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Abstract: With the increased popularity of social media platforms such as Twitter or Facebook,
sentiment analysis (SA) over the microblogging content becomes of crucial importance. The literature
reports good results for well-resourced languages such as English, Spanish or German, but open
research space still exists for underrepresented languages such as Romanian, where there is a lack of
public training datasets or pretrained word embeddings. The majority of research on Romanian SA
tackles the issue in a binary classification manner (positive vs. negative), using a single public dataset
which consists of product reviews. In this paper, we respond to the need for a media surveillance
project to possess a custom multinomial SA classifier for usage in a restrictive and specific production
setup. We describe in detail how such a classifier was built, with the help of an English dataset
(containing around 15, 000 tweets) translated to Romanian with a public translation service. We test
the most popular classification methods that could be applied to SA, including standard machine
learning, deep learning and BERT. As we could not find any results for multinomial sentiment
classification (positive, negative and neutral) in Romanian, we set two benchmark accuracies of
≈78% using standard machine learning and ≈81% using BERT. Furthermore, we demonstrate that
the automatic translation service does not downgrade the learning performance by comparing the
accuracies achieved by the models trained on the original dataset with the models trained on the
translated data.

Keywords: natural language processing; sentiment analysis; underrepresented language; machine
learning; deep learning; Twitter

1. Introduction

Nowadays, social media platforms such as Twitter, Facebook or Instagram have
become a common place for people to share their thoughts and for media outlets to
spread their information to the world. Supervising social media becomes effective as a
way of surveillance, as the number of their users has rocketed around the world: by the
end of 2021, the number of social media users was over 4.2 billion, and this number is
projected to increase to 5.4 billion by 2025 [1]. A mean toward this is analyzing people’s
opinion, sentiments, and attitudes from text sources, also known as sentiment analysis
(SA) [2]. Falling under the broad umbrella of text classification, SA systematically identifies,
extracts, quantifies and studies affective states and subjective information, producing useful
knowledge from text, to be used in subsequent descriptive or causal analysis [3].

Due to the high popularity of social media, platforms such as Twitter have become a
good source for investigating public opinions. By mining such texts, private entities can
employ methods such as brand monitoring in order to capture important brand events
in real time, and reflect a brand’s financial value to the firm [4]. Public entities, such
as governments, can use sentiment analysis or emotion detection in order to observe
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how the population is reacting to various public issues such as politics or healthcare.
For example, Praveen et al. [5] analyzed the attitude of Indian citizens towards COVID-
19 vaccines by collecting public social media posts written in English. They concluded
that, although positive sentiments were more prevalent than negative ones, the Indian
government needs to focus especially on addressing the fear of vaccines, which is a major
factor contributing to the negative attitude towards vaccination. Even more knowledge
can be extracted by modeling discussions on social networks. Bonifazi et al. [6] proposed a
general multilayer network approach and proved its validity by applying it on a Twitter
dataset containing texts concerning opinions on COVID-19 vaccines (pro-vaccination,
neutral and anti-vaccination). They discovered that anti-vaxxers tend to have ego networks
denser and more cohesive than those of pro-vaxxers, which leads to a larger number of
interactions among anti-vaxxers.

SA represents an established category of natural language processing (NLP), with a lot
of research efforts being focused on discovering the machine learning (ML) methods that
produce the best models given a particular problem under study. Although textbooks such
as [2] or reviews such as [3,7,8] present in details the recommended steps to be adopted
specifically for SA or with respect to a given technology applied to NLP in general and SA
in particular, a lot of research space is still open in the area of SA, if certain problem-specific
conditions occur, such as those induced within microblogging platforms, or handling user
input from mobile devices, etc.

Microblogging platforms such as Twitter, Instagram, Facebook, etc., inspire provoca-
tive questions as they feature linguistic challenges usually not seen in literary texts. Eisen-
stein [9] describes them as being bad language and it includes emoticons, phrasal abbrevia-
tions such as lol, smh or ikr, expressive lengthening of words, e.g., cooolll, shortened words,
or simply words written in a non-standard format, including those with typos, selected
from some irregular vocabulary or following an informal grammar. Various reasons not
in the scope of our research cause the presence of bad language in microblogging and
it dramatically influences the performance of a standard NLP model applied here [10].
Another issue regarding social media networks is related to privacy threats. The goal of
any social network is to enable users to safely share information, but in most cases, the
users are not familiar with privacy preservation issues. The work of Cerruto et al. [11]
demonstrates that it is possible to obtain or reconstruct personal user data by single-social
or cross-social network analysis. In our work, we aim to infer global sentiment polarity
for social media texts and we want to clarify that our analysis is not aimed at violating or
exploiting user privacy.

Specifically targeting Twitter, performing SA on non-English tweets is seen as chal-
lenging, mostly because of the difficulty to gather enough labeled data in the target lan-
guage [12]. Annotated datasets could be found for popular languages in the world. For
example, for English, we can mention BERTweet [10], a large-scale language model trained
over a corpus of 850M Tweets, which could be used together with fairseq [13] or trans-
formers [14] for text categorization tasks, including SA. In France, DEFT challenges run
between 2014 to 2018 focused on opinion mining and SA from Twitter posts [15], and
they gathered a labeled dataset at the disposal of the participating teams. In Spain, TASS
workshop (http://tass.sepln.org/, accessed on 22 August 2022) held starting with 2012 at
SEPLN congress supplies a dataset with annotated tweets [16], including Spanish crosslin-
gual variations.

However, little could be found for less popular languages of the world, such as
Romanian. Romanian belongs to the Romance language group, having many substantial
differences from English, including the alphabet, grammar, phonology, etc. In general,
the same sentiment is expressed in a more verbose way in Romanian than in English.
Ciobotaru and Dinu [17] performed emotion detection over a dataset of about 4000 tweets
in Romanian. The texts were manually labeled by them, but the dataset was not made
publicly available. Istrati and Ciobotaru [18] collected and manually labeled a dataset with
Romanian tweets about brands and created a SA model for usage in brand monitoring
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and analysis. Unfortunately, their manually labeled dataset is not publicly available. To
our knowledge, the recently proposed LaRoSeDa dataset [19] is the first and only public
dataset dedicated to sentiment analysis in Romanian. The requirements imposed on our
project [20] include a three-class sentiment prediction capability (negative, neutral and
positive) and the ability to analyze social media-specific texts. These requirements make
LaRoSeDa an unsuitable candidate for our work because the sentiment is labeled in a
binary fashion (negative and positive) and the texts refer to product reviews collected from
various online shopping platforms, not from social media platforms.

A team at technobium.com (accessed on 26 August 2022) created a commercial engine
for SA for the Romanian language, with a free demo posted at sentimetric.ro (accessed on
26 August 2022), capable of determining polarity for various texts, including microblog-
ging [21]. However, there are few scientific details on the internal construction of the model
and its performance in both prediction capabilities and efficiency with regards to the usage
of computational resources. Other efforts worth mentioning in the area of SA for Romanian
are [22–26].

To overcome the missing linguistic resources in the underrepresented languages, the
works in [27–29] suggest that automated translation could be used for model learning with
respect to SA, maintaining a similar performance with the original dataset.

In this research, we restrict our scope to perform SA on Twitter data (as an example of
a social network with harsh limit over the size of the messages), on a under-represented
language (Romanian) which lacks available labeled data to be used within model training
phases. Our final goal is to produce a model for inferring the global polarity of a tweet
in a multinomial classification fashion (positive, negative or neutral) with an acceptable
performance, even without being in possession of a large Romanian training dataset that
can meet our needs. In this respect, we avoid consuming time for a huge data collection
and annotation task, and instead, we used an English Twitter dataset of reasonable size
translated to Romanian using a public web translation engine.

Our research fits under the wider coverage of a media surveillance project [20], aiming
at investigating specific habits of the Romanian public interacting with TV and social media.
This imposes several restrictions over our model learning task, such as: the need to re-train
the models on a regular basis as the observed environments are being very volatile, the
need to process huge loads of messages in a short period of time during audience peaks,
and the need to comply with strict data privacy and security standards.

The main contribution of this paper is to demonstrate that, even with the lack of a well-
prepared training dataset, good SA results could be obtained by carefully implementing
and adapting the standard NLP pipeline for SA [2] to the specificity of the input data.
In particular, we show how each step of the NLP pipeline was applied and discuss the
consequence of each decision made throughout our NLP experiment. Furthermore, we
extend the previous result of Balahur and Turchi [27] obtained using French, German and
Spanish tweets to Romanian, showing that comparable performance could be achieved on
the translated dataset with that obtained on the original English source.

The paper is organized as follows: in Section 2, we present related work competing
with or influencing our research. Section 3 introduces the data under study and the method-
ological steps followed to construct the SA model. Section 4 presents the obtained results
and Section 5 concludes the paper.

2. Related Work

SA is a type of text classification employed with the specific objective of inferring
affective states and subjective information from text. To perform SA one could adopt
either a specific lexicon-based strategy or could use the standard ML-based text classi-
fication pipeline [30]. As indicated by the literature [2,3,31], classical machine learning
algorithms or novel deep learning approaches were applied for inferring SA models on
texts. Among classical ML algorithms, popular choices [30] are Bernoulli Naive Bayes
(NB) [32], Support Vector Machines (SVM) [33], Random Forest (RF) [34] or the Logistic
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Regression [35]. For deep learning, all important variants like the standard Deep Neu-
ral Network (DNN) [36], the Convolutional Neural Network (CNN) [37], or the Long
Short-Term Memory (LSTM) [38] are reported to perform well on text classification tasks.
Classical ML methods and the standard DNNs are applied on document-level embeddings
such as the well-known TF-IDF [39] or the modern Doc2Vec [40]. Novel methods of DL,
including here architectures composed with CNN and LSTM cells are in general applied on
word embeddings such as Word2Vec [41]. The classical TF-IDF lead to high-dimensionality
prediction problems, thus, the literature [3] suggests considering dimensionality reduction
schemes, such as principal component analysis (PCA) [42], non-negative matrix factoriza-
tion (NMF) [43] or Latent semantic analysis (LSA) [44], to make the computation more
efficient. In our work, we will experiment with these methods, in the search for a suitable
combination to fit our needs.

Recently, Google proposes BERT [45] as a state-of-the-art pre-trained model for many
NLP tasks. Multilingual BERT, pre-trained also for the Romanian language, is reported
to be surprisingly good for cross-lingual model transfer [46]. However, as practice in-
dicates [47], BERT comes with significant time costs for model learning—even on very
powerful servers, hence this being in contradiction with the need of our project to frequently
retrain the models and to accommodate high loads of messages on short time frames. Just
for comparison, we will train a BERT-based classifier using its multilingual version for
the Romanian language, to see how well we compare with the state of the art, in both
classification performance and training time.

Performing SA on microblogging content is seen as a difficult task [12] because one
has to deal with bad language [9]. However, for popular languages in the world like
English, Spanish or French, plenty of linguistic resources exist such that to enhance SA for
microblogging content. For English, we mention BERTweet [10], a large-scale language
model trained over a corpus of 850M Tweets, which could be used together with fairseq [13]
or transformers [14] for inferring polarity. BERTweet scores an accuracy of 72% on the
SemEval2017-Task4A [48] test set, outperforming its competitors RoBERT and XLM-R.
Barbieri et al. [49] reports BERTweet as being the State-of-the-Art on TweetEval benchmark,
with a 73% average recall. In France, labeled Twitter data were made available for the
participants in the DEFT challanges [15], while in Spain, the TASS workshops collected
the efforts to classify Spanish annotated tweets [16]. Pota et al. [50] applied BERT-based
models for SA on both English and Italian Twitter datasets and drew conclusions about the
importance of individualized preprocessing for exploiting hidden information, a suggestion
which we specifically followed in our work.

For the Persian language, which is also under-resourced like Romanian, in [51] the
lack of any public dataset for sentiment analysis is noted. The authors of this work created
a public dataset by collecting 11500 texts and manually labeling each one as either positive,
negative or neutral. Around 80% of the texts were collected from an electronic product
website, while the rest were collected from Twitter. They applied various classification
algorithms and a proposed CNN-LSTM network achieved the highest accuracy of ≈85%.
In [52], this pretrained hybrid model was used to infer the sentiment polarity of over 800,000
Persian tweets collected over a span of 6 months. The tweets refer to an Iranian COVID-19
vaccine called COVIran Barekat and foreign vaccines (AstraZeneca, Pfizer, Moderna and
Sinopharm). The authors compared the sentiments expressed towards the Iranian vaccine
versus the sentiments expressed towards the foreign vaccines and found a slight preference
for the Iranian one. By obtaining a monthly distribution of opinions, between April and
September of 2021, the authors discovered an increase in negative sentiments towards all
vaccines between late August and September. A possible explanation could be related to
the reported side effects of some of the vaccines. These results seem very promising but, as
stated in Section 1, we do not have the necessary resources in order to manually collect and
label a large volume of Romanian texts.

The state of the art in SA for microblogging content is less advanced in under-resourced
languages such as Romanian. We mention here the efforts of Ciobotaru and Dinu [17] for
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emotion detection and Istrati and Ciobotaru [18] for binary sentiment analysis who report
promising results, or the company technobium.com (accessed on 26 August 2022) who
show a free demo posted at sentimetric.ro (accessed on 26 August 2022). Yet we could
hardly rely on those tools to incorporate them in a larger project, as, to our knowledge, a
Romanian microblogging content dataset similar to BERTweet is not available.

As stated in Section 1, LaRoSeDa (Large Romanian Sentiment Dataset) seems to be
the only publicly available Romanian dataset labeled for sentiment analysis. The dataset
contains 15,000 reviews, of which 7500 are labeled positive and 7500 negative. Due to
its nature all works using this resource report the performances achieved for sentiment
classification in a binary fashion. In [53], an F1 score of 54% is achieved while in the
work which introduces the LaRoSeDa dataset an accuracy of ≈91% is reported as the
benchmark [19]. More recently, we acknowledge the Romanian DistilBERT corpus (https:
//github.com/racai-ai/Romanian-DistilBERT, accessed on 30 August 2022) [54] which
could be employed for binary SA over standard text data. They report the state-of-the-art
binary classification accuracy of 98% for SA performed on LoReSaDa. All the previous
experiments were performed on standard text in a binary classification fashion and the
problem setting is different from our global polarity inference. Regarding the multinomial
SA of social media texts in Romanian, we could not find any published work in order to set
a benchmark with which we can compare.

Searching for other Romanian research relevant to SA, we mention Lupea and Briciu [22]
who developed a Romanian Emotions Lexicon, attaching tags to words. Tufis and Barbu
Mititelu [26] developed RoWordNet (https://github.com/dumitrescustefan/RoWordNet,
accessed on 30 August 2022), a semantic network of words based on the idea introduced by
the WordNet English lexicon—each word having attached a polarity score. Both lexicons
could be of use in sentiment analysis if a dictionary-based method (as defined in [3] p. 541)
is selected for SA. Other Romanian authors performed sentiment analysis on different
sort of input data than tweets, such as speech [23,24] or poetry [25], thus benefiting from
resources developed with other purposes, such as SRoL [55] which was developed to help
Romanian speech processing research.

Constructing language resources for under-represented languages by automatic trans-
lation seems to work well for various NLP tasks, as acknowledged in [27–29,56]. Balahur
and Turchi [27,29] shows that automatic translation of datasets performed with Google
Translate, Bing Translator and Moses works well for French, Spanish and German in re-
lation to the SVM SMO classifier. Balahur and Perea-Ortega [28] performed extensive
experiments with English and Spanish Twitter datasets supplied for SemEval 2013 and
TASS 2013 workshops and showed that training data obtained from machine translated
text could work well for learning polarity classification systems. Banea et al. [56] positively
respond to the question whether we can “reliably predict sentence-level subjectivity in
languages other than English by leveraging on a manually annotated English dataset” by
learning Naive Bayes classifiers on six languages, including Romanian, starting from an
original English dataset with news articles translated with automatic engines available at
that moment in time. Thus, this further motivates our efforts to use machine translation for
obtaining the learning dataset for Romanian.

3. Data Processing Methodology

Given the specific advice provided in [2] with respect to building a SA classifier, in
this section, we present our approach to carrying out this task. Figure 1 summarizes all
performed steps. At the top of the diagram, the automatic translation process of the dataset
from English to Romanian is highlighted. The preprocessing step consists of various
procedures and are grouped in two different abstract pipelines. The one on the left will
generate texts which are fit for the TF-IDF variants, Doc2vec and Word2Vec techniques
while the one on the right will generate texts as expected by the pretrained BERT encoder.
The feature extraction step highlights the transformation of the preprocessed text into
numeric features which can be later used to train the ML models. The TF-IDF variants and
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Doc2Vec are grouped together to highlight that the output of all these methods are in the
same form. To be more specific, a preprocessed text is transformed into a vector of length N
while Word2Vec will transform a preprocessed text into a NxM matrix where the number
of rows will be equal to the number of words within the text and the number of columns
will be equal to the word embedding size, i.e., the number of values set to represent a single
word/token. BERT contextual encoding will represent texts using multiple vectors.

Figure 1. Architecture of the sentiment analysis system.
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In model training and tuning, we can see that for all the selected ML approaches, with
the exception of the BERT classifier, the evolutionary hyperparameter optimization method-
ology is used to identify the optimal set of parameters. Due to the high training times of
BERT, we opted for a classic fine tuning process using the recommended parameters. The
Bernoulli NB, Linear SVM, Logistic Regression, Random Forest and DNN are grouped
together to highlight the many-to-many relation of this group with the TF-IDF variants and
Doc2Vec features. This means that any feature from this group can be used by any model
mentioned previously. LSTM and CNN are grouped together in order to highlight that
both use the Word2Vec features, while the BERT classifier uses the specific BERT encodings.
The prediction of any trained model will denote the sentiment polarity of the input texts.

In the following subsections, we introduce the dataset and provide details on the
following: text preprocessing, feature extraction, dimensionality reduction, and classifier
selection. Many transformations over the text indicated below were implemented with the
help of SpaCy [57] (https://spacy.io/, accessed on 1 September 2022). Model construction
and performance evaluation are presented in Section 4.

3.1. Dataset

For our research, we selected the Twitter US Airline Sentiment Tweets (https://www.
kaggle.com/crowdflower/twitter-airline-sentiment, accessed on 1 September 2022) dataset.
The data were collected in 2015 and each tweet was manually labeled by external con-
tributors with its global polarity (positive, negative and neutral). It contains around
15,000 tweets, 63% being negative, 21% neutral and 16% positive. Each tweet is accompa-
nied by the contributor’s confidence about the annotated sentiment and each negative tweet
is accompanied by a reason for the assessment. There are a number of reasons why we
consider this dataset suitable for our research purpose: (i) it contains microblogging-specific
(bad) language, (ii) the sentiment class of each tweet was manually annotated and we can
easily verify the correctness and the reason for the annotation, (iii) the number of tweets is
large enough to provide reasonable training data, and (iv) the tweets are relatively recent.

As a first processing step, we used Google Translate (https://translate.google.com/,
accessed on 2 September 2022) service to translate all the tweets of the dataset in Roma-
nian. We eliminated all duplicated rows and sorted the dataset by Tweet Id. Thus, we
obtained two datasets: the original Twitter US Airline Sentiment Tweets (in English) and
its Romanian translation.

The structural, grammatical and syntactical integrity of any text translated with auto-
mated processes is affected. The main metric used in the literature to measure the quality
of an automated translator is the BLEU (Bilingual Evaluation Understudy) score. This
score is computed by comparing a translation with one or more acceptable translations and
checking for the presence/absence of particular words, the word ordering and the degree
of distortion. If the score measures from 0 to 100, a higher number represents a better
translation (100 denoting perfect translation). In [58], general English texts are translated to
50 different languages using Google Translate and the BLEU score is computed. The mean
score over all the compared translations is ≈76. English to Romanian achieved a score of
84, which is considerably above average. The maximum BLEU score of 91 was achieved by
English to Portuguese while the minimum of 55 was achieved by English to Hindi. Similar
results are also obtained in [59] where English to Romanian obtained better than average
results. In both works, better translations are obtained for languages which are in the same
of similar family with English. Translations from English to distant languages, such as
Hindi or Hebrew, are the most negatively effected.

For the purpose of running ML tasks, the dataset was split in training and test sets.
The training dataset consists of approx. 11,000 instances, while the testing dataset consists
of the remaining approx. 3700 instances, thus ensuring a 75–25% split between train and
test data. The split was made just after text preprocessing, such that the class distribution
between the train and test set was similar. Moreover, the English and Romanian train and
test set are identical in the sense that they contain the same instances.

https://spacy.io/
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3.2. Text Preprocessing

Dealing with bad language is mandatory in a SA task over microblogging content [10],
thus, in this subsection we describe specific text preprocessing efforts done with this respect.
As indicated by Pota et al. [50], individualized pre-processing of the tweets is required in
order to better exploit the hidden information of the input data. We developed a specialized
preprocessing module, containing the following steps, applied in this specific order:

1. Extra white space removal (language-independent);
2. Custom word lemmatization and tokenization (language-dependent);
3. URL identification and removal (language-independent);
4. Emoji identification and replacement (language-independent);
5. Social media mention identification and removal (language-independent);
6. Extra consecutive character removal (language-independent);
7. Abbreviation replacement (language-dependent);
8. Stop-word removal (language-dependent);
9. Lower case capitalization (language-independent);
10. Punctuation mark removal (language-independent).

Language-independent steps can be applied in the same manner in both English
and Romanian. In contrast, language-dependent steps implies that specific knowledge of
Romanian or English is requested.

For building the BERT-based classifier, we performed only steps 3 and 5, and we
performed an additional sentence-level tokenization. Next, we called to the BertTokenizer
to obtain the specific BERT encodings.

All steps, excluding 2 and 4, are commonly used for text preprocessing and were
applied in our work in the recommended fashion. In step 2, we instructed Spacy [57] to
not lemmatize social media-specific tagged words, to not split the tagged word during the
tokenization phase, and to not remove the negation element during the stop-word removal.

Step 4 is critical for our microblogging context, as we deal with emojis, as a sort of
Twitter bad language. Kralj Novak et al. [60] reports that about 4% of Tweets contain
emojis and their sentiment polarity does not depend on the language. In this respect, they
constructed the Emoji Sentiment Ranking lexicon containing the 751 most frequently used
emojis, each annotated with the sentiment polarity (negative, neutral or positive). Here,
we verify whether a token is found in the Full Emoji List (https://unicode.org/emoji/
charts/full-emoji-list.html, accessed on 3 September 2022) and whether it has an associated
sentiment in the Emoji Sentiment Ranking lexicon mentioned above. If true, the token will
be replaced with its polarity and a special prefix and suffix.

3.3. Feature Extraction

Key to any NLP task is the document internal representation, i.e., properly selecting
the features from the raw text and encoding them to numerical values, so as to keep the
representation tractable or to enrich it with some language semantics [3]. In our work,
we tested the most popular approaches as suggested by the NLP literature [2,3]: TF-
IDF, Word2Vec and Doc2Vec. We learned the embeddings on the English dataset and its
Romanian translation and we restricted the vocabulary to contain only the tokens which
appear at least three times, removing a large number of infrequent tokens or those which
may have been erroneously built in the preprocessing step.

We notice that the resulting English vocabulary contains around 3100 tokens, while
the Romanian one contains around 4000, due to the fact that Romanian is more verbose
than English.

In order to learn the Word2Vec and Doc2Vec embeddings for our data, we used
the Gensim library [61]. For Word2Vec, we worked with the Continuous Bag-Of-Words
(CBOW) architectural model. For learning the Doc2Vec embedding, we used the Distributed
Bag-Of-Words (DBOW) with hierarchical softmax architecture. In both cases, we set the

https://unicode.org/emoji/charts/full-emoji-list.html
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vector embedding size for each token to 200 and we trained each model with the following
parameters: learning rate α = 0.025, window = 5, over 5 epochs.

For all three embeddings, the trained models were then applied on the testing sets.

3.4. Dimensionality Reduction

The abovementioned document representations and especially TF-IDF lead to high-
dimensionality prediction problems [3], causing learning algorithms to run slowly or
requesting huge memory resources [31].

Therefore, we applied PCA [42], NMF [43] and LSA [44] dimensionality reduction
algorithms on the datasets represented with TF-IDF features, reducing the number of
features to 500. This means that the reduced representation for English is around 6.2 times
smaller and for Romanian—about 8 times smaller.

We did not apply dimensionality reduction on the Word2Vec and Doc2Vec data because
the desired vector size of each representation is set before the feature extraction, in our
case: 200.

3.5. Classifier Selection

Following suggestions in the literature [2,3,31], we selected the following methods for
building our classifiers:

1. Bernoulli Naive Bayes (Bernoulli NB), Support Vector Machine (SVM), Random Forest
(RF) and Logistic Regression (LR) from the classical ML;

2. Deep Neural Network (DNN), Long Short-Term Memory (LSTM) and the Convolu-
tional Neural Network (CNN) from the area of deep learning;

3. Multilingual BERT—to get a glimpse of the state-of-the-art results.

As indicated in Figure 1, the classical ML methods and the DNN were applied on
the TF-IDF encoding, with and without dimensionality reduction and on Doc2Vec. On
Word2Vec, we constructed classifiers with the help of LSTM and CNN.

We implemented the classical ML algorithms with the help of Scikit-Learn library [62],
while for the deep learning we used Keras [63].

For BERT, we used the model available on the Hugging Face transformers (https:
//huggingface.co/docs/transformers/model_doc/bert, accessed on 5 September 2022),
called with the base multilingual uncased variant. On top of BERT, we added a hidden
dense layer with 75 nodes and ReLU activation function, followed by the standard classifi-
cation layer with 3 nodes which produce the sentiment. Adam was the selected optimizer,
with a learning rate of 2 × 10−5 and ε = 10−8. The loss function was set to Categorical
CrossEntropy.

3.6. Hyperparameter Optimization

When applying each of the abovementioned learning algorithms, we need to tune
them with proper parameters selected so as to minimize the generalization error [64,65].
Various approaches could be considered such as exhaustive grid search, random search [65],
Bayesian optimization [66] or evolutionary optimization (EO) [67].

Given the large number of parameters to optimize, and noticing the vast literature
accompanying the metaheuristic design of DNNs [36] or recent applications of DL where
parameters were selected with the help of genetic algorithms [68–70], or suggestions that
EO could outperform Bayesian optimization [71], we decided to employ a classical genetic
algorithm for hyperparameter search.

We used Sklearn-genetic-opt library [72] for implementing genetic algorithm-based
hyperparameter optimization in relation with our selected algorithms. Sklearn-genetic-
opt makes usage of the Deap framework (https://github.com/deap/deap, accessed on 5
September 2022) [73], which supplies many evolutionary algorithms needed for solving
optimization problems.

The GA was designed as following. Given a number N of parameters to optimize
for some specific learning method, a chromosome is a vector (p1, p2, . . . , pN) of values

https://huggingface.co/docs/transformers/model_doc/bert
https://huggingface.co/docs/transformers/model_doc/bert
https://github.com/deap/deap
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selected for each parameter. A population consists of 20 individuals which is evolved
over 40 generations with a crossover probability of 0.8 and mutation probability of 0.1.
Individuals are selected for the next generation with a standard elitist tournament of size 3.
Internally, each individual is evaluated using the accuracy as fitness function, computed
with 3-fold cross-validation.

In the case of DNN, we considered among the parameters the following: the network
capacity (the number of hidden layers and the number of units per layer), the activation
function, the regularization function, the drop-out rate

Since both CNN and LSTM need the embedding weight parameter which is 2D tensor,
we modified the source code of Sklearn-genetic-opt, in order to transmit the multidimen-
sional parameters directly to Deap.

The Appendix A presents in full the parameters considered for evolutionary optimiza-
tion, for all classifiers.

In general, convergence is seen after 15–20 generations, thus evolving the populations
over 40 generations is more than enough to guarantee a good parameter selection.

For the BERT-based classifier, as learning just one model is very time consuming, we
omitted to perform the evolutionary optimization procedure. Instead of cross-validation,
we took 10% of the training set for validation and we let the learning to optimize the loss
function for several epochs. We noticed that the model rapidly overfits, thus, we stop the
learning after two epochs.

4. Experiments and Results

In this section, we present our experiments and discuss the results. We first construct
models on both the original and translated Twitter US Airline Sentiment Tweets dataset
and next, we investigate how the best obtained Romanian models models perform on small
real-life Romanian datasets, manually labeled.

4.1. Constructing The Models

As mentioned in Section 3, we applied the processing pipeline described in Figure 1 on
the Twitter US Airline Sentiment Tweets (https://www.kaggle.com/crowdflower/twitter-
airline-sentiment, accessed on 1 September 2022) dataset, which we translated in Romanian
with a public web translation service. Sections 3.2–3.6 present all the details regarding
every processing step of the pipeline.

All the experiments were conducted on a powerful machine with the following speci-
fications: 2 × Intel Xeon Gold 6230 CPUs (20 Core at 2.1 GHz), 128 GB DDR4 internal RAM,
8 × NVIDIA Tesla V100 32GB and the source code was implemented in Python 3.9.

Table 1 presents the learning performance on the classifiers mentioned in Section 3.5
on the test set, with or without dimensionality reduction. We assess the classification
performance with the help of the accuracy and the weighted F1-measure. We also report the
performance obtained on the original English data set, applying the same data processing
pipeline (without any dimensionality reduction), in order to see how much we lose by the
automatic translation to Romanian.

We observe that the classification performance of all considered models trained on the
original English dataset is very close to the one obtained on the Romanian translation. The
differences in all classification schemes are ±1.5% which can be considered negligible. We
expected this result, as it is in line with similar experiments done with automatic translation
for other languages [27–29]. Furthermore, they confirm the validity of the processing and
learning pipeline, as applied on the Romanian translated Twitter data.

We note that dimensionality reduction does not bring in an increase in classification
accuracy. Furthermore, similar accuracies of around 78% are obtained either with TF-IDF
or with Word2Vec feature extraction, but Doc2Vec does not help, in any scenario.

In terms of accuracy, Bernoulli NB, SVM, LR and DNN applied on TF-IDF encoding
and CNN and LTSM applied on Word2Vec are all almost similar. However, Bernoulli
NB scores slightly better on weighted F1-measure, therefore, we are prompted to select

https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://www.kaggle.com/crowdflower/twitter-airline-sentiment


Algorithms 2022, 15, 357 11 of 21

Bernoulli NB as the best classifier for TF-IDF encoding. For Word2Vec encoding, LSTM
slightly outperforms CNN in both accuracy and weighted F1-measure.

Table 1. Classifier performance (accuracy and weighted F1-measure) with or without dimensional-
ity reduction.

Encoding Classifier English Original Dataset
Romanian Translated Dataset

Only PP PP + PCA PP + NMF PP + LSA

TF-IDF

Bernoulli NB 0.7737, 0.7725 0.7820, 0.7820 0.6778, 0.6249 0.7293, 0.7222 0.6701, 0.6077
SVM 0.7741, 0.7667 0.7836, 0.7747 0.7620, 0.7471 0.7316, 0.6988 0.7690, 0.7565
RF 0.6670, 0.5521 0.6520, 0.5471 0.6366, 0.5716 0.6541, 0.5517 0.6410, 0.5787
LR 0.7745, 0.7590 0.7781, 0.7645 0.7573, 0.7347 0.7499, 0.7388 0.7600, 0.7430

DNN 0.7818, 0.7715 0.7720, 0.7623 0.7658, 0.7575 0.7502, 0.7307 0.7636, 0.7507

Word2Vec CNN 0.7821, 0.7666 0.7769, 0.7600
LTSM 0.7750, 0.7635 0.7817, 0.7798

Doc2Vec

Bernoulli NB 0.6244, 0.4801 0.6242, 0.4798
SVM 0.6305, 0.4801 0.6267, 0.4797
RF 0.6244, 0.4790 0.6242, 0.4779
LR 0.6275, 0.4800 0.6252, 0.4797

DNN 0.6290, 0.4801 0.6273, 0.4798

Multilingual BERT 0.8302, 0.8257 0.8099, 0.8051

We took advantage of a very powerful machine to run all the experiments. Even
so, time spent for hyperparameter optimization and model learning are not negligible.
Table 2 lists the time spent for Evolutionary optimization and for learning the final model
with the optimal parameter set, for each tested classifier. EO helped us to achieve a 1–3%
improvement for the weighted F1-measure.

Table 2. Hyperparameter optimization and final model learning time (seconds).

Encoding Classifier English Original Dataset
Romanian Translated Dataset

Only PP PP + PCA PP + NMF PP + LSA

TF-IDF

Bernoulli NB 1337, 0.285 1645, 0.368 387, 0.064 362, 0.051 385, 0.062
SVM 920, 0.360 1048, 0.238 2038, 2.418 412, 0.149 2724, 2.353
RF 5735, 1.590 6158, 0.568 375, 0.295 449, 0.404 659, 0.905
LR 89,603, 8.502 3588, 7.855 2245, 4.792 5125, 16.644 204, 0.693

DNN 11,513, 2.176 13,551, 2.230 3558, 1.015 9236, 5.280 6585, 2.567

Word2Vec CNN 9143, 1.460 16,127, 4.209
LTSM 17,172, 16.865 62,364, 20.926

Doc2Vec

Bernoulli NB 271, 0.028 274, 0.021
SVM 654, 0.190 580, 0.152
RF 712, 1.171 263, 0.523
LR 484, 1.595 428, 0.936

DNN 17,842, 0.912 11,529, 4.594

Multilingual BERT a 416 444
a Time needed for learning a single BERT-based model.

In Table 2, we can also observe that in the majority of cases, the hyperparameter
optimization process and the final model training times are higher for the Romanian
classifiers. As stated in Section 3.3, Romanian is more verbose than English, thus, the
number of tokens learned for Romanian is larger. This fact might have contributed to the
generation of more complex models when compared to English.

We shall note that, in general, learning a classical ML model takes less than a second
and this is clearly less than the learning time required for a deep learning model, but
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searching for the best model parameters indeed is very time consuming. In the case of
the models trained in Romanian, optimizing the Bernoulli NB on the dataset without
dimensionality reduction took about 27 min. Searching for the best structure and capacity
of the DNN took about 3 h and 45 min. Searching for best parameters for LTSM took more
than 17 h, and we shall note that vector embedding size is only 200. Therefore, learning
an LSTM proved to be a very prohibitive experiment in the absence of a well-equipped
computing machine.

As expected, BERT provides with state-of-the-art results for both the English and the
Romanian datasets. The gap from our best result to BERT is bigger for English compared
with Romanian. However, all come with a high computational cost, as learning just one
BERT-based classifier takes about 7 to 8 min. This makes the hyperparameter optimization
infeasible. If we would consider the specification of the Genetic Algorithm presented in
Section 3.6, this would result in the worst case at 16,800 models learned, needing about
11 days of running the experiment. However, as we noticed, we do not need to perform this
optimization, as just one BERT-based model learned with the recommended parameters
already supplies state-of-the-art results. The problem with a BERT-based classifier is not
with learning one model, but with time needed to classify unknown instances. Whereas, the
other classifiers took negligible time (less than 1 s) to process the test set, the BERT-based
model took about 44 s. This would prohibit us from employing the BERT-based classifier
in the media surveillance situations with an extreme high-throughput of messages (e.g.,
during a prime-time audience TV show).

Given the difference of only 2% between the best achieved performance (Bernoulli
NB and the LSTM classifiers) and BERT, taking also into account the reasonable learning
and testing time of those models, we conclude that we could strongly consider the classical
Bernoulli NB as being our choice for the production environment required by our project.

4.2. Assessing the Models Performance on Real Cases

Given that the final purpose in our project is to apply the learned models for inferring
the polarity of any Romanian tweet, we manually labeled two small test sets, each one
containing 120 distinct tweets. The first one includes tweets specific to the airline industry,
comparable with the ones used for training our models, and the second one includes
general tweets. We applied on them the best models reported in the previous subsection
(i.e., Bernoulli NB for TF-IDF encoding and LSTM for Word2Vec), the public demo of
sentimetric.ro (accessed on 8 September 2022) [21] and the BERT-based classifier.

Each tweet was manually labeled by five human volunteers. Each one expressed an
opinion about the polarity of the tweet and the final sentiment was established to be the
one that was selected by the majority. Labeling statistics regarding how humans assessed
the polarity is presented in Table 3. We shall note that the labeling task seemed to be a
difficult one for the volunteers, as for only 43 tweets (35.8%) in the case of airline industry
specific dataset and 47 tweets (39.2%) in the case of general tweets all the 5 volunteers
reached a unanimous decision. Furthermore, the distribution of the polarity of the tweets
significantly differ from the one of the Twitter US Airline Sentiment Tweets (presented in
the last row of Table 3).

Table 3. Labeling statistics regarding how humans manually assessed the polarity (number of tweets
and percentage).

Dataset Negative Neutral Positive Unanimous Annotation

Airline industry-specific tweets 51, 0.465 36, 0.300 33, 0.275 43, 0.358
General tweets 45, 0.375 32, 0.266 43, 0.358 47, 0.392
Twitter US Airline Sentiment Tweets 0.63 0.21 0.16

Polarity estimation results on the Romanian dataset with airline industry-specific
tweets are presented in Table 4.

sentimetric.ro
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Both encodings supply better results with our models (Bernoulli NB and LSTM) than
sentimetric.ro. This is expected as we learned our models on tweets specific for the aviation
domain. BERT outperforms Bernoulli NB only by a slight margin.

Table 4. Performance of various models (accuracy and weighted F1-measure) on a Romanian dataset
with aviation industry-specific tweets.

Encoding Classifier Accuracy Weighted F1-Measure

TF-IDF Bernoulli NB 0.6500 0.6311

Word2Vec LSTM 0.5833 0.5518

Sentimetric.ro 0.4750 0.4699

Multilingual BERT 0.6583 0.6338

Table 5 presents the models results on the Romanian general tweets dataset. We notice
that Bernoulli NB scores better than sentimetric.ro (accessed on 8 September 2022) in terms
of the weighted F1-measure. LSTM scores worse. sentimetric.ro (accessed on 8 September
2022) proved to assess a better polarity on the general domain than on the aviation, which is
expected, as we assume that the engine was constructed for a wide usage. BERT proves to
be the state of the art, as the margin by which it outperforms our best models is around 5%.

For both domains, our models’ results are worse than those obtained on the translated
test set used in Section 4.1, because now the tweets are real ones, not translated, and their
target class distribution differs significantly—i.e., from a statistical point of view, sets are
extracted from different statistical populations.

Bernoulli NB is more robust to novel tweets and to a different domains than LSTM
and we suppose that this happens because for LSTM the Word2Vec embedding is learned
on our very limited translated dataset and not on the whole Romanian language.

Table 5. Performance of various models (accuracy and weighted F1-measure) on a Romanian dataset
with general tweets.

Encoding Classifier Accuracy Weighted F1-Measure

TF-IDF Bernoulli NB 0.4833 0.4942

Word2Vec LSTM 0.4583 0.4429

Sentimetric.ro 0.4917 0.4730

Multilingual BERT 0.5583 0.5417

4.3. Discussion and Further Work

Experiments presented in Section 4.1 show that a standard method such as Bernoulli
Naive Bayes employed on the classical TD-IDF encoding supplies results that fit our media
surveillance needs. The performance of the Bernoulli NB classifier is slightly better than
the ones of other classifiers, being in a narrow margin below a BERT-based classifier.
Applying evolutionary optimization for the hyperparameter search allows us to improve
the performance of all classifiers by 1% to 3%.

Bernoulli NB has the advantage of very fast inference times for novel instances, being
also easily retrainable, to accommodate for the volatility of the discussed topics. In contrast,
although the BERT-based classifier indeed produces the state-of-the-art results in terms
for both accuracy and weighted F1-measure, its needs in terms of hardware resources and
computational time make it infeasible for our practical needs.

With the final experiments presented in Section 4.2, we demonstrate that the selected
classification model is suitable for our project production environment with general dis-
cussion topics, with a performance superior or at least equivalent to the already existing
classifiers for the Romanian language although: (i) we learned a limited language model

sentimetric.ro
sentimetric.ro
sentimetric.ro
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from a very specific dataset of only about 15,000 tweets; (ii) Romanian knowledge was pro-
duced with a public automatic translation service; and (iii) model learning was performed
on domain-specific knowledge—the airline industry.

Therefore, we confirm that using datasets for Romanian NLP tasks constructed by
automatic translation from English could be a solution, especially for SA. If no extensive
language model exists, and if computing time and hardware resources represent a barrier,
we recommend the use of the very classical TF-IDF encoding with a simple classifier
such as the Bernoulli NB. In our case, classical ML methods proved to be more robust
to generalization than DL-based methods. This might be due to the fact that the classic
models used the TF-IDF features which do not take into account semantic and syntactic
structures, thus being less affected by the automatic translation process when compared
to Word2Vec. If one would opt for a wide-scope hyperparameter search, we suggest
to employ evolutionary optimization as being capable of fine tuning the classifiers in a
reasonable time.

For our future work, we would like to repeat the experiment presented in Section 4.2
with the following differences: using considerably more texts in order to be more represen-
tative, defining standardized labeling rules, employing the help of more human annotators,
and excluding texts which proved to be hard to label even by humans. Having more
texts which are better labeled by more human annotators should improve the accuracy
of all the presented models. Additionally, the sentiment class distribution of the dataset
could be balanced using various oversampling techniques. The models can be retrained
on the balanced data following the same methodology presented in this work and their
performance re-evaluated. If these modifications do not bring a significant improvement,
the LIME (https://github.com/marcotcr/lime, accessed on 10 September 2022) (Local
Interpretable Model-Agnostic Explanations) model can be used to understand the reasons
behind predictions and decide which models are more robust and trustworthy [74].

5. Conclusions

Within the larger setup of a media surveillance project [20], we constructed a system
capable of inferring the global sentiment polarity of Romanian tweets starting from an En-
glish dataset specific to the aviation industry, translated to Romanian. This paper describes
our experience in designing the classification system and extracts several noteworthy con-
clusions in sentiment analysis of microblogging content for Romanian. As similar works
treat the Romanian SA task only as a binary classification, we set the benchmark accuracy
for a multinomial methodology consisting of three classes: negative, positive, and neutral.
Bernoulli NB trained on TF-IDF features achieved an accuracy of around 78%, while BERT
achieved the best result of 81%.

After carefully processing the Twitter data in order to properly approach bad language
in particular, we built and evaluated models constructed with the help of various classifiers,
including standard machine learning or the very popular nowadays deep learning. Given
the large number of parameters to optimize for fine-tuning the classifiers, we opted to
perform hyperparameter search with the help of evolutionary optimization. We found that
the Bernoulli Naive Bayes classifier is the most robust one to both aviation industry specific
tweets or to general ones and TF-IDF encoding should be used if no additional linguistic
resources are available.

Regarding the performance measured with the help of accuracy and weighted F1-
measure, we notice that it does not differ significantly for the English original dataset and
its Romanian translation. Furthermore, although the training data were specific to aviation
industry, classification performance achieved on a small dataset with general tweets seems
to be slightly better than one of a commercial public demo available on the market.

Learning standard deep neural networks on a TF-IDF encoding or LSTM on a Word2Vec
encoding bring in comparable results, but with an increased computational cost. Doc2Vec
encoding seems not to help, as results are worse, regardless of the classifier.

https://github.com/marcotcr/lime
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Further research is still needed in order to obtain even better results. LSTM requires
pre-trained Word2Vec embeddings for the target language, which are not available for
Romanian. Moreover, a larger and more balanced dataset on the general domain could be
used for learning, but probably with an increased computational cost.
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Appendix A

Table A1. Parameters and their values and ranges considered for EO hyperparameter search: classi-
cal learners.

Classifier Parameter Name Space Type Variable Type Values or Range

Bernoulli NB alpha continuous float [0.0, 1.0]
binarize continuous float [0.0, 1.0]
fit_prior categorical boolean [True, False]

Linear SVM dual categorical boolean [False]
C continuous float [0.0, 1.0]
penalty categorical string [“l1”, “l2”]
fit_intercept categorical boolean [True, False]
intercept_scaling continuous float [1.0, 10.0]
class_weight categorical string or null [None, “balanced”]
tol categorical float [0.0001]
loss categorical string [“squared_hinge”]
multiclass categorical string [“ovr”]
max_iter continuous int [200, 2000]

Logistic regression penalty categorical string [“l2”, “none”]
dual categorical bolean [False]
tol categorical float [0.0001]
C continuous float [0.1, 1.0]
fit_intercept categorical boolean [True, False]
intercept_scaling continuous float [1.0, 10.0]
class_weight categorical string or null [None, “balanced”]
solver categorical string [“newton-cg”, “lbfgs”, “sag”, “saga”]
max_iter continuous int [100, 1500]
multiclass categorical string [“multinomial”]
warm_start categorical boolean [True, False]

Random Forest n_estimators continuous int [20, 200]
criterion categorical string [“gini”, “entropy”]
max_depth categorical null [None]
min_sample_split continuous int [2, 20]
min_sample_leaf continuous int [1, 10]
max_features categorical string or null [“auto”, “sqrt”, “log2”, None]
max_leaf_nodes categorical null [None]
min_impunity_decrease continuous float [0.0, 0.2]
bootstrap categorical boolean [True]
oob_score categorical boolean [True, False]
warm_start categorical boolean [False]
class_weight categorical string or null [“balanced”, “balanced_subsample”, None]
ccp_alpha continuous float [0.0, 0.75]
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Table A2. Parameters and their values and ranges considered for EO hyperparameter search: the
case of DNN.

Classifier Parameter Name Space Type Variable Type Values or Range

DNN parameters batch_size continuous int [32, 1024]
epochs continuous int [1, 20]

activation categorical string [“relu”, “sigmoid”, “softmax”, “softplus”, “softsign”, “tanh”, “selu”,
“elu”, “exponential”]

kernel_initializer categorical string

[“random_normal”, “random_uniform”, “truncated_normal”,
“glorot_normal”, “glorot_uniform”, “he_normal”, “he_uniform”,
“identity”, “orthogonal”, “variance_scaling”, “lecun_normal”,
“lecun_uniform”, “zeros”]

optimizer categorical string [“adadelta”, “adagrad”, “adam”, “adamax”, “ftrl”, “nadam”,
“rmsprop”, “sgd”]

use_bias categorical boolean [True]

bias_initializer categorical string
[“random_normal”, “random_uniform”, “truncated_normal”,
“glorot_normal”, “glorot_uniform”, “he_normal”, “he_uniform”,
“variance_scaling”, “lecun_normal”, “lecun_uniform”, “zeros”]

kernel_regularizer categorical string or null [None, “l1”, “l2”]
bias_regularizer categorical string or null [None, “l1”, “l2”]
loss categorical string [“sparse_categorical_crossentropy”]
dropout_rate continuous float [0.0, 0.7]

DNN structure n_layers a continuous int [1, 10]
first_layer_nodes b continuous int [128, 1024]
last_layer_nodes c continuous int [8, 128]

a Number of hidden layers. If set to 1, last_layer_nodes parameter will be ignored. If greater than 2, then the
number of nodes in the middle layers will be computed using a linear scaling function. b Number of nodes for the
first hidden layer. c Number of nodes for the last hidden layer.

Table A3. Parameters and their values and ranges considered for EO hyperparameter search: the
case of CNN.

Classifier Parameter Name Space Type Variable Type Values or Range

CNN parameters batch_size continuous int [32, 1024]
epochs continuous int [1, 20]

activation categorical string [“relu”, “sigmoid”, “softmax”, “softplus”, “softsign”, “tanh”, “selu”,
“elu”, “exponential”]

kernel_initializer categorical string
[“random_normal”, “random_uniform”, “truncated_normal”, “glo-
rot_normal”, “glorot_uniform”, “he_normal”, “he_uniform”, “orthog-
onal”, “variance_scaling”, “lecun_normal”, “lecun_uniform”, “zeros”]

optimizer categorical string [“adadelta”, “adagrad”, “adam”, “adamax”, “ftrl”, “nadam”, “rm-
sprop”, “sgd”]

use_bias categorical boolean [True]

bias_initializer categorical string
[“random_normal”, “random_uniform”, “truncated_normal”, “glo-
rot_normal”, “glorot_uniform”, “he_normal”, “he_uniform”, “vari-
ance_scaling”, “lecun_normal”, “lecun_uniform”, “zeros”]

kernel_regularizer categorical string or null [None, “l1”, “l2”]
bias_regularizer categorical string or null [None, “l1”, “l2”]
activity_regularizer categorical string or null [None, “l1”, “l2”]
mask_zero categorical boolean [False, True]
kernel_size continuous int [1, 5]
padding categorical string [“same”, “valid”]
pool_size continuous int [1, 5]
pool_strides continuous int [1, 5]
loss categorizal string [“sparse_categorical_crossentropy”]
dropout_rate continuous float [0.0, 0.7]

CNN structure n_layers a continuous int [1, 10]
first_layer_filters b continuous int [32, 128]
last_layer_filters c continuous int [8, 64]

a Number of hidden layers. If set to 1, last_layer_filters parameter will be ignored. If greater than 2, then the
number of filters of the layers between the first and the last will be computed using a linear scaling function. b

Number of filters for the first hidden layer. c Number of filters for the last hidden layer.
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Table A4. Parameters and their values and ranges considered for EO hyperparameter search: the
case of LSTM.

Classifier Parameter Name Space Type Variable Type Values or Range

LSTM parameters batch_size continuous int [32, 1024]
epochs continuous int [1, 20]
activation categorical string [“tanh”]
recurrent_activation categorical string [“sigmoid”]

kernel_initializer categorical string

[“random_normal”, “random_uniform”, “truncated_normal”,
“glorot_normal”, “glorot_uniform”, “he_normal”, “he_uniform”,
“identity”, “orthogonal”, “variance_scaling”, “lecun_normal”,
“lecun_uniform”, “zeros”]

recurrent_initializer categorical string

[“random_normal”, “random_uniform”, “truncated_normal”,
“glorot_normal”, “glorot_uniform”, “he_normal”, “he_uniform”,
“identity”, “orthogonal”, “variance_scaling”, “lecun_normal”,
“lecun_uniform”, “zeros”]

bias_initializer categorical string
[“random_normal”, “random_uniform”, “truncated_normal”,
“glorot_normal”, “glorot_uniform”, “he_normal”, “he_uniform”,
“variance_scaling”, “lecun_normal”, “lecun_uniform”, “zeros”]

unroll catrgorical boolean [False]
kernel_regularizer categorical string or null [None, “l1”, “l2”]
bias_regularizer categorical string or null [None, “l1”, “l2”]
activity_regularizer categorical string or null [None, “l1”, “l2”]
recurrent_regularizer categorical string or null [None, “l1”, “l2”]
use_bias categorical boolean [True]
mask_zero categorical boolean [False, True]

optimizer categorical string [“adadelta”, “adagrad”, “adam”, “adamax”, “ftrl”, “nadam”,
“rmsprop”, “sgd”]

loss categorizal string [“sparse_categorical_crossentropy”]
dropout_rate continuous float [0.0, 0.7]

LSTM structure n_layers a continuous int [1, 10]
first_layer_nodes b continuous int [32, 128]
last_layer_nodes c continuous int [8, 64]

a Number of hidden layers. If set to 1, then last_layer_nodes parameter will be ignored. If this is greater than
2, then the number of nodes of the layers between the first and last will be computed using a linear function.
b Number of nodes for the first hidden layer. c Number of nodes for the last hidden layer.
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