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Abstract: Large-scale automatic speech recognition model has achieved impressive performance.
However, huge computational resources and massive amount of data are required to train an ASR
model. Knowledge distillation is a prevalent model compression method which transfers the knowl-
edge from large model to small model. To improve the efficiency of knowledge distillation for
end-to-end speech recognition especially in the low-resource setting, a Mixup-based Knowledge
Distillation (MKD) method is proposed which combines Mixup, a data-agnostic data augmentation
method, with softmax-level knowledge distillation. A loss-level mixture is presented to address
the problem caused by the non-linearity of label in the KL-divergence when adopting Mixup to the
teacher–student framework. It is mathematically shown that optimizing the mixture of loss function
is equivalent to optimize an upper bound of the original knowledge distillation loss. The proposed
MKD takes the advantage of Mixup and brings robustness to the model even with a small amount
of training data. The experiments on Aishell-1 show that MKD obtains a 15.6% and 3.3% relative
improvement on two student models with different parameter scales compared with the existing
methods. Experiments on data efficiency demonstrate MKD achieves similar results with only half of
the original dataset.

Keywords: end-to-end speech recognition; knowledge distillation; model compression; data effi-
ciency; mixup

1. Introduction

Deep neural networks have been successfully applied to the field of speech recognition.
In recent years, Transformer-based speech recognition models [1] have gradually become
mainstream. The performance of speech recognition model based on Transformer has been
greatly improved compared with previous CNNs [2] and RNNs [3], but its computational
complexity has increased significantly either. A high-precision speech recognition model
usually has a parameter scale of tens of millions or even billions, which requires huge
computational resources and storage space. For some devices with low computing power,
such as: mobile devices, edge computing devices, etc., it is impossible to deploy large
models. Therefore, model compression is needed to reduce the arithmetic requirements of
the models for the deployed devices.

Knowledge Distillation (KD) [4] is a popular model compression method which trans-
fers the knowledge of teacher model to student model. The purpose of KD is making the
student model mimic the behavior of the teacher model through soft labels. The soft labels
not only contain correct category distribution, but also reflect the relationship between
similar categories which improves the efficiency of training. Previous studies [5,6] have
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focused on the mode of distillation. However, much fewer studies have optimized the
distillation efficiency from the perspective of data. In fact, when the size of training dataset
is small, the generalization of student models obtained by distillation will not be strong
enough [7]. The distribution of dataset has inability to fit the true distribution correctly,
which can easily lead to overfitting problems.

Data augmentation is a method to prevent model overfitting by adding perturba-
tions to the original data, which encourages the model to learn more robust features.
With the introduction of audio data augmentation methods such as Specaugment [8] and
Mixspeech [9], audio data augmentation has become the simplest and the most efficient
method to improve speech recognition accuracy. Among these data augmentation methods,
Mixup [10] is the most suitable for few-shot learning because of its ability to simulate real
distribution. The advantage of data agnosticism becomes another reason to choose Mixup
as the candidate.

To improve the data efficiency of knowledge distillation, a Mixup-based Knowledge
Distillation framework named MKD is proposed for end-to-end speech recognition by
combining Mixup with knowledge distillation. Frame-level fusion of soft label is employed
when applying Mixup to knowledge distillation. For speech recognition, the weighted
fusion of soft label sequence cannot be performed directly because the label sequence is
discrete. The fusion at the loss function level becomes an alternative choice. Further, a new
loss function is proposed to apply Mixup to Kullback–Leibler (KL) divergence. It is proved
mathematically that optimizing the new loss function is equivalent to optimizing the upper
bound of the original loss function. It is experimentally demonstrated that on Aishell-1 [11].
Two student models with different parameter scale are trained with the proposed MKD.
The model with half the size of teacher model achieves a 15.6% improvement, and another
student model with fewer parameters achieves a 3.3% improvement compared to the
softmax-level knowledge distillation method.

To best of our knowledge, our approach is the first attempt to combine Mixup approach
with knowledge distillation for ASR. The contributions of this paper can be summarized in
the following three points.

• A knowledge distillation framework named MKD is proposed by combining Mixup
with softmax-level knowledge distillation for end-to-end speech recognition.

• A mixed loss function LMKD is proposed based on KL-divergence, and it is theoreti-
cally shown that optimizing LMKD is equivalent to optimize an upper bound of the
original knowledge distillation loss.

• Experimentally, our proposed MKD beats the original method on Aishell-1. The model
with half the size of teacher model achieves a 15.6% improvement, and another student
model with fewer parameters achieves a 3.3% improvement. Experiments of data
efficiency show the advantages of MKD under a limited-data setting.

2. Related Work

Deep neural networks have achieved great success in many fields such as [12,13],
especially in automatic speech recognition [14]. End-to-end speech recognition has become
the mainstream method for training ASR models. The size of end-to-end speech recogni-
tion models is huge not matter which framework is adopted from CNN [15], RNN [16] or
Transformer [17]. However, it requires heavy computation for both training and testing
when the model architecture gets deeper. To mitigate this computational burden, there
has been a long list of research on model compression. Knowledge Distillation [18] has
been demonstrated as an efficient model compression method, which aims at transferring
knowledge from a well-trained teacher model to a small student model. With this addi-
tional transfer procedure, the student model can perform better compared to naive training.
Transferring class probability and transferring the representation of the hidden layer are
two typical training strategies proposed from previous research.

Hinton [4] first introduced the concept of knowledge distillation by minimising the
KL-divergence of the softmax outputs of teacher and student model. Generally, the output
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layer of a classification model adopts softmax as the activation function. The output of
softmax is a probability distribution over the label classes, and the sum of the outputs
equals 1. The softmax prediction of teacher model has a nonzero probability value for
each target class. This soft label is normally considered more informative than the one-hot
encoded ground truth. The KD technique mentioned above only considers the output of
the teacher model.

In the case of transferring the hidden representation, some KD methods [19,20] pro-
posed transferring the representation-level information of the hidden layers which mini-
mizes the mean squared error between the representation vector. For speech recognition
tasks, Li [21] applied the teacher–student framework to achieve speech knowledge distil-
lation for the first time. Geras [22] investigated heterogeneous knowledge distillation by
refining knowledge from RNN-based models into CNN-based models, and Kurata [23]
optimised a CTC-based [24] heterogeneous knowledge distillation method. Takashima [25]
proposed sequence-level knowledge distillation in the CTC framework using the N-best
hypotheses of teacher model. Wong [26,27] migrated sequence-level knowledge into a
DNN-HMM framework, and Kim [28] optimized sequence-level distillation based on the
probability of the output sequences.

Data augmentation is a popular tool for training speech recognition models, especially
for low-source ASR [29]. The purpose of data augmentation is to constrain the overfitting
problem by constructing additional new samples. The traditional data augmentation meth-
ods for speech recognition modify the raw audio. Kanda [30] investigated three distortion
methods: vocal tract length distortion, speech rate distortion, and frequency-axis random
distortion. Ko [31] changed the speed of the audio signal, producing three versions of the
original signal with speed factors of 0.9, 1.0 and 1.1. Jaitly [32] imposed a random linear
warping along the frequency dimension. Data augmentation schemes [33] was explored
for low resource languages. These methods obtain a high increment of accuracy and have
low implementation costs for ASR models. SpecAugment untied the model structure and
the masked strategy. It regards the masked method as a means of data augmentation and
performs random masking on the log-Mel spectrogram of the input speech. A random
permuted method SpecSwap was presented to construct new samples. These noise-based
methods effectively improve the robustness of the model.

More recently, some researchers focused on automatic data augmentation. AutoAug-
ment [34] was proposed to learn a constant policy under a meta-learning setting for many
image recognition tasks. Adversarial AutoAugment [35] improved AutoAugment by
searching a policy resulting in a higher training loss. Lim [36] improved the policy search
time by learning an efficient search strategy depend on density matching. A simplified and
lossless automatic policy search method was mentioned in [37]. Kim [38] proposed Local
Augment, which highly alters the local bias property. Lin [39] introduced a set of common
geometric operations into training and testing images to improve the efficiency of data
augmentation. In speech recognition, Park [40] modified the SpecAugment to adapts the
length of the utterance. Three on-the-fly data augmentation methods [41] were proposed
for sequence-to-sequence speech recognition. A sample-adaptive policy that perturbs the
training samples based on the current loss value of the sample was investigated in [42].

3. Methodology and Aim

This section introduces the Mixup-based knowledge distillation, with Speech-Transform
-er as the baseline. Firstly, the Transformer-based ASR model is introduced. Then, the
detail of how to integrate Mixup into ASR model is explained. Finally the Mixup-based
knowledge distillation method is proposed.

3.1. Speech-Transformer

In this work, Speech-Transformer is chosen as the baseline for ModelT and ModelS.
Speech-Transformer is a Transformer-based neural network for speech recognition which
consists of encoder E and decoder D. The spectrogram X serves as the input of E. Each X
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is a two-dimensional matrix whose size is F ∗ T, where F is the number of frequency and T
denotes the number of frame. E encodes the spectrogram by self-attention mechanism. The
result of E is a two-dimensional embedding e ∈ Rd∗T . D decodes the embedding sequence
e based on the corresponding label sequence Y. Finally, the decoder output goes through
a Softmax classifier to generate the probability distribution of each character. The whole
process can be summarized as:

E : X → f1 → f2 → · · · → fn → e

D : (e, Y)→ g1 → g2 → · · · → gm → ed

C : ed → So f tmax → y

(1)

where f1, f2, · · · , fn represent the hidden layers in encoder E. g1, g2, · · · , gm are the hidden
layers of decoder D. y denotes the one-hot encoding of a character in the whole sequence
Y. Finally, each y is grouped as the output sequence Ŷ.

3.2. Mixup in Speech-Transformer

A robust end-to-end speech recognition model is insensitive to noise. Transformer has
become the most popular baseline model for sequence-to-sequence problems due to its
ability of modeling long-term dependency, but the complexity of Transformer-based model
is extremely high. The dependence on data volume of Transformer is much higher than that
of recurrent neural network. Thus, overfitting becomes a severe problem for Transformer-
based methods in a limited-data setting. Data augmentation is an efficient tool to improve
the robustness of neural networks, especially for low-resource speech recognition.

Mixup is a prevailing data augmentation method for supervised learning tasks. It
trains a model on a linear combination of pairs of inputs and their targets to make the
model more robust to adversarial samples. In this setting, the model can achieve more
accurate rate under mixed noise. Mixup is computed as follows:

Xmix = λ · Xi + (1− λ) · Xj

Ymix = λ ·Yi + (1− λ) ·Yj
(2)

where Xi,Xj are the input vectors, and Yi,Yj are the corresponding targets. Xi and Xj are
randomly sampled from dataset D = < X, Y >. λ is sampled by a Beta distribution B(α, α)
with α ∈ (0, ∞). The generated pair < Xmix, Ymix > is added into training dataset D.

For classification problems, Mixup can effectively improve the robustness of the model
by smoothing loss landscapes. However, Mixup cannot be directly applied in speech
recognition because the length of audio differs from each other which makes it difficult
to calculate by Equation (2). Another reason is that the target sequence of each audio is
discrete, and the linear combination of discrete data is meaningless. These two issues need
to be addressed for most sequence-to-sequence problems.

In order to apply Mixup to speech recognition, Mixup is modified at the input level
and the loss level, respectively. For input, two raw audios are mixed at the frame level.
Before mixture, the shorter input will be padded to the same length as the longer one. Thus,
the length of augmented sample Xmix equals max(lenXi , lenXj).

A loss level mixture is adopted by mixing two loss function regarding the output. In
general, the CTC loss function and the Cross-Entropy (CE) loss function are commonly
used in end-to-end speech recognition. CE is adopted in Transformer-based model. For
Speech-Transformer, the output of Transformer decoder is sent to a softmax classifier. The
result of softmax layer becomes one of the input of CE loss. CE loss is calculated by
Equation (3).

LCE(Ŷ, Y) = − 1
N

N

∑
i=1

yi · logŷ (3)
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where ŷ denotes the output of ASR model for each character, and N is the length of Y.
The frame sequence and target are aligned by attention mechanism in Speech-Tran-

sformer which makes the output of softmax layer synchronized with label sequence.
After integrating Mixup into CE, the mixture of the CE loss becomes:

LCE(Ŷ, Ymix) = λ · LCE
(
Ŷ, Yi

)
+ (1− λ) · LCE

(
Ŷ, Yj

)
(4)

where λ is the same weight as in the input.

Theorem 1. For cross-entropy loss function, the mixture of the labels equals to the mixture of the
CE loss.

Proof of Theorem 1.

LCE
(
Ŷ, Ymix

)
= LCE

(
Ŷ, λYi + (1− λ)Yj

)
= −∑

(
λYi + (1− λ)Yj

)
logŶ

= −∑
[
λYilogŶ + (1− λ)YjlogŶ

]
= λLCE

(
Ŷ, Yi

)
+ (1− λ)LCE

(
Ŷ, Yj

)

The mixed CE loss, respectively calculates the CE loss LCE(Ŷ, Yi) and LCE(Ŷ, Yj) with
label sequence Yi and Yj. Then, LCE(Ŷ, Yi) and LCE(Ŷ, Yj) are linearly combined with λ.
This method is equivalent to interpolating the labels Yi and Yj directly.

3.3. MKD: Mixup-Based Knowledge Distillation

Knowledge distillation is commonly adopted in model compression for speech recog-
nition. Knowledge distillation utilizes a teacher–student network structure that exploits soft
labels from the teacher model to guide student network learning. However, this framework
is subject to the amount of available data. In particular, tasks with fewer samples provide
less opportunity for the student model to learn from the teacher. Even with a well-designed
loss function, the student model is still prone to overfitting and effectively mimicking the
teacher network on the available data. Existing data augmentation have been explored to
combine with teacher–student network, improving the efficiency of knowledge distillation.
Unlike other methods of data augmentation, Mixup is a data-agnostic approach which
means no prior knowledge is required for augmentation. This brings an convenience for
low-resource speech recognition to generate task-specific data.

Labels generated by Mixup are smoother than original one-hot labels. However, these
soft labels don’t include mutual information between each category. On the other hand,
soft labels generated from teacher network could reflect the relationship between similar
labels, which have more mutual information than one-hot encoding. The two arguments
above inspired us to integrate Mixup into teacher–student framework to improve the data
efficiency of knowledge distillation.

In our teacher–student framework, the architecture of student model ModelS is the
same as teacher model ModelT . There is only a difference in parameter scale between
teacher model and student model in homogeneous neural networks. First, the input Xi
goes through the teacher model ModelT . The teacher model is trained by original CE loss.

The output of Softmax layer in ModelT serves as the soft label of each frame. The
student model is encouraged to imitate the prediction from teacher network by minimizing
the KL distance:

LKL =
n

∑
i=1

p(Xi)log
(

p(Xi)

q(Xi)

)
(5)
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Considering that the original cross-entropy is helpful for training the student network.
The student network is trained with CE loss in usual way as well. The final loss LKD of
student model is the linear combinations of CE loss and KL loss:

LKD = γ · LKL + (1− γ) · LCE (6)

For softmax-level knowledge distillation, the distillation loss Lk
KD is calculated for k-th

frame, and LKD is composed of the accumulation of each frame loss.
When optimizing the teacher–student framework by Mixup, the label sequences Yi, Yj

are served as one of the input to the Decoder of the teacher model to obtain their soft labels
Ŷti ,Ŷtj , respectively. As shown in Figure 1, when training the student network, the output
of student network Ŷsi , Ŷsj are used to calculate the LCE and LKL. Equation (4) is applied to
generate LCE for each frame. However, the mixture of LKL is different from that of LCE
because the KL-divergence LKL is not linear for the label Y. To solve this problem, a novel
loss function LMKL is proposed to approximate LKL.

LMKL = λ · LKL
(
Ŷ, Yi

)
+ (1− λ) · LKL

(
Ŷ, Yj

)
(7)

It could be proved that LMKL is an upper bound on the LKL using the properties of
convex functions. The proof of Equation (7) is given below.

Figure 1. The flow chart of MKD. Two audios are mixed with λ at the input stage. Then, Xmix is
fed to the teacher and student encoder, respectively. In the decoder module, the label sequences
corresponding to each of the two audios are served as another part of the decoder input. Finally, the
loss-level mixture is applied to correspond to the modification of the decoder.

Theorem 2. The upper bound on the KL-divergence of Ymix is equivalent to the mixture of the
KL-divergence.

Proof of Theorem 2.

LKL
(
Ŷ, Ymix

)
= LKL

(
Ŷ, λYi + (1− λ)Yj

)
= LCE

(
Ŷ, λYi + (1− λ)Yj

)
+ ∑

[
λYi + [1− λ]Yj

]
log

[
λYi + [1− λ]Yj

]
≤ λLCE

(
Ŷ, Yi

)
+ (1− λ)LCE

(
Ŷ, Yj

)
+ ∑ λYilogλYi + ∑ (1− λ)Yjlog(1− λ)Yj

= λLKL
(
Ŷ, Yi

)
+ (1− λ)LKL

(
Ŷ, Yj

)
+ λlogλ∑ Yi + (1− λ)log(1− λ)∑ Yj + C′

⇒ λLKL
(
Ŷ, Yi

)
+ (1− λ)LKL

(
Ŷ, Yj

)
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After obtaining LMKL and LCE, a factor γ is applied to balance two loss functions. The
final loss LMKD is the combination of KL-divergence and CE loss:

LMKD = γ · LMKL + (1− γ) · LCE (8)

4. Experimental Settings

This section introduces the experimental settings, including: the dataset, the evaluation
indicators and the hyperparameters, respectively.

4.1. Dataset

Our experiments are conducted on a public Mandarin speech corpus named Aishell-1.
The training set contains 120,098 speeches (about 150 h) recorded by 340 speakers. The
development set contains 14,326 audios (approximately 40 h). In addition, 7176 voices
(about 10 h) make up the test set. This corpus contains 4230 Chinese characters.

4.2. Performance Metrics

For the Mandarin dataset, we measured the character error rate (CER) and relative
error rate reduction (RERR). This is because a single character often represents a word
for the Mandarin writing system. To calculate CER, the number of errors is obtained by
counting the substitutions, insertions, and deletions that occur in the recognition result.
Then, it is divided by the total number of characters in the correct sentence. RERR shows
how much the CER is reduced in proportion, compared to another method.

4.3. Model Settings

Experiments on Speech-Transformer has been performed. The 80 log-mel filter bank
features are extracted by Kaldi toolkit [43]. Before training, low frame rate is applied
for self-attention module to compute the similarity of each pair of frames. The mLFR
processing, feature stacking and downsampling produce more sparse but more informative
features. In our implementation, features are stacked with 4 frames to the left and skipped
with 3 frames. The teacher model contains 6 Transformer encoder layers and 6 Transformer
decoder layers. Each layer has 8 attention heads and a width of 512. The dimension of
inner feed forward layer is 2048. During training, Adam [44] optimizer (β1 = 0.9, β2 = 0.98,
α = 1× 10−9) is adopted. The epoch is 150. In each epoch, all the samples in dataset are
shuffled to eliminate the effects of input order. Considering the varying length of the
audio, a dynamic batchsize is applied in the experiment. Each batch consists of no more
than 10,000 frames of audios in total length. A warm up strategy is employed at the first
4000 batches. For inference, the beam search with a beam size of 5 is performed.

For Mixup strategy, the mixed spectrogram is generated with λ ∼ B(0.5, 0.5). The
proportion of mixed spectrogram in the whole dataset is p. Different strategies of training
are explored in our experiments. Firstly, all the samples in dataset consists of mixed samples.
Secondly, half of the samples are mixup samples. Another strategy is setting p to 0.25. In
practice, the factor σ ∼ U(0, 1) is set to control the proportion. If σ > p, the current batch is
composed of mixed samples. Otherwise, the current batch consists of raw spectrogram.

The proposed MKD is a homogeneous knowledge distillation method. The framework
of student model under MKD is the same as the teacher model. Two scale of student models
are designed to testify the efficiency of MKD, 3 encoders with 3 decoders and 2 encoders
with 2 decoders, respectively. The settings of student models are shown in Table 1. The
student model calculates LKL according to the output of softmax in teacher model. The
weight of loss function γ is 0.9. The training and inference of neural network are conducted
on a RTX 3090 GPU.
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Table 1. The settings of two student models.

Properties Stu1 Stu2

Encoder 3 2
Decoder 3 2

Head 8 8
Head size 64 64

Feed-forward 2048 2048
Parameter 20 M 10 M

Compression 50% 75%

5. Results

Experiments on hyperparameter search are first conducted in this section. The ex-
perimental results of MKD are shown next. Finally the experiments of data efficiency are
introduced to verify the validity of MKD.

5.1. Results of Hyperparameter Search

In order to improve the training efficiency, the proper hyperparameter of Mixup
is searched at the first stage. No previous studies have experimented with Mixup on
Mandarin datasets. Therefore, it is necessary to conduct experiments of hyperparameter
tuning.

The Baseline is trained in usual way. When implementing Mixup strategy, several
types of tricks are explored. Firstly, the value of α is searched from 0, 0.3, 0.5. Second, label
smoothing (LS) is tried as well. The label smoothing is conducted on the raw one-hot label.
However, our experiments show that label smoothing hurts the Mixup strategy seriously
not only in CER but also in the stability of model. In Table 2, the precision of model with
label smoothing and α = 0.5 decreases, even worse than the Baseline. Tried several more
times, but the result is still the same. This phenomenon also appears in model with label
smoothing and α = 0.3. However, the impact is not serious. Thus, label smoothing is no
longer used in the following experiments.

Table 2. Hyperparameter search of Mixup in Speech-Transformer on Aishell-1.

Method α p CER

Baseline 0.0 1.0 10.7%
+Mixup 0.3 1.0 9.2%
+Mixup 0.5 1.0 9.7%
+Mixup 0.3 0.25 9.8%
+Mixup 0.5 0.25 8.6%
+Mixup 0.3 0.5 9.2%
+Mixup 0.5 0.5 8.8%

+Mixup + LS 0.3 1.0 11.7%
+Mixup + LS 0.5 1.0 10.1%

The last two rows of Table 2 are two experiments of the proportion of mixed samples
in the whole dataset. The result shows that both of two training strategies could achieve
desirable performance. The model with p = 0.5 behaves better the model with p = 0.25,
but the gap is very close. Compared with Baseline, both of them obtains 17% relative
improvement.

In the following experiments, the hyperparameter of Mixup strategy is: α = 0.5, no
label smoothing and p ∈ {0.25, 0.5}.

5.2. Results of MKD

In order to testify the performance of proposed method, MKD is compared with previ-
ous softmax-level knowledge distillation (S-KD) and sequence-level knowledge distillation
(SEQ-KD). The S-KD trains the model by Equation (6) directly and the training procedure
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of SEQ-KD is the same as [45]. The Baseline is chosen as the teacher model. The size of Stu1
is 50% of teacher model, and the size of Stu2 is one third of teacher model. To make the
results comparable, the teacher model and the student models are the same as the original
one when training by S-KD, SEQ-KD and MKD. The Mixup strategy is adopted under
previous settings.

The results of MKD are shown in Table 3. The proposed MKD beats the existing
method by 1.7% and 0.4% compared to S-KD and SEQ-KD, respectively. MKD is more
effective for small-scale models when the proportion of augmented samples occupies 25%.
MKD can achieve a lowest character error rate of 9.2% on Stu1 with p = 0.5, which is even
better than the result of the teacher model. Such phenomenon demonatrates that Mixup
improves the generalization of ASR model. As the number of model parameters decreases,
the effect of MKD also decreases. The experiments also indicates that data augmentation
has a potential to be combined with knowledge distillation.

Table 3. The CER of proposed MKD on Aishell-1.

Method Stu1 Stu2 Tea

Baseline 11.6% 13.3% 10.7%
+S-KD 10.9% 12.2% -

+SEQ-KD 11.4% 12.8% -
+MKD (p = 0.25) 9.8% 11.8% -
+MKD (p = 0.5) 9.2% 12.8% -

Table 4 exhibites the RERR of proposed MKD compared with S-KD. For MKD with
p = 0.25, the relative improvement is 11.0% in Stu1 and 3.3% in Stu2. For MKD with
p = 0.5, the relative improvement reaches 15.6% in Stu1. However, the CER increases
in Stu2 when p = 0.5, the reason is that the small parameter scale leads the underfitting
problem. The number of mixed samples is required to be controlled for small models.

Table 4. The RERR of proposed MKD compared with S-KD.

Method p Stu1 Stu2

MKD 0.25 11.0% 3.3%
MKD 0.5 15.6% −4.9%

5.3. Ablation Analysis

In this section, ablation experiments are conducted for MKD. The parameter γ plays a
crucial role in balancing the proportion of soft and hard label contributions. Two sets of
experiments are conducted at p = 0.25 and p = 0.5 for testifing the effect of γ, respectively.
The range of γ is {0.2, 0.5, 0.9}. Table 5 describes the results when p = 0.25.

Table 5. The effect of γ in MKD when p = 0.25.

γ Stu1 Stu2

0.2 10.3% 12.3%
0.5 9.7% 12.2%
0.9 9.8% 11.8%

Experiments have shown that the distillation effect slowly diminishes as γ decreases.
On Stu1, the word error rate reaches 9.7% for γ = 0.9, while the rate drops by 0.5% for
γ = 0.9. The results on Stu2 are similar as shown in the third column of Table 5. The γ
indicates the weight of the soft label. The larger the γ is, the more information is retained.
The results of the ablation experiments are consistent with the theoretical results.

The results of the ablation experiments at p = 0.5 are shown in Table 6. The results
show that the character error rate changes from 9.2% to 10.4% when γ is gradually reduced,
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indicating that the distillation effect slowly diminishes. This finding is similar to the result
when p = 0.25. In contrast to the results for p = 0.5, the MKD becomes more robust on the
large model at p = 0.25, and the student model is less subject to the change of γ.

Table 6. The effect of γ in MKD when p = 0.5.

γ Stu1 Stu2

0.2 10.4% 12.1%
0.5 10.2% 11.8%
0.9 9.2% 12.8%

5.4. Data Efficiency Analysis

In order to evaluate the effect of MKD on the data efficiency of the speech recognition
model, experiments are conducted with different data volumes by dividing the training
set into 10%, 50% and the full data set. In order to exclude the influence of other variables,
other parameters are fixed during training, taking p = 0.25, λ = 0.5, γ = 0.9 for MKD. The
size of the training set is represented by the variable c, and c = 10% indicates that 10% of
the original training set is used as the current training set. The results of the experiments
using the MKD are shown in Table 7.

Table 7. The CER of MKD in different dataset scales.

Methods c Stu1 Stu2

Base 10% 36.8% 45.7%
Base 50% 14.1% 17.2%
Base 100% 11.6% 13.3%
S-KD 10% 37.2% 46.0%
S-KD 50% 13.8% 15.9%
S-KD 100% 10.9% 12.2%
MKD 10% 26.7% 36.9%
MKD 50% 11.6% 14.9%
MKD 100% 9.2% 11.8%

In the case of small dataset, the MKD method generally improves the recognition
precision of ASR models compared to S-KD. When using 10% of the data, the distillation
effect of the S-KD is rather inferior to that of the directly trained obtained models, with
approximately 0.4% away from Baseline for both Stu1 and Stu2. However, the models
trained with MKD can significantly improve the models, achieving 28.2% and 19.8% relative
improvment. The gain of MKD is more significant when using 50% of the data, achieving
relative gains of 15.9% and 6.3% on the two student models. The relative promotion on the
full data set is 15.6% and 3.3%, respectively. The improvment of MKD becomes stronger
as the amount of data decreased, indicating that MKD is a high data-efficient method that
can extract informative feature with very small samples. The model trained on Stu1 using
MKD on 50% of the data has the same CER as the Baseline trained using the full amount of
data, demonstrating that the proposed MKD reduces the data dependence by at least half.

6. Discussion

We performed model compression experiments for the Mandarin ASR model. How-
ever, existing papers have either different model structures or different datasets. In addition,
none of them performed the experiments of data efficiency. Therefore, it’s difficult to com-
pare with other research directly. To overcome this problem, the S-KD is reproduced with
the same dataset. The results show that MKD achieves a lower CER against S-KD which
demonstrates that MKD is a high-efficient knowledge distillation method.

The softmax-level and representation-level distillation methods are prevailing meth-
ods for attention-based ASR models. The representation-level distillation encourages the
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student model to imitate the feature map of the teacher model. The combination with
softmax-level distillation has been shown to be effective in the literature [46]. In our study,
more attention are paid to the softmax-level knowledge distillation. The Mixup feature
improves the efficiency of softmax-level distillation. However, whether the mixture of
representation does harm to the model remains a mystery. How to integrate MKD into
representation-level distillation is the problem to be fix in the future. Further, the possi-
bility of joint representation-level and softmax-level distillation is another problem to be
explored.

On the other hand, some people have researched the distillation between different
network architectures such as from RNN to CNN. The conventional method in knowledge
distillation has a limit that the student model structure should be similar to that of the
given teacher model. Our experiments have verified the distillation of homogeneous model.
The non-homogeneous model transfer is a promising research topic. Since CNN or RNN
models have different model capacity from the Transformer, how to minimize the gap
between them is a tough issue.

7. Conclusions

In order to improve the efficiency of knowledge distillation especially in the low-
resource setting, MKD is proposed by integrating Mixup into softmax-level knowledge
distillation framework. A loss-level mixture is adopted to address the discrete data of
character label sequence in speech recognition. The mixed loss function LMKD is presented
to solve the problem caused by the non-linearity of label in the original KL-divergence
when applying Mixup to knowledge distillation. It is theoretically shown that optimizing
LMKD is equivalent to optimize an upper bound of the original knowledge distillation
loss. Experiments on Aishell-1 prove the effectiveness and efficiency of the proposed
MKD. It obtains a 15.6% and 3.3% relative improvment on two student models with
different parameter scales compared with the existing distillation method. Meanwhile,
MKD decreases the demand of samples by one time in training Speech-Transformer.

Though MKD improves the performance of knowledge distillation of ASR model,
there are some issues that need to be further tackled: (1) the applicability of MKD on other
languages should be verified in the future. (2) The generalization of MKD is required to
be explored further. The proposed MKD is not only a method in model compression, but
a general framework in knowledge distillation. There are much more fields for MKD to
play a role. The semi-supervised learning is the place which could make use of MKD most
likely. Previous methods are still fragile under the few-shot setting. MKD may alleviate
this problem for its expansion of the existing distribution.
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