
Citation: Rahbari, D. Analyzing

Meta-Heuristic Algorithms for Task

Scheduling in a Fog-Based IoT

Application. Algorithms 2022, 15, 397.

https://doi.org/10.3390/a15110397

Academic Editors: Frank Werner,

Yuri N. Sotskov and Andrei

Tchernykh

Received: 5 September 2022

Accepted: 22 October 2022

Published: 26 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Analyzing Meta-Heuristic Algorithms for Task Scheduling in a
Fog-Based IoT Application
Dadmehr Rahbari

Communication System Research Group, Thomas Johann Seebeck, Department of Electronics,
School of Information Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia;
dadmehr.rahbari@taltech.ee

Abstract: In recent years, the increasing use of the Internet of Things (IoT) has generated excessive
amounts of data. It is difficult to manage and control the volume of data used in cloud computing,
and since cloud computing has problems with latency, lack of mobility, and location knowledge, it is
not suitable for IoT applications such as healthcare or vehicle systems. To overcome these problems,
fog computing (FC) has been used; it consists of a set of fog devices (FDs) with heterogeneous and
distributed resources that are located between the user layer and the cloud on the edge of the network.
An application in FC is divided into several modules. The allocation of processing elements (PEs) to
modules is a scheduling problem. In this paper, some heuristic and meta-heuristic algorithms are
analyzed, and a Hyper-Heuristic Scheduling (HHS) algorithm is presented to find the best allocation
with respect to low latency and energy consumption. HHS allocates PEs to modules by low-level
heuristics in the training and testing phases of the input workflow. Based on simulation results and
comparison of HHS with traditional, heuristic, and meta-heuristic algorithms, the proposed method
has improvements in energy consumption, total execution cost, latency, and total execution time.

Keywords: fog computing; task scheduling; meta-heuristic algorithm

1. Introduction

Extensive advances in Internet of Things (IoT) applications on the one hand, and the
advent of next-generation networks, such as 5G and beyond, have made public and
specialized interest in areas such as computing and telecommunications more evident.
IoT includes every online object, such as smart cameras, wearable sensors, environmental
sensors, smart home appliances, and vehicles [1].

Currently, the number of connected devices is greater than the number of people on
earth, and this number is increasing every day without any limitations. The IoT increases
the quality of human life, but use of the IoT produces massive amounts of data, which
creates an excessive burden for data storage systems and analysis [2].

Some categorized computing paradigms such as edge computing, mobile edge com-
puting (MEC), cloud computing, mobile cloud computing (MCC), and FC are as follows.

• Edge computing enables data processing at the network edge. It provides fast re-
sponses to computational service requests. Additionally, it does not associate IaaS,
PaaS, SaaS, and other cloud-based services spontaneously and concentrates more on
the end-device side.

• MEC is an evolution of cellular base stations. It can be connected or not connected
to distant cloud data centers. MEC uses radio network information in distributed
applications [3].

• Cloud computing is used to manage and control the massive amount of data produced
by objects. Many applications, such as health monitoring, intelligent traffic control,
and games, may need to get feedback in a short amount of time, and the latency
caused by sending data to the cloud and then returning the response from the cloud

Algorithms 2022, 15, 397. https://doi.org/10.3390/a15110397 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15110397
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-8090-9377
https://doi.org/10.3390/a15110397
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15110397?type=check_update&version=1


Algorithms 2022, 15, 397 2 of 21

to the operator of these programs has adverse effects. Further, the massive amount
of data generated by some of these applications may impose heavy burdens on the
network. Sending this volume of data to the cloud and then returning it is not
desirable [4]. Cloud data centers are centralized, so it is difficult to service distributed
applications. Using cloud computing for these applications increases latency and
network congestion and decreases quality of service (QoS) [3].

• MCC provides necessary computational resources to support remote execution of
offloaded mobile applications in closer proximity to end-users based on a three-tier
hierarchical architecture. MCC combines cloud computing and mobile computing [3].

• Fog computing is a type of distributed computing and is located between objects and
the cloud. FC extends clouds to the edge of the network and presents a solution to
overcome its limitations. FC can also provide MEC, MCC, and edge computing [5].

FC can spread on a single node or several nodes. Increasing the number of FDs in-
creases the scalability, flexibility, and computing power of the system. Tasks of FDs include
analyzing, filtering, and temporary storage of data. FC combines the advantages of cloud
computing and edge computing. FC includes benefits such as location awareness, mobility
support, real-time interactions, scalability, and interoperability. Some other FC advantages
are found in [6]. Reducing this physical distance reduces latency and provides real-time
responsiveness. Initial operations such as pre-processing, filtering, and compressing are
performed on raw data; thus, a small amount of data needs to be sent to the cloud, which,
in turn, reduces network traffic. FC increases the sleep time of devices and decreases the
energy consumption of sensor devices.

Cloud computing and FC have common characteristics; however, FC has more fea-
tures than cloud computing, including geographical distribution, real-time interaction,
support mobility, heterogeneity, and interoperability [2]. When computing power is needed,
multiple FDs can be implemented instead of a single FD for computation, which increases
scalability and flexibility. FC has some challenges. These challenges include infrastructure
compatibility (interoperability, monitoring, and responsibility), virtualization (resource life-
cycle and context awareness), scheduling and resource management (location of resources,
task scheduling, and offloading), programmability (usability and session management),
and security. Scheduling of resources and security are particularly important.

Scheduling in distributed environments is generally divided into three categories: re-
source scheduling, workflow scheduling, and task scheduling [7]. Scheduling is defined as
follows: finding an optimal solution for allocation of a set of resources R = {R1, R2, ..., Rm}
to a set of tasks T = {T1, T2, ..., Tn} or a workflow. Scheduling can be done by deploying
a set of predefined constraints and objective functions [8]. A task is a small part of the
work that must be performed within a specified time. One of the goals of task scheduling
is to maximize the use of existing resources and minimize the waiting time of jobs [9].
Service providers and service users are the other scheduling beneficiaries. Service user
interest corresponds to makespan, budget, deadline, security, and cost. On the other hand,
the service provider’s objective is load balancing, resource utilization, and energy efficiency.
The use of different objectives for scheduling in various research has included: makespan
(45%), cost (16%), deadlines (16%), load balancing (16%), and budget (7%) [10]. Makespan
is the end time of the last job. The aim is to minimize the makespan. In recent years, task
scheduling has been widely used in distributed computing systems.

There is a difference between task scheduling in Cloud and FC environments. In the
cloud, the resources are placed in different real or virtual machines (VMs). Thus, the schedul-
ing strategy must search a pool of resources to allocate the best of them to the requested task.
In FC, there is a hierarchical architecture, which means different layers of FDs, and there
is also a cloud data center on top of these. Thus, the scheduling method first searches for
the best resources in the fog layer. If there are no suitable resources, then the cloud can be
searched for resources.

In the following, there are some terminologies such as heuristic, meta-heuristic, and hy-
brid heuristic. The Heuristic method is a search in space of solutions to find the optimal



Algorithms 2022, 15, 397 3 of 21

result. Meta-heuristic algorithms can be used for selecting and producing hard computa-
tional problems (NP-hard). Meta-heuristics are based on finding the best heuristic among
several heuristics. Hybrid heuristics is the combination of two or more meta-heuristics
to make use of their advantages. Hyper-heuristics is the selection of one method out of
several meta-heuristic algorithms.

This work is an extension of [11], which presented the HHS algorithm for allocating
suitable resources to application modules in FC. The main contributions of this paper to the
base paper can be expressed as being more surveying of the literature, technical explanation,
analysis, and evaluation. In fact, a hyper-heuristic algorithm based on some low-level
heuristic methods such as genetic algorithm (GA), particle swarm optimization (PSO), ant
colony optimization (ACO), and simulated annealing (SA) are compared with traditional
and heuristic methods (First Come First Served (FCFS), concurrent, and Delay-Priority
(DP)) [12] and meta-heuristic methods such as Non-dominated Sorting Genetic Algorithm,
third version (NSGA-III) [13] and Many-Objective PSO (MaOPSO) [14]. In addition to
the former metrics, e.g., energy consumption, cost, total network usage, network lifetime,
and latency, another important parameter—the number of users—is taken into account.

The rest of the paper is organized as follows. In Section 2, related works are pre-
sented. The proposed HHS scheduling algorithm is presented in Section 3. In Section 4,
the experimental results of the simulation are provided. Section 5 presents conclusions and
future work.

2. Related Work

FC has many studies in the field of resource scheduling. Deng et al. [15] provided a
scheduling methodology for the cloud–fog environment. Their scheduler is based on the
efficiency of energy consumption and the reduction of transmission delays. The simulation
results in MATLAB demonstrate a reduction of bandwidth consumption by resources and
a decrease in latency. Intharawijitr et al. [16] proposed a scheduling method to reduce
the amount of computation and latency in FC. Their scheduling policy for selecting the
best FDs is random, least latency, and the most remaining resources. Their simulation
results indicate that the second policy of least latency is more effective in improving system
performance. Scheduling algorithms in the cloud or at edges are divided into two categories:
(1) traditional or classical algorithms (based on law and suitability for small scheduling
problems) and (2) intelligent algorithms [8].

2.1. Traditional Algorithms

In a FCFS scheduling algorithm, when a new task arrives, it is placed at the end of
the queue. The first task at the beginning of the queue always runs first. This method
has easy implementation. The round-robin (RR) method is based on the FCFS method for
scheduling tasks so that resources are allocated to tasks for fixed periods. The advantage of
this approach is load-balancing [7].

In a Min–Min scheduling algorithm, the smallest job out of available tasks is selected;
then, it takes a resource the minimum possible time to finish. This method increases
makespan. The Max–Min method selects the longest work among existing tasks and
assigns it to the fastest machines to run. In this method, smaller tasks must wait for a longer
period, and this increases the makespan. However, this method has a better makespan than
its peers’ algorithms [9].

In a priority scheduling algorithm, tasks are classified based on their priority. These
priorities are considered using QoS parameters. Then, resources with the best completion
time are assigned to these tasks [17].

In [12], FCFS, concurrent, and DP scheduling methods are used for task scheduling
in the iFogsim environment. They provided two case studies, EEGTBG and VSOT, then
analyzed the results by delay, total network usage, and the number of application modules
based on the number of users. The results show that minimum delay is obtained by the DP
method, and minimum network usage occurs with the concurrent method.



Algorithms 2022, 15, 397 4 of 21

2.2. Heuristic Algorithms

The security-aware and budget-aware (SABA) algorithm [18] is defined for scheduling
in a multi-cloud. SABA contains three main steps: clustering, prioritizing tasks, and as-
signing data to specific data centers based on the constant workflow datasets. SABA’s
objectives are makespan, security, and budget.

The Multi-objective Heterogeneous Earliest Finish Time (MOHEFT) [19] scheduling
algorithm is known as a model of HEFT. This heuristic algorithm is based on Pareto
solutions. Makespan and cost optimization are based on workflow applications on the
Amazon commercial cloud. The flexibility provided by MOHEFT as a multi-objective
algorithm is very attractive. Tests have shown that in some cases, costs can be reduced to
half by a small increase of 5% in makespan.

The enhanced IC-PCP with replication (EIPR) algorithm [20] is a scheduling and provi-
sioning solution that uses the idle time of VMs and a budget surplus to repeat the tasks to
meet the deadline. This method improves the performance of the network. Additionally,
in [21], tasks are scheduled by a heuristic algorithm such that the objective function includes
the makespan and the execution cost of the tasks. The results show higher efficiency and
lower mandatory costs than other methods.

2.3. Meta-Heuristic Algorithms
2.3.1. GA-Based Meta-Heuristic Algorithms

GA was defined in 1975 by Holland [22]. Some of the schemes schedule workflow
using the original GA, and the others produce a better initial population [23] to achieve
better results. Szabo et al. [24] have proposed two chromosomes in GA for resource
allocation problems. One chromosome is responsible for assigning nodes, and the other is
responsible for ordering. The results show that the method runtime improves between 10
and 80 percent during data transmission.

Wang et al. [23] used a multi-objective GA to optimize the energy consumption and
increase profits for the service provider. The Pareto principle is used for the optimal choice
between available solutions based on current needs. Simulation results in CloudSim show
that energy consumption is reduced by 44.46% and 5.73% rates for the service provider.

The authors of [13] presented the NSGA-III. This is a many-objective optimization
method that can find a well-distributed set of trade-off solutions where a few preferred
reference points are supplied. In [25], resources are allocated to tasks in FC by the NSGA-II
method. This work is simulated in MATLAB. They only compare their method with the
random allocation method. Their scheduling method reduces the latency and improves the
stability of task execution.

2.3.2. ACO-Based Meta-Heuristic Algorithms

ACO was introduced by Marco Dorigo and was inspired by the behavior of some
species of ants. Ants guide each other by pouring pheromones on the ground. This behavior
is used for solving optimization problems [26]. ACO as a meta-heuristic algorithm is
used for many optimization problems that include scheduling. Liu et al. [27] used the
ACO method to deposit pheromones between VMs in order to achieve the past utility of
placing pheromones in physical machines. Their algorithm is simulated in a homogeneous
environment, and only CPU and memory resources are considered. Tawfeek et al. [28]
present task scheduling based on ACO. The main objective of this algorithm is to minimize
makespan. Random ACO search engine optimization is a method that allocates VMs
to entry tasks. The simulation was performed by CloudSim, and the results show that
the performance of this algorithm is better than that of FCFS and RR algorithms. In [29],
the authors used ACO for mobile cloud computing that requires specific resources. This
method executed offloaded tasks in fog devices (FDs) by delay, complete-time, and energy
consumption objectives. The time order of their simulation depends on the number of
cycles, tasks, and ants.



Algorithms 2022, 15, 397 5 of 21

2.3.3. PSO-Based Meta-Heuristic Algorithms

PSO was introduced by Kennedy and Eberhart in 1995 [30]. PSO is a population-based
random optimization algorithm. In this algorithm, the dimension of the particles is equal
to the number of tasks, and the position of the particle shows the mapping of VMs to
tasks. Some of the scheduling schemes only use the basic PSO algorithm, but others use the
improved model of this algorithm. Masdari et al. [31] presented a PSO algorithm based
on workflow and project schedule for a cloud environment. Furthermore, classification is
provided for the PSO algorithm based on the objective functions, features, and constraints.

Researchers in [14] present the MaOPSO to find a representative set of well-distributed
non-dominated solutions close to the Pareto front for all objectives. This algorithm improves
convergence and diversity compared to multi-objective methods.

Yassa et al. [32] proposed a scheme using hybrid PSO and HEFT. The algorithm aims
to optimize makespan, cost, and power consumption. The algorithm starts by initializing
the position and velocity of particles in PSO. The HEFT algorithm is applied several times
to find an efficient solution to minimize the makespan. The results show that their approach
is not only better in terms of cost and power consumption, but it also improves makespan.

The authors in [33] developed a hybrid approach for the recording of medical images.
In their method, PSO is used to compute the Mutual Information (MI) using a weighted
linear combination of image intensity and image gradient vector flow (GVF) intensity. Their
proposed method was successfully tested in a lot of experiments and showed high accuracy
and effectiveness.

2.3.4. Other Evolutionary Meta-Heuristic Algorithms

The authors of [5] propose a bio-inspired solution based on the Bees Life algorithm
to solve the scheduling problem in the FC environment. This solution is based on the
distribution of a set of tasks between all FDs. Analysis of the execution time of the CPU
and allocated memory by FDs after simulation showed that this method performs better
than PSO and GA.

In [34], the authors introduce a swarm-based meta-heuristics optimization method
called Krill Herd (KH) and then accelerate its global convergence speed by a chaotic theory
called CKH. The objective function in the KH is based on the minimum distance between
the food position and the location of the krill [35]. To evaluate the results of the proposed
method [34], various problems have been used. The results show that the performance
of CKH with an appropriate chaotic map is better than that of other state-of-the-art meta-
heuristic methods.

The researchers in [36] propose a quantum-inspired binary grey wolf optimizer (QI-
BGWO) method for the unit commitment (UC) problem. The proposed method integrates
the concepts of quantum computing with the BGWO to improve the hunting process of the
wolf pack. The results show the effectiveness and improvement of the proposed method
based on binary and quantum computations for the UC problem.

In [37], the cuckoo search and flower pollination algorithm as two meta-heuristic
methods are used to solve different optimization problems. The results show that all
platforms have similar performance on average. Additionally, if the algorithm is based
on a balanced search and combines exploration with exploitation, it guarantees high-
quality solutions.

In [38], the authors proposed an innovative algorithm for the group decision-making
(GDM) problem with triangular neutrosophic additive reciprocal matrices. To evaluate
GDM, they used triangular fuzzy numbers because of incompatibility with preferential
relationships. By analyzing previous studies, they concluded that fuzzy preference relations
have some drawbacks owing.

The improved whale optimization algorithm (IWOA) is presented in [39] for solving
the 0–1 knapsack problems on a variety of scales. In this method, a penalty function is added
to evaluate the performance of the solutions. The authors gained the trade-off between di-
versification and intensification through using two strategies: local strategy strategies (LSS)



Algorithms 2022, 15, 397 6 of 21

and Lévy flight walks. The results show better performance for the proposed algorithm
than other state-of-art algorithms.

In [40], an evolutionary multi-objective optimization algorithm is presented for high-
performance computing in cyber–physical social systems (CPSS). To examine the feasibility
of their proposed model, a floor planning case study is used. The B*-tree algorithm
and the multi-step simulated annealing (MSA) algorithm are used to solve this problem.
The performance of the proposed method was 74.44%. The researchers in [41] also present
a multi-objective method based on a hybrid hitchcock bird algorithm and fuzzy signature
(MOHFHB) for task scheduling in cloud computing. They improved makespan and
resource utilization compared to both the Moth Search Algorithm with Enhanced Multi-
Verse Optimizer and the Fuzzy Modified Particle Swarm Optimization. The authors of [42]
also used Opposition-based learning to optimize PSO (OPSO) for task scheduling in a
cloud computing environment. They improved the convergence of standard PSO, energy
consumption, and makespan.

2.4. Hybrid Heuristic Algorithms

Guddeti et al. [43] presented a new bio-inspired algorithm (BIA) for job scheduling
and resource management in the cloud computing environment. The proposed algorithm
is a combination of modified PSO and CSO. The simulation was performed using PySim
tools, and the results show that the proposed algorithm reduces the average response time
and reduces resource utilization.

Delavar et al. [44] offered a mix of GA, best fit, and Round Robin (RR) algorithms
to reduce the number of algorithm iterations. An optimal initial population is obtained
by integrating the best Fit and RR algorithms. They optimized makespan, load balancing,
and speed.

Kaur et al. [45] offered a mix of ACO and MAX–MIN algorithms (MMACO) to opti-
mize load balancing and makespan. In the MAX–MIN algorithm, big tasks have higher
priority than smaller tasks. For their proposed method, the waiting time is reduced for
smaller tasks because small jobs run parallel on the fastest machines. The results of simula-
tion in CloudSim show improved performance of the proposed algorithm.

Researchers in [46] provide a Hybrid Flamingo Search with a Genetic Algorithm
(HFSGA) for cost-efficient QoS-aware task scheduling in a fog–cloud environment. This
strategy improved the makespan and cost compared to ACO, PSO, GA, Min-CCV, Min-V,
and RR algorithms.

A group of researchers in [47] worked on task scheduling in a cloud environment
by an improved pathfinder algorithm using opposition-based learning (OBLPFA). Their
approach improved total execution time, cost, and resource utilization compared to PSO,
dragonfly, the Arithmetic Optimization Technique, the Reptile Search technique, the Aquila
Optimization method, and Lion Optimization methods.

The hybrid strategy has also been used in [48] by combining a neural network-based
method with heuristic policy (JNNHSP) to present an optimized task scheduling algorithm
in a hierarchical edge cloud environment. The authors improved the scheduling error ratio,
average service latency, and execution efficiency.

2.5. Hyper Heuristic Algorithms

Tsai et al. [8] presented a hyper-heuristic algorithm to find better scheduling solu-
tions in the cloud computing environment. To evaluate the performance of the proposed
algorithm, this method was implemented in the cloud and in the actual Hadoop system.
The results show that the proposed algorithm significantly decreases makespan compared
to other scheduling algorithms.

Gomez et al. [49] provide a multi-objective framework for hyper-heuristic selection to
solve the two-dimensional bin-packing problem. The solution includes a multi-objective
evolutionary learning process using genetic operators to generate a set of rules to represent
the hyper-heuristic. This method minimizes the waste of space in the bin when allocating



Algorithms 2022, 15, 397 7 of 21

pieces. Their case studies are a large set of bin-packing problems, including unordered
convex and non-convex parts, based on different conditions and performance measures.
The results indicate better solutions than those of single heuristics.

Chen et al. [50] proposed a hyper-heuristic framework and a high-level quantum-
inspired learning strategy to improve the performance of the framework. Experimental
results show that this method improved the search speed by 38%. The simulation results
show that the proposed method has good performance compared to state-of-the-art meth-
ods such as HEFT, GA, and RH. Researchers in [51] present a two-stage technique based
on the New Caledonian Crow Learning Algorithm and reinforcement learning strategy
(PRLCC) for task scheduling in a cloud environment. Their evaluation in the CloudSim sim-
ulator showed some improvements in the waiting time, energy consumption, and resource
utilization compared to other state-of-the-art methods.

The mentioned scheduling methods organized by scheduling type, technology design,
and objectives parameters are categorized in Table 1.

Table 1. Categorization of task-scheduling strategies.

Algorithm Strategy Scheduling Objectives Environment Pros and Cons

SABA [18] Heuristic Makespan, security, and budget Cloud/Real environment Improves response time.
Ignores energy consumption.

MOHEFT [19] Heuristic Makespan and cost Cloud/Real environment Trade-off between cost and makespan.

EIPR [20] Heuristic Deadlines, total execution
time, and budget Cloud/Real environment Improves performance.

Ignores energy consumption.
Heuristic [21] Heuristic Makespan and execution cost Cloud–Fog/CloudSim Cost efficient. No scalability.
JLGA [23] Meta-heuristic Makespan and load balancing. Cloud/MATLAB Energy efficient.

RSS-IN [25] Meta-heuristic Latency and stability Fog/MATLAB Decreases latency. Ignores
energy consumption.

ACO [28] Meta-heuristic Makespan Cloud/CloudSim Local optimum problem.

CMSACO [29] Meta-heuristic Delay, complete time,
and energy consumption Fog/Simulation Ignores time complexity.

BLA [5] Meta-heuristic Execution time and memory size Fog/C++ Better performance than basic
evolutionary algorithms.

MOHFHB [41] Meta-heuristic
Makespan, resource utilization,
energy consumption, latency,
and degree load balance

Cloud/Simulation Optimizes energy consumption
and latency.

OPSO [42] Meta-heuristic Energy consumption and makespan Cloud/CloudSim Convergence of standard PSO,
energy consumption, and makespan.

DVFS-MODPSO [32] Hybrid-heuristic Makespan, cost, and energy Cloud/Real environment Optimizes performance.

BIA [43] Hybrid-heuristic Response time and optimum
usage of resources Cloud/PySim Resource efficient. Ignores

energy consumption.
HSGA [44] Hybrid-heuristic Makespan and load balancing Cloud/Real environment Ignores time complexity.
MMACO [45] Hybrid-heuristic Makespan and load balancing Cloud/CloudSim Improves performance.
HFSGA [46] Hybrid-heuristic Makespan and cost Fog–Cloud/MATLAB Optimized for deadline-satisfied tasks.

OBLPFA [47] Hybrid-heuristic Execution time, cost,
and resource utilization Cloud/CloudSim Improved time complexity.

JNNHSP [48] Hybrid-heuristic Service latency Edge–Cloud/Real
Improves scheduling error ratio,
average service latency,
and execution efficiency.

HHSA [8] Hyper-heuristic Makespan and computation Time Cloud/CloudSim and Hadoop Realistic environment. Time efficient.

3. The Proposed Approach

In this section, the system model and the scheduling method are presented.

3.1. System Model and Case Study

The nodes in the sensor networks receive data from their surroundings and send them
to FDs through gateways. These data are either processed in FDs or sent to the cloud.
A smart surveillance system is designed to coordinate multiple cameras for monitoring
a specific area. Video surveillance/object tracking software is a collection of distributed
mobile smart cameras.

The application includes six modules: the motion detector, object detector, object
tracker, user interface, and pan, tilt, and zoom control (PTZ). The camera sends the video
stream to the motion detector module. This module sends it to the object detector after
applying a filter to the video stream. This module identifies the object’s position and
sends it to the tracker module; then, the appropriate PTZ is calculated and sent to the PTZ



Algorithms 2022, 15, 397 8 of 21

control. Finally, a fraction of the video streams containing a traced object is sent to the
user’s device [52].

The FD and application properties are explained as follows.

3.1.1. FD

An FD is a micro data center that analyzes, filters, and stores data from sensors.
The FD’s properties include MIPS, RAM, up bandwidth, down bandwidth, the level
number in the topology, rate per MIPS, power in the busy state, and idle power. Each FD
includes hosts as {Host1, Host2, ..., Hostn}. The host properties include RAM, bandwidth,
storage, and PEs. The total bandwidth of all hosts in each FD is between FBLower and
FBUpper.

In an FD, PEs of hosts are allocated to application modules and are executed. The most
important feature of a PE is MIPS. This value is set at the start of a simulation for all
FDs. After allocation of a PE to an application module, the total allocated MIPS of all PEs
is updated.

The total allocated MIPS of an FD can be expressed by TAM = ∑N
i=1 ∑M

j=1 PEMij that
is less than or equal to the MIPS of that FD (TAM ≤ FDMIPS). N is the number of hosts
in the FD, M is the number of PEs in a host, and PEMij is the MIPS of the jth PE in the
ith host.

3.1.2. Application

An application includes some modules. These modules are related by edges. Data as
tuples are transferred between two modules by tuple mapping.

• Application module: This module is a type of VM. The module’s properties include
MIPS, size, bandwidth, and the number of PEs. The number of modules in each
FD is more than the number of PEs ∑C

i=1 Modulei > ∑K
j=1 FDj, where C is the total

number of modules, and K is the total number of FDs. The application modules of
the considered case study include an object detector, motion detector, object tracker,
and user interface.

• Application edge: The application modules are connected by edges. Each application
edge is between two modules. In fact, tuples are transferred between modules by
edges. Each edge has two important features: CPU length and data size. In fact,
∑M

i=1 TCLi ≤ MIPSmodule, and ∑M
i=1 DSi ≤ RAMmodule. This means the total CPU

length and the data size of all input tuples to a module must be less than or equal to
the MIPS and RAM capacity of that module. TCLi is the total CPU length, and DSi
is the data size of the ith tuple. M is the total number of tuples. MIPSmodule is the
module’s MIPS.

• Application tuple mapping: The tuple is the input/output relationships of the ap-
plication modules that send data from one module to another module (modulei to
modulej; i 6= j).

• Application loop: Each workflow of modules is an application loop. Each application
has some workflow that connects modules by edges.

3.2. HHS

As in Figure 1, a case study is an application with several modules as {M1, M2, ..., Mc}.
When the application starts, then a number of modules must be executed in the FDs as
{Fog11, Fog12, ..., FogRoot} by PEs as {PE11, PE12, ..., PEnb}. The proposed algorithm in the
HHS box is used to allocate the best PEs to modules.



Algorithms 2022, 15, 397 9 of 21

Figure 1. Allocation of PEs to modules in FDs.

First of all, the low-level heuristics {H1, H2, H3, H4} in a repository are placed so that
Hi is GA, PSO, ACO, and SA, respectively. The proposed algorithm uses data mining as in
Section 3.2.7. The best heuristic is selected among the candidate algorithms for the new
workflow. The HHS algorithm steps are shown in Figure 2.

Figure 2. HHS algorithm flowchart.

3.2.1. Encoding Individual

In the proposed method, each chromosome is a scheduling solution. A chromosome
includes N genes. Each gene represents a PE. The chromosome length is equal to the
number of PEs. The value of each gene shows the module ID. In this sample chromosome,
PE1 allocates to module4, PE2 allocates to module1, PE3 allocates to moduleM, and PEN



Algorithms 2022, 15, 397 10 of 21

allocates to module3. In the low-level heuristics in this paper, the population is randomly
initialized by several chromosomes.

3.2.2. Fitness Function

In the following, first, the low-level heuristics of the HHS algorithm are presented,
which include GA, PSO, ACO, and SA, and then the proposed algorithm is explained. These
algorithms use the fitness function to evaluate the proper allocation of PEs to modules.
The fitness function [11] can be defined by Fitness = 1

w1∗∑N
i=1 Ui+w2∗BW

, where BW denotes

the bandwidth in a module. w1 and w2 are weights of TUC and BW, respectively, and their
values are equal 0.5, Ui is the utilization of ith tuple, and N is the total number of tuples.
The value of BW for each module is set in the start of the simulation. To find the best
scheduling, the fitness value must be minimized.

3.2.3. Total Execution Cost

Total execution cost [11] can be calculated by PEC + (CC − LUUT) ∗ RPM ∗ LU ∗
TM, where MIPS (Million Instruction Per Second) of allocated PEs are obtained in the
calculated time frame. The time frame is different from the simulation’s current time and
last utilization time. PEC is the past execution cost, CC is the CloudSim clock or current
time of simulation, LUUT is the last utilization update time, RPM is the rate per MIPS,
which is different for each inter-module edge, and TM is the total MIPS of the host. LU is
the last utilization (LU), which is calculated as LU = Min(1, TMA/TM), and TMA is the
total allocated MIPS of the host.

3.2.4. Total Network Usage

Total network usage [11] can be expressed by ∑N
i=1(TLi∗TSi)

MST . The input/output relation-
ships between modules are defined by tuples. The usage of network resources depends on
the size of transferred tuples at a certain time. TLi and TSi are the total latency and the total
size of ith tuple, N is the total number of tuples, and MST is the maximum simulation time.

3.2.5. Energy Consumption

The energy consumption [11] can be given by CEC + (NT − LUUT) ∗ HP. The FD’s
energy consumption is calculated by the power of all hosts in a certain time frame of
execution. CEC is the current energy consumption, NT is the now time, LUUT is the last
utilization update time, and HP is the host power in LU.

3.2.6. Application Loop Delay

The application loop delay can be expressed by the CloudSim clock and the tuple’s
end time. T1 is the tuple start time, T2 is the tuple type to average CPU time, CC is the
CloudSim clock, (CC− T1) is the execution time, and C1 is the number of executed tuple
types. The tuple’s end time [11] can be expressed by CC − T1 when T2 is calculated,
or T1∗C1+(CC−T1)

C1+1 when T2 is not calculated. The application loop delay is calculated by
CC− ET. CC is the CloudSim clock, and ET is the emitting time of a tuple. ET is calculated
by sending the time of a module to another module. The tuple receipt time is calculated by
T1∗C2+(CC−ET)

C1+1 . C2 is the number of received tuple types.
The proposed method consists of two phases: training and testing. The pseudocode of

the proposed approach is Algorithm 1.



Algorithms 2022, 15, 397 11 of 21

Algorithm 1 HHS.
Input: number of areas, number of cameras, scheduling methods.

1: Initialization of number of areas, number of cameras, scheduling method.
2: for areai = 1 to A do
3: for camerai = 1 to C do
4: Task scheduling by GA, PSO, ACO, and SA, respectively.
5: Save the results in a dataset file.
6: end for
7: end for
8: Read new workflow.
9: for i = 1 to M do

10: Di = Euclidean distance of new sample with dataset row i.
11: end for
12: The best scheduling algorithm = MinDistance(D).
13: Execute the application.
14: Calculate energy consumption, network usage, execution time, and total cost using

Sections 3.2.3, 3.2.4, 3.2.5, and 3.2.6.

• Training phase: Initially, 64 different workflows enter the system. The proposed
algorithm includes GA [22], PSO [30], ACO [26], and SA [53] and is implemented to
allocate PEs to modules in all workflows and for the intelligent monitoring system that
comes along with the modules. The energy consumption, network usage, and total
execution cost of each algorithm are achieved for each workflow. Then, the results are
stored in the database, and for each workflow, the best algorithm is selected.

• Testing phase: A new workflow enters the system. Then, the Euclidean distance
between the new workflow and examples inside the database is obtained. The best al-
gorithm is chosen. Then, the energy consumption, network usage, and total execution
cost of the new workflow are calculated. Finally, the results are returned.

3.2.7. Data Mining

To find the best low-level heuristic for scheduling, a data mining method is imple-
mented. In this method, first, sample topologies are entered into the fog network as training
data; then, scheduling methods are performed on them. Second, a new topology is entered;
then, that is scheduled by the best low-level heuristic based on the training phase results.
These training and testing phase are as follows.

Training phase: In this part of HHS, as described in Section 3.2, a database is created
with some features. Each of the rows of these data has six columns, which include the
number of areas, the number of cameras, the energy consumption, the total network usage,
the total execution cost, and the type of scheduling algorithm. In fact, these columns include
the network topology and output parameters generated by the scheduling algorithms. Since
the number of areas and cameras is considered to be between 1 and 4, there are 16 different
modes. Additionally, by 4 algorithms, GA, PSO, ACO, and SA create 64 samples and save
them to the database.

Testing phase: In this part, according to the network topology (the number of areas
and cameras), a quick search is made, and a row of training samples that has the least
Euclidean distance as

√
(A2− A1)2 + (C2− C1)2 with the input topology is selected; the

last column is run as the scheduling algorithm. A1 and A2 are the number of areas in the
training and testing phase, respectively; also, C1 and C2 are the number of cameras in the
training and testing phase, respectively, of the proposed method. The result of this equation
is used to compare the distance between the input topology in the testing phase and the
topology samples in the training database.



Algorithms 2022, 15, 397 12 of 21

3.2.8. Algorithm Parameters and Complexity Analysis

The main parameters of the low-level heuristics and HHS are A as the number of areas,
C as the number of cameras, EC is energy consumption, TNU is total network usage, TEC
is total execution cost, and S is the scheduling algorithm as Hi or HHS. These values are
initialized at the start of their algorithms. Additionally, their computational complexities
are presented in Table 2 and are explained as follows.

• In GA, the fitness calculates in O(nm) so that n is the number of individuals with size
m. The crossover and mutation operators calculate in O(nm). The elitism order is
O(nm). The computational complexity of GA is O(gmn).

• In PSO, the algorithm gets the position and velocity of all particles calculated in
O(n). The fitness value for each particle calculates in O(m), and m is the particle size.
The computational complexity of PSO is O(gmn).

• In ACO, the pheromones update in O(k). Since the upper bound of O(k) is O(n),
the computational complexity is O(gmn). The computational complexity of ACO is
O(gmn).

• In SA, the fitness of each particle and a new particle calculate in 2 ∗O(m). The compu-
tational complexity of GA is O(gm).

• In HHS, k is the size of topology samples in the database. Additionally, the compu-
tational complexity of HHS depends on the algorithm selected based on Euclidean
distance.

In the mentioned algorithms, g is the number of iterations in all the above orders.
All iterations execute in O(g); n is the size of the population (or particles or ants). All
population members process in O(n); m is the individual size. An individual processes in
O(m).

Table 2. Algorithm parameters and complexity analysis.

Algorithm Parameters Complexity

GA
Mutation rate = 0.5
Crossover rate = 0.9
Elitism = 10%

O(g ∗ (n ∗m + n ∗m + n)) = O(gnm)

PSO Swarm size = 10
Acceleration rate = 2 O(g ∗ n ∗ (m + m)) = O(gnm)

ACO

Ant count = 10
Pheromone updating rate = 0.1
Choosing probability = 0.85
Influence weights = 0.95

O(g ∗ n ∗ (m + k)) = O(gnm)

SA
Mutation rate = 0.3
Starting temperature = 1
Cooling rate = 0.05

O(g ∗ (m + m)) = O(gm)

HHS Training samples = 64
Testing samples = 16

O(k + O(SelectedAlgorithm))=
O(SelectedAlgorithm)

4. Evaluation

In this section, the performance of the proposed scheduling method as HHS is analyzed
and compared with traditional and heuristic methods (FCFS, concurrent, and DP) [12] and
meta-heuristic methods (NSGA-III [13] and MaOPSO [14]).

4.1. Experimental Environment

The experimental environment includes Intel Core i5 CPU, 3 GB memory, a 500 GB HD,
Windows 10 32-bit operating system, Netbeans, JDK8.0, and iFogSim [52]. The program
iFogsim is a Java-based library for simulating an FC environment and is used to simulate



Algorithms 2022, 15, 397 13 of 21

the workflow scheduling problem. The implementation inherits and extends some of
the iFogsim classes, such as FogDevice, Controller, and DCNS. The CreateFogDevice and
CreateApplication functions of the DCNS class are updated to create FDs and application
properties. Additionally, the UpdateAllocatedMIPS function of the FogDevice class for
allocation of PEs to modules is updated.

The initial population size is 64 for the training phase and 16 for the test phase.
The number of checked areas changes from 1 to 4. Other parameters of the scheduling
algorithms (Table 2) are as follows. In GA, mutation rate = 0.5, crossover rate = 0.9, and
elitism = 10%. In PSO, swarm size = 10, and acceleration rate = 2. In ACO, ant count = 10,
pheromone updating rate = 0.1, choosing probability = 0.85, and influence weights = 0.95.
In SA, mutation rate = 0.3, starting temperature = 1, and cooling rate = 0.05. In HHS,
the number of training samples = 64, and the number of test samples = 16. Each area has 1
to 4 smart cameras that monitor the area. These cameras connect to an area gateway that
is responsible for accessing the Internet. Based on the above configuration, the physical
topology is designed. In this topology, the cloud is at the highest level, and areas, cameras,
and other FDs are at the network edge.

4.2. Simulation Configuration

As shown in Table 3, each FD, as a micro data center, has many parameters, including
MIPS, RAM (kilobyte), UpBW (up bandwidth by kilobyte per second), DownBW (down
bandwidth by kilobyte per second), level in the hierarchical topology, rate per MIPS,
and busy and idle power (watts). The application module only has a bandwidth feature,
which is set in the UpBW column.

Table 3. Simulation configuration.

Name MIPS RAM UpBw DownBw Level RatePerMips Busy Power Idle Power

FD 44,800 40,000 100 10,000 0 0.01 16 ∗ 103 16 ∗ 83.25
Area’s FD 2800 4000 10,000 10,000 1 0 107.339 83.4333
Camera’s FD 500 1000 10,000 10,000 3 0 87.53 82.44
Application module 1000 10 1000 - - - - -

Further, the case study configurations of inter-module edges are as follows (CPU
length, tuple length): raw video stream (1000, 2000), motion video stream (2000, 2000),
detected object (500, 2000), object location (1000, 100), and PTZ parameters (100, 100). Each
sensor sends 20,000 bytes with 1000 MIPS to the application with an average interval time
of 5 milliseconds.

4.3. Statistical Analysis of Fog-Based Case Study

The number of executed modules has been obtained according to different experiments.
Figure 3 shows total executed modules versus FD numbers. The horizontal axis shows
the number of areas, cameras, and FDs. The allocation of a large number of modules to
FDs need too many processes by PEs; because of this, an optimization algorithm is used to
quickly search the space for answers.

Figure 3. Total executed modules versus FD numbers.



Algorithms 2022, 15, 397 14 of 21

4.4. Analysis Based on the Number of Users

The energy consumption, total execution cost, and delay of the application loop for
1 to 10 users is shown. Table 4 shows that the average energy consumption of the HHS
algorithm is better than those of FCFS by 7.1%, concurrent by 28.6%, and DP by 2.7%. Based
on Table 5, the average total execution cost of the HHS algorithm is better than those of
FCFS by 53.48%, concurrent by 65.26%, and DP by 52.14%. In Table 6, the delay of HHS
algorithm is better than those of FCFS by 6%, concurrent by 28%, and DP by 52.14%.

Table 4. Energy consumption statistics of FCFS, Concurrent, DP, and HHS based on the num-
ber of users. Avg = Average ∗ 10−7, Max = Maximum ∗ 10−7, Min = Minimum ∗ 10−7, and SD =
StandardDeviation ∗ 10−3.

Value FCFS Concurrent DP HHS

Avg 1.54 2.00 1.49 1.43
Max 1.54 2.15 1.52 1.43
Min 1.54 1.69 1.46 1.43
SD 1.97 1630 216 4.90

Table 5. Total execution cost statistics of FCFS, Concurrent, DP, and HHS based on the num-
ber of users. Avg = Average ∗ 10−6, Max = Maximum ∗ 10−6, Min = Minimum ∗ 10−6, and SD =
StandardDeviation ∗ 10−3.

Value FCFS Concurrent DP HHS

Avg 2.89 3.87 2.81 1.34
Max 2.90 4.53 2.87 1.35
Min 2.89 3.18 2.74 1.33
SD 2.79 463 41.7 6.95

Table 6. Application loop delay statistics for FCFS, Concurrent, DP, and HHS based on the number
of users.

Value FCFS Concurrent DP HHS

Avg 107 139 103 100
Max 107 155 106 103
Min 107 117 101 96
SD 16.8 11.4 1.52 2.61

In another comparison, the number of users in a fog-computing architecture is con-
sidered. The traditional and heuristic methods are presented as [13]. Figure 4a is based
on energy consumption, so the HHS algorithm has the minimum energy consumption by
1.43 ∗ 107. Figure 4b shows the total execution cost; that of the HHS algorithm is 1.34 ∗ 106.
Thus, it is better than the FCFS, concurrent, and DP algorithms. According to Figure 4c,
the minimum delay of the HHS algorithm is 96 s; thus, the delay of the application loop is
optimized by HHS.



Algorithms 2022, 15, 397 15 of 21

Figure 4. Comparison of scheduling algorithms based on number of users: (a) Energy consumption,
(b) Total execution cost, and (c) Delay of application loop.

4.5. Analysis Based on the Number of Devices

This section shows the energy consumption and total network usage based on different
numbers of fog devices. Additionally, the proposed approach is compared with the other
meta-heuristic methods.

4.5.1. Energy Consumption

As Figure 5 shows, HHS after GA has the least average energy consumption; also,
the minimum energy consumption of GA and HHS is 1.36 ∗ 107. The highest energy
consumption is 1.54 ∗ 107 megajoules, which is related to the ACO algorithm with 4 areas
and 4 cameras with 22 FDs.

The lowest energy consumption (megajoules) is 1.36 ∗ 107 for the GA and HHS al-
gorithms with one area, one camera, and four FDs. The average energy consumption by
various algorithms is as follows: the GA algorithm, 1.38 ∗ 107; the PSO, 1.51 ∗ 107; ACO,
1.52 ∗ 107; SA, 1.51 ∗ 107; and HHS, 1.40 ∗ 107.

The proposed algorithm decreases the average energy consumption of PSO by 7.17%,
ACO by 7.42%, and SA by 6.91%. Hence, the energy consumption of the proposed algorithm
in different modes is less than that of SA, ACO, and PSO; thus, HHS has better performance



Algorithms 2022, 15, 397 16 of 21

than the three mentioned algorithms. The energy consumption by GA and HHS are almost
the same, but GA has a slightly smaller value.

Figure 5. Energy consumption of GA, PSO, ACO, SA, and HHS.

4.5.2. Total Network Usage

The graph of total network usage is shown in Figure 6. With increasing areas and the
number of FDs, the network usage increases. Moreover, the proposed scheduling algo-
rithms have fully utilized all the given network resources. The network usage of resources
is the same for all algorithms at the end of the simulation. Additionally, the network usage
statistics for all algorithms are approximately equal; thus, the average is 2.6 ∗ 105, the maxi-
mum is 6.65 ∗ 105, the minimum is 4.17 ∗ 104, and the standard deviation is 1.72 ∗ 105.

Figure 6. Total network usage of GA, PSO, ACO, SA, and HHS.

4.5.3. Comparison with Meta-Heuristic Methods

The HHS algorithm is compared with two meta-heuristic methods: NSGA-III [13] and
MaOPSO [14]. The chromosome encoding is as described in Section 3.2.1. The parameters
of these two algorithms are as follows.

• NSGA-III: population size = 100, crossover probability = 0.9, mutation probability =
0.5, and max iterations = 50.

• MaOPSO: swarm size = 100, archive size = 100, mutation probability = 0.5, and max
iterations = 50.

The average energy consumption and total execution cost of MaOPSO and NSGA-
III are better than that of HHS. Of course, MaOPSO and NSGA-III reduce the energy
consumption and total execution cost with a great deal of time, which is not a good result
for an IoT application. The delay of the application loop is decreased by HHS compared to



Algorithms 2022, 15, 397 17 of 21

MaOPSO by 28.1% and compared to NSGA-III by 40.8%. Therefore, reducing the delay is
an advantage relative to the MaOPSO and NSGA-III algorithms.

The results in Figure 7a,b show that the energy consumption and the total execution
cost of NSGA-III and MaOPSO are less than that of the HHS algorithm. This is due to
the use of low-level algorithms in HHS. NSGA-III and MaOPSO are good at finding the
optimal answer, but as Figure 7c shows, their application loop delay is greater than that of
HHS. Since many IoT applications need to execute in real-time, thus HHS algorithm with
its low delay is more suitable.

Figure 7. Comparison of HHS algorithm to MaOPSO and NSGA-III: (a) Energy consumption (b) Total
execution cost, and (c) Delay of application loop.



Algorithms 2022, 15, 397 18 of 21

4.5.4. Execution Time

The simulation execution time for three different configurations is measured and can be
seen in Table 7. After executing different algorithms on these configurations, the execution
time of the simulation is obtained for each algorithm.

Table 7. Simulation execution times (seconds) for scheduling algorithms. (Con.: concurrent; MO:
MaOPSO; Avg.: average).

A C GA PSO ACO SA MO NSGA-
III Con. FCFS DP HHS

1 1 10.04 2.09 10.01 1.15 16.04 16.48 2.57 2.38 1.28 1.36
1 2 19.05 6.17 42.47 4.08 31.02 34.01 7.19 5.39 4.12 4.39
1 3 75.98 23.42 157.03 14.55 80.27 84.37 24.90 20.74 18.71 14.86
1 4 115.20 32.19 180.72 25.61 90.18 105.39 53.38 47.01 40.75 25.93
2 1 17.20 5.13 36.28 3.53 25.83 28.10 5.72 4.01 3.81 3.84
2 2 66.13 26.03 130.39 10.11 70.28 75.43 26.53 25.01 20.19 15.49
2 3 81.02 30.69 160.03 30.66 84.93 87.20 50.16 41.02 38.02 30.97
2 4 90.02 43.75 198.26 45.03 91.05 98.35 62.93 54.07 48.30 41.61
3 1 70.29 21.14 120.39 12.94 74.09 78.10 22.73 20.15 18.13 12.05
3 2 85.39 34.28 178.20 34.01 90.12 94.42 55.01 44.20 39.14 34.32
3 3 82.59 37.05 181.33 41.50 85.53 90.10 55.42 47.01 36.18 41.81
3 4 90.44 43.01 192.85 52.39 93.30 101.24 74.02 65.40 60.13 52.88
4 1 120.29 35.70 184.22 28.10 93.38 97.01 44.02 36.51 30.11 38.31
4 2 81.20 40.77 170.41 40.01 84.30 89.02 56.39 49.31 42.02 40.31
4 3 92.10 44.58 195.01 55.09 95.33 97.05 72.29 66.20 59.02 55.40
4 4 96.22 47.06 200.74 72.03 91.44 98.05 92.39 88.04 79.06 72.34
2 6 103.92 53.02 227.30 86.22 108.34 115.73 105.40 93.84 80.11 86.33
2 7 130.88 69.32 244.07 93.21 142.01 155.20 110.36 101.55 98.22 93.33
3 6 122.04 59.20 231.40 90.11 114.19 125.03 113.92 105.35 95.04 90.34
3 7 140.59 64.27 255.38 112.19 140.20 149.01 150.44 134.06 127.47 112.40
4 6 163.41 75.99 280.31 130.27 173.93 180.55 161.30 140.25 139.90 130.58
4 7 171.48 153.59 306.10 150.31 217.20 222.09 180.77 166.02 160.05 150.62

Avg. 92.07 43.11 176.50 51.50 95.13 101.00 69.45 61.71 56.35 52.25
Max 171.48 153.59 306.1 150.31 217.20 222.09 180.77 166.02 160.05 150.62
Min 10.04 2.09 10.01 1.15 16.04 16.48 2.57 2.38 1.28 1.36
SD 41.06 30.82 72.94 41.78 44.07 45.72 49.18 44.89 43.74 41.43

The average execution time of PSO of 43.11 s is less than that of HHS, but the energy
consumption, network usage, and total execution cost of PSO are more than that of HHS.
Additionally, ACO has the maximum value of the average execution time. As result,
the HHS algorithm is better than other methods in all metrics and averages.

After all analyses, it is specified that the proposed approach is commensurate for an
IoT application. Based on the time and resource sensitivity of this kind of application,
low-level heuristic methods are effective. The evaluation results show the algorithm is
able to get rid of some common issues in evolutionary algorithms; e.g., local optima can
be solved by selecting the low-level methods. In fact, HHS selected the best algorithm to
present an optimized scheduling strategy. Different metrics were tested to prove this claim,
such as energy consumption, total execution cost, network usage, delay, and the number
of users and devices. In comparison to basic scheduling algorithms, the HHS has better
performance in energy consumption, total execution cost, network usage, and delay.

5. Conclusions and Future Work

This paper presents an HHS algorithm by low-level heuristics based on data mining
for task scheduling in an FC architecture. After a study of some meta-heuristic algorithms,
the proposed method shows better results than other methods. The HHS algorithm reduces
simulation time and increases decision-making power; assigning resources with specific



Algorithms 2022, 15, 397 19 of 21

constraints to users is increased according to the type of workflow. The delay of the
application loop is decreased in HHS compared to MaOPSO by 28.1%, NSGA-III by 40.8%,
FCFS by 6%, concurrent by 28%, and DP by 52.14%. The average energy consumption
is decreased in HHS compared to FCFS by 7.72%, concurrent by 11.69%, and DP by
3.63%. The average total execution cost is decreased in HHS compared to FCFS by 53.47%,
concurrent by 55.90%, and DP by 45.28%. The average energy consumption and total
execution cost of HHS are not better than those of MaOPSO or NSGA-III. Of course,
MaOPSO and NSGA-III take a great deal of time to reduce energy consumption and total
execution cost, which is not a good result for an IoT application. Therefore, reducing the
delay is an important advantage over the MaOPSO and NSGA-III algorithms.

For future work, investigation of classification methods for finding appropriate candi-
date heuristics by adjusting the parameters of these algorithms in accordance with data
and resource streams can be useful. Additionally, research on more IoT case studies with
various topologies of FCs for medical care, smart homes, and vehicle transportation systems
can be valuable. Latency and low power as two major constraints in the IoT require further
research. Additionally, scheduling of application modules according to fault-tolerance, QoS
requirements, and security overhead is an important issue in FC research.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Jamshed, M.A.; Ali, K.; Abbasi, Q.H.; Imran, M.A.; Ur-Rehman, M. Challenges, applications and future of wireless sensors in

Internet of Things: A review. IEEE Sens. J. 2022, 22, 5482–5494. [CrossRef]
2. Bansal, S.; Aggarwal, H.; Aggarwal, M. A systematic review of task scheduling approaches in fog computing. Trans. Emerg.

Telecommun. Technol. 2022, 33, e4523. [CrossRef]
3. Mahmud, R.; Kotagiri, R.;Buyya, R. Fog computing: A taxonomy, survey and future directions. In Internet of Everything; Springer:

Berlin/Heidelberg, Germany, 2018; pp. 103–130.
4. Ni, L.; Zhang, J.; Jiang, C.; Yan, C.; Yu, K. Resource allocation strategy in fog computing based on priced timed petri nets. IEEE

Internet Things J. 2017, 4, 1216–1228. [CrossRef]
5. Bitam, S.; Zeadally, S.; Mellouk, A. Fog computing job scheduling optimization based on bees swarm. Enterp. Inf. Syst. 2017, 12,

373–397. [CrossRef]
6. Jamil, B.; Ijaz, H.; Shojafar, M.; Munir, K.; Buyya, R. Resource Allocation and Task Scheduling in Fog Computing and Internet of

Everything Environments: A Taxonomy, Review, and Future Directions. ACM Comput. Surv. 2022, 54, 115. [CrossRef]
7. Mathew, T.; Sekaran, K.C.; Jose, J. Study and analysis of various task scheduling algorithms in the cloud computing environment.

In Proceedings of the Advances in Computing, Communications and Informatics (ICACCI, International Conference on IEEE,
Delhi, India, 24–27 September 2014; pp. 658–664.

8. Tsai, C.-W.; Huang, W.-C.; Chiang, M.-H.; Chiang, M.-C.; Yang, C.-S. A hyper-heuristic scheduling algorithm for cloud. IEEE
Trans. Cloud Comput. 2014, 2, 236–250. [CrossRef]

9. Gasmi, K.; Dilek, S.; Tosun, S.; Ozdemir, S. A survey on computation offloading and service placement in fog computing-based
IoT. J. Supercomput. 2022, 78, 1983–2014. [CrossRef]

10. Singh, P.; Dutta, M.; Aggarwal, N. A review of task scheduling based on meta-heuristics approach in cloud computing. Knowl.
Inf. Syst. 2017, 52, 1–51 [CrossRef]

11. Kabirzadeh, S.; Rahbari, D.; Nickray, M. A hyper heuristic algorithm for scheduling of fog networks. In Proceedings of the 2017
21st Conference of Open Innovations Association (FRUCT), Helsinki, Finland, 6–10 November 2017; pp. 148–155.

12. Bittencourt, L.F.; Diaz-Montes, J.; Buyya, R.; Rana, O.F.; Parashar, M. Mobility-aware application scheduling in fog computing.
IEEE Cloud Comput. 2017, 4, 26–35. [CrossRef]

13. Jain, H.; Deb, K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting
approach, part ii: Handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 2014, 18, 602–622.
[CrossRef]

14. Figueiredo, E.M.; Ludermir, T.B.; Bastos-Filho, C.J. Many objective particle swarm optimization. Inf. Sci. 2016, 374, 115–134.
[CrossRef]

15. Deng, R.; Lu, R.; Lai, C.; Luan, T.H.; Liang, H. Optimal workload allocation in fog-cloud computing toward balanced delay and
power consumption. IEEE Internet Things J. 2016, 3, 1171–1181. [CrossRef]

http://doi.org/10.1109/JSEN.2022.3148128
http://dx.doi.org/10.1002/ett.4523
http://dx.doi.org/10.1109/JIOT.2017.2709814
http://dx.doi.org/10.1080/17517575.2017.1304579
http://dx.doi.org/10.1145/3513002
http://dx.doi.org/10.1109/TCC.2014.2315797
http://dx.doi.org/10.1007/s11227-021-03941-y
http://dx.doi.org/10.1007/s10115-017-1044-2
http://dx.doi.org/10.1109/MCC.2017.27
http://dx.doi.org/10.1109/TEVC.2013.2281534
http://dx.doi.org/10.1016/j.ins.2016.09.026
http://dx.doi.org/10.1109/JIOT.2016.2565516


Algorithms 2022, 15, 397 20 of 21

16. Intharawijitr, K.; Iida, K.; Koga, H. Analysis of fog model considering computing and communication latency in 5g cellular
networks. In Pervasive Computing and Communication Workshops (PerCom Workshops); IEEE International Conference on IEEE:
Piscataway, NJ, USA, 2016; pp. 1–4.

17. Wu, X.; Deng, M.; Zhang, R.; Zeng, B.; Zhou, S. A task scheduling algorithm based on qos-driven in cloud computing. Procedia
Comput. Sci. 2013, 17, 1162–1169. [CrossRef]

18. Zeng, L.; Veeravalli, B.; Li, X. Saba: A security-aware and budget-aware workflow scheduling strategy in clouds. J. Parallel Distrib.
Comput. 2015, 75, 141–151. [CrossRef]

19. Durillo, J.J.; Prodan, R. Multi-objective workflow scheduling in amazon ec2. Clust. Comput. 2014, 17, 169–189. [CrossRef]
20. Calheiros, R.N.; Buyya, R. Meeting deadlines of scientific workflows in public clouds with tasks replication. IEEE Trans. Parallel

Distrib. Syst. 2014, 25, 1787–1796. [CrossRef]
21. Pham, X.-Q.; Huh, E.-N. Towards task scheduling in a cloud-fog computing system. In Proceedings of the Network Operations

and Management Symposium (APNOMS), 18th Asia-Pacific, Kanazawa, Japan, 5–7 October 2016; pp. 1–4.
22. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [CrossRef]
23. Wang, T.; Liu, Z.; Chen, Y.; Xu, Y.; Dai, X. Load balancing task scheduling based on genetic algorithm in cloud computing. In

Proceedings of the Dependable, Autonomic and Secure Computing (DASC), IEEE 12th International Conference on IEEE, Dalian,
China, 24–27 August 2014; pp. 146–152.

24. Szabo, C.; Sheng, Q.Z.; Kroeger, T.; Zhang, Y.; Yu, J. Science in the cloud: Allocation and execution of data-intensive scientific
workflows. J. Grid Comput. 2014, 12, 245–264. [CrossRef]

25. Sun, Y.; Lin, F.; Xu, H. Multi-objective optimization of resource scheduling in fog computing using an improved nsga-ii. Wirel.
Pers. Commun. 2018, 102, 1369–1385. [CrossRef]

26. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
27. Liu, X.-F.; Zhan, Z.-H.; Du, K.-J.; Chen, W.-N. Energy aware virtual machine placement scheduling in cloud computing based on

ant colony optimization approach. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation,
Vancouver, BC, Canada, 12–16 July 2014; pp. 41–48.

28. Tawfeek, M.A.; El-Sisi, A.; Keshk, A.E.; Torkey, F.A. Cloud task scheduling based on ant colony optimization. In Proceedings of
the Computer Engineering and Systems (ICCES), 8th International Conference on IEEE, Cairo, Egypt, 26–28 November 2013;
pp. 64–69.

29. Wang, T.; Wei, X.; Tang, C.; Fan, J. Efficient multi-tasks scheduling algorithm in mobile cloud computing with time constraints.
Peer-Peer Netw. Appl. 2017, 11, 793–807. [CrossRef]

30. Kennedy, J. Particle swarm optimization. In Encyclopedia of Machine Learning; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 760–766.

31. Masdari, M.; Salehi, F.; Jalali, M.; Bidaki, M. A survey of pso-based scheduling algorithms in cloud computing. J. Netw. Syst.
Manag. 2017, 25, 122–158. [CrossRef]

32. Yassa, S.; Chelouah, R.; Kadima, H.; Granado, B. Multi-objective approach for energy-aware workflow scheduling in cloud
computing environments. Sci. World J. 2013, 2013, 350934. [CrossRef] [PubMed]

33. Abdel-Basset, M.; Fakhry, A.E.; El-Henawy, I.; Qiu,T.; Sangaiah, A.K. Feature and intensity based medical image registration
using particle swarm optimization. J. Med. Syst. 2017, 41, 197. [CrossRef] [PubMed]

34. Wang, G.-G.; Guo, L.; Gandomi, A.H.; Hao, G.-S.; Wang, H. Chaotic krill herd algorithm. Inf. Sci. 2014, 274, 17–34. [CrossRef]
35. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H.; Gong, D. A comprehensive review of krill herd algorithm: Variants hybrids and

applications. Artif. Intell. Rev. 2017, 51, 119–148. [CrossRef]
36. Srikanth, K.; Panwar, L.K.; Panigrahi, B.; Herrera-Viedma, E.; Sangaiah, A.K.; Wang, G.-G. Meta-heuristic framework: Quantum

inspired binary grey wolf optimizer for unit commitment problem. Comput. Electr. Eng. 2018, 70, 243–260. [CrossRef]
37. Abdel-Basset, M.; Shawky, L.A.; Sangaiah, A.K. A comparative study of cuckoo search and flower pollination algorithm on

solving global optimization problems. Libr. Tech 2017, 35, 595–608. [CrossRef]
38. Abdel-Basset, M.; Mohamed, M.; Hussien, A.-N.; Sangaiah, A.K. A novel group decision-making model based on triangular

neutrosophic numbers. Soft Comput. 2018, 22, 6629–6643. [CrossRef]
39. Abdel-Basset, M.; El-Shahat, D.; Sangaiah, A.K. A modified nature inspired meta-heuristic whale optimization algorithm for

solving 0–1 knapsack problem. Int. J. Mach. Learn. Cybern. 2019, 10, 495–514. [CrossRef]
40. Wang, G.-G.; Cai, X.; Cui, Z.; Min, G.; Chen, J. High performance computing for cyber physical social systems by using

evolutionary multi-objective optimization algorithm. IEEE Trans. Emerg. Top. Comput. 2017, 8, 20–23. [CrossRef]
41. Zade, B.M.H.; Mansouri, N.; Javidi, M.M. Multi-objective scheduling technique based on hybrid hitchcock bird algorithm and

fuzzy signature in cloud computing. Eng. Appl. Artif. Intell. 2021, 104, 104372. [CrossRef]
42. Agarwal, M.; Srivastava, G.M.S. Opposition-based learning inspired particle swarm optimization (OPSO) scheme for task

scheduling problem in cloud computing. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 9855–9875. [CrossRef]
43. Guddeti, R.M.; Buyya, R. A hybrid bio-inspired algorithm for scheduling and resource management in cloud environment. IEEE

Trans. Serv. Comput. 2017, 17, 3–15.
44. Delavar, A.G.; Aryan, Y. Hsga: A hybrid heuristic algorithm for workflow scheduling in cloud systems. Clust. Comput. 2014, 17,

129–137. [CrossRef]

http://dx.doi.org/10.1016/j.procs.2013.05.148
http://dx.doi.org/10.1016/j.jpdc.2014.09.002
http://dx.doi.org/10.1007/s10586-013-0325-0
http://dx.doi.org/10.1109/TPDS.2013.238
http://dx.doi.org/10.1007/BF00175354
http://dx.doi.org/10.1007/s10723-013-9282-3
http://dx.doi.org/10.1007/s11277-017-5200-5
http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1007/s12083-017-0561-9
http://dx.doi.org/10.1007/s10922-016-9385-9
http://dx.doi.org/10.1155/2013/350934
http://www.ncbi.nlm.nih.gov/pubmed/24319361
http://dx.doi.org/10.1007/s10916-017-0846-9
http://www.ncbi.nlm.nih.gov/pubmed/29098445
http://dx.doi.org/10.1016/j.ins.2014.02.123
http://dx.doi.org/10.1007/s10462-017-9559-1
http://dx.doi.org/10.1016/j.compeleceng.2017.07.023
http://dx.doi.org/10.1108/LHT-04-2017-0077
http://dx.doi.org/10.1007/s00500-017-2758-5
http://dx.doi.org/10.1007/s13042-017-0731-3
http://dx.doi.org/10.1109/TETC.2017.2703784
http://dx.doi.org/10.1016/j.engappai.2021.104372
http://dx.doi.org/10.1007/s12652-020-02730-4
http://dx.doi.org/10.1007/s10586-013-0275-6


Algorithms 2022, 15, 397 21 of 21

45. Kaur, R.; Ghumman, N. Hybrid improved max min ant algorithm for load balancing in cloud. In Proceedings of the International
Conference On Communication, Computing and Systems (ICCCS–2014), Shanghai, China, 4–7 August 2014.

46. Hussain, S.M.; Begh, G.R. Hybrid heuristic algorithm for cost-efficient QoS aware task scheduling in fog–cloud environment. J.
Comput. Sci. 2022, 64, 101828. [CrossRef]

47. Talha, A.; Bouayad, A.; Malki, M.O.C. Improved Pathfinder Algorithm using Opposition-based Learning for tasks scheduling in
cloud environement. J. Comput. Sci. 2022, 64, 101873. [CrossRef]

48. Chen, Z.; Wei, P.; Li, Y. Combining neural network-based method with heuristic policy for optimal task scheduling in hierarchical
edge cloud. Digit. Commun. Networks 2022, in press. [CrossRef]

49. Gomez, J.C.; Terashima-Mar, H. Evolutionary hyper-heuristics for tackling bi-objective 2d bin packing problems. Genet. Program.
Evolvable Mach. 2018, 19, 151–181. [CrossRef]

50. Chen, S.; Li, Z.; Yang, B.; Rudolph, G. Quantum-inspired hyper-heuristics for energy-aware scheduling on heterogeneous
computing systems. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 1796–1810. [CrossRef]

51. Zade, B.M.H.; Mansouri, N.; Javidi, M.M. A two-stage scheduler based on New Caledonian Crow Learning Algorithm and
reinforcement learning strategy for cloud environment. J. Netw. Comput. Appl. 2022, 202, 103385. [CrossRef]

52. Gupta, H.; Dastjerdi, A.V.; Ghosh, S.K.; Buyya, R. Ifogsim: A toolkit for modeling and simulation of resource management
techniques in internet of things, edge and fog computing environments. Software: Pract. Exp. 2017, 47, 1275–1296. [CrossRef]

53. Liu, X.; Liu, J. A task scheduling based on simulated annealing algorithm in cloud computing. Int. J. Hybrid Inf. Technol. 2016, 9,
403–412. [CrossRef]

http://dx.doi.org/10.1016/j.jocs.2022.101828
http://dx.doi.org/10.1016/j.jocs.2022.101873
http://dx.doi.org/10.1016/j.dcan.2022.04.023
http://dx.doi.org/10.1007/s10710-017-9301-4
http://dx.doi.org/10.1109/TPDS.2015.2462835
http://dx.doi.org/10.1016/j.jnca.2022.103385
http://dx.doi.org/10.1002/spe.2509
http://dx.doi.org/10.14257/ijhit.2016.9.6.36

	Introduction
	Related Work
	Traditional Algorithms
	Heuristic Algorithms
	Meta-Heuristic Algorithms
	GA-Based Meta-Heuristic Algorithms
	ACO-Based Meta-Heuristic Algorithms
	PSO-Based Meta-Heuristic Algorithms
	Other Evolutionary Meta-Heuristic Algorithms

	Hybrid Heuristic Algorithms
	Hyper Heuristic Algorithms

	The Proposed Approach
	System Model and Case Study
	FD
	Application

	HHS
	Encoding Individual
	Fitness Function
	Total Execution Cost
	Total Network Usage
	Energy Consumption
	Application Loop Delay
	Data Mining
	Algorithm Parameters and Complexity Analysis


	Evaluation
	Experimental Environment
	Simulation Configuration
	Statistical Analysis of Fog-Based Case Study
	Analysis Based on the Number of Users
	Analysis Based on the Number of Devices
	Energy Consumption
	Total Network Usage
	Comparison with Meta-Heuristic Methods
	Execution Time


	Conclusions and Future Work
	References

