
Citation: Adubi, S.A.; Oladipupo,

O.O.; Olugbara, O.O. Evolutionary

Algorithm-Based Iterated Local

Search Hyper-Heuristic for

Combinatorial Optimization

Problems. Algorithms 2022, 15, 405.

https://doi.org/10.3390/a15110405

Academic Editor:

Lorenzo Salas-Morera

Received: 14 September 2022

Accepted: 28 October 2022

Published: 31 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Evolutionary Algorithm-Based Iterated Local Search
Hyper-Heuristic for Combinatorial Optimization Problems
Stephen A. Adubi 1, Olufunke O. Oladipupo 1,2 and Oludayo O. Olugbara 2,*

1 Department of Computer and Information Sciences, Covenant University Ota, Ota 112104, Nigeria
2 MICT SETA 4IR Center of Excellence, Durban University of Technology, Durban 4001, South Africa
* Correspondence: oludayoo@dut.ac.za

Abstract: Hyper-heuristics are widely used for solving numerous complex computational search
problems because of their intrinsic capability to generalize across problem domains. The fair-share
iterated local search is one of the most successful hyper-heuristics for cross-domain search with
outstanding performances on six problem domains. However, it has recorded low performances
on three supplementary problems, namely knapsack, quadratic assignment, and maximum-cut
problems, which undermines its credibility across problem domains. The purpose of this study was
to design an evolutionary algorithm-based iterated local search (EA-ILS) hyper-heuristic that applies
a novel mutation operator to control the selection of perturbative low-level heuristics in searching for
optimal sequences for performance improvement. The algorithm was compared to existing ones in
the hyper-heuristics flexible (HyFlex) framework to demonstrate its performance across the problem
domains of knapsack, quadratic assignment, and maximum cut. The comparative results have shown
that the EA-ILS hyper-heuristic can obtain the best median objective function values on 22 out of
30 instances in the HyFlex framework. Moreover, it has achieved superiority in its generalization
capability when compared to the reported top-performing hyper-heuristic algorithms.

Keywords: combinatorial optimization; evolutionary algorithm; heuristic algorithm; knapsack
problem; local search; maximum-cut problem; quadratic assignment

1. Introduction

Hyper-heuristics are search methodologies for solving numerous forms of combinato-
rial optimization problems (COPs) in routing applications [1,2], scheduling [3,4], machine
learning [5,6], generation of solvers [7], and software engineering [8–10]. They have been
applied to several other application domains of combinatorial optimization such as uni-
versity examination timetabling, university course timetabling, and school timetabling
problems [11]. Due to the countless peculiarities and inherent complexity of the different
forms of optimization problems, a customized algorithm usually fails to generalize well.
Hence, the impetus for studying hyper-heuristics over heuristics and metaheuristics is
to address the problem of generality that hyper-heuristics provide across different forms
of optimization problems [12]. Meta-learning for offline learning of heuristic sequences
was recently described for solving capacitated vehicle routing and graph coloring prob-
lems [13]. The study [14] proposed a novel mechanism to create an effective recombination
procedure for sub-trees in a genetic programming hyper-heuristic to solve the job-shop
scheduling problem. A fuzzy logic-based method for the selection of low-level heuris-
tics was described to solve many instances of the 0/1 knapsack problem [15]. A genetic
programming-based hyper-heuristic was described for solving multiple tasks within a
dynamic environment [16]. The ability of a generative hyper-heuristic underpinned by
an artificial neural network was introduced for creating customized metaheuristics in
continuous domains [17]. The study in [18] proposed the use of a double deep Q-network
(DDQN) for generating a constructive hyper-heuristic for COPs with uncertainties.

Algorithms 2022, 15, 405. https://doi.org/10.3390/a15110405 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15110405
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1633-7583
https://doi.org/10.3390/a15110405
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15110405?type=check_update&version=3

Algorithms 2022, 15, 405 2 of 30

Hyper-heuristics can broadly be classified into selection and generation categories.
Selection is employed to automatically control the use of low-level heuristics (LLHs) while
generation is used to generate new LHHs from the building blocks of previous ones [12].
Manifold hyper-heuristics have been proposed in the literature, but a particular set of
them have been developed and their performances benchmarked against others within the
hyper-heuristics flexible framework (HyFlex) [19]. The HyFlex framework was initially
used for the CHeSC 2011 competition where twenty algorithms were tested and their
performances compared on six problem domains. The AdapHH hyper-heuristic [20]
emerged as the winner of the competition after obtaining the highest rank in three domains
of Boolean satisfiability (SAT), bin packing (BP), and the traveling salesman problem (TSP).
The framework eventually became useful for benchmarking the performance of a newly
proposed hyper-heuristic. The author of a newly proposed hyper-heuristic algorithm would
conventionally compare its performance with the original 20 CHeSC entries. The fair-share
iterated local search (FS-ILS) hyper-heuristic utilized a speed-proportional selection scheme
(SpeedNew) as the heuristic selection mechanism and accept probabilistic worse (APW) as
the solution acceptance mechanism [21]. It selects from a pool of perturbative heuristics
during the perturbation phase of the iterated local search (ILS) It applies the local search
heuristics in a variable neighborhood descent (VND) fashion on the resultant solution from
the perturbation phase until the solution can no longer be improved. The VND is a variant
of the variable neighborhood search (VNS) metaheuristic that deterministically explores
the neighborhoods in a search space.

The FS-ILS outperformed the 20 CHeSC entries in the HyFlex framework by obtaining
the highest scores on the Boolean satisfiability (SAT), permutation flow-shop (PFS), and
vehicle routing problem (VRP) domains. A Thompson sampling hyper-heuristic (TSHH)
was proposed in [22] and uses the Thompson sampling learning algorithm to respectively
select perturbative and local search heuristics during the perturbation and intensification
phases of the ILS. The selection of a heuristic to apply was based on its record of successes
and failures when applied to a given problem. If the combined effect of a perturbative
heuristic and a local search heuristic (when applied in an iteration) leads to a new best global
solution, the “success” count of the heuristics is incremented; otherwise, the “failure” count
is incremented, which makes it a reinforcement learning scheme. The TSHH implemented
an improving-or-equal (IE) acceptance mechanism and finished second behind the AdapHH
using the F1 ranking. The hyper-heuristic outperformed other competitors in personnel
scheduling (PS), PFS, and TSP and underperformed in SAT and VRP. Ferreira et al. [23]
proposed different settings of a multi-armed bandit scheme for heuristic selection, with the
best version being able to only do well on VRP problems, which the authors blamed on the
hyper-parameter settings.

The HyFlex framework was extended in [24] by introducing three new problem do-
mains of the knapsack problem (KP), quadratic assignment problem (QAP), and maximum-
cut problem (MAC). The experimental procedure in the work pitted FS-ILS against a
no-restart version of FS-ILS (NR-FS-ILS), AdapHH, evolutionary programming hyper-
heuristic (EPH), a competitor in CHeSC 2011, and two other simple random procedures
that differ in their acceptance mechanisms. EPH is based on the principle of evolutionary
programming and co-evolution that concomitantly maintains a population of solutions
with a population of low-level heuristic sequences that are applied to the solutions [11].
The AdapHH emerged as the winner on these new domains and the random procedure
that accepts all moves surprisingly finished second while FS-ILS finished fifth among
the six hyper-heuristics compared. In addition, the SSHH was tested on these three new
problem domains [25] and its performance was compared with those of others presented
for the extended HyFlex framework [24]. sequence-based selection hyper-heuristic (SSHH)
and AdapHH emerged as the best two hyper-heuristics based on the experimental results.
The new problem domains were used in two other works [26,27] that tuned a memetic
algorithm, but only [27] compared the proposed hyper-heuristic with others that were
tested on the domains, using 15 out of the entire set of 30 benchmarking instances.

Algorithms 2022, 15, 405 3 of 30

This study was inspired by the inherent weaknesses exhibited by ILS hyper-heuristics
on the extended HyFlex suite to design an evolutionary algorithm-based iterated local
search (EA-ILS) hyper-heuristic. The following two critical points are highlighted as areas
of concern for ILS hyper-heuristics. First, ILS hyper-heuristics utilizing a typical local
search invocation based on VNS may not be effective when solving problems that require
deep search space and are time-consuming [28]. Therefore, designing an improved local
search is worth exploring [29]. Second, although hyper-heuristic methods are generally
not exact, an alternative for covering a deeper search space for performance enhancement
could be to design ILS-based hyper-heuristics to perturb solutions more than once before
the local search invocations. This will depend on how effective these multiple perturbations
can be for solving a COP. Since the perturbation strength is prime to the performance of
ILS [30,31], designing a hyper-heuristic with an option to perturb solutions more than once
is very viable.

The introduced hyper-heuristic algorithm works on the principles of the basic ILS and
evolutionary algorithms. It uses a novel mutation operator to construct LLH sequences
with the possibility of multiple perturbations that ultimately end with a local LLHs search.
The ILS is widely used in the literature for solving a wide range of COPs such as orien-
teering [32], inventory routing [33], classical knapsack [34], vehicle routing [35–37], and
course timetabling [38–40]. The metaheuristic appears to be a versatile method that has
been frequently combined with other optimization algorithms to solve COPs. Different
instances of this hybridized set-up include pairing ILS with quadratic programming [41],
tabu search [42], evolutionary algorithms [35], simulated annealing [43], and tabu search
with simulated annealing [44]. The EA-ILS hyper-heuristic was fortified with a local search
module based on the connotation of the hidden Markov model (HMM) to automatically
learn promising sequences of local search heuristics rather than exhaustive application.
The following are the unique contributions made in the present study to the discipline of
combinatorial optimization:

• The application of a novel mutation evolutionary operator to construct promising per-
turbative heuristic sequences of variable length of 1 or 2 to address a weakness of the
previous ILS-based hyper-heuristics is an important contribution of the present study;

• The design of the EA-ILS hyper-heuristic algorithm that combines the capability of
ILS with a specialized mutation evolutionary operator for improved performance in
solving numerous COPs is a unique contribution of this study;

• The experimental comparison of the EA-ILS hyper-heuristic with the existing hyper-
heuristics in the HyFlex framework to demonstrate the effectiveness of the introduced
algorithm is a distinctive contribution.

The remainder of this paper is succinctly summarized as follows: Section 2 reviews
the relevant literature by surveying the recent methods that have been applied to tackle the
problems of knapsack, quadratic assignment, and maximum cut. Section 3 presents the
materials and methods used in the present study and explicates the EA-ILS hyper-heuristic
algorithm. Section 4 discusses the experimental results of evaluating the performance of
the EA-ILS hyper-heuristic against the performances of the existing hyper-heuristics in the
HyFlex framework. The article is ultimately concluded in Section 5 by summarizing the
important highlights.

2. Related Studies

There are numerous algorithms reported in the literature for solving the COPs of
knapsack, quadratic assignment, and maximum cut. Previous studies have agglutinated
different algorithms within the ILS for performance improvement. The authors in [45]
employed meta-learning to improve the performance of ILS on the Google machine reas-
signment problem (GMRP). The idea was to learn from some instances of a problem and
recommend suitable ILS components based on the instance being solved. Hu et al. [46]
combined a genetic algorithm (GA) with ILS to solve the instances of a dominating tree
problem (DTP). In their approach, multiple solutions were kept and each solution in the

Algorithms 2022, 15, 405 4 of 30

population of solutions was subjected to possible improvement through the ILS procedure.
The GA presented in the study utilized a specialized mutation procedure with high diversi-
fication strength and ignored crossover operators. The specialized mutation operator was
applied after the ILS phase to each solution in the population during the second stage of
the search process. The second stage helps to improve diversity in the solutions returned
by the ILS in the first stage according to the study.

The study reported in [47] combined the ILS with other techniques to effectively solve
numerical optimization problems. The perturbation strategy was based on the success-
history-based parameter adaptation for differential evolution (SHADE) while the local
search phase was based on a mathematical model. The ILS keeps multiple solutions while it
relies primarily on the perturbation mechanism of the SHADE to control the strength of the
ILS perturbation. The partition crossover operator was incorporated into an ILS framework
for the computational design of proteins [39]. The crossover operator was utilized as an
additional perturbation operator to combine two solutions generated by the ILS framework
to produce a new solution that is further enhanced by the steepest descent algorithm. The
algorithm contested favorably with a classical ILS and the Rosetta fixbb method. The APW
employed in the present paper is not a new acceptance mechanism because it has been
used in the literature for ILS [21,48,49]. However, a strategy is proposed in this study to
oscillate its important parameter called temperature during the search process.

In [50], ant colony optimization (ACO) was employed to generate rules for the selection
of heuristics for the knapsack problem. Candidate hyper-heuristics were constructed by
the virtual ants over time using the current problem state until all items had been packed.
The best hyper-heuristic constructed during the simulation can now be applied to unseen
instances. The studies in [51,52] designed a feature-independent hyper-heuristic through
an evolutionary algorithm to solve the 0/1 knapsack problem. Similar to the approach in
the previous study [50], a set of training instances were used to construct viable hyper-
heuristics that were superior to the individual LLHs of the problem investigated. Olivas
et al. [15,53] incorporated fuzzy logic into the inference process of the selection of heuristics
for the knapsack problem. The authors considered seven features of the problem as
inputs to the fuzzy inference engine and four LLHs as outputs. The fuzzy-based hyper-
heuristic was optimized by a genetic algorithm that was benchmarked against traditional
hyper-heuristics optimized by a particle swarm optimization (PSO) algorithm. The other
optimization methods not based on hyper-heuristics that have been applied to solve the
knapsack problem include the binary monarch optimization algorithm [54], binary bat
algorithm [55], whale optimization [56], list-based simulated annealing [57], and artificial
bee colony optimization [58]. A recent study [59] compared the genetic algorithm (GA),
simulated annealing (SA), dynamic programming (DP), branch-and-bound (BB), greedy
search (GS), and a hybrid of GA–SA to solve the knapsack problem.

Senzaki et al. [60] applied a hyper-heuristic method based on the choice function
selection mechanism to solve the multi-objective quadratic assignment problem (mQAP).
The task of the choice function is to select the genetic operators that are LLHs during an
iteration of the multi-objective evolutionary algorithm (MOEA) as the base method. The
method was reported to perform quite well on 22 instances of mQAP after being bench-
marked against other multi-objective optimization algorithms. Some of the approaches
for solving a quadratic assignment problem (QAP) tend to favor the hybridizations of
two or more algorithms. The study [61] hybridized quantum computing principles with
an evolutionary algorithm to solve QAP while another study [62] integrated tabu search
with a whale optimization algorithm. In [62], tabu search was employed to improve the
solution constructed by the whale optimization algorithm. The study [63] hybridized an
evolutionary algorithm called elite GA with a tabu search for solving 135 instances of the
QAP from the well-known QAPLIB dataset. The authors reported that the hybrid method
obtained the best-known solutions for 131 instances. Dokeroglu et al. [64] applied a robust
tabu search method to control the exploration–exploitation balance within an artificial bee
colony. The resulting method was able to optimally solve 125 out of the 134 benchmarking

Algorithms 2022, 15, 405 5 of 30

instances of the problem. The agglutination of GA with Tabu (GA–Tabu) search has been
recently published for solving the QAP [65] with a favorable comparative performance.

Tabu search was hybridized with the evolutionary algorithm to solve the MAC [66].
The authors were able to find the best new solutions for 15 of 91 instances used to test
their algorithm. Chen et al. [67] proposed a binary artificial bee colony algorithm with a
local search procedure to solve 24 instances of the MAC as reported in the literature. Kim
et al. [68] compared the performances of harmony search and two implementations of
genetic algorithms, namely generational GA and steady-state GA, that were tested on 31 in-
stances of the MAC. The study reported that the harmony search algorithm outperformed
the two GA implementations. The Q-learning model-free reinforcement learning algorithm
was proposed to solve some instances of the MAC [69]. The method utilizes a message-
passing neural network (MPNN) to predict the Q-values of removing or adding vertices
to solution subsets. Seven observations were configured to characterize the problem state
during the training of the deep Q-network.

Previous algorithms have used the same instances of the HyFlex framework for
performance evaluation as follows: The FS-ILS with its variant NR-FS-ILS, based on the ILS,
recorded a subdued performance on the extended HyFlex domains [24]. The AdapHH [20]
is a state-of-the-art hyper-heuristic algorithm that outperformed both FS-ILS and NR-FS-ILS
on the extended benchmarking test domains [24,25]. It uses a relay hybridization technique
to pair LLHs while solving a problem instance and emerged first in the CHeSC 2011
competition. The SSHH based selection hyper-heuristic (SSHH) based on the principles of
the HMM was proposed in [70]. It attempts to automatically identify the optimal sequences
of heuristics while optimizing the solution of a given instance of a problem domain. The
SSHH was initially tested on the first six problem domains in the first version of the
HyFlex framework to outperform the twenty CHeSC 2011 entries in the SAT, BP, and
TSP problem domains. The algorithm recorded a favorable performance amongst several
competitors on KP, QAP, and MAC [25]. The other methods include the EPH and two
simple hyper-heuristics that choose LLHs randomly [24].

It is important to review the past research works on the HyFlex domains to identify
gaps for further improvement. However, algorithms such as the SSHH, and sometimes
AdapHH, that were designed to automatically generate heuristic sequences could bene-
fit from the explicit separation of diversification and intensification found in ILS-based
methods. The ILS-based methods applied on the extended HyFlex domains have not
yet been generally effective. It is still valuable to devise new means of exploring the
strengths of the ILS methods because of the limited evidence of its effectiveness as a hyper-
heuristic [21,22,48,71,72]. The present study has employed the instances provided in the
extended HyFlex framework [24] to test the generality of the EA-ILS hyper-heuristic.

3. Materials and Methods

The materials used to conduct this study are presented in this section. Descriptions of
the methods applied to construct the EA-ILS hyper-heuristic that solves the investigated
COPs are provided thereafter.

3.1. Materials

The instances used for testing the EA-ILS hyper-heuristic contain extensions to the
original HyFlex dataset located on the webpage (https://github.com/Steven-Adriaensen/
hyflext accessed on 10 September 2022). They are executable files of the implementations
of the instances of new problems added to the HyFlex framework. The webpage of all
the instances has the raw data for the existing hyper-heuristics used to benchmark the
performance of the EA-ILS hyper-heuristic. There are a total of 30 instances available in
the extended HyFlex test suite for benchmarking the performance of a hyper-heuristic. All
algorithms were coded in the Java programming language. The computer used for testing
the EA-ILS hyper-heuristic has 8 gigabytes (GBs) of random access memory (RAM) and an
Intel i5-3340 M central processing unit (CPU) with a 2.70 GHz clock speed. The evaluation

https://github.com/Steven-Adriaensen/hyflext
https://github.com/Steven-Adriaensen/hyflext

Algorithms 2022, 15, 405 6 of 30

metrics employed for benchmarking the performance of the EA-ILS hyper-heuristic with
the existing comparative algorithms are the standard evaluation metrics of µ-norm, µ-rank,
best, worst [24,25], F1 scoring system [23,49,73], and statistical evaluation of the Friedman
test [74] and boxplot analysis [22,75]. The ten benchmarking instances of the problem
available in the test suite [24] were all taken from the well-known QAPLIB dataset [76].
The mathematical formulation used in the current study for the MAC problem is based
on a recent reformulation [77]. The number of low-level heuristics per category for each
problem is presented in Table 1. Crossover heuristics are ignored in the table because they
were not used by the EA-ILS hyper-heuristic.

Table 1. Tally of the LLHs across the Knapsack, Maximum-Cut, and Quadratic Assignment Problems.

Problem Mutation Ruin-Recreate Local Search Total

Knapsack problem (KP) 5 2 6 13
Quadratic assignment problem (QAP) 2 3 2 7

Maximum-cut problem (MAC) 2 3 3 8

3.2. Methods

A brief discussion of the basic ILS and a detailed description of the EA-ILS hyper-
heuristic are provided in this section to illuminate the novelty of the proposal. The dif-
ferences between the two hyper-heuristics are alluded to show the contribution made by
the ILS.

3.2.1. Basic Iterated Local Search Algorithm

The iterated local search (ILS) [78] is a simple approach based on the principles
of diversification (perturbation) and intensification (local search). The search approach
outlined in Algorithm 1 switches between the diversification and intensification phases
throughout the search process. The initial solution of the ILS can be generated by any
constructive heuristic that is suitable for the given problem domain. In the iterative block,
perturbation of the incumbent solution is performed to diversify the search and avoid
circling a particular search area. If the perturbation operation is too strong, the search
process cannot be controlled, and it becomes a random restart algorithm. Conversely,
a shallow perturbation can perform searches to keep revisiting a particular search area,
thereby limiting the progress of the search. In a typical circumstance, the perturbation phase
of the search worsens the incumbent solution, but the local search phase is designed to
search for better solutions within the neighborhood of the perturbed solution. The solution
returned from the local search is considered a candidate solution when it is accepted by
the acceptance mechanism. If the candidate solution is accepted, it replaces the incumbent
solution, and the search continues in that fashion until a stopping criterion is met.

Algorithm 1: Basic Iterated Local Search

1. S0 ← generateInitialSolution ()
2. S← perform a local search on S0
3. while ¬stopping_condition
4. S′ ← perturb(S)
5. S′′ ← perform a local search on S′

6. S←
{

S′′ , i f S′′ is accepted
S, otherwise

7. end while

3.2.2. Evolutionary Algorithm-Based Iterated Local Search

The evolutionary algorithm-based iterated local search (EA-ILS) hyper-heuristic searches
the space of LLHs during the search process. It does so by constructing and editing the
sequences of LLHs to conform to the working principles of the ILS. Perturbative LLHs

Algorithms 2022, 15, 405 7 of 30

are applied, followed by the application of the local search LLHs to achieve intensifica-
tion in ILS. Similarly, the sequences generated by the EA-ILS hyper-heuristic begin with
perturbative LLHs and end with a local search terminal. The conception of “operation
sequence or simply a sequence” is used because the sequences are typically longer than
what is presented when applied to a solution. Figure 1 depicts a sample sequence where
EA-ILS applies LLH5 to the incumbent solution. The resulting solution is further perturbed
with another perturbative heuristic (LLH7), and the local search heuristics are applied for
intensification thereafter. The last operation, which is a call to the local search (LS) module,
could use more than one local search LLH. Hence, the sequence of LLHs applied in an
iteration could be longer than 3. The maximum length of a sequence is set at 2, and it is
the third member of the sequence that represents the local search terminal. This is to keep
the length of time dedicated to applying the sequence of LLHs on a solution during an
iteration at a reasonable amount. The operations that appear in the EA-ILS hyper-heuristic
described by Algorithm 2 are explained in Table 2. The improving iteration is an iteration
of the EA-ILS hyper-heuristic that leads to the update of the best global solution. The non-
improving iteration is an iteration of the EA-ILS hyper-heuristic that does not lead to the
update of the best global solution. The acceptance strategy is the value of the temperature
parameter used in the APW acceptance mechanism of this study.

Figure 1. Sample operation sequence in the EA-ILS hyper-heuristic.

Table 2. Description of Operations of the EA-ILS hyper-heuristic.

Operation Description

X.add(x, L) Add a new member x to a bounded list X with bound size L such that when a new entry updates the size of X to
L + 1, the item at the top of the list is removed.

X.add(x, L, t) The addition of x from the previous operation is repeated t times.
H An operation sequence or simply a sequence.
A The bounded list for storing the most recent sequences that improved the best global solution.
Rnd.Real(x, y) This such that x < δ < y.
Rnd.Int(x, y) This such that x ≤ δ < y.
Rnd.Bool() Randomly generate a Boolean variable.
better(x, y) Denotes based on their objective function values.

P1
w, P2

w
Bounded lists for recently rewarding parameter values for the LLHs. The former is kept for perturbative LLHs
while the latter is kept for local search LLHs.

P1
f , P2

f The fixed lists of all possible parameter values available for the perturbative and local search LLHs, respectively.
Lp The bound size for the P1

w and P2
w lists.

At
The number of consecutive non-improving iterations allowed for an acceptance strategy. Experimental
value = 15.

Ht Similar to At, but applied to the operation sequences. Experimental value = 1.
nA The number of non-improving iterations completed so far for an acceptance strategy.
nH Similar to nA, but applied to the operation sequences.
impA The number of improving iterations completed so far for an acceptance strategy.
impH Similar to impA, but for LLHs

Ladd
A pre-determined list of possible values that could be added to the value of the current acceptance strategy
during its mutation.

PA A bounded list of rewarding acceptance strategies based on the improvement of the global best solution.
Hpert A list of combinations of mutation and ruin-recreate LLHs perturbative heuristics for a problem domain.
rndSel() A function that returns a random member of a list.
A The current value of the temperature parameter being used by the acceptance mechanism.
cur_a The currently engaged acceptance strategy.
Sb The best solution found so far.
S′′ The proposed solution after a perturbation–intensification cycle.
S0 The incumbent solution during the search process.

Algorithms 2022, 15, 405 8 of 30

Algorithm 2: The EA-ILS hyper-heuristic

Variable: runtime
1. S0 ← generateInitialSolution()
2. Sb ← S0
3. init()
4. while getElapsedTime() < runTime
5. H ← rndSel(A)
6. for i← 1 to p + 1 B p is the number of offspring
7. if i > 1
8. H←mutate(H)
9. end if
10. setParam()
11. while nH < Ht
12. S′′ ← Apply the operation sequence H on S0
13. set_accept_strategy()

14. S0 ←
{

S′′ , i f S′′ is accepted, goto line 15
S0, otherwise, goto line 24

15. updateParam() B if S′′ replaces S0
16. if better(S0, Sb)
17. Sb ← S0
18. updateLS()

19. impH
+← 1

20. impA
+← 1

21. nA← 0
22. nH ← 0
23. else
24. nA +← 1

25. nH +← 1
26. end if
27. end while
28. if impH > 0
29. A.add(H,

∣∣Hpert
∣∣, impH) B add H to archive A

30. end if
31. end for
32. end while

The initial solution for the EA-ILS hyper-heuristic is generated in Line 1 of Algorithm
2 through a constructive LLH of a given problem domain. In Line 2, the initial solution
is used to initialize the best solution found so far. The initial population of sequences
is generated by the init() procedure in Line 3 and stored in a bounded list (A) of size∣∣Hpert

∣∣; each one is similar to the sequence shown in Figure 1. In the same line, some other
tasks to initialize some values needed within the algorithm are carried out. They include
the following:

• Initialization of the bounded lists for parameters P1
w and P2

w such that each element
in the initial lists P1

f and P2
f is represented at least once withinP1

w and P2
w, respectively.

The size of these bounded lists at the initialization stage is Lp = 5;
• Initialization of the bounded list for acceptance strategies (PA) with a shuffled version

of the array {0.38, 0.25, 0.15}. This means that the highest value of the temperature
parameter for the accept probabilistic worse (APW) acceptance mechanism is initially
set to 0.38;

• Randomly selecting a member of PA as the starting parameter value of the acceptance
strategy before the search process begins.

The runTime variable is the time that is checked against the elapsed time during
the run of the EA-ILS hyper-heuristic. The value set that is returned by a benchmarking
program for runTime is reported in Section 4. The getElapsedTime() function returns the

Algorithms 2022, 15, 405 9 of 30

total elapsed time since the beginning of the EA-ILS hyper-heuristic run on an instance of a
problem. In Line 5, a sequence H is randomly picked from the bounded list of sequences
(A) initialized in Line 3. This bounded list is set up to keep the sequences that generated the
best new solutions when they were applied. Line 6 is the loop that controls the mechanism
of applying sequences and their mutations. There are only two iterations completed by
the loop because the value of p is set to 1 so that every selected sequence spawns an
offspring that is tried before the selection of another sequence from archive A. The mutation
evolutionary operator designed for the EA-ILS hyper-heuristic is applied to H in Line 8
during the second iteration of the inner loop in Line 6 to likely produce another sequence.

The parameters for the perturbative LLHs in the sequence are set in Line 10. This only
happens to the perturbative LLHs that use the intensity of mutation parameter. Line 11 marks
a cycle of repeated application of an operation sequence until it no longer improves the
global best solution Sb. In Line 12, the current operation sequence is applied to a solution
by successively applying the perturbative LLHs in the sequence before the execution
of the local search module for intensification. The acceptance strategy may be changed
after applying a sequence. This will depend on whether the number of consecutive non-
improving iterations allowed for the current acceptance strategy has elapsed or not, as in
Line 13 of Algorithm 2. The value of the parameter to be applied for a perturbative or local
search LLH is selected based on a random value through the function set-Param()described
by Algorithm 3. This random value is checked against the value of ϕ = 0.5. Consequently,
the parameter is selected at 50% probability from a recency list of parameters with accepted
solutions; otherwise, it is selected from the general list of a parameter value Pf . There
are two versions of Pf : one is maintained for the perturbative LLHs while the other is
maintained for the local search LLHs. The value of P1

f = {0.0, 0.1, . . . , 0.6} and that of

P2
f = {0.5, 0.6, 0.7}.

Algorithm 3: setParam()

δ← Rnd.Real(0, 1)
if δ < ϕ

p ← rndSel(Pw) B could be P1
w or P2

w
else

p ← rndSel
(

Pf) B could be P1
f or P2

f
end if
applyParam(p) B Apply the selected parameter value

The incumbent solution S0, as in Line 14 of Algorithm 2, is replaced by the proposed
S′′ if the acceptance mechanism accepts the proposed solution. In this scenario, Line
15 of Algorithm 2—which updates the parameter-bounded lists for the parameterized
perturbative and local search LLHs—is triggered. The following activities, in the order they
appear, are triggered only if a best new solution is found in the current iteration, and Line
16 of Algorithm 2 checks for this condition. The best solution found so far is replaced by the
proposed solution and learning parameters for the local search procedure are updated. The
number of consecutive improving iterations for both the current sequence and the acceptance
strategy is incremented while the counters for their non-improving iterations are reset to
zero, as in Lines 17–22 of Algorithm 2. In particular, Line 18 updates the data structures
of the local search when a new best global solution is found by the hyper-heuristic. The
full algorithmic outline of the local search procedure is given in Section 3.2.4. The numbers
of non-improving iterations for both the currently engaged acceptance strategy and the
sequence are updated in Lines 24 and 25 when the proposed solution is not accepted or is
inferior to the global best solution, as indicated in Line 23 of Algorithm 2. The perturbed
solution goes through the intensification phase when the execution of a sequence reaches
the local search terminal as identified with the “LS” tag in Figure 1. The intensification

Algorithms 2022, 15, 405 10 of 30

phase is carried out through the LS-Seq local search procedure, and the resulting solution
gets screened by the acceptance mechanism in Line 14 of Algorithm 2.

A different strategy is taken in the local search module of the EA-ILS hyper-heuristic
for applying local search heuristics during the intensification phase. Instead of applying the
heuristics in a variable neighborhood style as in [21,49], HMM is employed to automatically
learn promising sequences of local search LLHs. A vector iScore of size n and an n × n
matrix called pScore are maintained for the n local search LLHs. A roulette wheel procedure
is employed to select the first local search LLH in an iteration of the local search phase
based on the values of the iScore vector. Subsequent selections through a roulette wheel
procedure are performed with the pScore matrix that captures the transition probability of
selecting a given j local search LLH after applying a previous one i.

Line 28 of Algorithm 2 updates the bounded list of high-quality sequences discovered
during the search process. This update is achieved by adding the recently applied sequence
to the bounded list if it has updated the global best solution at least once during its usage.
In Line 29 of Algorithm 2, impH copies of a sequence are added to the bounded list. The
major features of the EA-ILS hyper-heuristic are explicated as follows:

• The sequence of perturbative LLHs is discovered by an evolutionary algorithm, which
means that the EA-ILS hyper-heuristic does not use a mainstream selection mechanism;

• The temperature parameter of the acceptance mechanism, that is, the APW of the
present study, oscillated during the search process;

• The intensification phase in most ILS-based hyper-heuristics such as the FS-ILS al-
gorithm was achieved through a local search procedure based on the VND. The
EA-ILS hyper-heuristic carries out intensification through a procedure based on the
HMM. The algorithmic details of LS-Seq and the local search procedure of the EA-ILS
hyper-heuristic can be found in [48];

• The parameter values of the LLHs in the EA-ILS hyper-heuristic are learned over time
using bounded lists.

The acceptance strategy for the search process represents the value of the temperature
parameter used in the APW acceptance mechanism. The value is reviewed after nA
iterations have elapsed for the current acceptance strategy. A new acceptance strategy
not in the bounded recency list of acceptance strategies denoted by the symbol PA is
generated with a probability of θ = 0.3 through the linear_mutation procedure invoked in
the set_accept_strategy described by Algorithm 4; otherwise, a value is randomly selected
from the recency list. If the current acceptance strategy improves the best global solution
during the episode, it is added to the bounded list before it is replaced by the newly chosen
acceptance strategy. The variables attached to an acceptance strategy are reset to zero. The
size of the list PA is bounded by a value LA = 7, which means that the size of the list will
never exceed the value of 7 that was chosen after preliminary experiments.

Algorithm 4: set_accept_strategy()

if nA = At
δ← Rnd.Real(0, 1)
if δ < θ

a ← linear_mutation()
else
a ← rndSel(PA)

end if
if impA > 0

PA.add(cur_a, LA)
end if
cur_a ← a
impA ← 0
nA ← 0

end if

Algorithms 2022, 15, 405 11 of 30

The linear mutation operation that changes the value of an acceptance strategy during
the execution of Algorithm 4 is detailed by Algorithm 5. Firstly, an acceptance strategy is
randomly selected from the bounded list of “elite” acceptance strategies, a value p1_add is
then randomly selected from a fixed list Ladd and added to the selected acceptance strategy.
If necessary, a repair is made on the resultant value to make sure the output of the procedure
is valid and is not greater than 1. In this study, Ladd = {0.1, 0.2, . . . , 0.5} was determined
after a set of preliminary experiments.

Algorithm 5: linear_mutation()

p1 ← rndSel(PA)
p1_add ← rndSel(Ladd)
p2 ← p1 + p1_add
if p2 > 1.0
p2 ← p2 – 1.0

end if
Output: p2

The procedure for updating the bounded lists of parameter values used by LLHs
for both local search and perturbative categories is described by Algorithm 6. These lists
are updated once an ILS cycle produces a solution that is accepted by the acceptance
mechanism. The while loop controls the update of the bounded list for perturbative
LLHs, P1

w. The variable Piter simply represents the number of iterations covered by the
perturbation stage while pi represents the value used for the intensity of the mutation
parameter when the ith perturbative heuristic in the operation sequence is applied to a
solution. The value of Piter will be 1 if only one perturbative LLH appears in the operation
sequence that was applied in the ILS cycle, or 2 if there are two perturbative LLHs in
the operation sequence. The eventual number of updates on P1

w depends on whether the
latest perturbative LLHs use the intensity of the mutation parameter or not. However,
no parameter update is made for the perturbative LLHs if none of the perturbative LLHs
applied in the last ILS cycle use the parameter. The local search parameter update begins
after the while loop. The LS-Seq local search procedure keeps the parameter values of the
local search LLHs applied during the intensification phase in a list tagged p_list. If the size
of p_list is zero, it means that no single local search heuristic has improved the solution
constructed during the perturbation stage. The for loop simply goes through the list and
adds every member to the bounded list of “elite” parameters for the local search heuristics.
The value of Lp = 5 means there is a maximum of five parameter values in either of the
bounded lists at any point in time during the search process.

Algorithm 6: updateParam()

i ← 0
while i < Piter

P1
w.add(pi , Lp)

i ← i + 1
end while
if |p_list| > 0
for p ∈ p_list

P2
w.add(p , Lp)

end for
end if

3.2.3. Evolutionary Operator of EA-ILS Hyper-Heuristic

The design of a novel mutation evolutionary operator for the EA-ILS hyper-heuristic
is discussed in this section. The mutation operator that is applied to a sequence during the
search process is implemented by Algorithm 7, which presents three main cases as follows.

Algorithms 2022, 15, 405 12 of 30

1. Wild mutation: This is the first case; it occurs (pw ∗ 100) % of the time when mutation
takes place. The value pw represents the probability of “wild mutation”, which was
set at 0.5 in this study. If {3, 2} is changed to {4, 0}, for example, it would be noticed
that the two pairs are not similar, hence the name “wild mutation”;

2. Add random: Since the maximum length of a sequence is 2, there are two cases when
adding a new perturbative LLH to a sequence. Case 2a: If the randomly generated
position (tagged loc) is 0, which denotes adding the new LLH at the first position,
randomly select a perturbative LLH and add it to position 0, replacing the incumbent
occupant of position 0. Case 2b: This is similar to Case 2a, only that the newly
generated member is fixed at position 1;

3. Remove random: The remove random case selects a random position and the LLH
at that position is removed or replaced. This case presents three possible sub-cases
as follows: The first two sub-cases are triggered when the position to remove from is
the first position, i.e., position 0. The last sub-case is when a LLH at position 1 is to
be removed; in this sub-case, the LLH at this position is simply removed. Case 3a: If
a sequence is full, i.e., there are two perturbative LLHs in the sequence, remove the
LLH hr

4. at position 0 and move the LLH at the next position to position 0. Case 3b: The current
perturbative LLH at position 0 in the sequence is replaced with randomly generated
LLH while the second position is still vacant.

Algorithm 7. mutate()

Input: an operation sequence H
δ← Rnd.Real(0,1)
if δ < pw B Begin Case 1

H0 ← rndSel
(

Hpert)
H1 ← rndSel

(
Hpert)

Return
end if B End Case 1
loc ← Rnd.Int [0, 2)
if Rnd.Bool() B Begin Case 2

h ← rndSel
(

Hpert)
Hloc ← h

else B Begin Case 3
if loc = 0 ∧H1 6= −1

H0 ← H1
H1 ← −1

else if loc = 0 ∧H1 = −1
h ← rndSel

(
Hpert)

Hloc ← h
else
Hloc ← −1

end if
end if

3.2.4. Local Search Procedure of EA-ILS Hyper-Heuristic

The local search procedure (LS-Seq) for the intensification stage of the EA-ILS hyper-
heuristic is briefly described in Algorithm 8. It is based on the hidden Markov model
principle for constructing effective heuristic sequences [70] and was proposed as an alter-
native to the VNS [48]. The LS-Seq was designed to eliminate the excessive iterations in the
ILS-based hyper-heuristics such as FS-ILS and NR-FS-ILS that carry local search invocation
based on the VNS. It maintains two data structures which are iScore and pScore. The iScore
is for storing the level of influence of a particular local search heuristic to produce the
best new solutions. The pScore is for measuring the effectiveness of applying two local
search heuristics in succession. The input to the procedure is a perturbed solution that

Algorithms 2022, 15, 405 13 of 30

goes through hill-climbing intensification and the best solution found at the end of the
procedure is returned. Spert, Sbl , and S∗ respectively represent the perturbed solution, the
solution produced after applying a local search heuristic, and the best solution found so far
during the intensification stage. The roulette wheel scheme was employed to select the first
local search heuristic before the while loop using the vector iScore. However, within the
loop, the next local search heuristic to apply is based on two parameters: the matrix pScore
and the previously applied local search heuristic captured by its index prev. It is important
to note that all the entries of the two data structures are initially set to 1.

Algorithm 8: LS-Seq procedure

Input: Spert, the solution from the perturbation stage
Sbl ← Spert
cur ← RWS(iScore) /*Based on iScore, select the index of the current LLH*/
hl ← LH [cur] /*get HyFlex id of the LLH*/
S∗ ← apply(hl , Sbl) /*apply the LLH*/
whilee(S∗) < e(Sbl)
Sbl ← S∗

prev← cur /*update the index of the previous local search LLH*/
cur ← RWS(pScore, prev)/*select the index of the next LLH*/
hl ← LH [cur]
S∗ ← apply(hl , Sbl)

end while
Output:Sbl , the best solution produced from the LS-Seq procedure

Figure 2 illustrates how the data structures of LS-Seq were updated. In the first view,
heuristic L0 has only been involved once during the update of the best global solution. L1
and L2 have been involved two times and five times, respectively, hence the vector entries
2, 3, 6. During the call of the LS-Seq procedure, L0, L1, and L2 are applied in the given
order, leading to the update of both the iScore vector and the pScore matrix. Specifically, the
intersection of L0–L1 was updated to 3 while that of L1–L2 was updated to 8 to strengthen
the selection of L1 after the application of L0 and the selection of L2 after the application of
L1. Since all the local search heuristics were applied once based on the sequence L0, L1, L2,
they all received an increment of 1 in their respective iScore entries to change {2, 3, 6} to {3,
4, 7}. At the end of the third view, only L2 is applied during the current call of LS-Seq, and
its iScore value is increased to 9. The iScore vector has the entries {3, 5, 9}, while no update
is performed on the pScore matrix because the sequence {L2} is a singleton. Eventually,
the local search invocation almost creates a sequence based on the inter-neighborhood
strengths discovered over time.

Algorithms 2022, 15, 405 14 of 30

Figure 2. Illustration of LS-Seq update procedure.

4. Experimental Results

The EA-ILS hyper-heuristic has been tested on all instances of each problem in the
extended HyFlex suite. The stopping criterion for the EA-ILS hyper-heuristic was set
according to the execution time returned by a program on the machine used for the
experimentation. The time limit for the EA-ILS hyper-heuristic on the machine used for
an experiment is 530 s, which is the equivalent of 600 s on a standard testing computer
according to the CHeSC 2011 organizers. The performance of the EA-ILS hyper-heuristic
on the extended HyFlex domains was benchmarked against those of other hyper-heuristics
that have been tested on the domains. The other competing algorithms include FS-ILS,
NR-FS-ILS, AdapHH, EPH, SR-IE, SR-AM, and SSHH. Both SR-IE and SR-AM select LLHs
at random but differ in their acceptance mechanisms. SR-IE accepts solutions with equal or
better quality than the incumbent solution while SR-AM accepts every proposed solution
regardless of its quality. The data generated for the performances of the three domains were
obtained from the webpage (https://github.com/Steven-Adriaensen/hyflext accessed on
10 September 2022), with the exception of that of the SSHH. The median objective function
values (ofvs) of the solutions obtained for the SSHH can be found in a paper [25]. Tables 3
and 4 respectively highlight the performance of the EA-ILS hyper-heuristic in terms of its
overall best and median best ofvs obtained across the 30 instances of the problem domains
in comparison with the top six performing hyper-heuristics reported in [25], where the
values in bold style denote the best values. In Table 3, the percentage deviation in the best
ofv of the EA-ILS hyper-heuristic in each instance from the best-known values reported
in [24], denoted by ∆(%), is presented.

https://github.com/Steven-Adriaensen/hyflext

Algorithms 2022, 15, 405 15 of 30

Table 3. Best ofvs Obtained by the EA-ILS in Comparison to the Existing Hyper-Heuristics.

Domain I ∆(%) EA-ILS AdapHH FS-ILS NR-FS-ILS EPH SSHH SR-AM

K
na

ps
ac

k
Pr

ob
le

m

0 0.0000 −104,046 −104,046 −104,046 −104,046 −104,046 −104,046 −104,046
1 0.0026 −1,263,828 −1,263,317 −1,238,256 −1,251,478 −1,257,833 −1,261,320 −1,218,285
2 0.0592 −243,001 −242,841 −239,378 −241,794 −242,198 −242,963 −239,346
3 0.0009 −431,359 −431,363 −431,347 −431,354 −431,350 −431,362 −431,330
4 0.0000 −396,167 −396,167 −396,167 −396,167 −396,167 −396,167 −396,167
5 1.8119 −4,337,691 −4,378,410 −4,266,654 −4,248,962 −4,341,328 −4,268,665 −4,264,094
6 0.7982 −946,555 −943,371 −938,125 −938,646 −943,247 −943,136 −934,838
7 0.0000 −1,577,175 −1,577,175 −1577,166 −1,577,166 −1,577,175 −1,577,175 −1,577,175
8 0.0014 −1,530,515 −1,530,497 −1530,479 −1,530,480 −1,530,514 −1,530,511 −1,530,476
9 0.0063 −1,467,362 −1,467,362 −1467,357 −1,467,353 −1,467,387 −1,467,362 −1,467,357

Q
ua

dr
at

ic
A

ss
ig

nm
en

t
Pr

ob
le

m

0 0.0000 152,002 152,046 152,002 152,044 152,116 152,224 152,280
1 0.0065 153,900 153,890 153,916 153,890 153,942 154,130 154,160
2 0.0000 147,862 147,868 147,898 147,866 147,872 147,930 148,058
3 0.0013 149,578 149,672 149,596 149,594 149,762 149,782 149,846
4 0.7836 21,217,438 21,303,448 21,246,800 21,242,104 21,279,308 21,325,030 21,454,914
5 0.0000 1,185,996,137 1,185,996,1371,186,007,112 1,186,055,449 1,185,996,137 1,186,663,179 1,187,672,220
6 13.1320 499,802,038 500,066,316 499,728,427 499,571,734 500,645,098 500,015,697 499,912,219
7 2.2737 44,846,660 44,825,454 44,840,214 44,843,206 44,817,780 44,855,568 44,850,886
8 6.8364 8,141,608 8,148,152 8,152,748 8,147,252 8,140,772 8,151,040 8,154,234
9 0.0022 273,044 273,054 273,112 273,054 273,276 273,216 273,262

M
ax

im
um

-c
ut

Pr
ob

le
m

0 0.0000 −41,684,814 −41,684,814 −41,684,814 −41,684,814 −41,446,603 −41,517,765 −40,699,212
1 1.2953 −279,538,175 −274,477,564−263,474,137 −261,502,273 −269,348,577 −277,548,425 −265,390,780
2 0.0979 −3061 −3053 −3057 −3056 −3041 −3062 −3056
3 0.0328 −3049 −3032 −3033 −3042 −3017 −3050 −3044
4 0.2621 −3044 −3037 −3037 −3043 −3017 −3051 −3043
5 0.8159 −13,250 −13,177 −13,158 −13,152 −13,140 −13,300 −13,230
6 1.3006 −1366 −1334 −1318 −1332 −1272 −1358 −1332
7 1.4856 −10,146 −9929 −9744 −9765 −9851 −10,125 −9951
8 0.0000 −458 −458 −456 −456 −440 −458 −456
9 2.3889 −2942 −2832 −2718 −2730 −2760 −2960 −2862

Algorithms 2022, 15, 405 16 of 30

Table 4. Median ofvs Obtained by the EA-ILS in Comparison to the Existing Hyper-Heuristics.

Domain I EA-ILS AdapHH FS-ILS NR-FS-ILS EPH SSHH SR-AM

K
na

ps
ac

k
Pr

ob
le

m

0 −104,046 −104,046 −104,046 −104,046 −104,046 −104,046 −104,025
1 −1,262,154 −1,258,634 −1,220,103 −1,231,767 −1,253,074 −1,247,642 −1,209,914
2 −242,603 −242,104 −236,813 −239,578 −240,663 −241,934 −238,397
3 −431,344 −431,351 −431,297 −431,312 −431,333 −431,350 −431,311
4 −396,167 −396,167 −395,941 −395,654 −396,167 −396,167 −396,167
5 −4,256,586 −4,328,770 −3,756,992 −3,697,266 −4,283,926 −4,251,693 −4,248,962
6 −940,291 −937,868 −906,490 −895,516 −936,200 −929,052 −923,973
7 −1,577,175 −1,577,175 −1,572,999 −1,572,999 −1,577,175 −1,577,175 −1,577,175
8 −1,530,477 −1,530,463 −1,347,297 −1,346,608 −1,530,471 −1,530,477 −1,530,453
9 −1,467,357 −1,467,353 −1,463,681 −1,462,759 −1,467,357 −1,467,357 −1,467,353

Q
ua

dr
at

ic
A

ss
ig

nm
en

t
Pr

ob
le

m

0 152,102 152,214 152,196 152,196 152,388 152,572 152,402
1 154,010 154,164 154,088 154,166 154,390 154,492 154,290
2 147,890 147,970 148,002 147,978 148,122 148,374 148,190
3 149,722 149,850 149,858 149,828 150,144 150,366 149,992
4 21,306,194 21,366,688 21,309,208 21,321,554 21,401,254 21,419,490 21,518,130
5 1,187,379,429 1,187,875,748 1,187,490,923 1,187,383,316 1,189,221,001 1,190,346,287 1,189,321,259
6 501,094,667 502,937,700 503,088,738 502,654,006 502,409,100 504,406,437 502,293,807
7 44,867,334 44,858,394 44,874,028 44,873,022 44,860,940 44,892,452 44,866,876
8 8,152,360 8,163,764 8,169,250 8,162,592 8,163,304 8,179,752 8,168,990
9 273,312 273,414 273,362 273,336 273,630 273,622 273,512

M
ax

im
um

-c
ut

Pr
ob

le
m

0 −41,398,025 −41,348,693 −41,348,693 −41,145,032 −40,953,212 −41,101,646 −40,502,841
1 −276,571,977 −255,265,025 −255,265,025 −257,764,081 −260,608,752 −273,938,900 −263,151,470
2 −3051 −3044 −3041 −3044 −3023 −3056 −3046
3 −3035 −3025 −3020 −3025 −3004 −3040 −3033
4 −3039 −3026 −3026 −3028 −3004 −3041 −3035
5 −13,211 −13,126 −13,083 −13,091 −13,065 −13,243 −13,177
6 −1356 −1314 −1302 −1304 −1206 −1352 −1322
7 −10,078 −9823 −9632 −9668 −9794 −10,074 −9878
8 −456 −450 −450 −450 −430 −454 −454
9 −2902 −2786 −2676 −2680 −2,648 −2912 −2814

4.1. Comparison of Hyper-Heuristic Algorithms

The F1 scoring system is one of the most popular metrics for evaluating hyper-
heuristics [11]. The competing algorithms are assigned points based on the ofvs of their
median (16th) best solutions obtained after 31 trials on each instance of a problem in the
given test suite. Points 10, 8, 6, 5, 4, 3, 2, and 1 are awarded to the best hyper-heuristic
down to the eighth best hyper-heuristic on the instance of a problem, respectively. Ties
are handled by averaging the points that would have been given to the hyper-heuristics if
there was no tie and assigning the average score to each of the hyper-heuristics. The results
following the evaluation of the EA-ILS hyper-heuristic against the existing seven hyper-
heuristics using the F1 ranking are presented in the form of bar charts in Figure 3. The
EA-ILS hyper-heuristic emerged as the winner of the contest across the problem domains
used as the basis for evaluation (Figure 3a–d). The scores of the EA-ILS hyper-heuristic on
KP, QAP, and MAC problems are 78.2, 95.0, and 90.0, respectively, bearing in mind that the
total obtainable score on each domain is 100.0. The top three performing hyper-heuristics
are EA-ILS with 263.2 points, AdapHH with 180.2 points, and SSHH with 171.2 points while
SR-IE finished last with 48.5 points. The no-restart version of the FS-ILS hyper-heuristic
(NR-FS-ILS) outperformed the original version (FS-ILS) in all the domains while the SR-AM
hyper-heuristic finished fourth based on the overall rankings.

Algorithms 2022, 15, 405 17 of 30

Figure 3. F1 scores of the hyper-heuristics on the three problem domains (a–c) and the sum of scores
across the three domains (d).

The performance of the EA-ILS hyper-heuristic was further compared with those
of six other hyper-heuristics using the evaluation metrics of µ-norm, µ-rank, best, and
worst [24,25]. The µ-norm is an average normalized evaluation function and is a more
robust evaluation metric than the F1 scoring system. This is because it can evaluate the
performance of a hyper-heuristic based on the quality of the 31 solutions obtained over
31 trials on a problem instance relative to its competitors. The µ-rank is the average rank
of the median cost obtained by each metric and is based on the value of the µ-norm.
This means that the comparative hyper-heuristics are ranked based on the increasing
value of µ-norm. The highest µ-rank is 1 while the lowest is n, where n is the number of
competing hyper-heuristics. The metrics best and worst refer to the number of instances for
which a hyper-heuristic obtained the best (highest) and worst (lowest) median ofvs. The
SSHH algorithm is not included in the evaluation because the quality of the 31 solutions
obtained from its test on the instances could not be obtained. Table 5 presents the AdapHH
hyper-heuristic as the closest challenger to the EA-ILS hyper-heuristic on the knapsack
problem, but the metric values for the EA-ILS hyper-heuristic still establish its superiority.
In the other two problem domains, the EA-ILS hyper-heuristic was dominant over the
comparative hyper-heuristics across evaluation metrics and problem domains as shown in
Tables 5–8. The overall performance of the EA-ILS hyper-heuristic is seen in Table 8 to be
better than those of the comparative hyper-heuristics across the evaluation metrics.

Table 5. Evaluation Results on the Knapsack Problem.

Rank Hyper-Heuristic µ-Norm µ-Rank Best Worst

1 EA-ILS 0.0210 1.30 8 0
2 AdapHH 0.0302 1.70 5 0
3 EPH 0.0556 2.00 4 0
4 SR-AM 0.1507 4.00 2 0
5 SR-IE 0.3300 5.50 0 4
6 NR-FS-ILS 0.3628 5.30 1 6
7 FS-ILS 0.3967 5.40 1 2

Algorithms 2022, 15, 405 18 of 30

Table 6. Evaluation Results on the Quadratic Assignment Problem.

Rank Hyper-Heuristic µ-Norm µ-Rank Best Worst

1 EA-ILS 0.0727 1.30 9 0
2 NR-FS-ILS 0.1036 2.90 0 0
3 AdapHH 0.1063 3.40 1 0
4 FS-ILS 0.1071 3.80 0 0
5 EPH 0.1369 4.60 0 0
6 SR-AM 0.1486 4.90 0 0
7 SR-IE 0.6355 7.00 0 10

Table 7. Evaluation Results on the Maximum-Cut Problem.

Rank Hyper-Heuristic µ-Norm µ-Rank Best Worst

1 EA-ILS 0.0886 1.00 10 0
2 SR-AM 0.2392 2.50 0 0
3 AdapHH 0.2658 3.00 0 0
4 NR-FS-ILS 0.3634 3.90 0 0
5 FS-ILS 0.3811 4.80 0 2
6 EPH 0.5116 5.60 0 1
7 SR-IE 0.7305 6.60 0 7

Table 8. Overall Performance on the Extended Hyflex Test Suite.

Rank Hyper-Heuristic µ-Norm µ-Rank Best Worst

1 EA-ILS 0.0608 1.20 27 0
2 AdapHH 0.1341 2.70 6 0
3 SR-AM 0.1795 3.80 2 0
4 EPH 0.2347 4.07 4 1
5 NR-FS-ILS 0.2766 4.03 1 6
6 FS-ILS 0.2950 4.67 1 4
7 SR-IE 0.5653 6.37 0 21

4.2. Statistical Significance of Hyper-Heuristic Algorithms

The statistical significance of the superiority of the EA-ILS hyper-heuristic over the
comparative hyper-heuristics was established across the three problem domains. The
Friedman test was first performed on the median ofvs of the competing hyper-heuristics
to statistically evaluate these values. The boxplot visualizations of the median ofvs per
problem domain and overall performance are subsequently presented.

4.2.1. Friedman Test

The median ofvs obtained by the hyper-heuristics, including the SSHH, were subjected
to the Friedman test at a significance level of 0.05. The test result returned a p-value less
than 2.2× 10−16, which is an insignificant value. This result means that there is a significant
difference between the median ofvs obtained by the EA-ILS hyper-heuristic across the three
problem domains. The Friedman rankings are presented in Table 9 and indicate that the
EA-ILS hyper-heuristic is the best with a rank of 1.67 while AdapHH and SSHH finished
second and third, respectively. The two variants of ILS, which are FS-ILS and NR-FS-ILS,
finished sixth and seventh, respectively.

Algorithms 2022, 15, 405 19 of 30

Table 9. Ranking of the Hyper-Heuristics Using the Friedman Test.

S/N Hyper-Heuristic Rank

1 EA-ILS 1.67
2 AdapHH 3.38
3 SSHH 3.88
4 SR-AM 4.58
5 EPH 4.78
6 NR-FS-ILS 4.83
7 FS-ILS 5.45
8 SR-IE 7.35

4.2.2. Boxplot Analysis

The boxplots in Figure 4a–d represent the performance of the eight hyper-heuristics
presented in Table 9. The ten median ofvs obtained by the eight hyper-heuristics over the
ten instances of the problem domains were used as data points for plotting the boxplots.
The overall boxplot in Figure 4d combines the data points from each domain to visualize the
overall performance of each hyper-heuristic. The median ofv obtained by each algorithm
in an instance i was normalized to a value in the range [0, 1] using Equation (1) to obtain a
uniform evaluation o f v(O, i, h, b, w) as follows:

o f v(O, i, h, b, w) =
Oh

i −Ob
i

Ow
i −Ob

i
(1)

where Oh
i is the median ofv obtained by a given hyper-heuristic h on an instance i, Ob

i is the
median ofv obtained by the best hyper-heuristic b on an instance i, and Ow

i is the median
ofv obtained by the worst hyper-heuristic w on an instance i. The best hyper-heuristic
in an instance receives a value of 0.0 while the worst receives a value of 1.0 according to
Equation (1). Figure 4 shows that the EA-ILS hyper-heuristic is the best performing across
the problem domains.

Figure 4. Boxplot visualizations of the median objective function values obtained by hyper-heuristics
per domain (a–c) and the overall boxplot over all three domains (d).

Algorithms 2022, 15, 405 20 of 30

4.3. Application of EA-ILS Hyper-Heuristic to HyFlex Version 1.0

The EA-ILS hyper-heuristic was tested on six problem domains of the first version
of HyFlex (HyFlex V1.0) to further demonstrate its generality. The problem domains are
Boolean satisfiability (SAT), bin packing (BP), personnel scheduling (PS), permutation
flow-shop (PFS), traveling salesman problem (TSP), and vehicle routing problem (VRP).
Tables 10 and 11 respectively show comparisons of the best and median ofvs of the EA-
ILS hyper-heuristic obtained from its 31 runs in each instance against the state-of-the-art
hyper-heuristics AdapHH, FS-ILS, and TS-ILS [48]. The values presented in the tables
further establish the competitiveness of the EA-ILS hyper-heuristic when compared to the
state-of-the-art ones. It is important to note that only algorithms that were run with the
updated version of HyFlex v1.0 can be directly compared with the EA-ILS hyper-heuristic
on the PS domain.

Table 10. Best ofvs Obtained by EA-ILS against three state-of-the-art Hyper-Heuristics.

Domain Instance EA-ILS AdapHH FS-ILS TS-ILS

MAX-SAT

SAT3 1.0 1.0 1.0 0.0
SAT5 1.0 3.0 1.0 1.0
SAT4 0.0 1.0 0.0 0.0
SAT10 1.0 1.0 1.0 1.0
SAT11 7.0 7.0 7.0 7.0

Bin Packing

BP7 0.01107109 0.0131 0.01384737 0.01569294
BP1 0.00339113 0.0028 0.00666972 0.00306951
BP9 0.00162385 0.0004 0.01004134 0.00049110
BP10 0.10829805 0.1083 0.10833606 0.10827981
BP11 0.00431172 0.0031 0.01047079 0.00115128

Personnel
Scheduling

PS5 15.0 - 17.0 15.0
PS9 9176.0 - 9486.0 9291.0
PS8 3136.0 - 3148.0 3142.0

PS10 1380.0 - 1360.0 1453.0
PS11 305.0 - 325.0 315.0

Flowshop

PFS1 6210.0 6214.0 6214.0 6210.0
PFS8 26700.0 26757.0 26743.0 26744.0
PFS3 6303.0 6303.0 6303.0 6303.0
PFS10 11308.0 11318.0 11332.0 11308.0
PFS11 26511.0 26541.0 26547.0 26516.0

Travelling
Salesman

TSP0 48194.9 48194.9 48194.9 48194.9
TSP8 20732537.2 20752853.8 20933386.7 20662037.2
TSP2 6798.8 6797.5 6796.5 6798.6
TSP7 66017.2 66277.1 65748.4 65592.7
TSP6 52545.2 52383.8 52385.5 52308.7

Vehicle
Routing

VRP6 61943.4 58052.1 63429.7 60145.1
VRP2 12270.1 13304.9 12277.1 12266.9
VRP5 143902.4 145481.5 142481.3 142607.9
VRP1 20652.2 20652.3 20651.6 20652.2
VRP9 144030.2 146154.1 144686.3 143479.0

Algorithms 2022, 15, 405 21 of 30

Table 11. Median ofvs Obtained by EA-ILS against three state-of-the-art Hyper-Heuristics.

Domain Instance EA-ILS AdapHH FS-ILS TS-ILS

MAX-SAT

SAT3 4.0 3.0 2.0 2.0
SAT5 5.0 5.0 3.0 3.0
SAT4 2.0 2.0 1.0 1.0
SAT10 6.0 3.0 2.0 1.0
SAT11 9.0 8.0 8.0 8.0

Bin Packing

BP7 0.01612590 0.01607535 0.01851932 0.01876799
BP1 0.00354067 0.00360372 0.00751493 0.00350695
BP9 0.00267695 0.00356587 0.01122520 0.00052035
BP10 0.10831818 0.10828303 0.10840170 0.10828402
BP11 0.00755952 0.00354259 0.01355520 0.00142866

Personnel
Scheduling

PS5 20.0 - 23.0 21.0
PS9 9560.0 - 9763.0 9548.0
PS8 3164.0 - 3236.0 3181.0

PS10 1550.0 - 1635.0 1550.0
PS11 325.0 - 345.0 330.0

Flowshop

PFS1 6224.0 6240.0 6241.0 6232.0
PFS8 26769.0 26814.0 26797.0 26785.0
PFS3 6323.0 6326.0 6323.0 6325.0
PFS10 11344.0 11359.0 11374.0 11340.0
PFS11 26583.0 26643.0 26605.0 26601.0

Travelling
Salesman

TSP0 48194.9 48194.9 48194.9 48194.9
TSP8 21333200.2 20822145.6 21172591.7 20779493.2
TSP2 6805.8 6810.5 6806.7 6805.3
TSP7 66483.8 66879.8 66415.3 66133.0
TSP6 53997.5 53099.8 52840.8 53762.4

Vehicle
Routing

VRP6 66178.5 60900.6 65638.8 63709.0
VRP2 13286.3 13347.6 12308.0 13292.8
VRP5 146813.7 148516.8 146871.0 145401.5
VRP1 20654.1 20656.6 20654.1 20654.7
VRP9 145765.2 148689.2 146242.7 145205.4

The entries for TS-ILS and FS-ILS were taken from a previous study [48] where both
methods were tested on the same machine. The EA-ILS hyper-heuristic comfortably
outperformed others on the PS and PFS problem domains. Moreover, it has outperformed
the FS-ILS hyper-heuristic on the BP problem but is inferior to others on the SAT according
to the median ofvs obtained. The performances of the 20 CHeSC entries, EA-ILS, TS-ILS,
and FS-ILS were further analyzed using the F1 ranking test. Table 12 shows the results
of the EA-ILS hyper-heuristic versus only the 20 CHeSC entries while Figure 5 shows the
results of the EA-ILS hyper-heuristic vs. the 20 CHeSC entries, FS-ILS, and TS-ILS. The
overall F1 ranking of the EA-ILS hyper-heuristic based on the total number of algorithms is
3 as observed in Figure 5, behind the TS-ILS and FS-ILS hyper-heuristics. It recorded a total
score of 126.25 and a deficit of 4.50 from the score of the FS-ILS hyper-heuristic. It finished
fourth, third, first, fifth, and joint third in the SAT, BP, PFS, TSP, and VRP problem domains,
respectively. The results of the PS of the EA-ILS, FS-ILS, and TS-ILS hyper-heuristics could
not be used for these rankings. This is because of the use of the updated HyFlex library,
which was released to correct the errors identified on the PS domain.

Algorithms 2022, 15, 405 22 of 30

Table 12. F1 scores of top 7 Hyper-heuristics after comparing EA-ILS with the 20 CHeSC entries.

Problem Domains

Hyper-Heuristic SAT BP PFS TSP VRP Overall

EA-ILS 21.2 36.0 48.0 24.0 29.5 158.7
AdapHH 33.6 42.0 30.0 36.25 13.0 154.85

ML 11.0 8.0 31.5 11.0 19.5 81.0
VNS-TW 33.6 2.0 26.0 15.25 4.0 80.85

PHUNTER 8.0 2.0 6.0 24.25 30.0 70.25
EPH 0.0 6.0 16.0 32.25 11.0 65.25

NAHH 11.5 18.0 18.5 11.0 5.0 64.0

Figure 5. F1 plots of EA-ILS with other top hyper-heuristics on the HyFlex domains.

The comparison of three ILS-based hyper-heuristics using a more robust µ-norm
performance metric [24,25] was performed across the six domains from HyFlex v1.0. The
performance metric normalizes the 31 objective function values obtained by a given hyper-
heuristic, thus using the results of all 31 trials per instance as a basis for the evaluation. A
fair comparison is possible based on the six domains of HyFlex v1.0 because the results
for the PS achieved by the FS-ILS hyper-heuristic and the TS-ILS hyper-heuristic were
based on the updated library for the domain. Table 13 summarizes the benchmarking of
the performance of the EA-ILS hyper-heuristic with the results obtained by the FS-ILS and
TS-ILS hyper-heuristics on the original six problem domains.

Table 13. Benchmarking EA-ILS with FS-ILS and TSILS on the six domains of HyFlex v1.0 using the
µ -norm metric.

Hyper-Heuristic
Problem Domains

SAT BP PS PFS TSP VRP Overall

TS-ILS 0.1341 0.1052 0.3735 0.4515 0.2852 0.3514 0.2835
EA-ILS 0.3677 0.1779 0.3418 0.3964 0.4435 0.3982 0.3542
FS-ILS 0.1365 0.5547 0.5505 0.5601 0.2692 0.3653 0.4061

It is evident from Table 13 that the EA-ILS hyper-heuristic is highly competitive, even
in the six domains of HyFlex v1.0. Its weaknesses are evidenced by its application to the SAT
and TSP problem domains. Although Table 10 suggests that the hyper-heuristic can find
high-quality solutions, it is perhaps the lack of consistency in evolving the most effective

Algorithms 2022, 15, 405 23 of 30

perturbative heuristics, especially on the SAT domain, that has made it inferior to the two
state-of-the-art hyper-heuristics. However, the EA-ILS hyper-heuristic outperformed both
the FS-ILS and TS-ILS hyper-heuristics in the PS and PFS problem domains. This is highly
commendable because of the strong performances of both competitors in the PFS domain
and the strong performance of TS-ILS in the PS domain. The EA-ILS hyper-heuristic was
not far from the best method for BP and VRP problems. Overall, it had a better µ-norm
score than the FS-ILS hyper-heuristic, suggesting its better generalization ability across the
original six problem domains.

4.4. Effect of Local Search Procedure

The local search procedure (LS-Seq) of the EA-ILS hyper-heuristic was compared with
the VND-style local search, tagged LS-VND, commonly used in the FS-ILS hyper-heuristic
and NR-FS-ILS. The purpose was to experimentally investigate the effect of the local search
component of the EA-ILS hyper-heuristic on its performance. Two representative instances
were selected for each problem domain for experimentation. The control hyper-heuristic
was constructed by replacing LS-Seq with LS-VND in the EA-ILS hyper-heuristic. The
comparative results are presented in Table 14, wherein a shaded cell means the set-up has
a better objective function value than the alternative set-up in the adjacent cell. The α

and β set-ups were run in an overlapped manner such that when a single run or trial is
completed on a sample instance for a set-up, the run of the next set-up on the same instance
immediately follows. Moreover, both set-ups start with the same random number seed
for each run throughout the entirety of the sample instances. This mechanism ensures
fairness in the experiment. The meaning of the column names in Table 14 along with other
important information are described as follows: The column name α represents the EA-ILS
hyper-heuristic with the LS-Seq procedure as the intensification module while β is the
control hyper-heuristic with the LS-VND procedure as the intensification module. α_iter
is the number of iterations covered by α while solving a problem instance during a run.
β_iter is the number of iterations covered by β while solving a problem instance during a
run. α_lsi is the average number of calls to local search heuristics per iteration by α. β_lsi
is the average number of calls to local search heuristics per iteration by β. The numbers of
local search heuristics on the KP, QAP, and MAC domains are 6, 2, and 3, respectively.

The ofv of each run from the two set-ups were normalized to values in the range [0, 1]
using the maximum and minimum ofvs over five trials completed for each sample instance
to perform the Wilcoxon signed rank sum test. The reported p-value was 0.2249 at a 0.05
level of significance. The obtained p-value indicates that across the entire set of 30 data
points, there is no significant difference between the performances of the two experimental
set-ups of the EA-ILS hyper-heuristic. This finding can be attributed to the performance
of the EA-ILS hyper-heuristic with the VND style of local search in the QAP domain. It
was highly competitive or even slightly better than the EA-ILS hyper-heuristic with LS-
Seq in the two instances of the QAP domain. In fact, after the removal of 10 data points
that corresponded to the performance in QAP0 and QAP7 instances, a p-value of 0.01962
was returned from the Wilcoxon signed rank sum test. This would suggest a significant
difference in the performances of the two set-ups.

The sum of ranks for the entire set of data points for which the EA-ILS hyper-heuristic
with LS-Seq outperformed the control algorithm of the EA-ILS hyper-heuristic with LS-
VND is 291 while the sum of ranks of the opposite outcome is 173. A careful observation of
the α_iter and β_iter values indicates that the first set-up completes a better diversification–
intensification cycle than the control set-up in the KP instances. Peradventure this is the
reason for the huge difference in the performances of the two set-ups. The LS-Seq set-up
was able to visit many search areas and had leverage to escape the local optima over the
alternative set-up because of the invocation of local search heuristics. The local search calls
per iteration did not pose a challenge for the LS-VND set-up in the QAP domain based
on its performance relative to that of LS-Seq. This observation may be attributed to the
low number of local search heuristics available for the problem domain. Consequently,

Algorithms 2022, 15, 405 24 of 30

extensive local search calls improved its search capabilities and made it more competitive
in the QAP domain. The other interesting phenomenon observed for the QAP instances
is that the number of cycles completed by LS-Seq for a trial may not be higher than that
of LS-VND. The EA-ILS hyper-heuristic with LS-Seq performed better than its LS-VND
counterpart in the MAC instances. This can also be directly attributed to the average
number of cycles completed by the former set-up in both the MAC5 and MAC6 instances.
It can be safely concluded that the LS-Seq procedure performs faster with better search
than LS-VND in both KP and MAC domains while the same statement cannot be made for
the QAP domain.

Table 14. Test Results from the Overlapping Runs of the two EA-ILS Set-ups.

α β αiter βiter αlsi βlsi

KP1-1 −1,262,437 −1,255,857 1561 414 6.52 31.09
KP1-2 −1,260,453 −1,256,773 1234 368 5.95 35.49
KP1-3 −1,262,433 −1,259,963 1655 356 7.00 39.09
KP1-4 −1,263,828 −1,256,390 1929 385 9.87 34.76
KP1-5 −1,254,789 −1,259,903 2089 382 5.07 34.47
KP5-1 −4,276,582 −4,258,774 182 15 10.13 114.20
KP5-2 −4,258,106 −3,974,568 145 16 3.16 111.25
KP5-3 −4,251,970 −4,248,962 100 7 14.17 199.14
KP5-4 −4,259,539 −3,683,130 158 8 9. 53 203. 50
KP5-5 −4,270,759 −4,248,962 177 9 6.06 162.89

QAP0-1 152,068 152,164 1876 2273 1.89 2.84
QAP0-2 152,360 152,026 1594 2928 1.80 2.92
QAP0-3 152,398 152,070 2408 2234 1.83 2.87
QAP0-4 152,076 152,086 1895 2559 1.82 2.83
QAP0-5 152,048 152,060 3466 2099 1.83 2.81
QAP7-1 44,884,414 44,870,046 68 81 1.78 2.79
QAP7-2 44,866,080 44,882,160 180 156 1.90 2.96
QAP7-3 44,859,006 44,873,662 164 187 1.86 2.84
QAP7-4 44,870,856 44,854,654 131 233 1.79 2.83
QAP7-5 44,879,374 44,843,808 180 251 1.89 2.87
MAC5-1 −13,217 −13,172 10,718 6931 2.17 4.25
MAC5-2 −13,226 −13,139 13,920 6733 2.27 4.28
MAC5-3 −13,193 −13,246 10,297 6740 2.23 4.36
MAC5-4 −13,227 −13,214 10,923 6696 2.25 4.38
MAC5-5 −13,186 −13,166 10,494 6732 2.27 4.33
MAC6-1 −1358 −1354 38,313 23,406 1.91 4.19
MAC6-2 −1352 −1358 38,719 22,350 2.05 4.29
MAC6-3 −1362 −1344 38,209 23,286 1.92 4.25
MAC6-4 −1350 −1352 49,983 24,363 1.86 4.18
MAC6-5 −1356 −1350 33,797 26,373 2.04 4.04

The better performance obtained by the EA-ILS hyper-heuristic with LS-Seq in KP
and MAC instances can be directly linked to the set-up covering many more iterations
than its counterpart. Furthermore, experimental results suggest that the more local search
heuristics that are available for a domain, the more likely an ILS with an LS-VND intensi-
fication procedure is to perform worse, compared to the ILS with a quicker escape from
the intensification procedure such as LS-Seq. The LS-Seq has more advantages over the
LS-VND in terms of its search capability. Perhaps if the number of local search heuristics
for the QAP is increased to four, the LS-Seq outperforms the LS-VND in the same way it
occurred in the KP and MAC instances. If a recommendation is to be made based on the
experimental results, it is safe to use the VND style of local search strategy if the number
of local search heuristics is small. The moment the number is at least four, a smarter local
search procedure is required. This experiment has been able to show that the LS-VND
procedure could impede the performance of the ILS, especially when the number of local

Algorithms 2022, 15, 405 25 of 30

search heuristics is large. This could be one of the main reasons that FS-ILS and NR-FS-ILS
hyper-heuristics performed poorly in the KP and MAC problem domains.

4.5. Analysis of Effective Heuristics for EA-ILS Hyper-Heuristic

The distribution of effective perturbative heuristic sequences of the EA-ILS hyper-
heuristic used to discover the best global solutions is provided in this section. Two sample
instances were selected across the six problem domains to observe the low-level pertur-
bative heuristics that make a positive impact on the search performance of the EA-ILS
hyper-heuristic. The top 10 solutions produced by the EA-ILS hyper-heuristic were taken to
analyze effective heuristics for a sample instance. The number of times a heuristic sequence
updated the best solution was recorded for each sequence. The EA-ILS hyper-heuristic
typically evolves many sequences during the optimization process and each of them may
improve the best solution at least once. Therefore, the top n sequences with their improve-
ment tallies were selected for the analysis. Figures 6–8 present the analysis of the twelve
selected instances of the problem domains.

Figure 6. Analysis of two SAT and two BP instances.

Figure 7. Analysis of two PS and two PFS instances.

Algorithms 2022, 15, 405 26 of 30

Figure 8. Analysis of two KP and two MAC instances.

More rewards were obtained for the SAT3 and SAT4 instances when a sole pertur-
bative heuristic of LLH0 or LLH1 was applied before intensification. The consecutive
perturbations with LLH2 of the ruin-recreate category with any other choice between two
mutation heuristics, LLH5 and LLH3, are very rewarding for solving instances of a bin
packing problem as observed in Figure 6c,d. There is quite a balance between a single
perturbation and consecutive perturbations for personnel scheduling, while solving the
instances of the permutation flow-shop problem does not need extensive perturbations. The
favored mutation heuristic of the EA-ILS hyper-heuristic in the domain is LLH0. Solving
the problems of knapsack and maximum cut requires consecutive perturbations. Less than
25% of the best solutions found in the MAC6 and MAC7 instances are based on a single
perturbation. This could explain why the EA-ILS hyper-heuristic was so effective on these
problems unlike the FS-ILS and NR-FS-ILS hyper-heuristics. Although the effectiveness of
the EA-ILS hyper-heuristic in BP, PS, KP, and MAC domains is evident, the LS-Seq proce-
dure also contributed positively to its rapid navigation of the search space because it was
able to quickly jump out of the local search procedure when a local optimum was detected.

5. Conclusions

The evolutionary algorithm-based iterated local search (EA-ILS) hyper-heuristic de-
veloped in this study is a highly effective tool for solving COPs. Hyper-heuristics are
search methodologies for solving numerous forms of computational search problems
with manifold applications in complex social problems affecting humanity. The EA-ILS
hyper-heuristic recorded impressive performance when compared to the competitive hyper-
heuristics for solving the QAP domain. It has obtained the best median ofv across several
problem instances. The overall performance consolidates the observation that the EA-
ILS hyper-heuristic obtained the best median ofv in 27 out of the available 30 instances
across three supplementary problem domains. The reason that the EA-ILS hyper-heuristic
generally obtained the best performance against FS-ILS and NR-FS-ILS is explained as
follows: The algorithm has the potential to pair perturbative LLHs when it is necessary.
However, FS-ILS and NR-FS-ILS lack the feature of pairing two heuristics to visit a deeper
search space because they are designed to operate based on the traditional perturbative
LLH plus local search LLHs obtained in a typical ILS-based implementation. The EA-
ILS hyper-heuristic utilizes an evolutionary algorithm to automatically learn sequences
of perturbative LLHs with the capability of pairing two heuristics for a deeper solution
space search.

The EA-ILS hyper-heuristic has been presented in this paper as a high-performance
tool for solving COPs with a focus on knapsack, quadratic assignment, and maximum-cut
problems. The EA-ILS hyper-heuristic has a different local search module that automatically
learns the promising sequences of local search heuristics during the intensification phase
of the algorithm. This study has made significant contributions to the existing discipline

Algorithms 2022, 15, 405 27 of 30

of combinatorial optimization and achieved the purpose of designing a hyper-heuristic
for performance improvement. The extension of the existing ILS framework has been
effective considering the dominating performance that the EA-ILS hyper-heuristic had
over the existing hyper-heuristics according to the experimental results in QAP, KP, and
MAC instances. The implementation of the EA-ILS hyper-heuristic has been able to correct
the weaknesses of the ILS-based methods in the extended HyFlex domains by performing
consecutive perturbations when necessary and utilizing a faster local search procedure,
especially for problem domains such as personnel scheduling with slow heuristics. The
EA-ILS hyper-heuristic did not completely dominate across the instances of HyFlex v1.0
but was able to outperform the FS-ILS hyper-heuristic across the six problem domains. In
addition, it ranked ahead of the TS-ILS hyper-heuristic in the problem domains of PS and
PFS in terms of effectiveness.

Reviewing the performance of the EA-ILS hyper-heuristic in the initial problem do-
mains of HyFlex, it is evident that it struggled to quickly evolve effective perturbative
heuristic sequences for some instances. Some domains where the EA-ILS hyper-heuristic
struggled with evolving effective heuristic sequences include SAT, especially in SAT5 and
SAT10, and TSP, especially in the TSP8 instance. This is because of the large amount time it
takes the LLH to finish its operation on the TSP8 instance, while for the other instances,
it could be the result of extreme criteria used for allowing an operation sequence into an
archive. This backdrop opens up the need for more research efforts on the EA-ILS hyper-
heuristic. A possible area of improvement could be to combine multiple criteria for archive
entries, using the acceptance of solutions with the improvement of the best global solution
instead of only the latter as employed in this study. Although the EA-ILS hyper-heuristic
was competitive in both HyFlex 1.0 and HyFlex 2.0 problem domains, further improvement
can be realized by combining an evolutionary algorithm to create heuristic sequences with
effective selection mechanisms.

Author Contributions: Conceptualization, S.A.A. and O.O.O. (Oludayo O. Olugbara); methodology,
S.A.A.; software, S.A.A.; writing—original draft preparation, S.A.A.; writing—review and editing,
O.O.O. (Olufunke O. Oladipupo) and O.O.O. (Oludayo O. Olugbara); supervision, O.O.O. (Olufunke
O. Oladipupo) and O.O.O. (Oludayo O. Olugbara). All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, B.; Qu, R.; Bai, R.; Laesanklang, W. A Hyper-Heuristic with Two Guidance Indicators for Bi-Objective Mixed-Shift Vehicle

Routing Problem with Time Windows. Appl. Intell. 2018, 48, 4937–4959. [CrossRef]
2. Chen, Y.; Mourdjis, P.; Polack, F.; Cowling, P.; Remde, S. Evaluating Hyperheuristics and Local Search Operators for Periodic

Routing Problems. In Proceedings of the Evolutionary Computation in Combinatorial Optimization; Springer: Cham, Switzerland,
2016; pp. 104–120.

3. Yska, D.; Mei, Y.; Zhang, M. Genetic Programming Hyper-Heuristic with Cooperative Coevolution for Dynamic Flexible Job
Shop Scheduling. In Proceedings of the European Conference on Genetic Programming; Springer: Cham, Switzerland, 2018; pp.
306–321.

4. Park, J.; Mei, Y.; Nguyen, S.; Chen, A.; Johnston, M.; Zhang, M. Genetic Programming Based Hyper-Heuristics for Dynamic Job
Shop Scheduling: Cooperative Coevolutionary Approaches. In Proceedings of the European Conference on Genetic Programming;
Springer: Cham, Switzerland, 2016; pp. 115–132.

5. Sabar, N.R.; Turky, A.; Song, A.; Sattar, A. Optimising Deep Belief Networks by Hyper-Heuristic Approach. In Proceedings of the
2017 IEEE Congress on Evolutionary Computation (CEC), Donostia-San Sebastián, Spain, 5–8 June 2017; pp. 2738–2745.

6. ul Hassan, M.; Sabar, N.R.; Song, A. Optimising Deep Learning by Hyper-Heuristic Approach for Classifying Good Quality
Images. In Proceedings of the International Conference on Computational Science; Springer: Cham, Switzerland, 2018; pp.
528–539.

7. Ortiz-Bayliss, J.C.; Terashima-Marín, H.; Conant-Pablos, S.E. A Neuro-Evolutionary Hyper-Heuristic Approach for Constraint
Satisfaction Problems. Cognit. Comput. 2016, 8, 429–441. [CrossRef]

8. Ahmed, B.S.; Enoiu, E.; Afzal, W.; Zamli, K.Z. An Evaluation of Monte Carlo-Based Hyper-Heuristic for Interaction Testing of
Industrial Embedded Software Applications. Soft Comput. 2020, 24, 13929–13954. [CrossRef]

http://doi.org/10.1007/s10489-018-1250-y
http://doi.org/10.1007/s12559-015-9368-2
http://doi.org/10.1007/s00500-020-04769-z

Algorithms 2022, 15, 405 28 of 30

9. de Andrade, J.; Silva, L.; Britto, A.; Amaral, R. Solving the Software Project Scheduling Problem with Hyper-Heuristics. In
Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 16–20 June 2019;
pp. 399–411.

10. Zhang, Y.; Harman, M.; Ochoa, G.; Ruhe, G.; Brinkkemper, S. An Empirical Study of Meta- and Hyper-Heuristic Search for
Multi-Objective Release Planning. ACM Trans. Softw. Eng. Methodol. 2018, 27, 1–32. [CrossRef]

11. Drake, J.H.; Kheiri, A.; Özcan, E.; Burke, E.K. Recent Advances in Selection Hyper-Heuristics. Eur. J. Oper. Res. 2020, 285, 405–428.
[CrossRef]

12. Burke, E.K.; Hyde, M.R.; Kendall, G.; Ochoa, G.; Özcan, E.; Woodward, J.R. A Classification of Hyper-Heuristic Approaches:
Revisited. In Handbook of Metaheuristics; Gendreau, M., Potvin, J.-Y., Eds.; Springer: Cham, Switzerland, 2019; pp. 453–477.

13. Ortiz-Aguilar, L.; Carpio, M.; Rojas-Domínguez, A.; Ornelas-Rodriguez, M.; Puga-Soberanes, H.J.; Soria-Alcaraz, J.A. A Methodol-
ogy to Determine the Subset of Heuristics for Hyperheuristics through Metalearning for Solving Graph Coloring and Capacitated
Vehicle Routing Problems. Complexity 2021, 6660572. [CrossRef]

14. Zhang, F.; Mei, Y.; Nguyen, S.; Zhang, M. Correlation Coefficient-Based Recombinative Guidance for Genetic Programming
Hyperheuristics in Dynamic Flexible Job Shop Scheduling. IEEE Trans. Evol. Comput. 2021, 25, 552–566. [CrossRef]

15. Olivas, F.; Amaya, I.; Ortiz-Bayliss, J.C.; Conant-Pablos, S.E.; Terashima-Marín, H. Enhancing Hyperheuristics for the Knapsack
Problem through Fuzzy Logic. Comput. Intell. Neurosci. 2021, 8834324. [CrossRef]

16. Zhang, F.; Mei, Y.; Nguyen, S.; Tan, K.C.; Zhang, M. Multitask Genetic Programming-Based Generative Hyperheuristics: A Case
Study in Dynamic Scheduling. IEEE Trans. Cybern. 2022, 52, 10515–10528. [CrossRef]

17. Tapia-Avitia, J.M.; Cruz-Duarte, J.M.; Amaya, I.; Ortiz-Bayliss, J.C.; Terashima-Marin, H.; Pillay, N. A Primary Study on Hyper-
Heuristics Powered by Artificial Neural Networks for Customising Population-Based Metaheuristics in Continuous Optimisation
Problems. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 18–23 July 2022. [CrossRef]

18. Zhang, Y.; Bai, R.; Qu, R.; Tu, C.; Jin, J. A Deep Reinforcement Learning Based Hyper-Heuristic for Combinatorial Optimisation
with Uncertainties. Eur. J. Oper. Res. 2022, 300, 418–427. [CrossRef]

19. Ochoa, G.; Hyde, M.; Curtois, T.; Vazquez-Rodriguez, J.A.; Walker, J.; Gendreau, M.; Kendall, G.; McCollum, B.; Parkes, A.J.;
Petrovic, S.; et al. HyFlex: A Benchmark Framework for Cross-Domain Heuristic Search. In Proceedings of the European
Conference on Evolutionary Computation in Combinatorial Optimization; Springer: Berlin/Heidelberg, Germany, 2012; pp.
136–147.

20. Misir, M.; Verbeeck, K.; De Causmaecker, P.; Berghe, G. Vanden An Intelligent Hyper-Heuristic Framework for CHeSC 2011. In
Proceedings of the International Conference on Learning and Intelligent Optimization; Springer: Berlin/Heidelberg, Germany,
2012; pp. 461–466.

21. Adriaensen, S.; Brys, T.; Nowé, A. Fair-Share ILS: A Simple State of the Art Iterated Local Search Hyperheuristic. In Proceedings
of the Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, Vancouver, BC, Canada, 12–16 July
2014; pp. 1303–1310.

22. Alanazi, F. Adaptive Thompson Sampling for Hyper-Heuristics. In Proceedings of the 2016 IEEE Symposium Series on Computa-
tional Intelligence, Athens, Greece, 6–9 December 2016; pp. 1–8.

23. Ferreira, A.S.; Gonçalves, R.A.; Pozo, A. A Multi-Armed Bandit Selection Strategy for Hyper-Heuristics. In Proceedings of the
2017 IEEE Congress on Evolutionary Computation, San Sebastián, Spain, 5–8 June 2017; pp. 525–532.

24. Adriaensen, S.; Ochoa, G.; Nowé, A. A Benchmark Set Extension and Comparative Study for the HyFlex Framework. In
Proceedings of the 2015 IEEE Congress on Evolutionary Computation, Sandai, Japan, 25–28 May 2015; pp. 784–791.

25. Almutairi, A.; Özcan, E.; Kheiri, A.; Jackson, W.G. Performance of Selection Hyper-Heuristics on the Extended HyFlex Domains.
In Proceedings of the International Symposium on Computer and Information Sciences; Springer: Cham, Switzerland, 2016; pp.
154–162.

26. Gümüş, D.B.; Özcan, E.; Atkin, J. An Analysis of the Taguchi Method for Tuning a Memetic Algorithm with Reduced Computa-
tional Time Budget. In Proceedings of the International Symposium on Computer and Information Sciences, Krakow, Poland,
27–28 October 2016; pp. 12–20.

27. Gümüş, D.B.; Özcan, E.; Atkin, J. An Investigation of Tuning a Memetic Algorithm for Cross-Domain Search. In Proceedings of
the 2016 IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, 24–29 July 2016; pp. 135–142.

28. Akbay, M.A.; Kalayci, C.B.; Polat, O. A Parallel Variable Neighborhood Search Algorithm with Quadratic Programming for
Cardinality Constrained Portfolio Optimization. Knowl.-Based Syst. 2020, 198, 105944. [CrossRef]

29. Baniamerian, A.; Bashiri, M.; Tavakkoli-Moghaddam, R. Modified Variable Neighborhood Search and Genetic Algorithm for
Profitable Heterogeneous Vehicle Routing Problem with Cross-Docking. Appl. Soft Comput. J. 2019, 75, 441–460. [CrossRef]

30. Tinos, R.; Przewozniczek, M.W.; Whitley, D. Iterated Local Search with Perturbation Based on Variables Interaction for Pseudo-
Boolean Optimization. In Proceedings of the Proceedings of the Genetic and Evolutionary Computation Conference, Boston, MA,
USA, 9–13 July 2022; pp. 296–304.

31. Hammouri, A.I.; Braik, M.S.; Al-Betar, M.A.; Awadallah, M.A. ISA: A Hybridization between Iterated Local Search and Simulated
Annealing for Multiple-Runway Aircraft Landing Problem. Neural Comput. Appl. 2020, 32, 11745–11765. [CrossRef]

32. Gunawan, A.; Lau, H.C.; Lu, K. An Iterated Local Search Algorithm for Solving the Orienteering Problem with Time Windows.
In Proceedings of the European Conference on Evolutionary Computation in Combinatorial Optimization; Springer: Cham,
Switzerland, 2015; pp. 61–73.

http://doi.org/10.1145/3196831
http://doi.org/10.1016/j.ejor.2019.07.073
http://doi.org/10.1155/2021/6660572
http://doi.org/10.1109/TEVC.2021.3056143
http://doi.org/10.1155/2021/8834324
http://doi.org/10.1109/TCYB.2021.3065340
http://doi.org/10.1109/CEC55065.2022.9870275
http://doi.org/10.1016/j.ejor.2021.10.032
http://doi.org/10.1016/j.knosys.2020.105944
http://doi.org/10.1016/j.asoc.2018.11.029
http://doi.org/10.1007/s00521-019-04659-y

Algorithms 2022, 15, 405 29 of 30

33. Vansteenwegen, P.; Mateo, M. An Iterated Local Search Algorithm for the Single-Vehicle Cyclic Inventory Routing Problem. Eur.
J. Oper. Res. 2014, 237, 802–813. [CrossRef]

34. Avci, M.; Topaloglu, S. A Multi-Start Iterated Local Search Algorithm for the Generalized Quadratic Multiple Knapsack Problem.
Comput. Oper. Res. 2017, 83, 54–65. [CrossRef]

35. Sabar, N.R.; Goh, S.L.; Turky, A.; Kendall, G. Population-Based Iterated Local Search Approach for Dynamic Vehicle Routing
Problems. IEEE Trans. Autom. Sci. Eng. 2021, 19, 2933–2943. [CrossRef]

36. Brandão, J. Iterated Local Search Algorithm with Ejection Chains for the Open Vehicle Routing Problem with Time Windows.
Comput. Ind. Eng. 2018, 120, 146–159. [CrossRef]

37. Brandão, J. A Memory-Based Iterated Local Search Algorithm for the Multi-Depot Open Vehicle Routing Problem. Eur. J. Oper.
Res. 2020, 284, 559–571. [CrossRef]

38. Soria-Alcaraz, J.A.; Özcan, E.; Swan, J.; Kendall, G.; Carpio, M. Iterated Local Search Using an Add and Delete Hyper-Heuristic
for University Course Timetabling. Appl. Soft Comput. J. 2016, 40, 581–593. [CrossRef]

39. Soria-Alcaraz, J.A.; Ochoa, G.; Sotelo-Figeroa, M.A.; Burke, E.K. A Methodology for Determining an Effective Subset of Heuristics
in Selection Hyper-Heuristics. Eur. J. Oper. Res. 2017, 260, 972–983. [CrossRef]

40. Song, T.; Liu, S.; Tang, X.; Peng, X.; Chen, M. An Iterated Local Search Algorithm for the University Course Timetabling Problem.
Appl. Soft Comput. J. 2018, 68, 597–608. [CrossRef]

41. Kizys, R.; Juan, A.A.; Sawik, B.; Calvet, L. A Biased-Randomized Iterated Local Search Algorithm for Rich Portfolio Optimization.
Appl. Sci. 2019, 9, 3509. [CrossRef]

42. Ren, J.; Hao, J.-K.; Rodriguez-Tello, E.; Li, L.; He, K. A New Iterated Local Search Algorithm for the Cyclic Bandwidth Problem.
Knowl.-Based Syst. 2020, 203, 106136. [CrossRef]

43. Alvarez, A.; Munari, P.; Morabito, R. Iterated Local Search and Simulated Annealing Algorithms for the Inventory Routing
Problem. Int. Trans. Oper. Res. 2018, 25, 1785–1809. [CrossRef]

44. Goh, S.L.; Kendall, G.; Sabar, N.R.; Abdullah, S. An Effective Hybrid Local Search Approach for the Post Enrolment Course
Timetabling Problem. Opsearch 2020, 57, 1131–1163. [CrossRef]

45. Turky, A.; Sabar, N.R.; Sattar, A.; Song, A. Evolutionary Learning Based Iterated Local Search for Google Machine Reassignment
Problems. In Proceedings of the Asia-Pacific Conference on Simulated Evolution and Learning, Shenzhen, China, 10–13 November
2017; pp. 409–421.

46. Hu, S.; Liu, H.; Wu, X.; Li, R.; Zhou, J.; Wang, J. A Hybrid Framework Combining Genetic Algorithm with Iterated Local Search
for the Dominating Tree Problem. Mathematics 2019, 7, 359. [CrossRef]

47. Zhao, F.; He, X.; Yang, G.; Ma, W.; Zhang, C.; Song, H. A Hybrid Iterated Local Search Algorithm with Adaptive Perturbation
Mechanism by Success-History Based Parameter Adaptation for Differential Evolution (SHADE). Eng. Optim. 2020, 52, 367–383.
[CrossRef]

48. Adubi, S.A.; Oladipupo, O.O.; Olugbara, O.O. Configuring the Perturbation Operations of an Iterated Local Search Algorithm
for Cross-Domain Search: A Probabilistic Learning Approach. In Proceedings of the 2021 IEEE Congress on Evolutionary
Computation (CEC), Kraków, Poland, 28 June–1 July 2021; pp. 1372–1379.

49. Choong, S.S.; Wong, L.P.; Lim, C.P. Automatic Design of Hyper-Heuristic Based on Reinforcement Learning. Inf. Sci. 2018, 436,
89–107. [CrossRef]

50. Duhart, B.; Camarena, F.; Ortiz-Bayliss, J.C.; Amaya, I.; Terashima-Marín, H. An Experimental Study on Ant Colony Optimization
Hyper-Heuristics for Solving the Knapsack Problem. In Proceedings of the Mexican Conference on Pattern Recognition, Puebla,
Mexico, 27–30 June 2018; pp. 62–71.

51. Sanchez-Diaz, X.F.C.; Ortiz-Bayliss, J.C.; Amaya, I.; Cruz-Duarte, J.M.; Conant-Pablos, S.E.; Terashima-Marin, H. A Preliminary
Study on Feature-Independent Hyper-Heuristics for the 0/1 Knapsack Problem. In Proceedings of the 2020 IEEE Congress on
Evolutionary Computation, Glasgow, UK, 19–24 July 2020; pp. 1–8.

52. Sánchez-Díaz, X.; Ortiz-Bayliss, J.C.; Amaya, I.; Cruz-Duarte, J.M.; Conant-Pablos, S.E.; Terashima-Marín, H. A Feature-
Independent Hyper-Heuristic Approach for Solving the Knapsack Problem. Appl. Sci. 2021, 11, 10209. [CrossRef]

53. Olivas, F.; Amaya, I.; Ortiz-Bayliss, J.C.; Conant-Pablos, S.E.; Terashima-Marin, H. A Fuzzy Hyper-Heuristic Approach for the 0-1
Knapsack Problem. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation, Glasgow, UK, 19–24 July 2020; pp.
1–8.

54. Feng, Y.; Wang, G.G.; Deb, S.; Lu, M.; Zhao, X.J. Solving 0–1 Knapsack Problem by a Novel Binary Monarch Butterfly Optimization.
Neural Comput. Appl. 2017, 28, 1619–1634. [CrossRef]

55. Rizk-Allah, R.M.; Hassanien, A.E. New Binary Bat Algorithm for Solving 0–1 Knapsack Problem. Complex Intell. Syst. 2018, 4,
31–53. [CrossRef]

56. Abdel-Basset, M.; El-Shahat, D.; Sangaiah, A.K. A Modified Nature Inspired Meta-Heuristic Whale Optimization Algorithm for
Solving 0–1 Knapsack Problem. Int. J. Mach. Learn. Cybern. 2019, 10, 495–514. [CrossRef]

57. Zhan, S.H.; Zhang, Z.J.; Wang, L.J.; Zhong, Y.W. List-Based Simulated Annealing Algorithm with Hybrid Greedy Repair and
Optimization Operator for 0-1 Knapsack Problem. IEEE Access 2018, 6, 54447–54458. [CrossRef]

58. Zhang, S.; Liu, S. A Discrete Improved Artificial Bee Colony Algorithm for 0-1 Knapsack Problem. IEEE Access 2019, 7, 104982–
104991. [CrossRef]

http://doi.org/10.1016/j.ejor.2014.02.020
http://doi.org/10.1016/j.cor.2017.02.004
http://doi.org/10.1109/TASE.2021.3097778
http://doi.org/10.1016/j.cie.2018.04.032
http://doi.org/10.1016/j.ejor.2020.01.008
http://doi.org/10.1016/j.asoc.2015.11.043
http://doi.org/10.1016/j.ejor.2017.01.042
http://doi.org/10.1016/j.asoc.2018.04.034
http://doi.org/10.3390/app9173509
http://doi.org/10.1016/j.knosys.2020.106136
http://doi.org/10.1111/itor.12547
http://doi.org/10.1007/s12597-020-00444-x
http://doi.org/10.3390/math7040359
http://doi.org/10.1080/0305215X.2019.1595611
http://doi.org/10.1016/j.ins.2018.01.005
http://doi.org/10.3390/app112110209
http://doi.org/10.1007/s00521-015-2135-1
http://doi.org/10.1007/s40747-017-0050-z
http://doi.org/10.1007/s13042-017-0731-3
http://doi.org/10.1109/ACCESS.2018.2872533
http://doi.org/10.1109/ACCESS.2019.2930638

Algorithms 2022, 15, 405 30 of 30

59. Ezugwu, A.E.; Pillay, V.; Hirasen, D.; Sivanarain, K.; Govender, M. A Comparative Study of Meta-Heuristic Optimization
Algorithms for 0-1 Knapsack Problem: Some Initial Results. IEEE Access 2019, 7, 43979–44001. [CrossRef]

60. Senzaki, B.N.; Venske, S.M.; Almeida, C.P. Multi-Objective Quadratic Assignment Problem: An Approach Using a Hyper-
Heuristic Based on the Choice Function. In Proceedings of the Brazilian Conference on Intelligent Systems, Rio Grande, Brazil,
20–23 October 2020; pp. 136–150.

61. Chmiel, W.; Kwiecień, J. Quantum-Inspired Evolutionary Approach for the Quadratic Assignment Problem. Entropy 2018, 20, 781.
[CrossRef]

62. Abdel-Basset, M.; Manogaran, G.; El-Shahat, D.; Mirjalili, S. Integrating the Whale Algorithm with Tabu Search for Quadratic
Assignment Problem: A New Approach for Locating Hospital Departments. Appl. Soft Comput. J. 2018, 73, 530–546. [CrossRef]

63. Zhang, H.; Liu, F.; Zhou, Y.; Zhang, Z. A Hybrid Method Integrating an Elite Genetic Algorithm with Tabu Search for the
Quadratic Assignment Problem. Inf. Sci. 2020, 539, 347–374. [CrossRef]

64. Dokeroglu, T.; Sevinc, E.; Cosar, A. Artificial Bee Colony Optimization for the Quadratic Assignment Problem. Appl. Soft Comput.
J. 2019, 76, 595–606. [CrossRef]

65. Misevičius, A.; Verenė, D. A Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem. Entropy 2021, 23,
108. [CrossRef]

66. Wu, Q.; Wang, Y.; Lü, Z. A Tabu Search Based Hybrid Evolutionary Algorithm for the Max-Cut Problem. Appl. Soft Comput. J.
2015, 34, 827–837. [CrossRef]

67. Chen, X.; Lin, G.; Xu, M. Applying a Binary Artificial Bee Colony Algorithm to the Max-Cut Problem. In Proceedings of the
Proceedings-2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, Suzhou,
China, 19–21 October 2019; pp. 12–15.

68. Kim, Y.H.; Yoon, Y.; Geem, Z.W. A Comparison Study of Harmony Search and Genetic Algorithm for the Max-Cut Problem.
Swarm Evol. Comput. 2019, 44, 130–135. [CrossRef]

69. Barrett, T.D.; Clements, W.R.; Foerster, J.N.; Lvovsky, A.I. Exploratory Combinatorial Optimization with Reinforcement Learning.
In Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 3243–3250.

70. Kheiri, A.; Keedwell, E. A Sequence-Based Selection Hyper-Heuristic Utilising a Hidden Markov Model. In Proceedings of the
GECCO 2015-Proceedings of the 2015 Genetic and Evolutionary Computation Conference, Madrid, Spain, 11–15 July 2015; pp.
417–424.

71. Zhao, Y.; Leng, L.; Zhang, C. A Novel Framework of Hyper-Heuristic Approach and Its Application in Location-Routing Problem with
Simultaneous Pickup and Delivery; Springer: Berlin/Heidelberg, Germany, 2021; Volume 21, ISBN 0123456789.

72. Olgun, B.; Koç, Ç.; Altıparmak, F. A Hyper Heuristic for the Green Vehicle Routing Problem with Simultaneous Pickup and
Delivery. Comput. Ind. Eng. 2021, 153, 107010. [CrossRef]

73. Asta, S.; Özcan, E. A Tensor-Based Selection Hyper-Heuristic for Cross-Domain Heuristic Search. Inf. Sci. 2015, 299, 412–432.
[CrossRef]

74. Sabar, N.R.; Ayob, M.; Kendall, G.; Qu, R. Automatic Design of Hyper-Heuristic Framework with Gene Expression Programming
for Combinatorial Optimization Problems. IEEE Trans. Evol. Comput. 2015, 19, 309–325. [CrossRef]

75. Kheiri, A.; Özcan, E. An Iterated Multi-Stage Selection Hyper-Heuristic. Eur. J. Oper. Res. 2016, 250, 77–90. [CrossRef]
76. Burkard, R.E.; Karisch, S.E.; Rendl, F. QAPLIB–a Quadratic Assignment Problem Library. J. Glob. Optim. 1997, 10, 391–403.

[CrossRef]
77. Yang, Q.; Li, Y.; Huang, P. A Novel Formulation of the Max-Cut Problem and Related Algorithm. Appl. Math. Comput. 2020, 371,

124970. [CrossRef]
78. Lourenço, H.R.; Martin, O.C.; Stützle, T. Iterated Local Search: Framework and Applications. In Handbook of Metaheuristics;

Gendreau, M., Potvin, J.-Y., Eds.; Springer: Cham, Switzerland, 2019; pp. 129–168.

http://doi.org/10.1109/ACCESS.2019.2908489
http://doi.org/10.3390/e20100781
http://doi.org/10.1016/j.asoc.2018.08.047
http://doi.org/10.1016/j.ins.2020.06.036
http://doi.org/10.1016/j.asoc.2019.01.001
http://doi.org/10.3390/e23010108
http://doi.org/10.1016/j.asoc.2015.04.033
http://doi.org/10.1016/j.swevo.2018.01.004
http://doi.org/10.1016/j.cie.2020.107010
http://doi.org/10.1016/j.ins.2014.12.020
http://doi.org/10.1109/TEVC.2014.2319051
http://doi.org/10.1016/j.ejor.2015.09.003
http://doi.org/10.1023/A:1008293323270
http://doi.org/10.1016/j.amc.2019.124970

	Introduction
	Related Studies
	Materials and Methods
	Materials
	Methods
	Basic Iterated Local Search Algorithm
	Evolutionary Algorithm-Based Iterated Local Search
	Evolutionary Operator of EA-ILS Hyper-Heuristic
	Local Search Procedure of EA-ILS Hyper-Heuristic

	Experimental Results
	Comparison of Hyper-Heuristic Algorithms
	Statistical Significance of Hyper-Heuristic Algorithms
	Friedman Test
	Boxplot Analysis

	Application of EA-ILS Hyper-Heuristic to HyFlex Version 1.0
	Effect of Local Search Procedure
	Analysis of Effective Heuristics for EA-ILS Hyper-Heuristic

	Conclusions
	References

