sine and cosine of wind direction are taken as input.
This is to mitigate the large gap between the data affecting the training effect. Selecting the
sine and cosine values of the wind direction for normalization is a good choice.

In this model, the average relative temperature, pressure, humidity, wind speed, and
sine and cosine wind direction angles are selected as input variables, namely i = 6. The
real−time electricity price of the wind power plant or wind power load is taken as the
prediction target, so the output node number is k = 1.

(2) Determine the hidden layer numbers.
The determination of the number of nodes in hidden layers generally requires testing

by setting a different number of nodes, comparing the global error of their prediction
results, and constantly adjusting the number of hidden layer nodes to test the algorithm.
In the actual training, the following formula is generally adopted for a candidate number
of hidden layer nodes, and then the number of nodes with the minimum global error is
selected as the number of hidden layer nodes.

l =
√

m + n + a (10)

where a is the empirical constant, usually 1 < a < 10, and m and n represent the input
number and output number. Through the continuous adjustment of network training, the
prediction error is minimized when the number nodes in the hidden layer is 6.

(3) Determine the value of the learning rate.
As an important parameter, the learning rate determines the changes in weights and

thresholds in the backpropagation process of the BP neural network. If the learning rate is
excessively large, the stable operation of the system may be affected. However, when the
model has a small learning rate, the time for training may be directly affected. Hence, the
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program will take a long time to converge. Therefore, a learning rate of 0.001 is selected in
this model.

(4) Network performance is evaluated by error parameters.
Coefficient of determination (R2):

R2 = 1− ∑(yi − yi)
2

∑(yi − y)2 (11)

Mean square error (MSE):

MSE =
∑n

i=1 (yi − yi)
2

n
(12)

Root mean square error (RMSE):

RMSE =

√
∑n

i=1(yi − yi )
2

n
(13)

Mean absolute percentage error (MAPE):

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − yi
yi

∣∣∣∣100% (14)

Residual prediction deviation (RPD):

RPD =
standard deviation

RMSE
(15)

where yi is the actual load value; yi is the predicted load value; and n is the number of
historical load data.

4.2. BP Neural Network Model Analysis

Figure 7 shows the dataset of six input parameters including the temperature, pres-
sure, humidity, wind speed, sine value of wind angle, and cosine value of wind angle,
respectively. It is worth noting that the data of columns 5 and 6 were processed by data
normalization. Additionally, there are 96 lines of data which represent 4 days (96 h), where
each line stands for 1 h parameters of the wind turbine. For 4 days, the first day and the
third day are sunny weather, while the second day and the fourth day are rainy and cloudy.
In other words, lines 1–24 and lines 49–72 represent the sunny day, while lines 25–48 and
lines 73–96 represent the rainy and cloudy day. This is to distinguish the influence of
different weather conditions on the accuracy of load forecasting. In this paper, the six above
independent variables of a microgrid in four consecutive days are used as sample data for
training, and a load of its microgrid is predicted.

Table 1 presents the data on the power load of the wind turbine. In this model, it
represents the output of the model. In the MATLAB simulation module, users can use
the relevant functions of network design, training, and simulation provided by Neural
Network Toolbox (NNbox) according to their requirements, normalize training samples,
develop network initialization, learning rules, and network parameters. In this way, the
neural network algorithm learning, and iterative procedures can be realized.
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Table 1. Dataset of the input output parameters.

Input

Day Temperature Pressure Humidity Wind Speed Sine Value of
Wind Angle

Cosine Value of
Wind Angle Output

1.00 290.16 1029 55 5 −0.5 −0.866025 1359

2.00 290.66 1029 55 5 −0.766044443 −0.642788 1404

3.00 290.67 1029 59 4 −0.766044443 −0.642788 1481

4.00 287.64 1029 62 4 −0.866025404 −0.5 1577

5.00 285.63 1029 67 5 −0.866025404 −0.5 1513

6.00 283.63 1030 71 3 −0.866025404 −0.5 1453

7.00 283.13 1030 71 4 −0.866025404 −0.5 1577

8.00 283.13 1030 71 4 −0.939692621 −0.34202 1897

9.00 282.14 1030 81 2 −0.984807753 −0.173648 2133

10.00 283.14 1030 76 2 −0.984807753 −0.173648 2081

11.00 282.13 1030 76 5 −0.866025404 −0.5 2012

12.00 282.14 1030 81 1 −0.939692621 0.3420201 1841

13.00 281.64 1030 81 1 −0.984807753 0.1736482 1800

14.00 280.64 1030 87 2 −0.984807753 −0.173648 1882

15.00 280.64 1030 87 4 −0.939692621 −0.34202 2025

16.00 281.15 1030 87 3 −0.939692621 −0.34202 2157

17.00 280.14 1030 81 3 −0.866025404 −0.5 2112

18.00 280.64 1030 81 1 0 1 2021

19.00 280.64 1030 81 3 −0.984807753 −0.173648 2077

20.00 282.66 1031 81 2 −0.984807753 −0.173648 2131

21.00 286.16 1031 71 4 −0.939692621 −0.34202 2319

22.00 288.66 1031 62 4 −0.866025404 −0.5 2702

23.00 290.66 1031 55 4 −0.866025404 −0.5 2996

24.00 291.66 1030 52 4 −0.64278761 −0.766044 3139
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Table 1. Cont.

Input

Day Temperature Pressure Humidity Wind Speed Sine Value of
Wind Angle

Cosine Value of
Wind Angle Output

25.00 292.16 1029 48 3 −0.64278761 −0.766044 3217

26.00 292.16 1029 52 3 −0.766044443 −0.642788 3183

27.00 291.66 1029 55 2 −0.766044443 −0.642788 3092

28.00 288.66 1029 67 2 −0.866025404 −0.5 3065

29.00 285.64 1030 76 4 −0.866025404 −0.5 2936

30.00 284.15 1030 81 3 −0.939692621 −0.34202 2681

31.00 282.64 1030 87 2 −0.984807753 −0.173648 2592

32.00 282.64 1030 87 4 −0.939692621 −0.34202 2543

33.00 282.15 1030 87 2 −0.984807753 −0.173648 2503

34.00 281.64 1031 87 3 −1 0 2581

35.00 280.64 1031 93 2 −0.984807753 −0.173648 2608

36.00 280.15 1030 93 2 −1 0 2422

37.00 280.64 1030 87 2 −1 0 2217

38.00 279.64 1030 93 2 −0.939692621 0.3420201 1875

39.00 279.15 1030 100 1 −0.984807753 −0.173648 1561

40.00 279.64 1030 93 2 −1 0 1213

41.00 279.15 1030 93 2 −0.984807753 −0.173648 1020

42.00 278.64 1030 93 2 −1 0 1103

43.00 279.14 1030 93 3 −0.984807753 −0.173648 1249

44.00 281.66 1031 93 1 −1 0 1323

45.00 285.66 1031 71 2 −0.984807753 0.1736482 1286

46.00 288.16 1031 67 2 −1 0 1325

47.00 291.16 1030 59 1 0 1 1370

48.00 292.15 1029 52 1 −0.342020143 −0.939693 1456

49.00 292.66 1029 52 1 0 1 1605

50.00 292.66 1028 59 3 0.766044443 −0.642788 1658

51.00 291.66 1028 55 3 0.766044443 −0.642788 1592

52.00 288.15 1028 72 1 0.766044443 −0.642788 1455

53.00 286.14 1029 76 1 0.866025404 −0.5 1489

54.00 284.14 1029 81 1 0.325568154 −0.945519 1471

55.00 282.64 1029 93 0 0 1 1418

56.00 281.66 1029 100 1 −1 0 1286

57.00 280.64 1029 100 2 −0.939692621 0.3420201 1117

58.00 280.64 1029 93 2 −0.939692621 0.3420201 973

59.00 280.15 1029 100 2 −0.866025404 0.5 891

60.00 280.15 1028 93 1 −0.984807753 0.1736482 764
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Table 1. Cont.

Input

Day Temperature Pressure Humidity Wind Speed Sine Value of
Wind Angle

Cosine Value of
Wind Angle Output

61.00 279.64 1028 93 2 −0.866025404 0.5 697

62.00 279.64 1028 93 1 −0.984807753 0.1736482 604

63.00 279.15 1028 93 2 −1 0 584

64.00 278.64 1027 93 2 −0.984807753 0.1736482 617

65.00 278.15 1027 100 2 −1 0 673

66.00 278.15 1027 93 2 −0.939692621 0.3420201 778

67.00 277.64 1027 93 2 −0.939692621 0.3420201 924

68.00 280.15 1028 87 1 −0.984807753 0.1736482 1092

69.00 284.15 1028 71 0 0 1 1198

70.00 287.16 1028 62 0 0 1 1240

71.00 289.66 1028 59 1 0 1 1326

72.00 290.15 1027 55 1 0.866025404 0.5 1398

73.00 290.15 1027 55 1 0.017452406 0.9998477 1537

74.00 290.15 1026 51 0 0 1 1792

75.00 291.15 1026 45 0 0 1 2025

76.00 291.15 1026 45 0 0 1 2340

77.00 287.15 1026 58 1 0.017452406 0 2462

78.00 284.15 1027 71 0 0 1 2672

79.00 282.15 1027 71 1 0.017452406 0.9998477 2852

80.00 281.15 1027 87 1 0.017452406 0.9998477 3037

81.00 280.15 1028 93 1 0.017452406 0.9998477 3340

82.00 279.15 1028 93 2 0.034899497 0.9993908 3444

83.00 278.15 1028 93 2 0.034899497 0.9993908 3319

84.00 278.15 1028 93 2 0.034899497 0.9993908 3168

85.00 278.15 1028 93 1 0.017452406 0.9998477 3127

86.00 278.15 1027 93 1 0.017452406 0.9998477 3379

87.00 277.15 1028 93 2 0.034899497 0.9993908 3729

88.00 277.15 1028 100 2 0.034899497 0.9993908 4059

89.00 277.15 1027 93 1 0.017452406 0.9998477 4340

90.00 276.15 1028 93 1 0.017452406 0.9998477 4785

91.00 276.15 1028 93 2 0.034899497 0.9993908 5464

92.00 276.15 1029 93 2 0.034899497 0.9993908 5848

93.00 280.15 1029 81 1 0.017452406 0.9998477 6151

94.00 283.15 1029 66 2 0.034899497 0.9993908 6461

95.00 285.15 1030 66 1 0.017452406 0.9998477 6871

96.00 286.15 1030 62 1 0.017452406 0.9998477 7062

The trainable forward inverse feedback function “newff” was introduced in MATLAB
to create a BP network. Moreover, the bipolar S−type function “tansig” is the neuron
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transfer function in the hidden layer. The pure linear transfer function “purelin” is the
output layer neuron transfer function.

After determining the network structure, “newff” will automatically introduce the
initialization function “init” to initialize each weight with random default parameters
and generate a trainable forward feedback network, which means the return value of this
function “net”. In MATLAB, network attributes are defined by structures. The function
“trainlm” is being used to realize training. The iteration numbers are set to 1000. Addi-
tionally, the convergence error is set to 0.01. Part of the code parameters are shown in
Algorithm 1:

Algorithm 1: BP neural network parameters

Procedure test1()
temp← randperm(size(X, 1))
for i← 1 to 60 do

P_train[i]← X[temp(i)]
end for
for i← 61 to end do

P_test[i]← X[temp(i)]
end for
M← size(P_train, 2);
for i← 1 to 60 do

T_train[i]← Y[temp(i)]
end for
for i← 61 to end do

T_test[i]← Y[temp(i)]
end for
N← size(T_test, 2)
net. trainParam.epochs← 1000
net. trainParam.goal← 1e−3
net. trainParam.lr← 0.01

end procedure

The training set is the data sample that may fit the model. During the process, the
training uses the error gradient descent, learning, and trainable weight parameters. The test
set can determine the ability to generalize in the final model. This model chooses 1–60 data
as the training set and 61–96 data as the test set to check the learning effect. The result of
the training and test set are demonstrated in Figures 7 and 8.
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In the test set, we can see that the coefficient of determination (R2) = 0.60288; root
mean square error (RMSE) = 5.509; residual prediction deviation (RPD): 1.319; mean square
error (MSE): 30.3493.

The relatively fast TRAINLM function in a medium−scale network was used. The
data show that, although the prediction value and the actual value have a similar trend, the
forecasting accuracy is not very good. Therefore, it is essential to find a well−modified algo-
rithm for the problem as well as improve the prediction effect. In addition, the waveform of
the prediction curve should become smoother and the prediction error is further reduced.

4.3. GA–BP Neural Network Model Analysis

Part of the code parameters are shown in Algorithm 2:

Algorithm 2: GA–BP neural network parameters

Procedure test2()
net. trainParam.epochs← 1000
net. trainParam.goal← 1e−4
net. trainParam.lr← 0.01
net. trainParam.showWindow← 0
maxgen← 100
sizepop← 10
pcross← 0.8
pmutation← 0.1

end procedure

Crossover operations are the core operations in the GA–BP neural network train-
ing. Because of its overall searchability, the crossover operation can greatly enhance the
searchability of the genetic algorithm. Under the condition of maximizing the structure of
chromosomes, two randomly selected chromosomes were partially replaced and recom-
bined to generate new genes, to expand the search space. In this model, 0.8 is set to the
crossover probability and 0.1 is set to the mutation probability.

This model also chooses line 1–60 data as the training set and line 61–96 data as the
test set to check the learning effect. The result of the fitness curve, training set, test set, and
test set prediction error are demonstrated in Figures 9–12.
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In the test set, we can see that the coefficient of determination (R2) = 0.96602; root mean
square error (RMSE) = 1.422; mean square error (MSE): 2.0221; and residual prediction
deviation (RPD): 5.4975. Additionally, the test set error is between [−3.91%, 2.4646%]. Such
a small error is very accurate.

Table 2 compares the BP and GA–BP neural network errors in the test set.

Table 2. BP and GA–BP neural network error comparison.

MAE MSE RMSE R2 MAPE

BP neural network 2.2985 30.3493 5.509 0.6029 0.2791
GA–BP neural network 1.1213 2.20221 1.422 0.966 0.0683
Error reduction (%) 51.20% 93.30% 74.18% 36.30% 75.50%

It can be seen from Table 2 that in terms of overall prediction accuracy, the mean
square error (MSE) of the GA–BP neural network prediction model is 2.0221, which is
significantly smaller than the 30.3493 of the BP neural network prediction model. The error
reduction is 93.3%. This shows that the prediction accuracy of the GA–BP neural network
prediction model is significantly better than that of the BP neural network prediction model.
In terms of the volatility and overall effect of the prediction results, the root mean square
error (RMSE) and mean absolute error (MAE) of the GA–BP neural network prediction
model are 1.422 and 1.1213, respectively, which are smaller than 5.509 and 2.2985 of the
BP neural network prediction model. Additionally, the value of the error reduction is
74.18% and 51.2%, respectively. This shows that the prediction effect of the GA–BP neural
network prediction model is also significantly better than the BP and GA–BP neural network
prediction model. As for R2, R2 itself is a widely used index to determine the quality of
regression models. The value of R2 is larger (close to 1), the better performance of the
regression equation fitness. Therefore, it can be concluded that the GA–BP neural network
prediction model is better than the BP neural network prediction model in the precision and
effect of microgrid load prediction. Moreover, the model with the GA optimized weight
threshold has higher prediction accuracy and a faster convergence speed. Additionally, at
the point where the BP error is larger, the error decreases more obviously. The results of
the GA–BP algorithm are better than those of traditional BP neural networks. The main
reason is that GA modifies the random initial weights and thresholds of the BP network.
This may make a remedy for the defects of the BP network to some extent. This improves
the accuracy of the prediction.

Similarly, wind power and market price can also be used as the output of the model
to predict as long as the data corresponding to the input can be obtained. In the machine
learning algorithm, the wind power and market electricity price and load are all random
data. After training and testing a specific algorithm, the corresponding data will also be
obtained. Hence, wind power and market price can also be forecasted by BP and GA–BP
neural networks.

5. Conclusions

This paper used the reinforcement learning method to study how ANN plays a role
in the prediction module of energy management systems in microgrids. Especially using
the BP neural network and GA optimized the BP neural network to realize not only load
prediction but power and market price as well. After comparing the prediction error in the
test set, the results of the GA–BP algorithm are better than those of traditional BP neural
networks. The main reason is that GA modifies the random initial weights and thresholds
of the BP network. This may make a remedy for the defects of the BP network to some
extent. This improves the accuracy of the prediction.

During the debugging part of the BP neural network, data preprocessing is a prerequi-
site for load forecasting. This will directly affect the accuracy of the prediction. In this paper,
first of all, mutation data identification, data correction processing, and data normalization
processing are carried out for the collected data to do a good job of preprocessing for later
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load forecasting. Then, the error characteristic index of this paper is determined by study-
ing the characteristics of the microgrid. Finally, according to the analysis of microgrid load
characteristics in the time dimension, the general variation rule of the load is obtained. This
paper established power generation prediction models based on the BP and GA–BP neural
networks. The screened historical power generation data were used as samples to make the
network training. After comparing the forecasting value and the actual value of the neural
network test set and analyzing the error, it was concluded that the prediction performance
and precision of the GA–BP neural network are better than those of the BP network.
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