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Abstract: Nowadays, eye fatigue is becoming more common globally. However, there was no
objective and effective method for eye fatigue detection except the sample survey questionnaire. An
eye fatigue detection method by machine learning based on the Single-Channel Electrooculography-
based System is proposed. Subjects are required to finish the industry-standard questionnaires of eye
fatigue; the results are used as data labels. Then, we collect their electrooculography signals through
a single-channel device. From the electrooculography signals, the five most relevant feature values of
eye fatigue are extracted. A machine learning model that uses the five feature values as its input is
designed for eye fatigue detection. Experimental results show that there is an objective link between
electrooculography and eye fatigue. This method could be used in daily eye fatigue detection and it
is promised in the future.

Keywords: electrooculography signals; feature extraction; eye fatigue; machine learning

1. Introduction

With the rapid development of modern society, the production modes are constantly
being innovated, people are suffering from the overuse of their eyes because they have to
spend excessive time facing computers and mobile phones [1]. Our eyes struggle to cope
with such a high workload that is causing eye fatigue and even some eye diseases [2]. To
reduce eye fatigue, timely measurement of eye fatigue has become an urgent research topic.
However, individuals often judge the state of fatigue relying on their subjective feelings
which cannot distinguish mental fatigue from eye fatigue. Therefore, it is necessary to
evaluate eye fatigue by objective and scientific methods.

At present, there are three main ways to measure fatigue, and they mainly focus on
mental fatigue. However, there is a lack of investigations on eye fatigue [3]. External
cameras were used in the latest fatigue detection method to record the human face. All
movements of human heads (such as facial expressions, the direction and amplitude of the
head movements, eyelid movement, the direction of the line of sight, etc.) are captured
by the cameras and modeled by image processing technology. Fatigue levels would be
evaluated according to the image data processing results. The main disadvantage of this
method is the low accuracy resulting from the instability of the video signal. It is also easy
to be affected by the external environment (such as light, device jitter, and human body
movements) [1,4].

Another method of detecting fatigue is using machine learning to measure the fatigue
level comprehensively by collecting multimodal physiological signals as the input of
the machine learning model. The multimodal physiological signals mentioned above
consist of electroencephalographic (EEG), electrocardiogram (ECG), respiratory signals
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electrooculography (EOG), blood pressure, pulse, skin impedance, body temperature,
etc. [5,6]. A major advantage of this method is the relatively high accuracy as a consequence
of the comprehensiveness of physiological signals used in this method. Nevertheless,
a multitude of devices has to be worn by subjects in this kind of experiment, which is
intensely inconvenient and costly. Furthermore, a host of parameters used for the analysis
can easily lead to a dimensional disaster of the algorithm. Accordingly, this type of fatigue
assessment method is inconvenient in practical use and can only be tested in the laboratory
environment.

There is also a traditional fatigue detection method that is based on external parame-
ters [7]. In this method, subjects are asked to complete a prescribed series of tasks under
some set-up special experimental scenarios (such as driving stimulation) [8]. The level
of fatigue is classified by the degree of completion of the tasks. This kind of method has
long been used in detecting fatigued driving. However, due to its high experimental
complexity, long experiment time, and large differences between subjects, resulting in its
poor robustness, therefore, can only be used for special purposes [9].

This section has reviewed the three dominant methods of measuring fatigue. Nev-
ertheless, the above methods are aimed at measuring mental fatigue or physical fatigue.
There is practically no specific research on eye fatigue detection. This article presented a
system for eye fatigue detection, the algorithm of the system can evaluate the level of eye
fatigue only by analyzing the single-channel EOG signal. The self-developed eye fatigue
detection device is convenient to use and low in cost. The system can be integrated and
interacted with using a mobile phone, which is straightforward for the users to operate,
save and check historical data. The problems of inconvenient installation, high cost, and
difficulty in using traditional equipment are optimized in this article. Furthermore, the
importance and originality of this study are that it explores the link between EOG and eye
fatigue and it provides an opportunity to advance the detection of eye fatigue.

The paper is organized as follows: Section 1 describes the background and motiva-
tions, an overview of the fatigue detection techniques. Section 2 introduces the system
structure and the EOG working principle. The design of the hardware system is explained
in this section. Section 3 considers the eye fatigue experiments, introduces the experimental
process and the data collection. Section 4 is devoted to introduce the EOG signal prepro-
cessing, several major feature extraction and classification methods. Section 5 provides the
experimental setting and results to demonstrate the effectiveness of our model. The main
conclusion of our research is presented in Section 6. Finally, Section 7 states the limitations
of this study and indicates the possible direction of our future work.

2. System Structure and Working Principle
2.1. How EOG Works

Electrooculography (EOG) is a technique that detects eye movements by measuring
the electrical potential between the cornea and the retina. The eye assumes the role of the
electrode between the cornea (positive electrode) and the retina (negative electrode). Any
rotation of the eye in any direction causes a change in the electrical signal of the eye [10].
Previous research has established that the amplitude of the EOG signal typically varies
between 50 uv and 3500 uv, with a frequency of 0–100 Hz. The amplitude of EOG and the
angle of eye movement showed a similar linear trend when the eye movement direction is
in the range of ±50 degrees horizontally and ±30 degrees vertically [11]. Figures 1 and 2,
respectively, show the schematic diagram of the change in the amplitude of EOG caused by
right eye movement and left eye movement.
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Figure 2. The change of EOG in left eye movement.

As shown in Figures 1 and 2, when the eyeball turns to the right, the voltage of the
EOG changes in the positive quadrant, conversely, it changes in the negative quadrant.

2.2. System Structure

As can be seen from Figure 3, the electrode GND (GND is the ground electrode)
located on the forehead produces the common reference ground voltage for the system to
reduce interference [12]. The two electrodes EOGL and EOGR are located midway between
the left and right eye and the left and right temple, respectively, to obtain eye movement
information. The chart below shows the system block diagram for EOG measurement.
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As shown in Figure 4, the system is composed of the signal acquisition module which
consists of three electrodes, signal amplifying circuit, off-chip EMI filter, multiplexer, low
noise amplifying module, high precision sampling circuit ADS1191 (ADS1191 is a chip with
Low-Power, 2-Channel, 16-Bit Analog Front-End for biopotential measurements, produced
by Texas Instruments), main control module CC2640 as the MCU for this system (CC2640
is a low power Bluetooth wireless microcontroller, produced by Texas Instruments), periph-
eral button, and led indicator lamp. The electrodes and the Electro Magnetic Interference
(EMI) filter circuit form the front end of the EOG signal acquisition, which extracts the EOG
signal and sends it to the multiplexer (MUX, integrated in ADS1191) module after it has
been filtered by the EMI filter. The signal is then converted from a weak current signal into
a voltage signal by an amplifier circuit, which is sampled by a high-precision sampling
module at a frequency of 256 Hz and sent to the microcontroller (MCU) master control
module. Additionally, the peripheral devices, such as buttons and LED indicators are used
for external interaction with the system.
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3. Experiment Task

This study intends to explore a reliable and efficient method for eye fatigue detection;
therefore, it is indispensable to present an objective eye fatigue experiment. After com-
prehensive research, there is a lack of authoritative and objective evaluation systems for
quantitative indicators of eye fatigue worldwide. Until 18 July 2019, the China Electronic
Video Industry Association released an industry standard in Beijing: “Display Terminal
Visual Fatigue Test and Evaluation Method Part 2 Scale Evaluation Method” [13] (Figure 5).
This standard combines the experience of domestic and international research and designs
a highly relevant visual fatigue test scale. The test content mainly includes dry eyes, blurred
eyes, double vision, eye tears, eye burning, eye pain, eye tearing, eye strain, eye irritation,
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etc. The scale is shown as below (the original version is in Chinese, the version shown
below is translated and edited into English by ourselves):

Upon its release, the scale became the only visual industry official standard scale for
eye fatigue and provided an authoritative method of measuring eye fatigue. In this article,
12 subjects aged between 24 and 32 years old, with no eye disease other than myopia, were
selected and tested over a period. To make the test scenario more relevant to characters’
daily eye habits, the test was divided into three periods daily. The first period is from
8:00 a.m.–9:00 a.m., when most folks are just starting to work and study, the level of eye
fatigue is usually low. The second period is from 11:30 a.m.–12:00 a.m. when individuals
are finishing their intensive work in the morning and the fatigue level is usually high.
The third period is from 5:30 p.m.–6:00 p.m., during which the subjects showed a more
pronounced variation in eye fatigue. Figure 6 presents the eye fatigue experiment process.
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Figure 6. Eye fatigue experiment process.

Participants were asked to respond using the above eye fatigue scale in one minute,
the self-test results were stored in the backend server. After the self-test, subjects wearing
the self-study eye fatigue detection device begin a 3 min EOG acquisition. During this
process, the subjects were asked to close their eyes the entire time and to be in a state of
complete natural relaxation. The EOG signal is displayed in real-time and synchronously
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on the host computer designed in this article, and the data is saved in PC local as TXT
format for follow-up analysis. After a sustained period of testing, over 300 sets of EOG
data were obtained for this article.

4. Method
4.1. Signal Pre-Processing

Initially extracted EOG signal was interspersed with significant industrial frequency
interference and unavoidable baseline drift which needs to be pre-processed [14]. The
frequency of the EOG signal is in the range of 0.2–30 Hz. The main interference sources are
baseline drift and power frequency noise. To eliminate power line interference and baseline
drift, a notch wave of 50 Hz and a fourth-order band-pass filter of 0.2–30 Hz is devised in
this article.

From Figure 7, it is apparent that the EOG signal becomes smooth and clear after
it has been filtered by the two filters. The quality of the EOG signal has been improved
significantly therefore it has a high signal-to-noise ratio.
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4.2. Feature Extraction

After pre-processing of the raw EOG signal to remove the IFR and baseline drift, as
the input features for the model, the eigenvalues related to eye fatigue are extracted. Eye
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rotation, according to the different rotation angles and amplitude, will produce the EOG
signal with different directions and amplitude [15]. There are more than 20 features of EOG
signal: Proportion of slow eye movements, the average amplitude of slow eye movements,
the variance of slow eye movements, proportion of fast eye movements, peak speed of
fast eye movements, average amplitude of fast eye movements, the variance of fast eye
movements, blink duration, eye closure duration, eye-opening duration, eye-opening delay,
eye-opening delay to blink duration ratio, blink interval, the average amplitude of blink,
the peak speed of eye closure, the peak speed of eye-opening, the average speed of eye
closure, eye-opening average blink amplitude, peak eye closing velocity, peak eye-opening
velocity, average eye closing velocity, average eye-opening velocity, horizontal eye low
frequency to high-frequency energy ratio, vertical eye low frequency to high-frequency
energy ratio, etc. However, not all of these features mentioned above correlate closely with
eye fatigue, blindly extracting all these features as a basis for eye fatigue analysis could
lead to the dimensional disaster in the model. To avoid this problem, this paper designs
several different arrangement combinations of these characteristic values and carries on
the verification experiment. In this verification experiment, the pairing t-test method is
used to rank the importance of the two-two characteristics in descending order. As the
result, 5 features of 5 EOG signals, which are greatest correlated with eye fatigue, were
selected. The 5 features contain slow eye movement features, fast eye movement features;
energy peak frequency features, number and ratio of eye movement peaks features, and
alignment entropy features. The following two illustrations (Figures 8 and 9) showed the
extracted features and the rank of all features and the five selected features in the form of a
directional diagram.
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As the Figure 8b shows, the ranking of correlation between all EOG features and eye
fatigue is as follows: XPowerBand5 (Energy spectrum value), XSpectPos1 (Spectrum peak
value), pe (Arrange entropy values), ratio_fati_high_40 (Percentage of right eye movement
amplitude), ratio_fati_40 (Percentage of eye movement), high_integration_FFT (Spectrum
integration), peak_fEOG (Number of peak right eye movement points), sum_movepeak
(Total number of peak points), ratio_fati_low_40 (Proportion of left eye movement_1),
ratio_fati_low_20 (Proportion of left eye movement_2).

Figure 9b shows the correlation ranking of the 5 selected features. In the next several
sub-chapters, the details and extraction methods for these five features would be described
in detail below.

4.2.1. Slow and Fast Eye Movement Feature Extraction

Medical researchers have proven that slow eye movements reflect the three different
states of drowsiness, wakefulness, and light sleep, which are closely related to mental
fatigue and eye fatigue of humans [16,17]. There are three types of eye movements belong-
ing to slow eye movements, which are drifting, rolling, and oscillating with frequencies
between 0.1 Hz and 1 Hz [18]. The above three eye movements could be treated as one type
during the processing of the EOG signal. From experiments, it has been proven that slow
eye movements have the most obvious signal characteristics in the range of 0.2–0.6 Hz.
For efficiently extracting slow eye movement features, this paper designed a band-pass
filter. A 16-fold downsampling operation is first performed on the EOG signal. Then,
the signal is transformed by a 256-point FFT to obtain the spectrum. Finally, the spectral
integration values, which are frequencies in the range of 0.2–0.6 Hz, were taken as the slow
eye movement features. The extraction process for fast eye movement features is the same
as slow eye movement, except that the downsampling fold is 16 and the frequencies range
of spectral integration values is 1–2 Hz.

4.2.2. Energy Peak Frequency Feature Extraction

To extract the energy peak frequency feature, this paper introduces a Welch spectrum
estimation method that differs from the standard periodic one. As an improved method of
standard periodic spectrum estimation, the Welch spectral estimation method can reduce
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the noise. In the process of extracting the Welch spectrum, the signal is firstly windowed
by a rectangular function. The power spectrum of the windowed signal is estimated by
Welch, then the peak of the power spectrum is obtained by differential threshold algorithm.
Finally, the first 6 maximum amplitude values of this peak point and their corresponding
frequencies are extracted as the energy peak frequency features of this segment. As shown
in Figure 10, the six values and frequencies are denoted as the red makers named Pw1,
Pw2, Pw3, Pw4, Pw5, Pw6; Fw1, Fw2, Fw3, Fw4, Fw5, and Fw6, respectively.
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4.2.3. Eye Movement Peak Ratio Feature Extraction

The prominent patterns of eye movements are classified as moving to the left eye
movements, right eye movements, and blinking. To simplify the complexity of the EOG
measuring device and therefore improve the comfort when wearing, this paper designs a
single-channel device with three electrodes. Electrodes are not placed on the upper and
lower part of the eye for testing, so the blink signal is not detected. To extract the eye
movement peak ratio feature, firstly, the baseline threshold THB is set and the signal is
rectangular-sized (as shown in Figure 11). Then, use the differential thresholding algorithm
to extract the peak and trough values of the eye movement signal. Finally, the ratio of the
number of peaks and troughs to the number of points sampled is counted separately. As
the eye movement peak ratio feature, this ratio is expressed in a physiological sense as the
frequency of eye movements to the right and the frequency of eye movements to the left,
respectively. Equations (1) and (2) show the calculation method.

Ratioright =
∑k

i=1 I[x2rec(k)− x2rec(k− 1) > 0&x2rec(k)− x2rec(k + 1) < 0]
TotalN

(1)

TotalN =
k
∑

i=1
I[x2rec(k)− x2rec(k− 1) > 0&x2rec(k)− x2rec(k + 1) < 0] + i

= 1kI[x2reck− x2reck− 1 < 0&x2reck− x2reck + 1 > 0]
(2)
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movement).

The Ratioright above represents the percentage of right eye movement and the TotalN
is the total number of eye movements to the right and the left. The percentage of right eye
movement is calculated in the same way as in Formula (1).

4.2.4. Permutation Entropy Extraction

The permutation entropy reflects the degree of regularity of EOG signal in different
states and is calculated as follows:

Express the electrooculogram signal as a matrix X2(k), k = 1, 2, n. First, the phase space
of the signal is constructed and the reconstructed space is as in Formula (3): Where k is the
reconstruction component, k = N − (M− 1) ∗ τ, τ denotes the delay time.

x(1) x(1 + τ) · · · x(1 + (m− 1)τ)
...

...
...

x(j) x(j + τ) · · · x(j + (m− 1)τ)
...

...
...

x(k) x(k + τ) · · · x(k + (m− 1)τ)

 (3)

Second, extract the sequence of symbols, the jth component, which is the row of the
reconstructed matrix, is sorted in ascending numerical order. The sorted index value then
forms a set of symbolic sequences S(j), where the reconstruction matrix has m columns,
i.e., m dimensions. There is m! kinds of permutations from the reconstruction matrix. Then,
accumulate the number of the occurrences of each permutation as c, and calculate the
probability of occurrence of each symbol sequence, as shown in Formula (4):

Pi = ci/
m!

∑
i=0

ci i = 1, 2 . . . m! (4)

Finally, the permutation entropy Pe can be calculated based on the probability Pi:

Pe = −
m!

∑
j=1

Pj ∗ log(Pj) (5)

4.3. Eye Fatigue Detection Algorithm

The CART classifier, known as the Classification and Regression Tree, is the advanced
Decision Tree that has favorable performance in both classification and regression tasks.
In contrast to traditional ID3 that uses information gain as the basis for feature selecting,
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the CART uses the Gini coefficient to select features. The Gini coefficient represents the
impurity of the model, the smaller Gini coefficient means lower impurity, and at the same
time, the better features. The Gini coefficient is defined as:

Gini(D) =
n
∑

i=1
p(xi) ∗ (1− p(xi))

= 1−
n
∑

i=1
p(xi)

2
(6)

where p(xi) is the probability of xi and n represents the number of classifications. The Gini
coefficient for sample D with the A attribute is defined as:

GiniIndex(D | A = a) =
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2) (7)

The number of sample dataset D is |D| and it is divided into two parts: D1 and D2,
according to whether feature A takes the value of a. Consequently, the CART builds up
binomial trees instead of multinomial trees. According to the Gini index minimum criterion,
the most appropriate feature AK in one partition is defined as:

Ak = (D1/D2 ∗ Gini(D1) + D2/D1 ∗ Gini(D2))Ak (8)

where A represents all feature sets and the data set D is divided into D1 and D2 based on
the value of AK.

The five features extracted in Section 4.2 from a feature dataset and the data set is
divided into 70% training data and 30% test data by the leave-out method, and to maintain
the consistency data distribution, a stratified sampling is used. The training data is then
further divided into the training set and validation set. After the partition, the data set
is classified by the CART algorithm in three steps. First, the tree is generated based on
training data according to the Gini index minimization criterion, then pruned based on
the validation set to obtain the best subtree. To improve the generalization performance
of the tree, the post-pruning method is adopted. During the post-pruning process, the
non-leaf nodes of the original tree are examined from the bottom up. Then, the subtree
corresponding to these non-leaf nodes is replaced with the new subtree which corresponds
to leaf nodes. Finally, the best subtree used to evaluate the model performance based on
the test dataset. If the accuracy of the new classification tree is improved compared to the
original one, the new classification tree is divided again, otherwise, the original tree is
performed, until all non-leaf nodes are traversed.

5. Results

After continuous testing 12 subjects a period, an EOG eye fatigue dataset is generated.
Each experiment produces EOG data with 3 min length, which is downsampled 16 times,
then 256 points are taken as a sample. The size of the processed dataset is shown in Table 1:

Table 1. Size of processed dataset.

Relaxed Sample Size Fatigue Sample Size

Training data set 12,090 9750
Test data set 4095 5070

The classification decision tree structure is determined after pruning the tree using the
cross-validation method based on the processed dataset, it is shown in Figure 12:
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Concerning the evaluation, common classification metrics were employed to determine
the anomaly detection effectiveness of the model, i.e., Accuracy, Precision, TPR (Recall), FPR
(False Positive Rate), and SPC (Specificity).

These metrics are computed analyzing as follows:

Accuracy =
TP + TN

TP + FP + FN + TN

Precision =
TP

TP + FP

TPR =
TP

TP + FN

FPR =
FP

FP + TN

SPC =
TN

FP + TN
where relax is classified as a positive category and fatigue is classified as a negative category.

TP (True Positive): Values that are actually positive and predicted as positive,
FP (False Positive): Values that are actually negative, but predicted as positive,
FN (False Negative): Values that are actually positive, but predicted to negative,
TN (True Negative): Values that are actually negative and predicted to negative.
The Precision is all the points that are declared to be positive, but what percentage of

them are actually positive, calculated as Precision = TP/(TP + FP).
TPR (True Positive Rate) is all the points that are actually positive, but what percentage

declared positive, calculated as TPR = TP/(TP + FN).
FPR (False Positive Rate) is all the points that are actually positive, but what percentage

declared negative, calculated as FPR = FP/(FP + TN).
SPC (Specificity) is all the points that are actually negative, but what percentage

declared negative, calculated as SPC = TN/(FP + TN).
Table 2 shows the eye relax and fatigue state analysis results:
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Table 2. State analysis results.

State Relax Fatigue Precision TPR FPR SPC Accuracy

Relax 2069 (TP) 2026 (FN) 58.1%
Fatigue 1488 (FP) 3582 (TN) 50.5%

Prediction 29.3% 70.7% 61.6%

As shown, this system performs better in classifying the fatigue state than classifying
the relax state which further verifies the correlation between EOG signal and eye fatigue
and demonstrates that the EOG signal can be used as a test for eye fatigue.

6. Conclusions

Based on a comprehensive measurement of 12 subjects, this article discusses the
correlation between EOG signal and scenarios on individuals’ eye fatigue. This study
develops portable EOG measuring equipment and proposes a method for detecting eye
fatigue based on a single-channel EOG signal only. Despite the current model needs to be
improved for detection in the eye relax state, this article still objectively demonstrated that
EOG signal could be used as a significant basis for detecting eye fatigue which introduces
a possibility of a new self-testing model for daily eye health and has a broad application
prospect in the field of eye health care.

7. Future Work

There are still some limitations of this study. In further work, we will make the
sampling in this study more diversity. Subjects would contain of people with different
ages and different eye health conditions. Moreover, the current accuracy performance has
the possibility to improve. In the further work of this study, we will increase the number
of test samples and try to develop the deep learning model based on the new dataset to
improve the accuracy. If the new dataset has a large enough size, we are fully confident
that developing some deep learning models could improve the accuracy performance.
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