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Abstract: In this paper, we quantify the non-transitivity in chess using human game data. Specifically,
we perform non-transitivity quantification in two ways—Nash clustering and counting the number
of rock–paper–scissor cycles—on over one billion matches from the Lichess and FICS databases. Our
findings indicate that the strategy space of real-world chess strategies has a spinning top geometry
and that there exists a strong connection between the degree of non-transitivity and the progression of
a chess player’s rating. Particularly, high degrees of non-transitivity tend to prevent human players
from making progress in their Elo ratings. We also investigate the implications of non-transitivity for
population-based training methods. By considering fixed-memory fictitious play as a proxy, we conclude
that maintaining large and diverse populations of strategies is imperative to training effective AI
agents for solving chess.

Keywords: game theory; multi-agent AI; non-transitivity quantification

1. Introduction

Since the mid-1960s, computer scientists have referred to chess as the Drosophila of
AI [1]: similar to the role of the fruit fly in genetics studies, chess provides an accessible,
familiar, and relatively simple test bed that nonetheless can be used to produce much
knowledge about other complex environments. As a result, chess has been used as a
benchmark for the development of AI for decades. The earliest attempt dates back to
Shannon’s interest in 1950 [2]. Over the past few decades, remarkable progress has been
made in developing AIs that can demonstrate super-human performance in chess, including
IBM DeepBlue [3] and AlphaZero [4]. Despite the algorithmic achievements made in AI
chess playing, we still have limited knowledge about the geometric landscape of the
strategy space of chess. Tied to the strategic geometry are the concepts of transitivity and
non-transitivity [5]. Transitivity refers to how one strategy is better than other strategies. In
transitive games, if strategy A beats strategy B and B beats C, then A beats C. On the other
hand, non-transitive games are games where there exists a loop of winning strategies. For
example, strategy A beats strategy B and B beats C, but A loses to C. One of the simplest
purely non-transitive games is rock–paper–scissors. However, games in the real world
are far more complex; their strategy spaces often have both transitive and non-transitive
components.

Based on the strategies generated by AIs, researchers have hypothesised that the
majority of real-world games possess a strategy space with a spinning top geometry. In
such a geometry (see Figure 1a), the radial axis represents the non-transitivity degree and
the upright axis represents the transitivity degree. The middle region of the transitive
dimension is accompanied by a highly non-transitive dimension, which gradually dimin-
ishes as the skill level either grows towards the Nash equilibrium [6] or degrades to the
worst-performing strategies.
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Figure 1. We justify the spinning top hypothesis represented by (a), which states that many real-world
games—including chess—possess a strategy space with a spinning top geometry, where the radial
axis represents the non-transitivity degree (e.g., A beats B, B beats C, and C beats A) and the upright
axis represents the transitivity degree (e.g., A beats B, B beats C, and A beats C). We studied the
geometric properties of chess based on one billion game records from human players. (b) shows the
comparison between the histogram of Elo ratings (i.e., the transitivity degree) in Lichess 2020 (left)
and the degree of non-transitivity at each Elo level (right), where the non-transitivity is measured by
both the size of the Nash clusters and the number of rock–paper–scissor cycles (top-right corner). A
skewed-normal curve is fitted to illustrate the non-transitivity profile, which verifies the spinning
top hypothesis in (a). Specifically, the middle region of the transitive dimension is accompanied by a
large degree of non-transitivity, which gradually diminishes as skill evolves towards high Elo ratings
(upward) or degrades (downward). Notably, the peak of the Elo histogram lies between 1300 and
1700, a range where most human players get stuck. Furthermore, the peak of the non-transitivity
curve coincides with the peak of the Elo histogram; this indicates a strong relationship between the
difficulty of playing chess and the degree of non-transitivity. Our discovered geometry has important
implications for learning. For example, our findings provide guidance to improve the Elo ratings of
human players, especially in stages with high degrees of non-transitivity (e.g., by dedicating more
efforts to learning diverse opening tactics). In (c), we show the performances of population-based
training methods with different population sizes. A phase change in performance occurs when the
population size increases; this justifies the necessity of maintaining large and diverse populations
when training AI agents to solve chess.

While the idea of non-transitivity is intuitive, quantifying it remains an open challenge.
An early attempt has been made to quantify non-transitivity [5], based on which the
spinning top hypothesis was proposed. However, their sampled strategies were all artificial,
in the sense that they only studied strategies that were generated by various algorithmic
AI models. While one can argue that both artificial and human strategies are sampled
from the same strategy space, they could have completely different inherent play styles;
for example, [7] has shown that the Stockfish AI [8] performed poorly in mimicking the
play style of weak human players, despite being depth-limited to mimic those players.
Therefore, there is no guarantee that the conclusions from [5] would apply to human
strategies. Consequently, the geometric profile of the strategy space of chess is still unclear,
which directly motivated us to investigate and quantify the degree of non-transitivity in
human strategies.

Aside from its popularity historically, chess is one of the most popular classical games
today. It provides the largest number of well-maintained human game records of any type,
which are publicly available from various sources. These databases include Lichess [9],
which contains games played since 2013, and the Free Internet Chess Server (FICS), which
contains games played since 1999 [10]. In this paper, by studying over one billion records
of human games on Lichess and FICS, we measure the non-transitivity of chess games,
and investigate the potential implications for training effective AI agents and for human
skill progression. Specifically, we performed two forms of non-transitivity measurement:
Nash clustering and counting the number of rock–paper–scissor (RPS) cycles. Our findings
indicated that the strategy space occupied by real-world chess strategies demonstrates a
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spinning top geometry. More importantly, there exists a strong connection between the
degree of non-transitivity and the progression of a chess player’s rating. In particular, high
degrees of non-transitivity tend to prevent human players from making progress on their
Elo rating, whereas progression is easier at the level of ratings where the degree of non-
transitivity is lower. We also investigated the implication of the degree of non-transitivity
on population-based training methods. By considering fixed-memory Fictitious Play as a
proxy, we concluded that maintaining a large and diverse population [11] of strategies is
imperative to train effective AI agents in solving chess, which also matched the empirical
findings that have been observed based on artificial strategies [5].

In summary, the main contributions of this paper are as follows:

• We perform non-transitivity quantification in two ways (i.e., Nash Clustering and count-
ing rock–paper–scissor cycles) on over one billion human games collected from Lichess
and FICS. We found that the strategy space occupied by real-world chess strategies
exhibited a spinning top geometry.

• We propose several algorithms to tackle the challenges of working with real-world
data. These include a two-staged sampling algorithm to sample from a large amount
of data, and an algorithm to convert real-world chess games into a Normal Form game
payoff matrix.

• We propose mappings between different chess player rating systems, in order to allow
our results to be translated between these rating systems.

• We investigate the implications of non-transitivity on population-based training meth-
ods, and propose a fixed-memory Fictitious Play algorithm to illustrate these implica-
tions. We find that it is not only crucial to maintain a relatively large population of
agents/strategies for training to converge, but that the minimum population size is
related to the degree of non-transitivity of the strategy space.

• We investigate potential links between the degree of non-transitivity and the progres-
sion of a human chess player’s skill. We found that, at ratings where the degree of
non-transitivity is high, progression is harder, and vice versa.

The remainder of this paper is organized as follows: Section 2 provides a brief overview
of the works related to this paper. Section 3 provides some background on Game Theory, fol-
lowed by theoretical formulations and experimental procedures to quantify non-transitivity,
as well as to study its implications for training AI agents and human skill progression.
Section 4 presents the results of these experiments and the conclusions drawn from them.
Section 5 presents our concluding remarks and several suggestions for future work.

2. Related Works

Our work is most related to that of [5], who proposed the Game of Skill geometry (i.e.,
the spinning top hypothesis), in which the strategy space of real-world games resembles a
spinning top in two dimensions, where the vertical axis represents the transitive strength
and the horizontal axis represents the degree of non-transitivity. This hypothesis has
empirically been verified for several real-world games, such as Hex, Go, Tic-Tac-Toe, and
Starcraft. The approach taken by [5] was to sample strategies uniformly along the transitive
strength, where the strategies are generated by first running solution algorithms such
as the Minimax Algorithm with Alpha-Beta pruning [12] and Monte-Carlo Tree Search
(MCTS) [13]. Sampling strategies uniformly in terms of transitive strength is then conducted
by varying the depth up to which Minimax is performed, or by varying the number of
simulations for MCTS. For Starcraft, sampling strategies have been carried out by using the
agents from the training of the AlphaStar AI [14]. However, such sampling of strategies
means that the empirical verification is performed on artificial strategies, and some works
have suggested an inherent difference in the play style of AI and humans. For example, [7]
have shown that Stockfish AI [8] performed poorly in mimicking the play style of human
players, despite being depth-limited to mimic such players. This motivated us to perform
similar investigations, but using human strategies.
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This paper is focused on non-transitivity quantification in real-world chess strategies.
However, chess players are rated primarily using the Elo rating system, which is only
valid for the pool of players being considered, and many variants of this system have been
implemented around the world. The two most-used implementations are those of the
Fédération Internationale des Échecs (FIDE) [15] and the United States Chess Federation
(USCF) [16]. In its most basic implementation, the Elo rating system consists of two steps:
assigning initial ratings to players and updating these ratings after matches. USCF and
FIDE determine a player’s starting rating by taking into account multiple factors, including
the age of the player and their ratings in other systems [17,18]. However, the specific rules
used to determine the starting rating differs between the two organisations. Furthermore,
the update rules also differ significantly. These are defined in the handbook of each organ-
isation [17,18]. On the other hand, online chess platforms, such as Lichess and the FICS,
which are the data sources used in this paper, typically use a refined implementation of the
Elo rating system; namely, the Glicko [19] system for FICS, and Glicko-2 [20] for Lichess.
These systems typically set a fixed starting rating, and then include the computation of
a rating deviation for Glicko while updating the player rating after matches. Glicko-2
includes the rating deviation and rating volatility, both of which represent the reliability of
the player’s current rating.

3. Theoretical Formulations and Methods

Some notations used in this paper are provided in the following. For any positive
integer k, [k] denotes the set {1, ..., k}, and ∆k denotes the set of all probability vectors with
k elements. For any set A and some function f , { f (a)}a∈A denotes the set constructed
by applying f to each element of A. Furthermore, for any set A = {A1, ..., A|A|}, {si}i∈A

denotes {sA1 , ..., sA|A|}. Moreover, for some integer k, {si}k
i=1 denotes {s1, ..., sk}. N1 denotes

the set {1, 2, ...}; that is, the natural numbers starting from 1. For a set A = {A1, ..., A|A|},
the notation A−j denotes A without the jth element (i.e., A−j = {Ai}i∈[|A|],i 6=j). Hence,
A = {Aj, A−j} ∀j ∈ [|A|]. Furthermore, we use I[a > b] for a, b ∈ R to denote the indicator
function, where I[a > b] = 1 if a > b and 0 otherwise. Finally, for any integers m and k
where k ≤ m, let em

k denote a vector of length m, where the vector is all zeroes, but with
a single 1 at the kth element. Likewise, 0k and 1k denote the vector of zeroes and ones of
length k, respectively.

3.1. Game Theory Preliminaries

Definition 1. A game consists of a tuple of (n, S, M), where:

• n ∈ N1 denotes the number of players;
• S = ∏n

i=1 Si denotes the joint strategy space of the game, where Si is the strategy space of the
ith, i ∈ [n]. A strategy space is the set of strategies a player can adopt;

• M = {Mi}n
i=1, where Mi : S→ R is the payoff function for the ith player. A payoff function

maps the outcome of a game resulting from a joint strategy to a real value, representing the
payoff received by that player.

3.1.1. Normal Form (NF) Games

In NF games, every player takes a single action simultaneously. Such games are fully
defined by a payoff matrix M, where

Md1,d2,...,dn =
{

M1(a1, a2, ..., an), ..., Mn(a1, a2, ..., an)
}

,

with ak ∈ Ak, dk ∈ [|Ak|], k ∈ [n], Ak denoting the action space of the kth player, and dk
denoting the index corresponding to ak. M fully specifies an NF game as it contains all the
components of a game by Definition 1. In an NF game, the strategy adopted by a player is
the single action taken by that player. Therefore, the action space Ak is equivalent to the
strategy space Sk for k ∈ [n].
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An NF game is zero-sum when ∑z∈Md1,...,dn
z = 0 for dk ∈ [|Ak|], k ∈ [n]. For two-

player zero-sum NF games, the entries of M can, therefore, be represented by a single
number, as the payoff of one player is the negative of the other. Additionally, if the game
is symmetric (i.e., both players have identical strategy spaces), then the matrix M is
skew-symmetric.

A well-known solution concept that describes the equilibrium of NF games is the
Nash Equilibrium (NE) [6,21]. Let pi(s), where s ∈ Si, pi ∈ ∆|Si |, and i ∈ [n], denote
the probability of player i playing the pure strategy s according to probability vector pi.
Additionally, let p = {p1, ..., pn}, and p[j : k] denote changing the jth element in p to the
probability vector k, where k ∈ ∆|Sj |.

Definition 2. The set of distributions p∗, where p∗ = {p∗1 , ..., p∗n} and p∗i ∈ ∆|Si | ∀i ∈ [n], is

an NE if ∑s∈S p∗(s)Mi(s) ≥ ∑s∈S p∗[i : e|Si|
k ](s)Mi(s) ∀i ∈ [n], k ∈ [|Si|], where p∗(s) =

∏j∈[n] p∗j (sj) and s = {s1, ..., sn}, si ∈ Si ∀i ∈ [n].

Definition 2 implies that, under an NE, no player can increase their expected payoff
by unilaterally deviating to a pure strategy. While such an NE always exists [6], it might
not be unique. To guarantee the uniqueness of the obtained NE, we apply the maximum
entropy condition when solving for the NE. The maximum-entropy NE has been proven to
be unique [22].

Theorem 1. Any two-player zero-sum symmetric game always has a unique maximum entropy NE,
given by {p∗, p∗} where p∗ ∈ ∆|Sg |, where Sg is the strategy space for each of the two players [22].

As a consequence of Theorem 1, finding the maximum entropy NE of a two-player
zero-sum symmetric game amounts to solving the Linear Programming (LP) problem
shown in Equation (1):

p∗ = arg max
p

∑
j∈[|Sg |]

−pj log pj

s. t. Mp ≤ 0|Sg |

p ≥ 0|Sg |

1>|Sg |p = 1, (1)

where M is the skew-symmetric payoff matrix of the first player.

3.1.2. Extensive Form (EF) Games

EF games [23] model situations where participants take actions sequentially and
interactions happen over more than one step. We consider the case of perfect information,
where every player has knowledge of all the other player’s actions, and a finite horizon,
where interactions between participants end in a finite number of steps (denoted as K). In
EF games, an action refers to a single choice of move from some player at some stage of the
game. Therefore, the term action space is used to define the actions available to a player at
a certain stage of the game.

Definition 3. A history at stage k, hk, is defined as hk = {a1, ..., ak−1}, where aj = {a1
j , ..., an

j }
for j ∈ [k− 1]. aj is the action profile at stage j, denoting the actions taken by all players at that
stage.
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The action space of player i at stage k is, therefore, a function of the history at that
stage (i.e., Ai(hk) for k ∈ [K], i ∈ [n]), as the actions available to a player depend on how
the game goes.

Definition 4. Let Hk be the set of all possible histories at stage k. Let Ai(Hk) =
⋃

hk∈Hk
Ai(hk)

be the collection of actions available to player i at stage k from all possible histories at that stage.
Let the mapping sk

i : Hk → Ai(Hk) be a mapping from any history at stage k (i.e., hk) to an action
available at that stage due to hk; that is, sk

i (hk) ∈ Ai(hk) ∀hk ∈ Hk. A strategy of player i is defined
as si =

⋃
k∈[K] sk

i , si ∈ Si, where Si is the strategy space of player i.

In EF games, behavioural strategies are defined as a contingency plan for any possible
history at any stage of the game. According to Kuhn’s theorem [24], for perfect recall EF
games, each behavioural strategy has a realisation-equivalent mixed strategy. Finally, the
payoff function of an EF game is defined as the mapping of every terminal history (i.e.,
the history at stage K + 1) to a sequence of n real numbers, denoting the payoffs of each
player (i.e., Mi : HK+1 → R for i ∈ [n], where HK+1 is the set of all terminal histories).
However, any terminal history is produced by at least one joint strategy adopted by all
players. Therefore, the payoff of a player is also a mapping from the joint strategy space to
a real number, consistent with Definition 1.

An EF game can be converted into an NF game. When viewing an EF game as an
NF game, the “actions” of a player in the corresponding NF game would be the strategies
of that player in the original EF game. Therefore, an n-player EF game would have a
corresponding M matrix of n dimensions, where the ith dimension is of length |Si|. The
entries of this matrix correspond to a sequence of n real numbers, representing the payoff
of each player as a consequence of playing the corresponding joint strategies.

3.2. Elo Rating

The Elo Rating system is a rating system devised by Arpad Elo [25]. It is a measure
of a participant’s performance, relative to others within a pool of players. The main idea
behind Elo rating is that, given two players A and B, the system assigns a numerical rating
to each of them (i.e., rA and rB, where rA, rB ∈ R+), such that the winning probability of A
against B (i.e. p(A > B)) can be approximated by:

p(A > B) ≈ 1
1 + exp(−k(rA − rB))

= σ
(
k(rA − rB)

)
, (2)

where k ∈ R+, σ(x) = 1/1 + exp(−x).

3.3. Non-Transitivity Quantification

We employed two methods to quantify the degree of non-transitivity; namely, by
counting strategic cycles of length three, and by measuring the size of Nash Clusters
obtained in Nash Clustering [5]. Both methods require formulating chess as an NF game
(i.e., using a single payoff matrix). Furthermore, Nash Clustering also requires the payoff
matrix to be zero-sum and skew-symmetric. Section 3.3.1 outlines the techniques employed
for construction of the payoff matrix.

3.3.1. Payoff Matrix Construction

The raw data for the experiments were game data stored in Portable Game Notation
(PGN) format [26], obtained from two sources. The primary source was the Lichess [9]
database, which contains games played from 2013 until 2021. The second data set was
sourced from the FICS [10] database, and we used games from 2019, as it contained the
highest number of games. Figure 2 shows an example of a chess game recorded in PGN
format. Altogether, we collected over one billion match data records from human players.
In order to process such a large amount of data, we introduced several novel procedures to
turn the match records into payoff matrices.
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The first processing step was to extract the required attributes from the data of every
game. These include the outcome of the game (to create the payoff matrix) and the Elo
ratings of both players (as a measure of transitive strength).

Figure 2. Lichess PGN format.

The second step concerned the number of games taken from the whole Lichess
database. As of 2021, the Lichess database contains a total of more than 2 billion games
hosted from 2013. Therefore, sampling was required. Games were sampled uniformly
across every month and year, where the number of games sampled every month was
120,000 as, for January of 2013, the database contains only a little more than 120,000 games.
To avoid the influence of having a different number of points from each month, the number
of games sampled per month was, thus, kept constant. In earlier years, sampling uniformly
across a month was trivial, as games from an entire month could be loaded into a single
data structure. However, for months in later years, the number of games in any given
month could reach as many as 10 million. Therefore, a two-stage sampling method was
required, as shown in Algorithm 1.

Algorithm 1: Two-Stage Uniform Sampling.

Inputs: Set of m objects, i.e., U = {U1, ..., Um}, number of objects to sample
d ∈ N1;

Divide U into k chunks H1, ..., Hk, each of size h (i.e., h× k = m, h, k ∈ N1), where
Hi ∩ Hj = ∅ ∀i 6= j, i, j ∈ [k],

⋃
j∈[k] Hj = U;

Initialize G = [];
for i ∈ [k] do

Sample d objects uniformly from Hi, forming t;
Append all elements in t to G;

end
Sample d objects uniformly from G, forming F;
Output F as the set of d objects sampled uniformly from U.

Algorithm 1 can be proven to sample uniformly from U; that is, the probability of any
object in U being sampled into F is d

m . The proof is given in Appendix C. Note that, for
FICS, the number of games in every month was relatively small, such that the database
could be sampled directly.

The third processing step concerned discretisation of the whole strategy space to create
a skew-symmetric payoff matrix representing the symmetric NF game. For this purpose,
a single game outcome should represent the two participants playing two matches, with
both participants playing black and white pieces once. We refer to such match-up as a
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two-way match-up. A single strategy, in the naïve sense, would thus be a combination
of one contingency plan (as defined in Definition 4) if the player plays the white pieces
with another one where the same player plays the black pieces. However, such a naïve
interpretation of strategy would result in a very large strategy space. Therefore, we
discretised the strategy space along the transitive dimension. As we used human games,
we utilised the Elo rating of the corresponding players to measure the transitive strength.
Therefore, given a pair of Elo ratings g1 and g2, the game where the white player is of rating
g1 and the black player is of rating g2, and then another game where the black player is of
rating g1 and the white player is of rating g2, corresponds to a single two-way match-up.
Discretisation was conducted by binning the Elo ratings such that, given two bins a and b,
any two-way match-up where one player’s rating falls into a and the other player’s rating
falls into b was treated as a two-way match-up between a and b. The resulting payoff matrix
of an NF game is, thus, the outcomes of all two-way match-ups between every possible
pair of bins. As two-way match-ups were considered, the resulting payoff matrices were
skew-symmetric.

However, when searching for the corresponding two-way match-up between two bins
of rating in the data set, there could either be multiple games or no games corresponding
to this match-up. Consider a match-up between one bin a = [a1, a2] and another bin
b = [b1, b2]. To fill in the corresponding entry of the matrix, a representative score for each
case is first calculated. Let rsa,b denote the representative score for the match-up where the
white player’s rating is within a and the black player’s rating is within b, and rsb,a denote
the other direction. For the sake of argument, consider finding rsa,b. As games are found
for bin a against b, scores must be expressed from the perspective of a. The convention used
in this paper is 1, 0, and −1 for a win, draw, and loss, respectively. This convention ensures
that the entries of the resulting payoff matrix are skew-symmetric. In the case where there
are multiple games where the white player’s rating falls in a and black player’s rating falls
in b, the representative score is then taken to be the average score from all these games.
On the other hand, if there are no such games, the representative score is taken to be the
expected score predicted from the Elo rating; that is,

Es[a > b] = 2p(a > b)− 1, (3)

where Es[a > b] is the expected score of bin a against bin b, and p(a > b) is computed using
Equation (2), by setting k as ln(10)

400 , ra = a1+a2
2 , and rb = b1+b2

2 . As this score is predicted
using the Elo rating, it is indifferent towards whether the player is playing black or white
pieces. After computing the representative score for both cases, the corresponding entry
in the payoff matrix for the two-way match-up between bin a and b is simply the average
of the representative score of both cases (i.e., rsa,b+rsb,a

2 ). The payoff matrix construction
procedure is summarised in Algorithm 2.

In Algorithm 2, D[W ∈ bi, B ∈ bj] collects all games in D where the white player’s
rating W is bL

i ≤ W ≤ bH
i and the black player’s rating B is bL

j ≤ B ≤ bH
j . Av(DW,B)

averages game scores from the perspective of the white player (i.e., the score is 1, 0, −1
if the white player wins, draws, or losses, respectively). Finally, in computing p(i > j)
following Equation (2), ri and rj in the equation follow from the ri and rj computed in the
previous line in the algorithm.
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Algorithm 2: Chess Payoff Matrix Construction.

Inputs: Data set of games D, set of m tuples B = {b1, ..., bm};
Initialise M as an m×m matrix of zeroes;
for i ∈ [m] do

for j ∈ [m] do
if i ≥ j then

continue;
else

DW,B = D[W ∈ bi, B ∈ bj];
if DW,B = ∅ then

ri, rj =
bL

i +bH
i

2 ,
bL

j +bH
j

2 ;
EW,B = 2p(i > j)− 1;

else
EW,B = Av(DW,B);

end
DB,W = D[B ∈ bi, W ∈ bj];
if DB,W = ∅ then

ri, rj =
bL

i +bH
i

2 ,
bL

j +bH
j

2 ;
EB,W = 2p(i > j)− 1;

else
EB,W = Av(DB,W);

end

Mi,j,Mj,i =
EW,B+EB,W

2 ,− EW,B+EB,W
2 ;

end
end

end
Output M as the payoff matrix;

3.3.2. Nash Clustering

Having constructed the payoff matrix in Section 3.3.1, we can now proceed with
non-transitivity quantification. The first method of quantifying non-transitivity is through
Nash Clustering [5]. Nash Clustering is derived from the layered game geometry, which
states that the strategy space of a game can be clustered into an ordered list of layers such
that any strategy in preceding layers is strictly better than any strategy in the succeeding
layers. A game where the strategy space can be clustered in this way is known as a layered
finite game of skill.

Definition 5. A two-player zero-sum symmetric game is defined as a k-layered finite game of skill
if the strategy space of each player Sg can be factored into k layers Li ∀i ∈ [k], where

⋃
i∈[k] Li = Sg,

Li ∩ Lj = ∅ ∀i 6= j, i, j ∈ [k], such that M1(s1, s2) > 0 ∀s1 ∈ Li, s2 ∈ Lj, ∀i, j ∈ [k], i < j and
∃z ∈ N1 satisfying ∀i < z, |Li| ≤ |Li+1|, ∀i ≥ z, |Li| ≥ |Li+1|.

A consequence of Definition 5 is that strategies in preceding layers would have a
higher win-rate than those in succeeding layers. For any strategy s ∈ Sg, the corresponding
win-rate TS(s) is

TS(s) =
1

|Sg| − 1 ∑
z∈Sg

I[M1(s, z) > 0]. (4)

Therefore, if we define the transitive strength of a layer to be the average win-rate of
the strategies within that layer, the transitive strength of the layers would be ordered in
descending order. Hence, intuitively, one can see the k-layered finite game of skill geometry
as separating the transitive and non-transitive components of the strategy space. The
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non-transitivity is contained within each layer, whereas the transitivity variation happens
across layers. It is, thus, intuitive to use the layer sizes as a measure of non-transitivity.

Furthermore, in Definition 5, the layer size increases monotonically up to a certain
layer, from which it then decreases monotonically. Thus, when the transitive strength of
each layer is plotted against its size, a two-dimensional spinning top structure would be
observed if the change in size is strictly monotonic and k > 2. It is also for this reason
that [5] named this geometry the spinning top geometry.

For every finite game, while there always exists k ≥ 1 for which the game is a k-layered
finite game of skill, a value of k > 1 does not always exist for any game; furthermore, the
layered geometry is not useful if k = 1. Therefore, a relaxation to the k-layered geometry
is required. In this alternative, a layer is only required to be “overall better” than the
succeeding layers; however, it is not necessary that every strategy in a given layer beats
every strategy in any succeeding layers. Such a layer structure was obtained through Nash
Clustering.

Let Nash(M|X), where X ⊂ Sg, denote the symmetric NE of a two-player zero-sum
symmetric game, in which both players are restricted to only the strategies in X, and M is
the payoff matrix from the perspective of player 1. Furthermore, let supp(Nash(M|X))
denote the set of pure strategies that are in support of the symmetric NE. Finally, let the set
notation A\B denote the set A excluding the elements that are in set B.

Definition 6. Nash Clustering of a finite two-player zero-sum symmetric game produces a set of
clusters C, defined as

C = {Cj : j ∈ N1, Cj 6= ∅}, where

C0 = ∅, Ci = supp
(

Nash
(
M
∣∣Sg\

i−1⋃
k=0

Ck
))

, ∀i ≥ 1. (5)

Furthermore, to ensure that the Nash Clustering procedure is unique, we use the
maximum entropy NE in Equation 1. Following Nash Clustering, the measure of non-
transitivity would, thus, be the size or number of strategies in each cluster.

We then applied the Relative Population Performance (RPP) [27] to determine whether
a layer or cluster is overall better than another cluster. Given two Nash clusters Ci and Cj,
Ci is overall better or wins against Cj if RPP(Ci, Cj) > 0. When using the RPP as a relative
cluster performance measure, the requirement that any given cluster is overall better than
any succeeding clusters proves to hold [5]. Following this, one can then use the fraction of
clusters beaten, or win-rate, defined in Equation 6, as the measure of transitive strength of
each cluster:

TS(Ca) =
1

|C| − 1 ∑
Ci∈C

I
[
RPP

(
Ca, Ci

)
> 0

]
, (6)

where I is the indicator function. We refer to the above win-rate as the RPP win-rate. Using
the RPP win-rate as the measure of transitive strength of a Nash cluster guarantees that the
transitive strength of Nash clusters are arranged in descending order.

Theorem 2. Let C be the Nash Clustering of a two-player zero-sum symmetric game. Then,
TS(Ci) > TS(Cj) ∀i < j, Ci, Cj ∈ C.

Proof. Let C be the Nash Clustering of a two-player zero-sum symmetric game. Let Ci, Cj ∈
C where i < j, i, j ∈ [|C|]. Let ni = ∑c∈C I[RPP(Ci, c) > 0] and nj = ∑c∈C I[RPP(Cj, c) > 0].
Using the fact that RPP(Ci, Cj) ≥ 0 ∀i ≤ j, Ci, Cj ∈ C, as proven in [5], ni = |C| − i and
nj = |C| − j. As i < j, therefore, nj < ni and since TS(Ci) = ni

|C|−1 and TS(Cj) =
nj
|C|−1 ,

then TS(Ci) > TS(Cj).

However, working with real data allowed us to use an alternative measure of transitive
strength. We used the average Elo rating in Equation (2) of the pure strategies inside each
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Nash cluster to measure the transitive strength of the cluster. Specifically, given the payoff
matrix from Section 3.3.1, each pure strategy corresponds to an Elo rating bin, and the
transitive strength of a Nash cluster is therefore taken to be the average Elo rating of the
bins inside that cluster. Let Ck ∈ C be a Nash cluster, ck be the integer indices of the pure
strategies in support of Ck, and B = {b1, ..., bm} be the bins used when constructing the
payoff matrix, where each bin bi has lower and upper bounds (bL

i , bH
i ), such that the bins

corresponding to Ck are {bj}j∈ck . The average Elo rating of the Nash cluster Ck is defined as

TSElo(Ck) =
1
|Ck| ∑

j∈ck

bL
j + bH

j

2
. (7)

Given the average Elo rating against the cluster size for every Nash cluster, the final
step would be to fit a curve to illustrate the spinning top geometry. For this purpose, we
fitted an affine-transformed skewed normal distribution by minimising the Mean Squared
Error (MSE). This completed the procedure of Nash Clustering using the average Elo rating
as the measure of transitive strength.

In addition to using the average Elo rating, we also investigated the use of win-rates as
a measure of transitive strength, as defined in Equation (6). However, instead of using the
RPP to define the relative performance between clusters, we used a more efficient metric
that achieves the same result when applied to Nash clusters. We refer to this metric as the
Nash Population Performance (NPP).

Definition 7. Let C = {C1, ..., C|C|} be the Nash Clustering of a two-player zero-sum symmetric

game with payoff matrix M. NPP(Ci, Cj) = pi
>Mpj, where pk = Nash(M|⋃|C|r=k Cr for

k ∈ [|C|] and Ci, Cj ∈ C.

Using NPP also satisfies the requirement that any cluster is overall better than the
succeeding clusters.

Theorem 3. Let C be the Nash Clustering of a two-player zero-sum symmetric game. Then,
NPP(Ci, Cj) ≥ 0 ∀i ≤ j, Ci, Cj ∈ C, and NPP(Ci, Cj) ≤ 0 ∀i > j, Ci, Cj ∈ C.

The proof of Theorem 3 is given in Appendix C.
Theorem 3 suggests that applying the NPP to compute Equation (6) instead of the RPP

would result in an identical win-rate for any Nash cluster, and the descending win-rate
guarantee is preserved. Using the NPP is more efficient as, in Definition 7, pk for any
Nash cluster is the corresponding NE solved during Nash Clustering to obtain that cluster;
however, this means that the NPP is more suitable as a relative performance measure of
Nash clusters, but less so for general population of strategies. For the latter, the RPP would
be more suitable.

3.3.3. Rock–Paper–Scissor Cycles

Intuitively, a possible second method to quantify non-transitivity is to measure the
length of the longest cycle in the strategy space, as this stems directly from the definition
of non-transitivity. A cycle is defined as the sequence of strategies that starts and ends
with the same strategy, where any strategy beats the immediate subsequent strategy in
the sequence. However, calculating the length of the longest cycle in a directed graph is
well-known to be NP-hard [28]. Therefore, we used the number of cycles of length three
(i.e., rock–paper–scissor or RPS cycles) passing through every pure strategy as a proxy to
quantify non-transitivity.

To obtain the number of RPS cycles passing through each pure strategy, an adjacency
matrix is first formed from the payoff matrix. Letting the payoff matrix from Section 3.3.1

be M, the adjacency matrix A can be written as
{
Ai,j

}|Sg |
i,j=1, where Ai,j = 1 if Mi,j > 0,

and 0 otherwise.
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Theorem 4. For an adjacency matrix A where Ai,j = 1 if there exists a directed path from node
ni to node nj, the number of paths of length k that start from node ni and end on node nj is given by
(Ak)i,j, where the length is defined as the number of edges.

The proof of Theorem 4 can be found in Appendix C. By Theorem 4, the number of
RPS cycles passing through a strategy can thus be found by taking the diagonal of A3.
Note that this does not apply to cycles with length of more than three, as the diagonal
element of An would include cycles with repeated nodes.

Finally, the measures of transitive strength used in this method are identical to those
applied in Section 3.3.2, but applied to single strategies instead of clusters. This, therefore,
completes the quantification of non-transitivity by counting RPS Cycles.

3.4. Relationships between Existing Rating Systems

As mentioned in Section 2, there are various chess player rating systems throughout
the world, each of which is only valid for the pool of players over which the system
is defined. As we used game data from Lichess and FICS to perform non-transitivity
quantification, the results are therefore not directly applicable to different rating systems,
such as USCF and FIDE. An investigation into the mappings between these rating systems
is, thus, required.

We conducted a short experiment to obtain mappings between the rating systems
of Lichess, USCF, and FIDE. The data set for this experiment was obtained from Chess-
Goals [29], which consisted of player ratings from four sites: Chess.com [30], FIDE, USCF,
and Lichess.

To investigate the mappings, we created three plots representing the mappings be-
tween pairs of rating systems: Lichess to USCF, Lichess to FIDE, and USCF to FIDE. A
linear model was then fitted for each plot by MSE minimisation.

3.5. Implications of Non-Transitivity on Learning

Based on the discovered geometry, we also investigated the impact of non-transitivity
on multi-agent reinforcement learning (MARL) [31]. Specifically, we designed experi-
ments to verify the influence of non-transitivity on a particular type of MARL algorithm:
Population-based learning [32–35]. This is a technique that underpins much of the existing
empirical success in developing game AIs [36,37]. In fact, for simulated strategies [5], it
has been found that, if the spinning top geometry exists in a strategy space, then the larger
the non-transitivity of the game, in terms of layer size (for a k-layered geometry) or Nash
cluster size (for Nash Clustering), the larger the population size required for methods such
as fixed-memory Fictitious Play to converge. We attempted to verify whether the above
conclusion still holds when real-world data are used instead. Furthermore, observing
the above convergence trend with respect to the starting population size provides even
stronger evidence for the existence of the spinning top geometry in the strategy space of
real-world chess.

As a proxy for a population-based training method, fixed-memory Fictitious Play
starts with a population (or set) of pure strategies P0, of fixed size k. The starting pure
strategies in P0 are chosen to be the k weakest pure strategies, based on the win-rate against
other pure strategies, as shown in Equation (4). At every iteration t of the fictitious play, the
oldest pure strategy in the population Pt−1 is replaced with a pure strategy that is not in
Pt−1. The replacement strategy is required to beat all the strategies in the current population
on average; that is, suppose that π is the replacement strategy at iteration t. Then, it is
required that ∑s∈Pt−1 M(π, s) > 0. If there are multiple strategies satisfying this condition,
then the selected strategy is the one with the lowest win-rate (i.e., π = arg mins∈Sa

TS(s),
where Sa = {s ∈ Sg\Pt−1, ∑r∈Pt−1 M(s, r) > 0}).

To measure the performance at every iteration of the fictitious play, we used the
expected average payoff of the population at that iteration. Suppose that, at any iteration t,
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the probability allocation over the population Pt, which is of size k, is pt. Given the payoff
matrix M of size m×m, the performance of the population Pt, WR(Pt), is written as:

WR(Pt) = ∑
i∈[k]

pt
i

m ∑
j∈[m]

M(Pt
i , Sj), (8)

where Sj is the pure strategy corresponding to the jth column of M. The complete fixed-
memory Fictitious Play is summarised in Algorithm 3.

Algorithm 3: Fixed-Memory Fictitious Play.
Inputs: m×m payoff matrix M, k ∈ N1 representing the fixed population size,

n ∈ N1 representing the number of rounds of fictitious play;
Initialise w = [], tl = [], it = 0;
for i ∈ [m] do

v = 0;
for j ∈ [m] do

if M[i, j] > 0 then
v← vs. + 1;

end
v← v

m−1 ; Append v to tl ;
end
ids = argsort(tl); pop_id = ids[: k];
wr = compute win rate(pop_id,M); Append wr to w; it← it + 1;
while it < n do

tk = [];
for i ∈ [m] do

if i /∈ pop_id then
v = 0;
for j ∈ [m] do

v← vs. +M[i, j];
end
if v > 0 then

Append i to tk;
end
ws = argsort(tl [tk])[0]; π = tk[ws];
Remove 1st element of pop_id and append π to pop_id;
wr = compute win rate(pop_id,M); Append wr to w; it← it + 1;

end
Output w as the list of training performance at every time-step.

In Algorithm 3, for any list a and b where b contains integers, the notation a[b] means
taking all elements in a at index positions denoted by the elements in b, in the order that
the integers are arranged in b. Furthermore, argsort(a) returns a list of indices d, such that
a[d] is a sorted in ascending order. Additionally, “compute win rate” in Algorithm 3 is the
function described in Algorithm 4. In this function, for any m×m matrix M, the notation
Mb means taking all rows and columns of M only at positions indicated by the elements in
b. Finally, size(a) returns the number of elements in the list a.

Algorithm 4 is used to compute the training performance of a population of k strategies
at every round of fictitious play, following Equation (8). The convergence of fixed-memory
Fictitious Play in Algorithm 3 is not dependent on the metric used to measure performance
at every round, as convergence of the fictitious play means there are no more valid re-
placement strategies (i.e., Sa = ∅). Hence, we chose to use Algorithm 4 to measure the
performance at every step, due to its simplicity.
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Algorithm 4: Compute Win Rate.
Inputs: m×m payoff matrix M and pop_id being a list of k integers representing
indices corresponding to the strategies in the population;

Initialise res = 0;
k = size(pop_id);
p = [];
for i ∈ [k] do

Append 1
k to p;

end
for i ∈ [k] do

v = 0;
for j ∈ [m] do

id = pop_id[i];
v← vs. +M[id, j];

end
v← v

m ;
res← res + vs.× p[i];

end
Output res as the computed win-rate of the population of strategies.

3.6. Link to Human Skill Progression

In Section 3.5, we hypothesised that non-transitivity has implications on the perfor-
mance improvement of AI agents during training. On the other hand, one of the most
common issue faced by human chess players is the phenomenon of becoming stuck at a cer-
tain Elo rating [38–40]. Having performed experiments using real data, we also investigated
whether non-transitivity has implications for a human player’s skill or rating progression.
In particular, we investigated whether a link exists between the non-transitivity of the
strategy space of real-world chess to the phenomenon of players getting stuck at certain
Elo ratings. This was conducted by comparing the histogram of player ratings every year
using the data from Section 3.3.1, with the corresponding Nash Clustering plot.

3.7. Algorithm Hyperparameter Considerations

Algorithms 2 and 3, introduced in Sections 3.3.1 and 3.5, respectively, contain hyper-
parameters, and the choice of values for these hyperparameters merits further discussion.

In Algorithm 2, the hyperparameter is the size of the payoff matrix m. The time com-
plexity of Algorithm 2 with respect to the payoff matrix dimension m is O(m2). Therefore,
having a large payoff matrix would severely slow down the payoff matrix construction.
However, using a small payoff matrix would result in more data being unused. Algorithm 2
constructs a payoff matrix that is skew-symmetric and, so, the diagonal of the payoff ma-
trix is be 0. As m gets smaller, the bin widths get wider and, thus, a wider range of Elo
ratings are absorbed into a single bin. As a result, the non-diagonal elements of the matrix
would correspond to two-way match-ups between two players with a more significant
difference in Elo ratings, which is less likely to be present in the actual data, as players are
typically matched with other players having similar Elo ratings. Therefore, a majority of
the non-diagonal elements of the matrix will be filled using the Elo formula in Equation (3),
instead of real data, which effectively turns the game into a purely transitive Elo game [5].
This leads to us not being able to observe the spinning top geometry in the strategy space
occupied by real-world strategies. In our experiments, we used an m of 1500, as this was
sufficiently large to demonstrate the existence of the spinning top geometry, while keeping
the payoff matrix construction reasonably fast.

In Algorithm 3, the hyperparameters are the population size k and the number of
rounds n. The time complexity of Algorithm 3 is more affected by the number of rounds
n, on the order of O(n). While it grows slower than the time complexity of Algorithm 2
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with respect to m, it is still desirable to keep n relatively small, as fixed-memory Fictitious
Play would have to be carried out for a number of population sizes. However, n should
be large enough to demonstrate the convergence behaviour of the training process, if any.
From our experiments, we found that 2000 rounds were sufficient for this purpose. The
choice of population sizes is elaborated more in Section 4.3.

4. Results and Discussions
4.1. Non-Transitivity Quantification

Following Sections 3.3.2 and 3.3.3, non-transitivity quantification was carried out on
Lichess game data from 2013 to 2020, and FICS 2019 data, using the average Elo rating as
a measure of transitive strength, and the Nash Cluster size and number of RPS cycles as
measures of non-transitivity. The results are as shown in Figure 3.
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Figure 3. Nash Clustering (left of each plot) and RPS Cycles (right of each plot) on Lichess 2019 (a),
Lichess 2020 (b), and FICS 2019 (c). See Figure A1 in Appendix A for the full version of the results,
which include Lichess 2013–2020 and FICS 2019.

Figures 3 and A1 illustrate that the spinning top geometry was observed in both Nash
Clustering and RPS Cycles plots, for all of the considered years. Furthermore, both the
Nash cluster size and number of RPS cycles peaked at a similar Elo rating range (1300–1700)
for all of the years. This provides comprehensive evidence that the strategies adopted in
real-world games do not vary throughout the years or from one online platform to another,
and that the non-transitivity of real-world strategies is highest in the Elo rating range of
1300–1700.

Furthermore, as stated in Sections 3.3.2 and 3.3.3, we also performed the above non-
transitivity quantifications using win-rates as a measure of transitive strength, as it provides
stronger evidence for the existence of the spinning top geometry should this geometry
persist. The results are shown in Figure 4.
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Figure 4. Nash Clustering (left of each plot) and RPS Cycles (right of each plot) on Lichess 2019 (a),
Lichess 2020 (b), and FICS 2019 (c) with win-rate as a measure of transitive strength. See Figure A2 in
Appendix B for the full version of the results, which include Lichess 2013–2020 and FICS 2019.

Despite using a different measure of transitive strength in Figures 4 and A2, the results
show that the spinning top geometry still persisted for all the years. Not only does this
provide stronger evidence for the existence of a spinning top geometry within the real-
world strategy space of chess, it also indicates that measuring non-transitivity using both
Nash Clustering and RPS Cycles is agnostic towards the measure of transitive strength
used.
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4.2. Relationships between Existing Rating Systems

Following Section 3.4, we fitted three Linear Regression models representing the
mappings between three rating systems discussed in that section; namely, Lichess, USCF,
and FIDE rating systems. The results are shown in Figure 5.
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Figure 5. Chess Rating Mappings between Lichess, USCF, and FIDE.

Figure 5 shows that the relationships between Lichess, USCF, and FIDE ratings were
largely linear and monotonically increasing, and that the linear models fit the data suffi-
ciently well. As the mappings between the rating systems were monotonically increasing,
the spinning top geometry observed in Figure 3 is expected to still hold when mapped
to USCF or FIDE rating systems. This is as the relative ordering of the Nash clusters or
pure strategies based on Elo rating will be preserved. Therefore, our results are directly
applicable to different rating systems.

4.3. Implications of Non-Transitivity on Learning

Following Section 3.5, we conducted fixed-memory Fictitious Play, as described in
Algorithm 3, using payoff matrices constructed following Section 3.3.1. Fictitious Play was
carried out with population sizes of 1, 25, 50, 75, 100, 150, 200, 250, and 300, in order to
demonstrate the effect of non-transitivity, in terms of Nash Cluster sizes, on the minimum
population size needed for training to converge. These values were chosen by comparing
the games in [5] with similar Nash Cluster sizes. Figures 3 and A1 show that the largest
Nash cluster sizes were in the range of 25 to slightly above 50. In [5], the game Hex 3× 3 [41]
had similar Nash cluster sizes, with the largest size being slightly less than 50. For this
game, [5] used population sizes of 1, 25, 50, 75, 100, 150, 200, 250, and 300; thus, we used
these values in our experiments as well. The results are shown in Figure 6.
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Figure 6. (Left of each plot) Nash Clustering using the RPP win-rate as a measure of transitive
strength on Lichess 2019 (a), 2020 (b), and FICS 2019 (c). (Right of each plot) Fixed-Memory Fictitious
Play on Lichess 2019 (a), Lichess 2020 (b), and FICS 2019 (c). See Figure A2 in Appendix B and Figure
A1 in Appendix A for full versions of the results for Nash Clustering with the RPP win-rate and
fixed-memory Fictitious Play, respectively.

Figures 6 and A1 show that the training process converged for all cases, provided that
the population size was 50 or above. This is because the Nash cluster sizes are never much
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larger than 50 and, therefore, a population size of 50 ensures good coverage of the Nash
clusters at any transitive strength. Such convergence behaviour also provides additional
evidence that the spinning top geometry is present in the strategy space of real-world chess.

It should be noted, however, that the minimum population size needed for training to
converge does not always correspond to the largest Nash cluster size, for which there are
two contributing factors. The first factor is that covering a full Nash cluster (i.e., having
a full Nash cluster in the population at some iteration) only guarantees the replacement
strategy at that iteration to be from a cluster of greater transitive strength than the covered
cluster. There are no guarantees that this causes subsequent iterations to cover Nash clusters
of increasing transitive strength. The second factor is that the convergence guarantee is
with respect to the k-layered game of skill geometry defined in Definition 5. As Nash
Clustering is a relaxation of this geometry, covering a full Nash cluster does not guarantee
that the minimal population size requirement will be satisfied.

4.4. Link to Human Skill Progression

Following Section 3.6, we plotted the histogram of player ratings alongside the cor-
responding Nash Clustering plots for comparison. The results are shown in Figure 7.
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Figure 7. (Left of each plot) Histogram of Player Elo Ratings and (Right of each plot) Nash Clustering
on Lichess 2019 (a), Lichess 2020 (b), and FICS 2019 (c). See Figure A1 in Appendix A for the full
version of the results.

Figures 7 and A1 shows that the peaks of the histograms and the bulk of the data
consistently fell in the 1300–1700 Elo rating range, which matches with the range of Elo
ratings in which players tend to get stuck, as stated in [38–40], suggesting that players tend
to get stuck in this range. Furthermore, the peaks of the histograms coincided with the
peak of the fitted skewed normal curve on the Nash Clustering plots. This implies that high
non-transitivity in the 1300 to 1700 rating range is one potential cause of players getting
stuck in this range.

A plausible explanation is that, in the 1300–1700 Elo rating range, there exist a lot
of RPS cycles (as can be seen from Figure 3), which means there exist a large number of
counter-strategies. Therefore, to improve from this Elo rating range, players need to learn
how to win against many strategies; for example, by dedicating more effort toward learning
diverse opening tactics. Otherwise, their play-style may be at risk of being countered by
some strategies at that level. This is in contrast to ratings where non-transitivity is low.
With a lower number of counter-strategies, it is arguably easier to improve, as there are
relatively fewer strategies to adapt towards.

5. Conclusions and Future Work

The goal of this paper was to measure the non-transitivity of chess games and investi-
gate the potential implications for training effective AI agents, as well as those for human
skill progression. Our work is novel in the sense that we, for the first time, profiled the
geometry of the strategy space based on real-world data from human players. This, in turn,
prompted the discovery of the spinning top geometry, which has only been previously
observed for AI-generated strategies; more importantly, we uncovered the relationship
between the degree of non-transitivity and the progression of human skill in playing chess.
Additionally, the discovered relationship also indicates that, in order to overcome the
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non-transitivity in the strategy space, it is imperative to maintain large population sizes
when applying population-based methods in training AIs. Throughout our analysis, we
managed to tackle several practical challenges. For example, despite the variation in Elo
rating systems for chess, we introduced effective mappings between those rating systems,
which enables direct translation of our findings across different rating systems.

Finally, there are several avenues for possible improvements, which we leave for
future work:

• In Section 3.3.1, missing data between match-ups of bins are filled using Elo formulas;
that is, Equations (2) and (3). However, the Lichess ratings use the Glicko-2 system [20],
which has a slightly different win probability formula that also considers the rating
deviation and volatility of the rating. Therefore, a possible improvement would be to
additionally collect the rating deviation and volatility of the players in every game,
and apply the Glicko-2 predictive formula to compute the win probability, instead of
Equation (2).

• Non-transitivity analysis could also be carried out using other online chess platforms,
such as Chess.com [30], in order to provide more comprehensive evidence on the spin-
ning top geometry of the real-world strategy space. Furthermore, the non-transitivity
analysis could also be carried out using real-world data on other, more complex,
zero-sum games, such as Go, DOTA and StarCraft.

• Other links between non-transitivity and human progression can be investigated. One
possible method would be to monitor player rating progression from the start of their
progress to when they achieve a sufficiently high rating in a chess platform, such as
Lichess. Their rating progression can then be compared to the non-transitivity at that
rating and in that year. However, player rating progression is typically not available
on online chess platforms and, thus, would require monitoring player progress over
an extended period of time.
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Appendix A. Additional Results
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Figure A1. Histogram of player Elo ratings (first of each plot), Nash Clustering (second of each plot),
RPS Cycles (third of each plot), and fixed-memory Fictitious Play (fourth of each plot) on Lichess
2013–2020 and FICS 2019 data.
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Figure A2. Measurements of Nash Clustering (left of each plot) and RPS Cycles (right of each plot)
using win-rate as measure of transitive strength on Lichess 2013–2020 and FICS 2019 data.
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Appendix C. Theorem Proofs

Theorem A1. With Algorithm 1, the probability of any object in M being sampled into F is d
m .

Proof. For any object in U to end up in F, they must first get picked into G. As Hi ∩Hj = ∅

∀i, j ∈ [k], i 6= j, the probability that any object is sampled into G is
h−1Cd−1

hCd
= d

h . Then,

given that they are in G, they must get sampled into F. The probability that this happens

is
d×k−1Cd−1

d×kCd
= 1

k . Hence, the probability that any object from U gets sampled into F is
d

h×k = d
m .

Theorem A2. Let C be the Nash Clustering of a two-player zero-sum symmetric game. Then,
NPP(Ci, Cj) ≥ 0 ∀i ≤ j, Ci, Cj ∈ C and NPP(Ci, Cj) ≤ 0 ∀i > j, Ci, Cj ∈ C.

Proof. Let C be the Nash Clustering of a two-player zero-sum symmetric game with a
payoff matrix of M and strategy space Sg for each of the two players. For any k ∈ [|C|],
let pk be the NE solved to obtain the kth cluster; that is, pk = Nash(M|⋃|C|i=k Ci), where
pk ∈ ∆|C|. As pk is restricted to exclude

⋃k−1
i=1 Ci, therefore, pk would be all zeroes at the

positions corresponding to all pure strategies s ∈ ⋃k−1
i=1 Ci. Let Xk =

⋃k−1
i=1 Ci and M−Xk be

the payoff matrix of the game, but excluding the rows and columns that corresponds to the
pure strategies in Xk. Additionally, let pk

Xk denote the vector pk but removing all entries
at positions corresponding to the pure strategies in Xk. Hence, M−Xk ∈ R|Sg\Xk |×|Sg\Xk |

and pk
Xk ∈ ∆|Sg\Xk |. Furthermore, it is also true that p>Mp = (pXk )>M−Xk pXk for any

p ∈ ∆|Sg |, provided that the entries of p at positions corresponding to pure strategies in Xk
are zeroes.

By definition of NE in [42], we have that (pk
Xk )>M−Xk pk

Xk ≤ (pk
Xk )>M−Xk p′ ∀p′ ∈

∆|Sg\Xk | and (pk
Xk )>M−Xk pk

Xk ≥ p′>M−Xk pk
Xk ∀p′ ∈ ∆|Sg\Xk |. Now, consider two

clusters Ci and Cj, where i < j and Ci, Cj ∈ C. By the first definition of NE earlier,
(pi

Xi )>M−Xi pi
Xi ≤ (pi

Xi )>M−Xi p
′ ∀p′ ∈ ∆|Sg\Xi |, which implies (pi

Xi )>M−Xi pi
Xi ≤

(pi
Xi )>M−Xi pj

Xi and, thus, equivalently pi
>Mpi ≤ pi

>Mpj. Then, by the prop-
erties of skew-symmetric matrices, pi

>Mpi = 0 and, hence, pi
>Mpj ≥ 0; that is,

NPP(Ci, Cj) ≥ 0. Furthermore, by the second definition of NE earlier, (pi
Xi )>M−Xi pi

Xi ≥
p′>M−Xi pi

Xi ∀p′ ∈ ∆|Sg\Xi |, which implies (pi
Xi )>M−Xi pi

Xi ≥ (pj
Xi )>M−Xi pi

Xi and,

thus, equivalently pi
>Mpi ≥ pj

>Mpi. Finally, using the property of skew-symmetric
matrices again, pj

TMpi ≤ 0; that is, NPP(Cj, Ci) ≤ 0.

Theorem A3. For an adjacency matrix A where Ai,j = 1, if there exists a directed path from node
ni to node nj, the number of paths of length k that starts from node ni and ends on node nj is given
by (Ak)i,j, where the length is defined as the number of edges in that path.

Proof. By induction, the base case is when k = 1. A path from node ni to node nj of length
1 is simply a direct edge connecting ni to nj. The presence of such an edge is indicated
by Ai,j, which follows from the definition of adjacency matrix, thereby proving the base
case. The inductive step is then to prove that if (Ak)i,j is the number of paths of length k
from node ni to nj for some k ∈ N1, then (Ak+1)i,j is the number of paths of length k + 1
from node ni to nj. This follows from matrix multiplication. Let R = Ak+1 = AkA. Then,

Ri,j = ∑
|Sg |
r=1 A

k
i,rAr,j. The inner multiplicative term of the sum will only be non-zero if

both Ak
i,r and Ar,j are non-zero, indicating that there exists a path of length k from node

ni to some node nr and, then, a direct edge from that node nr to nj. This forms a path of
length k + 1 from node ni to nj. Therefore, Ri,j counts the number of paths of length k + 1
from node ni to nj, proving the inductive hypothesis.
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