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Abstract: In this article, we explore a new extended Lienard-type planar system with “corrections” of
the second kind Chebyshev’s polynomial Un. The number and type of limit cycles are also studied.
The discussion on the y(t)—component of the solution of the Lienard system is connected to searching
for the solution of the synthesis of filters and electrical circuits. Numerical experiments, depicting
our outcomes using CAS MATHEMATICA, are presented.
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1. Introduction

Hilbert [1] proposed 23 mathematical problems, of which the second part of the 16th
one is to find the maximal number of limit cycles and their relative locations for polynomial
vector fields. A large part of the scientific articles is concerned with the Lienard system
x′ = y, y′ = g(x) + ε f (x), where ε is a small parameter and f (x) and g(x) are polynomials
of degree m and n.

The Melnikov function [2] for the Lienard system [3]
dx
dt

= y− ε
(
a1x + a2x2 + · · ·+ a2n+1x2n+1)

dy
dt

= −x
(1)

is defined as

M(α, µ) = −2πα2
(

a1

2
+

3
8

a3α2 + · · ·+
(

2n + 2
n + 1

)
a2n+1

22n+2 α2n
)

. (2)

The Melnikov polynomial is defined as

P(r2, n) = − 1
2πr2 M(r, µ). (3)

Perko and collaborators [4,5] ensure the needful information about radii and the
number of limit cycles. More precisely, the system (1) for small enough ε 6= 0 has at most n
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limit cycles asymptotic to circles of radii rj, j = 1, 2, . . . , n as ε→ 0 if and only if the n-th degree
polynomial in r2,

P(r2, n) =
a1

2
+

3
8

a3r2 + · · ·+
(

2n + 2
n + 1

)
a2n+1

22n+2 r2n (4)

has n positive roots r2 = r2
j , j = 1, 2, . . . , n.

Denote by Un the second kind Chebyshev’s polynomial. The polynomials participate
in the solution to some of the practical tasks [6]. In this article, we explore a new extended
Lienard-type planar system with the polynomial Un. The number and type of limit cycles is
also investigated. The discussion (in Section 2.3) is on y(t)—the component of the solution
of Lienard system that is connected to the solution of some practical issues such as the
synthesis of “adaptive” filters and electrical circuits. Numerical examples, confirming the
results we obtained through CAS MATHEMATICA, are received.

2. Main Results–Simulations
2.1. Extended Lienard-Type Planar System

The next model will be investigated:
dx
dt

= y− εUn(x)
dy
dt

= −x
(5)

where ε > 0 and Un(x) for n = 3, 5, 7, 9, . . . is the Chebyshev’s polynomial of the second
kind. For example, for n = 5, 7, 9, 13 we have (see Figure 1)

U5(x) = 32x5 − 32x3 + 6x
U7(x) = 128x7 − 192x5 + 80x3 − 8x
U9(x) = 512x9 − 1024x7 + 672x5 − 160x3 + 10x

Figure 1. Un(x) for n = 5, n = 7 and n = 9.

Under stated circumstances it can be indicated that the Lienard’s-type system (1)
has a limit cycle. The proof of existence of the limit cycle is based on the check of the
circumstances in Lienard’s theorem [3], and we will skip it. The process for user-initiated
coefficient ε = 0.006 and n = 5, with the model (5) for x0 = 0.6, y0 = 0.4 is shown in
Figure 2. For ε = 0.001 and n = 5 and x0 = 0.7, y0 = 0.3 see Figure 3. The simulation for
ε = 0.006 and n = 7, with the model (5) for x0 = 0.6, y0 = 0.4, is shown in Figure 4. For
ε = 0.003 and n = 7; x0 = 0.5, y0 = 0.5, see Figure 5.
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Figure 2. The system solutions (ε = 0.006; n = 5).

Figure 3. The system solutions (ε = 0.001; n = 5).

Figure 4. The system solutions (ε = 0.006; n = 7).

Figure 5. The system solutions (ε = 0.003; n = 7).
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2.2. The New Model in the Light of Melnikov’s Considerations

The case n = 5. Let us explore the model
dx
dt

= y− ε(32x5 − 32x3 + µx)
dy
dt

= −x
(6)

where µ > 0, ε > 0. The following is correct:

Proposition 1. The Lienard-type system (6) for n = 5, and for all small enough ε 6= 0 for µ = 7.2
has a limit cycle with multiplicity–2.

Proof. For the Melnikov polynomial in r2 (see Figure 6), we have:

P(r2, 2) =
µ

2
− 12r2 + 10r4. (7)

Figure 6. P(r2, 2) for n = 5 and µ = 7.2.

The roots are √
6−

√
36− 5µ

√
10

;

√
3
5
+

1
10

√
36− 5µ.

The radii ri; i = 1, 2 for some values of µ are tabulated in Table 1.

Table 1. The radii ri; i = 1, 2 for some values of µ.

µ r1 r2

5 0.518013 0.965227
6 0.595862 0.919211
7 0.707107 0.83666

7.2 0.774597 0.774597

Evidently, for example µ = 7.2 we obtain a limit cycle with multiplicity–2 (see Table 1).
This ends the proof of the proposition. The solution of the system (6) for ε = 0.001, n = 5,
µ = 7.2 with x0 = 0.7, y0 = 0.3 is visualized on Figure 7.

The case n = 7. Let us explore the model
dx
dt

= y− ε(128x7 − 192x5 + 80x3 − µx)
dy
dt

= −x
(8)

where µ > 0, ε > 0. The following is correct:



Algorithms 2022, 15, 462 5 of 14 
 

 

 
Algorithms 2022, 15, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/algorithms 

 

 

(a) 

(b) 

(c) 

Figure 7. (a) The solutions of the system (6) (ε = 0.001; n = 5; µ = 7.2); (b) the portrait (x, y); (c) 3D
plot.

Proposition 2. The Lienard-type system (8) for n = 7, and for all small enough ε 6= 0 for
µ = 7.00805257 . . . has a simple limit cycle and limit cycle with multiplicity–2.

Proof. The Melnikov polynomial in r2 (see Figure 8) gives:

P(r2, 3) = −µ

2
+ 30r2 − 60r4 + 35r6. (9)

Figure 8. P(r2, 3) for n = 7 and µ = 7.00805257. The roots are: 0.409106—simple and 0.879462—with
multiplicity 2 .

The radii ri; i = 1, 2, 3 for some values of µ are tabulated in Table 2.



Algorithms 2022, 15, 462 6 of 14

Table 2. The values of µ that proceed in 3 positive zeros of the Melnikov polynomial (Theorem 2); for
µ = 7.00487909525: a simple limit cycle and limit cycle with multiplicity–2.

µ r1 r2 r3

7.5 0.433391 0.808263 0.934435
7.3 0.423255 0.826862 0.922735
7.1 0.413469 0.851545 0.904544

7.008805257 0.409106 0.878462 0.879469

For an proper choice of the parameter µ (for example µ = 7.00805257), we have a limit
cycle and limit cycle with multiplicity 2 (see Table 2). The solution of the system (8) for
ε = 0.001, n = 7, µ = 7.00805257 with x0 = 0.6, y0 = 0.4 is visualized in Figure 9.
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(a) 

(b) 

(c) 

Figure 9. (a) The solutions of the system (8) (ε = 0.001; n = 7; µ = 7.00805257); (b) the portrait (x, y);
(c) 3D plot.

The case n = 9. Consider the model
dx
dt

= y− ε(512x9 − 1024x7 + 672x5 − 160x3 + µ1x)
dy
dt

= −x
(10)

where µ1 > 0, ε > 0. The following is correct:

Proposition 3. The Lienard-type system (10) for n = 9, and for all small enough ε 6= 0 for
µ1 = 9.0482691 . . ., has 2 simple limit cycles and limit cycle with multiplicity–2.

The proof of existence of limit cycles is based on the ideas given in Propositions 1 and
2, and we will omit it here.
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We note that for the Melnikov polynomial in r2 (see Figure 10) we obtain:

P(r2, 4) =
µ

2
− 60r2 + 210r4 − 280r6 + 126r8. (11)

The solution of the system (10) for ε = 0.001, n = 9, µ1 = 9.0482691 with x0 = 0.5,
y0 = 0.5 is visualized in Figure 11.

Figure 10. P(r2, 4) for n = 9 and µ1 = 9.0482691 . . .. The simple roots are 0.338954, 0.987437 and root
0.75243—with multiplicity 2.

Figure 11. The solutions of the system (10) (ε = 0.001; n = 9; µ1 = 9.0482691).

2.3. Related Problems and Possible Applications

Let us explore the following Lienard system:
dx
dt

= y
dy
dt

= g(x) + ε f (x)y
(12)

where 0 ≤ ε ≤ 1.

Numerical examples

Example 1. The solution of the system (12) for ε = 0.001, g(x) = U7(x), f (x) = x− x3 + x5 −
1
7 x7 (see oscillator model considered in [7]) is visualized in Figure 12.

Example 2. The solution of the system (12) for ε = 0.001, g(x) = U9(x), f (x) = x− x3 + x5 −
1
7 x7 is visualized on Figure 13.

We will explicitly note that the y(t)-components of the differential systems discussed
above can be used successfully in modeling and approximating functions and point sets in
the field of signal theory, filters, and other characteristics.

Applications

We will consider 2 typical examples.
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Figure 12. The solutions of the system (12) (Example 1).

Figure 13. The solutions of the system (12) (Example 2).

(A) Example 1 shows that the component y(t) of the solution of system (12) (with
x0 = 1.1, y0 = 0.1) can be used for the modeling and synthesis of electric circuits of the
type shown in Figure 14 at an appropriately selected interval.

(B) A number of studies are known on the design of in some sense optimal filters, such
as the exponential optimal filters of Tadmore and Tanner [8,9] (for the intrinsic properties
of these filters concerning Hausdorff metrics, see [10]).

It is easy to take into account that the alteration of the variable t with t = a cos θ in the
y-component of the solution of the system (12) leads to a diagram characteristic of a filter .

By varying the parameter a, a variety of interesting models are obtained (see Figure 15).
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Figure 14. Application for modeling and analysis of electrical circuits and signal processes.

Figure 15. The model y(θ) for x0 = 0.7, y0 = 0.3 in (−π
2 , π

2 ) for (a) a = 0.4; (b) a = 0.49; and
(c) a = 0.5.

3. Concluding Remarks

The reader can pin down the adequate approximation results for some n. For example,
for fixed U13(x) the Lienard system through Melnikov’s approach is defined as

dx
dt

= y− ε
(
µx− 448x3 + 4032x5 − 15360x7 + 28160x9 − 24576x11 + 8192x13)

dy
dt

= −x

The Melnikov polynomial is of the form (see Figure 16):

P(r2, 6) =
µ

2
− 168r2 + 1260r4 − 4200r6 + 6930r8 − 5544r10 + 1716r12

and the following statement is valid:

Proposition 4. The Lienard-type system for µ = 13.25125164 has four simple limit cycles:
0.254682, 0.521069, 0.61736, and 0.992178 and limit cycle 0.874307 with multiplicity–2.
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Figure 16. The Melnikov polynomial P(r2, 6).

The topics in this paper are connected to solving some practical issues such as the
synthesis of antennas and electrical circuits. For example, a simple circuit for testing the
memristor model and corresponding current–voltage characteristics is given in [11], see
Figure 17. For other results, see [11–16].

Figure 17. A simple circuit for testing the memristor model and corresponding current–voltage
characteristics [11].

Intriguing radiation diagrams can be received with a proper selection of the functions
f (x) and g(x) arising in the Lienard system. Interesting outcomes are obtained in [7,17–20].

Remark 1. The study of dynamical systems includes bifurcation theory with branch catastrophe
theory [21]. Arnold [22] discussed the catastrophes of the ADE classification, because of their
relation with the Lie groups. Consider the following model in the light of Zeeman’s approach [23]:

dx
dt

= c(F(x)− y)
dy
dt

= 1
c x

(13)

with c > 0 and

F(x) = px− 448x3 + 4032x5 − 15360x7 + 28160x9 − 24576x11 + 8192x13.

For the model the catastrophe surface (x, y, p) = F(x)− y is depicted in Figure 18.
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Figure 18. The catastrophe surface (x, y, p) = F(x)− y; p = 0.1, 10, 20.

3.1. Numerical Issues Connected to the Investigation of the Roots of the Melnikov Polynomial

Let D(λ) be the polynomial with real and multiple roots λ1, . . . , λm with the multiplic-

ities si, i = 1, . . . , m, where
m

∑
i=1

si = n, i.e.,

D(λ) =
m

∏
j=1

(λ− λj)
sj .

The next iteration process can be used [24]:

λk+1
i = λk

i −
si

H(λk
i )−

m

∑
l 6=i

sl
λk

i−λk
l−∆R,k

l

, i = 1, . . . , m; k = 0, 1, 2, . . . .

where

H(λk
i ) =

D
′
(λk

i )

D(λk
i )

∆R,k
t = −si

(
H(λk

i )−
m

∑
q 6=t

sq

λk
t−λk

q−∆R−1,k
q

)−1

, t = 1, 2, . . . , m

∆0,k
t = 0, t = 1, 2, . . . , m; k = 0, 1, 2, . . . .

The next theorem is fulfilled

Theorem 1 ([24]). Let 0 < q < 1, d = min
i 6=j
|λi − λj| and c > 0 be numbers such that

d > c(2 + 3qn/s),

c2(n− s
′
)

(
(d− c)(d− 2c− sqn/s)

(
1− (n/s+1)(n/s

′−1)c2q2

(d−c)(d−2c−sqn/s)

))−1
< 1,

s = max
1≤j≤m

sj; s
′
= min

1≤j≤m
sj.

If the initial approximations {λ0
i }, i = 1, 2, . . . , m of the zeros {λi}; i = 1, 2, . . . , m satisfy

the inequalities |λ0
i − λi| ≤ cq, i = 1, 2, . . . , m, then the inequalities

|λk
i − λi| ≤ cq(2R+3)k

, i = 1, 2, . . . , m; k = 0, 1, 2, . . .

hold true.

For other results see [25–29].
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3.2. The Level Curves

For more details of the existing important results on the generalized polynomial
Lienard differential systems and the limit-cycle bifurcations of some generalized polynomial
Lienard systems, see [30–47].

Consider the class of Lienard polynomial systems of the type
dx
dt

= y

dy
dt

= U7(x) + ε(ax + bx2 + cx4 + dx6)y
(14)

where 0 ≤ ε < 1; (a) U7(x) = 128x7 − 192x5 + 80x3 − 8x is the Chebyshev polynomial of
the second kind and a, b, c, d are bounded parameters. Without going into details, we will
note some interesting level curves. For ε = 0, system (14) is a Hamiltonian system with
Hamiltonian

H(x, y) =
y2

2
− 16x8 + 32x6 − 20x4 + 4x2.

The level curves Lhi
= {H(x, y) = hi} are depicted in Figure 19. The case b) U9(x) =

512x9 − 1024x7 + 672x5 − 160x3 + 10x. The Hamiltonian of system (14) (ε = 0) is

H(x, y) =
y2

2
− 5x2 + 40x4 − 112x6 + 128x8 − 256x10

5
.

The level curves Lhi
= {H(x, y) = hi} are depicted in Figure 20.

Figure 19. The level curves (the case a).

Figure 20. Level curves (the case b).

The outcomes received in this paper are based on the following algorithms:
(i) For the arbitrary order n fixed by the user—the production of the extended oscillator;
(ii) For the existence of the boundary cycle—the automatic checking of the rules in

Lienard’s theorem;
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(iii) For determining their number and type—receiving sure evaluations for the roots
of the polynomial and the high-order Melnikov polynomials P(r2, n);

(iv) For embedding polynomial-type rectification factors—generating dynamic models.
Software for study and depiction have also been produced, written in CAS Mathe-

matica. These modules are improving similar ones realized in computer algebraic systems
designed for scientific calculations. The offered modules are only part of the more general
project for investigating nonlinear models.
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