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Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that severely impairs
an individual’s cognitive, linguistic, object recognition, communication, and social abilities. This
situation is not treatable, although early detection of ASD can assist to diagnose and take proper steps
for mitigating its effect. Using various artificial intelligence (AI) techniques, ASD can be detected
an at earlier stage than with traditional methods. The aim of this study was to propose a machine
learning model that investigates ASD data of different age levels and to identify ASD more accurately.
In this work, we gathered ASD datasets of toddlers, children, adolescents, and adults and used
several feature selection techniques. Then, different classifiers were applied into these datasets, and
we assessed their performance with evaluation metrics including predictive accuracy, kappa statistics,
the f1-measure, and AUROC. In addition, we analyzed the performance of individual classifiers using
a non-parametric statistical significant test. For the toddler, child, adolescent, and adult datasets, we
found that Support Vector Machine (SVM) performed better than other classifiers where we gained
97.82% accuracy for the RIPPER-based toddler subset; 99.61% accuracy for the Correlation-based
feature selection (CFS) and Boruta CFS intersect (BIC) method-based child subset; 95.87% accuracy
for the Boruta-based adolescent subset; and 96.82% accuracy for the CFS-based adult subset. Then,
we applied the Shapley Additive Explanations (SHAP) method into different feature subsets, which
gained the highest accuracy and ranked their features based on the analysis.

Keywords: ASD; machine learning; classifier; feature selection; prediction model

1. Introduction

Autism spectrum disorder (ASD) is a neuro-developmental disorder where it ap-
pears in human beings during the first three years [1]. It is basically characterized by
several symptoms such as impairments in social interaction, communication, restricted
interests, and repetitive behavior [2]. Individuals with ASD face difficulty understanding
other’s feelings and thinking. They experience many problems communicating with others.
As reported by the World Health Organization (WHO), throughout the world, around
1 in 270 individuals has ASD [3]. Each individual with ASD has unique characteristics,
and some have exceptional abilities in visual, academic, and music skills. In this case, the
most important steps are required to detect ASD and to ensure proper treatment as early
as possible. These steps are helpful to decrease the effects of this disorder and to improve
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their condition. The symptoms of ASD are identified by different types of observations.
However, a significant amount of time and effort are needed where early detection is
useful for providing better treatment for ASD patients. Recently, machine learning meth-
ods are widely used for analyzing the symptoms of various severe diseases like heart
disease, diabetes, and cancer tissues, etc. Therefore, many researchers explored numerous
methods [4,5] that are helpful to identify ASD patients and decrease the affects of ASD
more precisely.

The objective of this work was to propose a machine learning model that explores
ASD of toddlers, children, adolescents, and adults at an early stage as well as to investi-
gate the individual characteristics of them more efficiently. In this model, we generated
several feature subsets of toddlers, children, adolescents, and adults using various feature
selection techniques. Different classification methods were applied into primary and its
feature subsets. Then, their results were compared, and we determined the best classifier
for each age group and the feature subset for which the highest results were obtained.
Additionally, the performance of these classifiers were investigated using a non-parametric
statistical significant test. Then, we interpreted the results of the best feature subsets and
selected significant features of ASD using an explainable AI method. The following concise
summary of the contribution is given as follows:

• We proposed an efficient machine learning method that has the potential to identify
ASD with high accuracy at an early stage.

• We concentrated on identifying important feature subsets and explained different
features to know how individual features are responsible to generate the best result to
diagnose ASD or not.

• To justify the performance of the classifier, we used a non-parametric statistical method
and checked the classifier’s pairwise significance.

• This method is helpful to identify ASD in a simple and flexible way.

This article is structured as follows: Section 2 contains a literature review on ASD
screening approaches. Section 3 represents the working steps of detecting ASD and its
characteristics. Section 4 describes the experimental results and an interpretation of these
results. Section 5 describes the discussion and conclusion.

2. Literature Review

Many state-of-art works were happened to investigate, classify and explore significant
factors of ASD. Thabtah et al. [6–9] developed a mobile application named ASDTests for
data collection related to ASD for toddlers, children, adolescents, and adults. This app
was built based on Q-CHAT and AQ-10 tools to predict ASD or not. They collected ASD
data using this app and uploaded them into the University of California-Irvine (UCI)
Machine Learning (ML) repository. Omar et al. [10] proposed an effective machine learn-
ing model where they analyzed AQ-10 and 250 real datasets with Random Forest (RF),
Classification and Regression Trees (CART) and Random Forest-Iterative Dichotomiser 3
(ID3). Sharma et al. [11] investigated these datasets by employing CFS-greedy stepwise
feature selector and further applied Naïve Bayes (NB), Stochastic Gradient Descent (SGD),
K-Nearest Neighbours (KNN), Random Tree (RT), and K-Star (KS) into these datasets.
Satu et al. [12] collected some samples of 16–30 years children where several tree based
classifiers were used to investigate them and extracted several rules for normal and autism.
Erkan et al. [13] analyzed similar datasets by implementing KNN, SVM, and RF where
RF showed the best performance to identify ASD. Another study by Thabtah et al. [14]
generated several feature subsets of adults and adolescents using Information Gain (IG)
and Chi-Squared (CHI) where Logistic Regression (LR) was used to identify ASD from
them. Akter et al. [15] gathered toddlers, children, adolescents, and adults datasets and
generated some transformed sets. Then, different classifiers were used to analyze them
where SVM showed the best performance for the toddler as well as Adaboost provided both
children and adult. In addition, Glmboost showed the best outcomes the adolescent dataset.
Hossain et al. [16] investigated similar types of datasets and generated subsets using CFS,
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CHI, IG, One-R and Relief-F methods. Further, they employed LR, Multilayer Perceptron
(MLP), Sequential minimal optimization (SMO) into them. Then, SMO showed the best
accuracy 91% for child, 99.9% for adolescent, 97.58% for adult datasets. Raj et al. [17]
scrutinized these datasets (i.e., excluding toddler) using SVM, LR, NB, and Convolutional
Neural Network (CNN) where CNN showed the highest accuracy 98.30% for child, 96.88%
for adolescent, and 99.53%, for adult, respectively. Again, Thabtah et al. [18] developed a
Rules-based Machine Learning (RML) method for extracting ASD traits where RML gave
higher predictive accuracy from other machine learning approaches. Chowdhury et al. [19]
provided an association classification technique with seven algorithms where this method
showed 97% accuracy to detect ASD. Akter et al. [20] gathered ASD dataset of different
age levels and generated some transformed subsets of it. They analyzed them with several
classifiers where LR outperformed other classifiers and extracted significant traits. Ak-
ter et al. [21] also extracted several autism subtypes using k-means algorithms. Then, they
identified different discriminatory factors among them.

3. Methodology

In this work, we used different feature selection methods and generated some feature
subsets. Then, some classification algorithms were applied into primary toddler, child,
adolescent, and adult datasets and their feature subsets. The performance of different
classifiers were investigated to determine which features are more useful to detect ASD
from controls. Figure 1 shows the proposed model of ASD detection at early stage.

Child Data

Adolescent 

Data

Adult Data

Data Preprocessing
Apply Feature 

Selection Methods

Apply Different 

ClassifiersPerfomance Analysis

Explore Best 

Performance Interpret Results

Toddler 

Data

Generate Feature 
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Figure 1. The proposed framework for early ASD detection.

3.1. Data Preprocessing

Dataset Description: Thabtah et al. [6] from the Nelson Marlborough Institute of
Technology developed an autism screening app called ASDTests, which was used for
data collection from the target audience (toddlers, children, youths, and adults). It used
Q-CHAT-10 and AQ-10 questionnaires (AQ-10 Child, AQ-10 Adolescent, and AQ-10 Adult)
to determine ASD risk factors. This app automatically computed its final-score from 0 to 10.
It indicates a positive prediction of ASD if the final-score is greater than 6 out of 10. In
this work, we used toddler, child, adolescent, and adult ASD datasets (version 2) [22–25],
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where the toddler dataset consisted of 18 features; however, the child, adolescent, and
adult datasets contained 23 features. These datasets contained the records of 12–36 months
(toddlers), 4–11 years (child), 12–16 years (adolescent), and 18 years or greater (adult) age
groups. Table 1 shows the details of these datasets, and Table 2 provides the description of
individual features of these datasets that were used for analysis.

Table 1. Data description.

Dataset Name Instances Attributes Male/Female Age (Years) Average Age ASD/Normal

Toddler Autism dataset 1054 18 735/319 12–36 (mons) 27.86 (mons) 735/319
Autism Child Dataset (Version-2) 509 23 363/146 11-Apr 6.39 257/252
Autism Adolescent Dataset (Version-2) 248 23 117/131 16-Dec 14.04 127/121
Autism Adult Dataset (Version-2) 1118 23 596/522 17–80 30.143 358/760

Table 2. Features description.

Feature Type Description

Age (Year) Number Toddlers (months), children, adolescent, and adults (year)
Gender String Male or female
Ethnicity String List of common ethnicities
Born with jaundice Boolean Whether the case was born with jaundice
Family member with PDD Boolean Whether any immediate family member has a PDD history
Who is completing the test String Parent, self, caregiver, medical staff, clinician, etc.
Country of residence String List of countries
Used the screening app before Boolean Whether the user has formerly used the screening app
Language String The user’s language details

A1: Answer of Q1 Binary(0,1)
Does your child look at you when you call his/her name? (Toddler)
S/he often notices small sounds when others do not. (Child) S/he
notices patterns in things all the time. (Adolescent) I often notice
small sounds when others do not. (Adult)

A2: Answer of Q2 Binary(0,1)
How easy is it for you to get eye contact with your child? (Toddler)
S/he usually concentrates more on the whole picture rather than the
small details. (Child, adolescent, adult)

A3: Answer of Q3 Binary(0,1)
Does your child point to indicate that s/he wants something? (Toddler)
In a social group, s/he can easily keep track of several different people’s
conversations. (Child) In a social group, s/he can easily keep track of
several different people’s conversations. (Adolescent) I find it easy to
do more than one thing at once. (Adult)

A4: Answer of Q4 Binary(0,1)
Does your child point to share interest with you? (Toddler) S/he finds
it easy to go back and forth between different activities. (Child) If there
is an interruption, s/he can switch back to what s/he was doing very
quickly. (Adolescent) If there is an interruption, I can switch back to
what I was doing very quickly (Adult)

A5: Answer of Q5 Binary(0,1)
Does your child pretend? (Toddler) S/he does not know how to keep a
conversation going with his/her peers. (Child, Adolescent) I find it easy
to “read between the lines” when someone is talking to me. (Adult)

A6: Answer of Q6 Binary(0,1)
Does your child follow where you are looking? (Toddler) S/he is good
at social chit-chat (Child, Adolescent). I know how to tell if someone
listening to me is getting bored (Adult)

A7: Answer of Q7 Binary(0,1)

If you or someone else in the family is visibly upset, does your child
show signs of wanting to comfort them? (Toddler) When s/he is read
a story, s/he finds it difficult to work out the character’s intentions or
feelings (Child). When s/he was younger, s/he used to enjoy playing
games involving pretending with other children (Adolescent). When
I am reading a story I find it difficult to work out the characters’
intentions (Adult).
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Table 2. Cont.

Feature Type Description

A8: Answer of Q8 Binary(0,1)
Would you describe your child’s first words as: (Toddler) When s/he
was in preschool, s/he used to enjoy playing pretending games with
other children (Child). S/he finds it difficult to imagine what it would
be like to be someone else (Adolescent). I like to collect information
about categories of things (Adult).

A9: Answer of Q9 Binary(0,1)
Does your child use simple gestures? (Toddler). S/he finds it easy to
work out what someone is thinking or feeling just by looking at their
face (Child). S/he finds social situations easy (Adolescent). I find it
easy to work out what someone is thinking or feeling just by looking
at their face (Adult).

A10: Answer of Q10 Binary(0,1)
Does your child stare at nothing with no apparent purpose? (Toddler).
S/he finds it hard to make new friends (Child, Adolescent). I find it
difficult to work out people’s intentions (Adult).

Screening score Integer It is based on the scoring algorithm of the screening method used
Class String ASD or No ASD

Data Cleaning: We cleaned these datasets to simplify this model and increased classi-
fication accuracy by deleting instances with missing values. After that, we discarded some
irrelevant features (i.e., those which are not related to ASD) such as the case, whether they
the used app before, the user (who completed the screening), the language, why they had
taken the screening, the age description, the screening type, and the score, respectively.
The score 7 to 10 was used to classify ASD prediction for the child, adolescent, and adult
datasets. A value of 4 or higher was classified as ASD for the toddler dataset. In this work,
we selected 16 features for the child, adolescent, and adult datasets and 15 features for the
toddler dataset, respectively.

3.2. Implementing Feature Selection Methods

Feature selection is required to identify significant attributes that improve the per-
formance of machine learning models [26]. Many state-of-the-art works were found
where various significant features were identified to detect autism more efficiently [27]
On the toddler, child, adolescent, and adult datasets, various feature selection techniques
such as the Boruta algorithm, Correlation-based Feature Selection with Harmony Search
(CFS–Harmony Search), Repeated Incremental Pruning to Produce Error Reduction (RIP-
PER), and Recursive Feature Elimination (RFE) were used to explore various feature subsets.
A brief description about them is given as follows:

• Boruta algorithm is a wrapper algorithm based on the random forest [28] where it
finds the importance of a feature by creating shadow features [29]. It is an extended
system where each feature of the given data set is replicated. Then, the values of
replicated variables are randomly combined, which are called shadow features. It
performs its feature selection process using RF on the extended data set and evaluates
the importance of each feature. Additionally, it computes the z-score of real and
shadow features. It compares higher z-score values of real features than the maximum
z-score value of its shadow features at every iteration. In this process, it constantly
eliminates features that are deemed highly unimportant. Finally, the algorithm ends
either when all features are approved or rejected or it obtains a particular limit of RF
runs [30].

• Correlation-based Feature Selection (CFS–Harmony Search) is a heuristic function
that evaluates the ranks of features based on their correlation [31]. For harmony search,
it illustrates the point of intersection with the following parameters: the number of
harmonies in memory N, the number of indicator M, the number of possible values of
indicator D, the number of optimal indicator i in the harmony memory = Ei, and the
rate of harmony memory Et. The probability is calculated by the following equation,
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Pt(E) ⊆M
i=1 [Et

Ei
N

+ (1− Et)
1
D
] (1)

• Repeated Incremental Pruning to Produce Error Reduction (RIPPER) is the rule
induction algorithm that was introduced by W. Cohen in 1995 [32]. It is generated as a
set of if-then-else rules that evolves several iterations of the rule learning algorithm.
This model is maintained by three-steps such as grow, prune, and optimize [33] where
the evaluation process is denoted as,

Gain(R0, R1) = c[log(
T1

T1 + F1
)− log(

T0
T0 + F0

)] (2)

where R0 = the initial rule, R1 = the rule after adding conjunct, c = the number of true
instances covered by R0 and R1, T0 = the number of true instances covered by R0,
F0 = the number of false instances covered by R0, T1 = the number of true instances
covered by R1, and F1 = the number of false instances covered by R1 [34].

• Recursive Feature Elimination (RFE) is a feature selection technique that discards
the least important features recursively. In this process, the initial features are trained
where each important feature is acquired through any selected attributes [35]. Then,
the least important features are eliminated from the initial feature set. This process
is recursively repeated until the desired number of feature subsets are obtained [36].
The steps of RFE are given as follows [37]:

1. Train the classifier.
2. Calculate the score for all features with the ranking.
3. Eliminate the feature with the lowest score.

3.3. Apply Individual Classification Methods

After generating various feature subsets, 30 widely used classifiers were implemented
into all of these datasets and their subsets. Some classifiers that produced less than 70%
accuracy were eliminated. Thus, the performance of NB, KS, C4.5, CART, SVM, KNN, Bag-
ging (BG), and Random Tree (RT) were considered. Then, we compared their performance
and detected the best classifier. In addition, it detects feature subsets for which the classifier
shows the highest outcomes. Therefore, a brief description of them are given as follows:

• Naïve Bayes (NB) is a most constructive probabilistic classifier based on Bayes theo-
rem [38]. It predicts target output more efficiently according to the foundation of the
probability of an entity. The formula of Bayes theorem is given as,

R(a|b) = R(b|a)R(a)
R(b)

(3)

The derivation form for NB is:

R(a|b) = R(b1|a) ∗ R(b2|a) ∗ ...... ∗ R(bn|a) ∗ R(a) (4)

Here, R(a | b) is the subsequent probability of the target class; R(a) is the earlier
probability of the class; R(b | a) is the prospect of the predictor specified class; and
R(b) is the earlier probability of the predictor (see Equation (3)).

• K-Star (KS) is an instance-based classifier that categorizes samples or instances by
differentiating it based on pre-categorized samples [39]. Some similar functions are
used to determine the class of test instances. It uses an entropy-based function, which
differentiates from other instance-based learners [40].

• Decision Tree (C4.5) is the extension version of the ID3 algorithm that uses the re-
cursive divide and conquer method to produce the C4.5 decision tree [41]. When
unknown data are found, this method predicts a target class by satisfying several con-
ditions. C4.5 uses Information Gain (IG) that calculates the gain ratio by the following
equation [42],
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Gainratio(Attribute) =
Gain(Attribute)

SpiltIn f o(Attribute)
(5)

• Classification and Regression Trees (CART) use several classification and regression
trees where classification trees are used to accumulate the finite number of unsorted
values and determine the prediction errors. Besides, regression trees are employed for
grouping sorted or ordered values and determining the prediction error by calculating
the root squared difference between target and predicted values [43].

• K-Nearest Neighbour (KNN) is used for classifying instances based on their near-
est neighbors [44]. It generally takes more than one neighbor and determines their
distances using the Euclidean method, which is calculated with the following equa-
tion [45],

D =
√
(m1 −m2)2 + (n1 − n2)2 (6)

where, D is distance between (m1, n1)and(m2, n2) points.
• Support Vector Machine (SVM) generates some vectors to create a decision boundary

that separates n-dimensional space into classes. This decision boundary is called a
hyperplane. In the general situation, two parallel hyperplanes are generated, which
concurrently minimizes the classification error and maximizes the margin of classes.
It is called a maximum margin classifier [46].

• Bagging Classifier (BG) is a parallel ensemble method that generates several random
subsets from substitution of the original dataset. Then, we analyzed them using
the base classifier and aggregated their predictions by voting [47]. It decreases the
variance and correctly predicts the target outcome.

• Random Tree (RT) is a decision tree where a set of possible trees are randomly gen-
erated with K random features. The combination of large sets of random trees is
generally produced with accurate predictions more efficiently [48].

3.4. Use Evaluation Metrics for Performance Analysis of Classifiers

The performance measurement is essential for evaluating how well a classification
model correctly predicts instances and achieves a desired target [17,49]. The confusion
matrix provides a more detailed overview of a predictive model’s performance. It represents
which classes are being predicted correctly and incorrectly and shows the measurement
of type errors. In the confusion matrix, every instance in a given dataset falls into one of
the four categories: True Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN) [16]. The above four category data are arranged in a matrix known as the
confusion matrix. Table 3 shows the elements of the confusion matrix.

Table 3. Confusion matrix for ASD.

Target
Predicted

ASD No ASD

ASD TP FN
No ASD FP TN

In this work, we used several evaluation metrics including accuracy, kappa statistics,
the F1-Score, and AUROC to assess the performance of each classifier. To calculate these
metrics, the confusion matrix is required to generate and gather different types of instances
from it. These metrics are described briefly as follows:

• Accuracy: It is a measure of how effective the model is used to predict outcomes [49],
in terms of the total number of predictions:
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Accuracy =
(TP + TN)

(TP + FP + FN + TN)
(7)

• Kappa statistics (Kp): It measures observer agreement for categorical data and ex-
pected accuracy and has received considerable attention [50].

Kp =
1− (1− p0)

(1− pe)
(8)

• Precision: It is a measure of true-positive predictions against all retrieved positive
instances [51].

Precision =
TP

(TP + FP)
(9)

• Recall: It is a measure of correctly predicted positive observations against all relevant
positive classes [51].

Recall =
TP

(TP + FN)
(10)

• F1 score: It is the harmonic average of precision and recall [52]:

F1 = 2
(Recall ∗ Precision)
(Recall + Precision)

(11)

• AUROC: It determines how well true-positive values are isolated from false-positive
values [15]:

TRP =
TP

(TP + FN)
(12)

FRP =
FP

(FP + TN)
(13)

3.5. Determining the Performance of Classifiers Using Statistical Tests

After the classification process, we needed to justify these outcomes using various
statistical methods and recheck their performance. In this work, the Wilcoxon Signed-Rank
(WSR) method was used to test the statistical significance of the individual classifier. We
employed this method into the outcomes of different evaluation metrics in the individual
age group. A brief description of the WSR method is given as follows:

• Wilcoxon Signed-Rank Test is a non-parametric statistical test that is used to compare
two independent samples. This method is considered an alternative of the t-test when
the population mean is not of interest. The working formula of this method is given
as follows:

W =
N

∑
i=1

[sgn(x2i − x1i).Ri] (14)

where W denotes test statistics; N indicates the sample size; sgn denotes a sign
function; both x1i, x2i represent the ranked pairs of the two distributions; and Ri
indicates the rank.

3.6. Interpretation of the Results of Machine Learning Models

Explainable AI is a combination of methods that allows individual users to compre-
hend the results of machine learning models. In this work, we explored the best performing
classifiers which generate the highest results for different feature subsets in the individ-
ual age groups. To interpret these outcomes, the SHapley Additive exPlanations (SHAP)
method was used to explain which feature vectors are required to generate these predictions.
The SHAP method is described in brief as follows:
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• The SHAP method is a game-theoretic process to explain the output of any individual
model. This model was developed by Lundberg and Lee [53]. The purpose of this
method is to compute the contribution of each feature for an instance’s prediction. It
associates optimal credit allocation with a local explanation using Shapley values. The
simplest general SHAP values are represented as follows [54]:

1. Select an objective feature function.
2. Calculate the Shapley value for all features.
3. Choose the highest-ranking features.

4. Experimental Results

In the primary stage, this study used the Classification and Regression Training
(CARET) package in R for feature selection and classification tasks [55]. However, Boruta,
CFS, RIPPER, and RFE methods were implemented to produce numerous feature subsets
for different age groups (i.e., toddler, child, adolescent, and adult). Table 4 shows the
details of these feature subsets, respectively. Then, different baselines (i.e., primary data)
along with their feature subsets were scrutinized by eight classifiers such as NB, BG, CART,
KNN, C4.5, KS, SVM, and RT, respectively. In this case, we considered the k-fold cross-
validation technique for classification, where the value of k is regarded as 10. After the
classification process, a non-parametric statistical WSR test was employed to evaluate the
performance of individual classifiers using Knowledge Extraction based on Evolutionary
Learning (KEEL) software [56]. Then, SHAP summary plots were generated using the shap
package in Python for the best classifier and different subsets. Figure 2 shows the details
of illustrations about how to interpret machine learning models and explore importance
features for generating significant outputs.

Table 4. The generated feature subsets of individual age groups.

FS Method Selected Features

Toddler FSbor Boruta A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Age, Jaundice, Family_ASD
FSc f s CFS A1, A2, A4, A5, A6, A7, A8, A9, A10, Age, User
FSrpr RIPPER A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Age, Jaundice
FSr f e RFE A1, A2, A3, A4, A6, A7, A8, A9, A10, Gender, User
FSbic FSbor Intersect FSrpr A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Age

Child FSbor Boruta A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Age, Gender, Residence
FSc f s CFS A1, A2, A3, A4, A5, A6, A7, A8, A9, A10
FSrpr RIPPER A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Jaundice
FSr f e RFE A1, A4, A6, A7, A8, A9, A10, Ethnicity, Jaundice, Family_ASD
FSbic FSbor Intersect FSc f s A1, A2, A3, A4, A5, A6, A7, A8, A9, A10

Adolescent FSbor Boruta A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Age, Ethnicity, Residence, User
FSc f s CFS A1, A2, A3, A4, A5, A6, A7, A10, Ethnicity
FSrpr RIPPER A1, A2, A3, A4, A5, A6, A7, A8, A10, Age, Gender
FSr f e RFE A1, A2, A3, A4, A5, A6, A8, A10, Age, Gender, Ethnicity, Jaundice, Residence
FSbic FSbor Intersect FSc f s A1, A2, A3, A4, A5, A6, A7, A8, A10, Age

Adult FSbor Boruta A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Age, Ethnicity, Residence, User
FSc f s CFS A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Residence
FSrpr RIPPER A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Age, Residence, User
FSr f e RFE A1, A2, A4, A6, A7, A8, A9, A10, Age, Residence, Used_App_Before
FSbic FSbor Intersect FSrpr A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Age, Residence, User
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Figure 2. Analysis of Shapley values for (a) the toddler subset of the RIPPER method, (b) the
adolescent subset of the Boruta algorithm, (c) the child subset of the CFS–Harmony Search method,
and (d) the adult subset of the CFS method employing the best-performing SVM.

4.1. Generating Several Feature Subsets

Different feature selection methods such as Boruta, CFS, RIPPER, and RFE were
applied into four ASD baselines and generated FSbor, FSc f s, FSrpr, FSr f e, and FSbic for
FSbor intersecting with FSc f s, respectively [27]. Table 4 shows several feature subsets in
different age groups.

4.2. Result Analysis of Accuracy

We applied NB, BG, CART, KNN, C4.5, KS, SVM, and RT into four datasets where the
highest 96.67%, 95.48%, 95.48%, and 96.06% accuracies were generated by SVM for toddler,
child, adolescent, and adult datasets, respectively. After investigating the performance
of these classifiers into the baseline and six feature subsets, we found greater improved
accuracy to detect autism. In toddlers, SVM gave the maximum accuracy of 97.82% for
FSrpr (see Table 5). Then, we observed that the highest accuracy (99.61%) was calculated
by SVM for FSc f s and FSbic for children (see Table 6). Regarding the case of adolescents,
SVM also provided the maximum accuracy of 95.87% for FSbor (see Table 7). In adults, the
highest accuracy (96.82%) was found for FSc f s, which was computed by SVM (see Table 8).
Besides, other classifiers such as NB, KS, and KNN provided good accuracy similar to SVM.
Figure 3a shows the average accuracy of individual classifiers in each age group. Here, we
also observed that SVM represented the best average outcomes among all classifiers.
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Table 5. Performance analysis of classifiers for baseline and its generated feature subsets of toddlers.

NB BG CART KNN C4.5 KS SVM RT

Accuracy Baseline 95.44 93.16 90.89 92.69 92.31 94.21 96.67 92.12
FSbor 95.45 94.40 92.03 94.30 92.59 95.25 97.62 92.78
FSc f s 96.39 92.59 91.17 94.97 91.74 95.16 96.67 92.97
FSrpr 95.45 94.49 92.12 95.25 92.59 95.63 97.82 92.88
FSr f e 95.25 93.92 92.12 94.30 92.31 95.25 95.63 93.73
FSbic 95.16 94.21 92.12 95.92 92.78 95.92 97.62 93.45

Kappa Stat. Baseline 89.50 83.88 78.32 83.20 81.84 86.62 92.21 81.46
FSbor 89.55 86.71 81.09 86.90 82.47 89.08 94.43 83.18
FSc f s 91.59 82.41 79.15 88.38 80.60 88.78 92.20 83.46
FSrpr 89.85 86.92 81.30 89.08 82.47 89.96 94.87 83.44
FSr f e 88.80 85.62 81.55 86.96 81.84 89.01 89.54 85.52
FSbic 88.91 86.28 81.27 90.57 82.92 90.59 94.43 84.77

F1-Score Baseline 95.50 93.10 90.80 92.80 92.30 94.20 96.70 92.10
FSbor 95.50 94.40 92.00 94.40 92.60 95.30 97.60 92.80
FSc f s 96.40 92.50 91.10 95.00 91.70 95.20 96.70 93.00
FSrpr 95.50 94.50 92.10 95.30 92.60 95.70 97.80 92.90
FSr f e 95.20 93.90 92.10 94.40 92.30 95.30 95.60 93.80
FSbic 95.20 94.20 92.10 95.90 92.70 95.90 97.60 93.50

AUROC Baseline 99.50 98.00 91.70 94.20 92.50 98.80 96.00 90.70
FSbor 99.70 98.20 92.30 96.00 93.00 99.30 97.00 91.70
FSc f s 99.50 97.80 91.60 96.90 92.40 99.20 95.90 91.40
FSrpr 99.60 98.20 92.30 96.60 93.00 99.40 97.20 9.20
FSr f e 99.10 98.20 91.30 98.50 93.20 99.20 93.70 94.20
FSbic 99.60 98.20 92.40 97.30 93.30 99.50 97.00 92.60

Table 6. Performance analysis of classifiers for baseline and its generated feature subsets of children.

NB BG CART KNN C4.5 KS SVM RT

Accuracy Baseline 93.12 80.94 83.71 88.61 89.39 87.22 95.48 80.74
FSbor 94.69 81.92 83.69 92.92 89.78 93.12 95.87 78.58
FSc f s 93.51 90.96 90.37 94.69 90.76 95.48 99.61 92.92
FSrpr 93.51 90.96 89.98 92.73 89.98 93.12 98.23 90.77
FSr f e 88.99 86.05 87.22 89.19 88.99 89.19 91.35 85.65
FSbic 93.51 90.96 90.37 94.69 90.77 95.48 99.61 92.93

Kappa Stat. Baseline 86.24 61.88 65.45 77.19 78.78 74.43 90.96 61.47
FSbor 89.38 63.85 67.39 85.85 79.57 86.23 91.74 57.13
FSc f s 87.02 81.92 80.75 89.38 81.53 90.95 99.21 85.85
FSrpr 87.02 81.92 79.96 85.45 79.96 86.23 96.46 81.53
FSr f e 77.99 72.10 74.46 78.38 77.99 78.37 82.71 71.31
FSbic 87.02 81.92 80.75 89.38 81.53 90.95 99.21 85.85

F1-Score Baseline 93.01 80.90 82.70 88.60 89.04 87.20 95.50 80.70
FSbor 94.70 81.90 83.70 92.60 89.80 93.10 95.90 78.50
FSc f s 93.20 90.90 90.40 94.50 90.70 95.20 99.60 92.90
FSrpr 93.50 91.00 90.00 92.70 90.00 93.10 98.20 90.80
FSr f e 88.80 86.10 87.20 89.00 88.80 88.50 91.20 85.40
FSbic 93.50 91.00 90.04 94.70 90.80 95.50 99.60 92.90

AUROC Baseline 98.40 88.60 85.20 90.70 91.70 95.80 95.40 81.90
FSbor 99.00 89.20 85.90 94.50 93.00 98.10 95.80 79.40
FSc f s 99.20 97.80 94.00 99.00 93.60 99.60 99.60 92.90
FSrpr 99.20 97.90 93.60 98.10 92.70 99.40 98.20 90.80
FSr f e 96.20 95.20 91.40 94.20 92.10 96.50 91.30 87.40
FSbic 99.20 97.80 94.00 99.00 93.80 99.60 99.60 92.90
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Table 7. Performance analysis of classifiers for baseline and its generated feature subsets of adolescents.

NB BG CART KNN C4.5 KS SVM RT

Accuracy Baseline 93.12 80.94 82.71 88.61 89.39 87.22 95.48 80.74
FSbor 94.69 81.92 83.69 92.92 89.78 93.12 95.87 78.58
FSc f s 89.91 85.08 81.04 91.93 82.66 91.53 89.51 86.69
FSrpr 91.94 87.90 79.84 91.52 80.65 92.74 94.76 86.29
FSr f e 87.09 75.00 78.22 88.30 81.85 88.70 89.51 78.22
FSbic 92.74 87.90 81.05 91.94 81.05 91.13 93.95 89.11

Kappa Stat. Baseline 89.24 61.88 65.45 77.19 78.78 74.43 90.96 61.47
FSbor 89.38 63.85 67.39 85.85 79.57 86.23 91.74 57.13
FSc f s 79.78 70.14 62.08 83.84 65.31 83.00 79.02 73.31
FSrpr 83.84 75.79 59.69 83.04 61.30 85.44 89.50 72.55
FSr f e 74.12 49.89 56.34 76.56 63.70 77.34 78.95 56.41
FSbic 85.44 75.79 62.11 83.85 62.10 82.20 87.90 78.19

F1-Score Baseline 93.10 80.90 82.70 88.60 89.40 87.20 95.50 80.70
FSbor 94.70 81.90 83.70 92.90 89.80 93.10 95.90 78.50
FSc f s 89.20 84.60 80.70 91.50 82.30 90.70 89.30 85.70
FSrpr 91.90 87.90 79.80 91.50 80.60 92.70 94.80 86.30
FSr f e 86.10 73.50 76.70 87.60 81.50 87.70 88.40 77.50
FSbic 92.70 87.90 81.00 91.90 81.10 91.10 94.00 89.10

AUROC Baseline 98.40 88.60 85.20 90.70 91.70 95.80 95.40 81.90
FSbor 99.00 89.20 85.90 94.50 93.00 98.10 95.80 79.40
FSc f s 93.20 96.90 82.00 95.60 81.70 97.90 89.50 87.00
FSrpr 98.60 95.70 79.60 94.60 79.80 98.30 94.70 86.30
FSr f e 95.50 83.00 81.90 90.20 82.50 5.20 89.30 80.10
FSbic 98.30 95.70 79.50 94.90 80.60 98.60 94.00 89.10

Table 8. Performance analysis of classifiers for baseline and its generated feature subsets of adults.

NB BG CART KNN C4.5 KS SVM RT

Accuracy Baseline 94.18 87.56 89.26 91.94 93.02 92.66 96.06 85.15
FSbor 94.38 87.57 89.17 93.2 92.75 93.29 96.60 87.20
FSc f s 95.52 87.47 89.53 96.69 93.02 97.31 99.82 87.83
FSrpr 95.34 87.50 88.99 94.99 92.66 94.45 96.42 88.90
FSr f e 92.30 85.51 88.46 90.78 90.33 91.05 91.68 85.51
FSbic 95.34 87.50 88.99 94.99 92.66 94.45 96.42 88.90

Kappa Stat. Baseline 86.93 71.16 75.45 81.86 83.81 83.52 90.89 66.29
FSbor 87.31 71.21 75.30 84.52 83.25 84.87 92.13 70.77
FSc f s 89.85 71.02 76.12 92.44 83.76 93.93 99.59 72.30
FSrpr 89.46 71.21 74.90 88.60 83.05 87.52 91.67 74.49
FSr f e 82.46 66.12 73.28 78.76 77.58 79.58 80.21 67.11
FSbic 89.46 71.21 74.90 88.60 83.05 87.52 91.67 74.49

F1-Score FSbor 94.20 87.50 89.30 92.00 93.00 92.70 96.00 85.20
FSc f s 96.70 90.80 92.80 97.60 94.90 98.00 99.90 91.00
FSrpr 95.40 87.51 89.00 95.00 92.60 94.50 96.40 88.90
FSr f e 94.30 89.50 91.60 93.20 93.00 93.40 94.10 89.20
FSbic 95.40 87.51 89.00 95.00 92.60 94.50 96.40 88.90

AUROC Baseline 99.00 94.20 91.90 92.70 95.70 97.70 95.10 85.70
FSbor 99.20 94.21 92.50 93.70 95.80 98.50 95.70 86.40
FSc f s 99.50 94.40 92.70 99.10 96.10 99.70 99.80 87.00
FSrpr 99.50 94.30 91.60 95.70 95.80 99.00 95.20 88.20
FSr f e 97.90 92.20 90.10 91.90 92.30 97.50 88.70 85.00
FSbic 99.50 94.30 91.60 95.70 95.80 99.00 95.20 88.20
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Figure 3. The average (a) accuracy, (b) kappa statistics, (c) F1, and (d) AUROC of the toddler, child,
adolescent, and adult datasets of the classifiers.

4.3. Result Analysis of Kappa Statistics

Tables 5–8 show the outcomes of kappa statistics of NB, BG, CART, KNN, C4.5, KS,
SVM, and RT for four ASD groups and their feature subsets. In toddlers, the highest
kappa (94.87%) was calculated by SVM for FSrpr. Regarding the case of children, SVM also
provided the highest kappa of 99.21% for FSc f s and FSbic. For adolescents, the maximum
result (91.74%) was computed by SVM for FSbor. In the adult case, the highest kappa
(99.59%) was shown by SVM for FSc f s. Like the outcomes of accuracy, NB, KS, and KNN
showed the closest kappa to detect autism. Besides, the average kappa statistics of the
toddler, child, adolescent, and adult datasets are shown in Figure 3b. In this case, SVM
again showed the best average kappa in each age group.

4.4. Result Analysis of F1-Score

The performance of F-measures in each classifier is shown in Tables 5–8, for ASD
baselines and their subsets, respectively. The maximum F1-Score (97.80%) was generated
by SVM for FSrpr regarding the toddler dataset. When we observed the findings of the
children, SVM also gave the highest f-measure (99.90%) for FSc f s and FSbic. In adolescents,
the best result (95.90%) was generated by SVM for FSbor. For the adult dataset, SVM again
provided the highest outcome (96.90%) for FSc f s. However, NB, KS, and KNN represented
good results, which were almost similar to SVM. The average F-measure of the toddler,
child, adolescent, and adult datasets of different classifiers are shown in Figure 3c. Further,
SVM provided the average highest results in each age group.

4.5. Result Analysis of AUROC

The results of AUROC for the baseline and their feature subsets are shown in Tables 5–8.
In toddlers, NB provided the maximum result of 99.70% for FSbor. Regarding the children,
SVM and KS gave the highest result of 99.60% for FSc f s and FSbic, respectively. For ado-
lescents, the maximum result of 99.00% was produced by NB for FSbor. In adults, SVM
provided a result of 99.80%, which was the best outcome for FSc f s. AUROC, NB, SVM, KS,
and KNN showed good outcomes, whereas the performance of NB was slightly improved
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over others. The average AUROC of the toddler, child, adolescent, and adult datasets of
different classifiers are shown in Figure 3d. In this analysis, NB showed the highest average
scores to detect autism.

4.6. Result Analysis of Non-Parametric Statistical Analysis

In this study, the performance of different classifiers were investigated using non-
parametric the Wilcoxon Signed-Rank (WSR) test. We observed pairwise WSR values for
toddlers (i.e., Tables 9–12), children (i.e., Tables 13–16), adolescents (i.e., Tables 17–20), and
adults (i.e., Tables 21–24). At almost all age levels, SVM is a stable classifier to provide
better pairwise statistical significance with other classifiers in order to improve the accuracy,
kappa statistics, and f1-measure. Besides, NB sometimes shows better statistical significance
for these following metrics. However, this classifier showed better pairwise WSR results
with others for AUROC. Some other pairwise outcomes such as C4.5-CART, KNN-CART,
KS-BG, KS-CART, KS-KNN, KS-C4.5, KS-RT, CART-RT, KNN-RT, and C4.5-RT showed
almost-good outcomes in this test.

Table 9. Pairwise WSR test for accuracy of toddlers.

NB BG CART KNN C4.5 KS SVM RT

NB 0.0211 ** 0.0211 ** 0.0592 * 0.0179 ** 0.2643 1.0000 0.0211 **
BG 1.0000 0.0211 ** 1.0000 0.0211 ** 1.0000 1.0000 0.0592 *

CART 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
KNN 1.0000 0.1422 0.0179 ** 0.0211 ** 1.0000 1.0000 0.1787
C4.5 1.0000 1.0000 0.0211 ** 1.0000 1.0000 1.0000 1.0000
KS 1.0000 0.0211 ** 0.0211 ** 0.0256 ** 0.0211 ** 1.0000 0.1787

SVM 0.0211 ** 0.0211 ** 0.1787 0.1787 0.0211 ** 0.0211 ** 0.0211 **
RT 1.0000 1.0000 0.0211 ** 1.0000 0.0408 ** 1.0000 1.0000

Note: Significant at 5% = **, 10% = *.

Table 10. Pairwise WSR test for kappa statistics of toddlers.

NB BG CART KNN C4.5 KS SVM RT

NB 0.0211 ** 0.0211 ** 0.0592 * 0.0211 ** 0.4017 1.0000 0.0211 **
BG 1.0000 0.0211 ** 1.0000 0.0211 ** 1.0000 1.0000 0.0592 *

CART 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
KNN 1.0000 0.0592 * 0.0211 ** 0.0211 ** 1.0000 1.0000 0.0211 **
C4.5 1.0000 1.0000 0.0211 1.0000 1.0000 1.0000 1.0000
KS 1.0000 0.0211 ** 0.0211 ** 0.0211 ** 0.0211 ** 1.0000 0.0211 **

SVM 0.0211 ** 0.0211 ** 0.0211 ** 0.0211 ** 0.0211 ** 0.0211 ** 0.0211 **
RT 1.0000 1.0000 0.0211 1.0000 0.0360 ** 1.0000 1.0000

Note: Significant at 5% = **, 10% = *.

Table 11. Pairwise WSR test for F1-measure of toddlers.

NB BG CART KNN C4.5 KS SVM RT

NB 0.0179 ** 0.0179 ** 0.0592 * 0.0100 *** 0.4511 1.0000 0.0179 **
BG 1.0000 0.0179 ** 1.0000 0.0179 ** 1.0000 1.0000 0.5917

CART 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
KNN 1.0000 0.0591 * 0.0211 ** 0.0211 ** 1.0000 1.0000 0.0211 **
C4.5 1.0000 1.0000 0.0179 ** 1.0000 1.0000 1.0000 1.0000
KS 1.0000 0.0211 ** 0.0211 ** 0.0256 ** 0.0211 ** 1.0000 0.0211 **

SVM 0.0211 ** 0.0211 ** 0.0211 ** 0.0211 ** 0.1787 0.0211 ** 0.0211 **
RT 1.0000 1.0000 0.0211 ** 1.0000 0.0408 ** 1.0000 1.0000

Note: Significant at 1% = ***, 5% = **, 10% = *.
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Table 12. Pairwise WSR test for AUROC of toddlers.

NB BG CART KNN C4.5 KS SVM RT

NB 0.0149 ** 0.0179 ** 0.0211 ** 0.0211 ** 0.0592 * 0.0211 ** 0.0211 **
BG 1.0000 0.0179 ** 0.0360 ** 0.0179 ** 1.0000 0.0179 ** 0.0211 **

CART 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.3326
KNN 1.0000 1.0000 0.0211 ** 0.0211 ** 1.0000 0.9143 0.0179 **
C4.5 1.0000 1.0000 0.0179 ** 1.0000 1.0000 1.0000 0.0672 *
KS 1.0000 0.0211 ** 0.0179 ** 0.0211 ** 0.0179 ** 0.0211 ** 0.0211 **

SVM 1.0000 1.0000 0.0211 ** 0.9143 0.0179 ** 1.0000 0.0313 **
RT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: Significant at 5% = **, 10% = *.

Table 13. Pairwise WSR test for accuracy of child.

NB BG CART KNN C4.5 KS SVM RT

NB 0.0100 *** 0.0179 ** 0.5183 0.0310 ** 0.8295 1.0000 0.0211 **
BG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6750

CART 1.0000 0.2817 1.0000 1.0000 1.0000 1.0000 0.5294
KNN 1.0000 0.0179 ** 0.0179 ** 0.0592 * 1.0000 1.0000 0.0211 **
C4.5 1.0000 0.2945 0.0310 ** 1.0000 1.0000 1.0000 0.2945
KS 1.0000 0.0179 ** 0.0179 ** 0.4024 0.0592 ** 1.0000 0.0211 **

SVM 0.0149 ** 0.0179 ** 0.0179 ** 0.0179 ** 0.0179 ** 0.0179 ** 0.0211 **
RT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: Significant at 1% = ***, 5% = **, 10% = *.

Table 14. Pairwise WSR Test for kappa statistics of children.

NB BG CART KNN C4.5 KS SVM RT

NB 0.0100 *** 0.0179 ** 0.5183 0.0256 ** 0.8295 1.0000 0.0179 **
BG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6668

CART 1.0000 0.2817 1.0000 1.0000 1.0000 1.0000 0.8295
KNN 1.0000 0.0179 ** 0.0179 ** 0.0527 * 1.0000 1.0000 0.0179 **
C4.5 1.0000 0.2817 0.0256 ** 1.0000 1.0000 1.0000 0.2817
KS 1.0000 0.0179 ** 0.0179 ** 0.3891 0.0527 * 1.0000 0.0179 **

SVM 0.0149 ** 0.0179 ** 0.0179 ** 0.0179 ** 0.0179 ** 0.0179 ** 0.0179 **
RT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: Significant at 1% = ***, 5% = **, 10% = *.

Table 15. Pairwise WSR test for F1-Measure of children.

NB BG CART KNN C4.5 KS SVM RT

NB 0.0179 ** 0.0179 ** 0.5294 0.0310 ** 0.6668 1.0000 0.0211 **
BG 1.0000 0.0850 * 1.0000 1.0000 1.0000 1.0000 0.6668

CART 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
KNN 1.0000 0.0211 ** 0.0211 ** 0.0592 * 1.0000 1.0000 0.0211 **
C4.5 1.0000 0.2817 0.0211 ** 1.0000 1.0000 1.0000 0.2945
KS 1.0000 0.0211 ** 0.0179 ** 0.5904 0.0935 * 1.0000 0.0179 **

SVM 0.0211 ** 0.0211 ** 0.0179 ** 0.0211 ** 0.0211 ** 0.0211 ** 0.0179 **
RT 1.0000 1.0000 0.1318 1.0000 1.0000 1.0000 1.0000

Note: Significant at 5% = **, 10% = *.
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Table 16. Pairwise WSR Test for AUROC of Child.

NB BG CART KNN C4.5 KS SVM RT

NB 0.0179 ** 0.0100 *** 0.0179 ** 0.0211 ** 0.8295 0.0850 * 0.0211 **
BG 1.0000 0.0179 ** 1.0000 0.1617 1.0000 1.0000 0.0211 **

CART 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
KNN 1.0000 0.0527 * 0.0179 ** 0.0360 ** 1.0000 1.0000 0.0211 **
C4.5 1.0000 1.0000 0.0211 ** 1.0000 1.0000 1.0000 0.0211 **
KS 1.0000 0.0179 ** 0.0179 ** 0.0179 ** 0.0211 ** 0.0464 ** 0.0211 **

SVM 1.0000 0.1318 0.0179 ** 0.1964 0.0360 ** 1.0000 0.0211 **
RT 1.0000 1.0000 0.0935 * 1.0000 1.0000 1.0000 1.0000

Note: Significant at 1% = ***, 5% = **, 10% = *.

Table 17. Pairwise WSR test for accuracy of adolescents.

NB BG CART KNN C4.5 KS SVM RT

NB 0.0179 ** 0.0100 *** 0.0179 ** 0.0211 ** 0.8295 0.0850 * 0.0211 **
BG 1.0000 0.0179 ** 1.0000 0.1617 1.0000 1.0000 0.0211 **

CART 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
KNN 1.0000 0.0527 * 0.0179 ** 0.0360 ** 1.0000 1.0000 0.0211 **
C4.5 1.0000 1.0000 0.0211 ** 1.0000 1.0000 1.0000 0.0211 **
KS 1.0000 0.0179 ** 0.0179 ** 0.0179 ** 0.0211 ** 0.0464 * 0.0211 **

SVM 1.0000 0.1318 0.0179 ** 0.1964 0.0360 ** 1.0000 0.0211 **
RT 1.0000 1.0000 0.0935 * 1.0000 1.0000 1.0000 1.0000

Note: Significant at 1% = ***, 5% = **, 10% = *.

Table 18. Pairwise WSR test for kappa statistics of adolescents.

NB BG CART KNN C4.5 KS SVM RT

NB 0.0211 ** 0.0211 ** 0.5294 0.0211 ** 0.5183 1.0000 0.0211 **
BG 1.0000 0.2945 1.0000 1.0000 1.0000 1.0000 0.8339

CART 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
KNN 1.0000 0.0211 ** 0.0211 ** 0.0360 ** 0.5294 1.0000 0.0211 **
C4.5 1.0000 0.4017 0.0360 ** 1.0000 1.0000 1.0000 0.6750
KS 1.0000 0.0211 ** 0.0211 ** 1.0000 0.0360 ** 1.0000 0.0211 **

SVM 0.0360 0.0211 ** 0.0211 ** 0.0935 0.0211 ** 0.0592 * 0.0211 **
RT 1.0000 1.0000 0.2084 1.0000 1.0000 1.0000 1.0000

Note: Significant at 5% = **, 10% = *.

Table 19. Pairwise WSR test for F1-Measure of adolescents.

NB BG CART KNN C4.5 KS SVM RT

NB 0.0211 ** 0.0211 ** 0.5294 0.0211 ** 0.3488 1.0000 0.0211 **
BG 1.0000 0.2817 1.0000 1.0000 1.0000 1.0000 1.0000

CART 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
KNN 1.0000 0.0211 ** 0.0211 ** 0.0360 ** 0.5294 1.0000 0.0211 **
C4.5 1.0000 0.2945 0.0211 ** 1.0000 1.0000 1.0000 0.5294
KS 1.0000 0.0211 ** 0.0211 ** 1.0000 0.0360 ** 1.0000 0.0211 **

SVM 0.0211 ** 0.0211 ** 0.0211 ** 0.0935 * 0.0211 ** 0.0592 * 0.0211 **
RT 1.0000 0.8339 0.2945 1.0000 1.0000 1.0000 1.0000

Note: Significant at 5% = **, 10% = *.
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Table 20. Pairwise WSR test for AUROC of adolescents.

NB BG CART KNN C4.5 KS SVM RT

NB 0.0935 * 0.0211 ** 0.0360 ** 0.0211 ** 0.0360 ** 0.0211 ** 0.0211 **
BG 1.0000 0.0211 ** 1.0000 0.0208 ** 1.0000 1.0000 0.0211 **

CART 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
KNN 1.0000 0.2945 0.0211 ** 0.0360 ** 1.0000 0.8295 0.0211 **
C4.5 1.0000 1.0000 0.0592 * 1.0000 1.0000 1.0000 0.6750
KS 1.0000 0.2945 0.2945 0.2945 0.2945 0.2945 0.2945

SVM 1.0000 0.6750 0.0211 ** 1.0000 0.0211 ** 1.0000 0.0211 **
RT 1.0000 1.0000 0.4017 1.0000 1.0000 1.0000 1.0000

Note: Significant at 5% = **, 10% = *.

Table 21. Pairwise WSR test for accuracy of adults.

NB BG CART KNN C4.5 KS SVM RT

NB 0.0179 ** 0.0179 ** 0.0850 * 0.0179 ** 0.2817 1.0000 0.0179 **
BG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CART 1.0000 0.0179 ** 1.0000 1.0000 1.0000 1.0000 0.0179 **
KNN 1.0000 0.0179 ** 0.0179 ** 0.0767 * 1.0000 1.0000 0.0179 **
C4.5 1.0000 0.0179 ** 0.0179 ** 1.0000 1.0000 1.0000 0.0179 **
KS 1.0000 0.0179 ** 0.0179 ** 0.3891 0.0313 ** 1.0000 0.0179 **

SVM 0.0313 ** 0.0179 ** 0.0179 ** 0.0179 ** 0.0179 ** 0.0179 ** 0.0179 **
RT 1.0000 0.7802 1.0000 1.0000 1.0000 1.0000

Note: Significant at 5% = **, 10% = *.

Table 22. Pairwise WSR test for kappa statistics of adults.

NB BG CART KNN C4.5 KS SVM RT

NB 0.0179 ** 0.0179 ** 0.0850 * 0.0179 ** 0.2817 1.0000 0.0179 **
BG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CART 1.0000 0.0179 ** 1.0000 1.0000 1.0000 1.0000 0.0179 **
KNN 1.0000 0.0179 ** 0.0179 ** 0.0767 * 1.0000 1.0000 0.0179 **
C4.5 1.0000 0.0179 ** 0.0179 ** 1.0000 1.0000 1.0000 0.0179 **
KS 1.0000 0.0179 ** 0.0179 ** 0.3891 0.0313 ** 1.0000 0.0179 **

SVM 0.0313 0.0179 ** 0.0179 ** 0.0179 ** 0.0179 ** 0.0179 ** 0.0179 **
RT 1.0000 0.3891 1.0000 1.0000 1.0000 1.0000 1.0000

Note: Significant at 5% = **, 10% = *.

Table 23. Pairwise WSR test for F1-Measure of adults.

NB BG CART KNN C4.5 KS SVM RT

NB 0.0256 ** 0.0256 ** 0.1629 0.0256 ** 0.2643 1.0000 0.0256 **
BG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CART 1.0000 0.0256 ** 1.0000 1.0000 1.0000 1.0000 0.0256 **
KNN 1.0000 0.0256 ** 0.0256 ** 0.0940 1.0000 1.0000 0.0256 **
C4.5 1.0000 0.0256 ** 0.0256 ** 1.0000 1.0000 1.0000 0.0256 **
KS 1.0000 0.0256 ** 0.0256 ** 0.7802 0.0507 * 1.0000 0.0256 **

SVM 0.0507 * 0.0256 ** 0.0256 ** 0.0256 ** 0.0256 ** 0.0126 ** 0.0256 **
RT 1.0000 0.7802 1.0000 1.0000 1.0000 1.0000 1.0000

Note: Significant at 5% = **, 10% = *.
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Table 24. Pairwise WSR test for AUROC of adults.

NB BG CART KNN C4.5 KS SVM RT

NB 0.0179 ** 0.0179 ** 0.0179 ** 0.0149 ** 0.0313 ** 0.0313 ** 0.0179 **
BG 1.0000 0.0179 ** 1.0000 1.0000 1.0000 1.0000 0.0179 **

CART 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0179 **
KNN 1.0000 0.5183 0.0179 ** 1.0000 1.0000 1.0000 0.0179 **
C4.5 1.0000 0.0100 *** 0.0179 ** 0.2236 1.0000 0.2817 0.0179 **
KS 1.0000 0.0149 ** 0.0100 *** 0.0179 ** 0.0179 ** 0.0313 ** 0.0179 **

SVM 1.0000 0.1964 0.0313 ** 0.6668 1.0000 1.0000 0.0179 **
RT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: Significant at 1% = ***, 5% = **.

4.7. Exploring Significant Feature Sets and Discriminatory Factors of Individual Age Groups

For toddler datasets, SVM represented their maximum result in all metrics except
AUROC for FSrpr. When we considered the value of AUROC, NB showed the best result
for FSrpr. Then, SVM also showed their highest outcomes for all metrics for FSc f s and
FSbic in child datasets. In addition, KS provided the best AUROC for FSc f s and FSbic. In
adolescent datasets, SVM showed the best accuracy, kappa statistics, and f1-score for FSbor.
However, NB represented the top AUROC for FSc f s. In adult datasets, SVM also produced
the highest findings in all metrics for FSc f s. Therefore, it was found that the RIPPER
algorithm for toddler, the Boruta algorithm for adolescent, and the CFS method for child
and adult datasets were responsible to generate high results in the classification process.

Figure 2 depicts the ranks of SHAP values of toddler’s RIPPER subset, adolescent’s
Boruta subset, as well as the subsets of CFS child and adult datasets. The assessment of
these values was performed with the best-performing SVM for these individual subsets.
For the RIPPER subset of toddlers, the most important discriminatory features were “age
group identification,” “Character’s Intention (A7),” “Following relook (A6),” “Pretending
Capability (A5),” and “Pointing to the interest (A4)” to detect autism at an early stage.
For the CFS subset of children, “Back to the activities (A4),” “Making Friends (A10),”
“Finding the character’s intention (A7),” “Understanding someone’s feeling (A9),” and
“Noticing sound (A1)” were the most crucial discriminating factors. Besides, “Social activity
(A6),” “Indicating toy (A3),” “Pretending Capability (A5),” “Return to work (A4),” and
“Developing Relationships (A10)” were the most significant discriminating factors for the
Boruta subset of adolescents. In the CFS subset of adults, “Understanding someone’s
feelings (A9),” “Pretending Capability (A5),” “Social activity (A6),” “Track activities (A3),”
and “Return to work (A4)” are the major discriminating factors to detect autism.

5. Discussion and Conclusions

In this study, we proposed a machine learning model that analyzed ASD datasets
of individual age groups (toddlers, children, adolescents, and adults) to detect autism
at an early stage. This model used different feature selection methods like Boruta, CFS,
RIPPER, and RFE to generate feature subsets. Then, NB, BG, CART, KNN, C4.5, KS,
SVM, and RT were employed to classify autism at an early stage. When we evaluated
the performance of them, SVM was the most stable classifier to explore the best result for
different age groups, respectively. Along with SVM, KS, KNN, and NB showed better
results to identify autism, respectively. On the other hand, individual classifiers presented
their best performance in FSrpr for toddlers, FSbor for adolescents, FSc f s for children and
adults, and FSbic for children.

Table 25 shows the comparison of the proposed model with related previous studies.
Most of the existing works were worked with version-1 ASD datasets of Thabtah et al. [6].
Besides, they did not properly focus on early detection of autism for toddlers and adoles-
cents. Some works occurred with version-2 adolescent and adult datasets, whereas most of
them did not conduct those works with more samples and machine learning approaches.
Thabtah et al. [14] used CHI and IG feature ranking methods into primary adolescent and
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adult datasets to produce the most significant feature subsets. Then, they implemented
logistic regression into primary datasets and subsets and observed the highest 99.91% accu-
racy for the adolescent dataset and a 97.58% accuracy for the adult dataset. In this work, we
investigated all version-2 datasets of different age groups of Thabtah et al. [14] where SVM
achieved a 97.82% accuracy with FSrpr for the toddler dataset, a 99.61% accuracy with FSc f s
and FSbic for the child dataset, a 95.87% accuracy with FSbor for the adolescent dataset,
and a 96.82% accuracy for the adult dataset for FSc f s. Besides, we applied numerous
feature selection and classification methods to justify these baselines and its feature sets
more efficiently. In addition, a post hoc statistical significant test and SHAP interpretation
method was used to evaluate deeply the outcomes of the proposed models. These types of
evaluations did not properly occur in most of the existing works.

Table 25. Comparison of proposed model with other previous studies.

Dataset Version Feature Reference Accuracy Kappa. F1 AUROC
Reduction (%) (%) (%) (%)

Toddler v1 No [57] - - - -

v1 No [58] - - - -
v2 No [14] - - - -

v2 Yes Proposed
Model 97.82 94.87 97.80 99.70

Child v1 No [57] - - - -

v1 No [58] 98.62 98.60 - -
v2 No [14] - - - -

v2 Yes Proposed
Model 99.61 99.21 99.60 99.60

Adolescent v1 No [57] - - - -
v1 No [58] - - - -
v2 No [14] 99.91 - - -

v2 Yes Proposed
Model 95.87 91.74 95.90 99.00

Adult v1 No [57] 91.74 - - -

v1 No [58] 99.73 99.38 - -
v2 No [14] 97.58 - - -

v2 Yes Proposed
Model 99.82 99.59 99.90 99.80

In conclusions, the proposed machine learning framework was used to produce more-
accurate and efficient results for early detection of ASD at individual age groups. Since
diagnosing ASD traits is an expensive and time-consuming procedure, it is often postponed
due to the difficulty of detecting autism in children and adolescents. In this process,
machine learning models are efficient to detect autism at an early stage very efficiently.
However, this model was not trained with various multivariate/dimensional datasets
and explored significant attributes. In the future, we will integrate this framework with
advanced technologies and develop a more-efficient ASD diagnosis system. This system
will be applicable for the preliminary diagnosis of ASD at an early stage with low costs.
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