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Abstract

:

Automatic grouping (clustering) involves dividing a set of objects into subsets (groups) so that the objects from one subset are more similar to each other than to the objects from other subsets according to some criterion. Kohonen neural networks are a class of artificial neural networks, the main element of which is a layer of adaptive linear adders, operating on the principle of “winner takes all”. One of the advantages of Kohonen networks is their ability of online clustering. Greedy agglomerative procedures in clustering consistently improve the result in some neighborhood of a known solution, choosing as the next solution the option that provides the least increase in the objective function. Algorithms using the agglomerative greedy heuristics demonstrate precise and stable results for a k-means model. In our study, we propose a greedy agglomerative heuristic algorithm based on a Kohonen neural network with distance measure variations to cluster industrial products. Computational experiments demonstrate the comparative efficiency and accuracy of using the greedy agglomerative heuristic in the problem of grouping of industrial products into homogeneous production batches.
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1. Introduction


The search for a clustering algorithm that has both high accuracy and stability of the result, and, at the same time, a high speed of operation, is one of the problems of cluster analysis. The clustering result depends on the initially selected number of subsets, as well as the selected measure of similarity (dissimilarity) [1]. One of the most famous automatic grouping models is the k-means model [2], which was proposed by Steinhaus [3]. The goal of the k-means problem is to find k points (centers, centroids) X1, …, Xk in an M-dimensional space, such that the sum of the squared distances from the known points (data vectors) A1, …, Am to the nearest of the required points reaches a minimum:


  arg min F (  X 1  , … ,  X k  ) =   ∑  j ∈ { 1 , k }    min    ‖   X j  −  A i   ‖   2    .  



(1)







Optimization model (1) can be considered as a location problem, where the points Xj have to be placed in an optimal way. Location theory has been developing for a long time separately from cluster analysis while solving very close or completely identical problems. Weiszfeld proposed an iterative procedure for solving the Weber problem, one of the simplest location problems, based on an iterative weighted least squares method [4]. This algorithm determines a set of weights that are inversely proportional to the distances from the current estimate to the sample points and creates a new estimate that is the weighted average of the sample according to these weights. In specific situations, Weiszfeld’s algorithm is very slow and does not always converge.



Local search methods for solving location problems are used in Ref. [5]. The standard local descent algorithm starts with an initial solution S = {X1, …, Xk}, chosen randomly or with the help of some auxiliary algorithm. At each step of the local descent, there is a transition from the current solution to a neighboring solution with a smaller value of the objective function until the local optimum is reached. The key problem here is to find the set of neighboring solutions n(S). At each step of the local search, the neighborhood function n(S) specifies a set of possible search directions. Neighborhood functions can be very diverse, and the neighborhood relation is not always symmetrical. Local search algorithms are widely used to solve NP-hard discrete optimization problems. However, simple local descent does not allow the finding of the global optimum of the problem.



Local search methods were further developed in so-called metaheuristics, in particular in the search algorithm with variable neighborhoods (variable neighborhoods search, VNS). Its main idea is to systematically change the neighborhood function and the corresponding change in the landscape during the local search.



The k-means problem was algorithmically implemented by S. Lloyd [6]. For the observation vector X, the k-means algorithm is designed to determine k centers and assign data points (objects) to each center to form clusters Cj, j = 1… k while minimizing the difference between the objects within the cluster. In the k-means algorithm, it is necessary to initially predict the number of groups (clusters).



In addition, the result obtained depends on the initial choice of centers, which is one of the main disadvantages of the algorithm. The modern literature offers many approaches to setting the initial centroids for the k-means algorithm, which are basically various evolutionary and random search methods. One of the most popular methods is the k-means++ algorithm [7], where the first centroid is chosen randomly and further selection goes with a certain probability. Moreover, in Ref. [8], a similar method is developed based on finding areas with maximum density. In Ref. [9], the authors propose a brute-force approach to the initialization of the k-means algorithm. Kalczynski et al. in Ref. [10] introduce three algorithms (merging, construction and separation) to create starting solutions of the k-means problem. In Ref. [11], a heuristic-based algorithm to improve the initial seeding of the k-means clustering described is implemented, where a hybrid approach with a genetic algorithm and the differential evolution heuristic is used. Detailed overviews of the existing initialization approaches may be found in Refs. [12,13,14].



The Kohonen neural network [15] of the vector quantization type is an autoassociator closely related to k-means. This competitive network can be related to unsupervised learning. The Kohonen learning law is an algorithm that finds the centroid (called “codebook vector”) closest to each training case and moves the winning centroid closer to the training case. Another type of Kohonen network is the self-organizing map competitive network that provides a topological mapping from the input space to the clusters. Kohonen networks are used in many fields of interest, such as speech recognition [16,17], image compression [18,19], image segmentation [20], face recognition [21,22,23], classification of weather patterns [24], malware detection [25], seasonal sales planning [26], medical decision-making [27,28], e-learning recommendations [29], denial of service attack defense detection [30], groundwater quality assessment [31], exploration of the investment patterns [32] and others.



Greedy agglomerative heuristic procedures [33,34] are tools to improve a result in a certain neighborhood of the solution. An agglomerative procedure starts with some solution S containing an excessive number of centroids and sequentially removes them. The elements of the clusters, related to the removed centroids, are redistributed among the remaining clusters. The greedy strategies are used to decide which clusters are most similar to be merged together at each iteration of the agglomerative procedure. For subsequent iterations, the chosen method is that which gave the best increase in the objective function in the previous iterations. The practice of solving NP-hard problems shows the efficiency of the transition from randomized recombination procedures to the search for the best recombination method [35]. The authors in Ref. [36] proposed methods of greedy agglomerative heuristics based on the location theory models. Algorithms using these methods are often randomized, but the results are quite stable. The method of greedy agglomerative heuristics uses evolutionary algorithms as one of the ways to organize a global search.



To date, the vast majority of the algorithms developed for continuous location problems use the most common distance measures (Euclidean, Manhattan). However, taking into account the characteristics of the feature space of a specific practical problem, the choice of a distance measure can lead to an increase in the accuracy of clustering. For instance, Itakura–Saito distance was used to build the learning vector quantization algorithm. In Ref. [19], a method is proposed for using the Mahalanobis distance as the basis for grouping. The Mahalanobis distance was also used to cluster incoming data into neural nodes in a self-organizing incremental neural network [22]. Kohonen networks with graph-based augmented metrics are presented in Ref. [37]. In Ref. [38], a distance measure for a self-organizing map is defined based on data distribution, and it is calculated with the use of an energy function. A distance metric learning method is often applied. For instance, in Ref. [22], the Mahalanobis matrix is computed, which assures small distances between the nearest neighbor points from the same class and the separation of points belonging to different classes by a large margin. Metric learning for the SOM based on the adaptive subspaces is represented in Ref. [39]. Furukawa [40] offers a nonlinear metrics learning method. The authors in Ref. [41] use an ensemble approach to metric learning with objective function generalization. Yoneda and Furukawa [42] propose a co-training approach, which collapses the objective function, thereby avoiding undesirable local optima.



In our work, our aim is solving the problem of the automatic grouping of objects. As a base, we use different types of Kohonen networks and modify them with the greedy agglomerative heuristic and different types of distance measures. Then, we test our approach on the applied problem.



The rest of this paper is organized as follows. In the Section 2, we introduce the Kohonen neural network model and propose our new algorithm involving the greedy agglomerative heuristic procedure. In the Section 3, we describe the computational experiments with a practically important dataset. In the Section 4 and Section 5, we discuss the results and provide a short conclusion.




2. Kohonen Neural Networks for Clustering Problem


2.1. Distance Measures


In clustering problems, the key concept is the concept of distance metrics between objects. Metric is a function that determines the measure of the distance between objects in the metric space Rp. Metric space is a set of points with a distance function d(xi, yi). The distance of order p between two points is determined by the Minkowski function (lp–norm) [1,43,44]:


  d ( x , y ) =    (    ∑  i = 1  M      |   x i  −  y i   |   p     )     1 p    ,  



(2)




where x and y are vectors of parameter values, M is the vector dimension. The parameter p is determined by the researcher; it can be used to progressively increase or decrease the weight of the i-th variable. Special cases of the Minkowski function depend on the p value. For p = 2, the function calculates the Euclidean distance between two points (l2–norm):


  d ( x , y ) =     ∑  i = 1  M      (   x i  −  y i   )   2      .  



(3)







The squared Euclidean distance is often used:


  d ( x , y ) =   ∑  i = 1  M      (   x i  −  y i   )   2    .  



(4)







For p = 1, the function calculates the Manhattan distance, also called rectangular (l1–norm):


  d ( x , y ) =   ∑  i = 1  M    |   x i  −  y i   |    .  



(5)







For p = ∞, the function calculates the Chebyshev distance, returning the largest value of the difference between the object parameters modulo:


  d ( x , y ) = max  |   x i  −  y i   |  .  



(6)







In addition to the cases of the dependence of the distance function on the parameter p, there are other methods for calculating distances, for example, the Mahalanobis distance [45]. Mahalanobis distance can be defined as a measure of dissimilarity (difference) between vectors from the same probability distribution with the covariance matrix C:


  d ( x , y ) =     ∑  i = 1  M      (   x i  −  y i   )   T  ·  C  − 1   ·  (   x i  −  y i   )      .  



(7)







If the covariance matrix is identity, then the distance becomes equal to Euclidean. The covariance matrix is defined as:


  C = cov ( x , y ) = μ  [   (  x − μ ( x )  )   (  y − μ ( y )  )   ]  ,  



(8)




where μ is expected value. In most cases, the literature presents problems with Euclidean or Manhattan metrics.



In our study, we use five different types of distance measures to evaluate which one is preferable in our case.




2.2. Vector Quantization Networks and Self-Organizing Kohonen Maps


A Kohonen network [15,39] is a self-organized neural network that enables us to allocate groups (clusters) of input vectors that have some common features. The Kohonen network (or Kohonen layer) is a single-layer network, each neuron of which is connected to all components of the input vector. The input vector is a description of one of the objects to be clustered. The number of neurons coincides with the number of clusters K that the network should allocate. Linear weighted adders are used as neurons in the Kohonen network. Each j-th neuron is described by a vector of weights Wj = (w1j, w2j, …, wMj), where M is input vector dimension, j = 1…K. The input vector has the form Xi = (x1i, x2i, …, xMi), i = 1…N, where N is number of objects.



According to the methods of adjusting the input weights of the adders and the problems being solved, many varieties of Kohonen networks are distinguished [46]. The most famous of them are:




	
Vector quantization networks (VQ), closely related to k-means method;



	
Self-organizing Kohonen maps (SOM), which provide a “topological” mapping from the input space to the clusters. Neurons in SOMs are organized into a grid (usually two-dimensional);



	
Learning vector quantization networks (LVQ), which include supervised learning and used for classification problems.








First two types of Kohonen networks refer to unsupervised learning, considered in this article.



Vector quantization consists of replacing a continuous distribution by a finite set of quantizers while minimizing a predefined distortion criterion and may be used to determine groups (clusters) of data sharing common properties [46]. Since vector quantization is a natural application for k-means, the centroids are also referred to as a “codes”, and the table mapping codes to centroid is often referred to as a “codebook”.



Competition mechanisms are used to train the network according to principle “winner takes all”, for instance, simple competitive learning (SCL) algorithm [47]. When the vector X is fed to the network input, the neuron wins, the weight vector of which is the least different from the input vector:   d  (  X ,  W  c l    )  =   min   1 ≤ j ≤ K   d  (  X ,  W j   )   . This problem with K key vectors Wj in the feature space of the observed data X in terms of vector quantization is defined as a minimization of encoding distortion, i.e., as minimization problem:


  D =  ∑  j = 1  K   ∑  x ∈ V  ( j )    | | x −  W j  | |   2    → m i n  



(9)




where V(j) consists of points Xi ∈ X closest to Wj.



The SCL algorithm is in fact the online version of the Lloyd’s algorithm. If all data points are known in advance, this algorithm works offline as a batch algorithm (batch vector quantization, BVQ). The k-means method is an intermediate version, where only one data point is randomly chosen, and only the winning centroid is updated as the mean value of its cluster [46]. Thus, we can say that Kohonen networks have an advantage over the k-means model in that they allow organizing the online clustering. Basic version of SCL algorithm is represented in Algorithm 1.



	Algorithm 1. Basic SCL algorithm



	Required: Set of initial data vectors X1, …, XN, where N is the number of points; set the number of neurons K; η0 (η = η0), where η0 is the initial learning rate; set the step of changing the learning rate Δη;



	1. Set the weight of each neuron Wj (  j = 1 , K  )



	       2. While η > 0:



	              3. for   i =   1 , N  ¯    do



	                           4. for   j =   1 , K  ¯    do



	                                     5. Find the closest neuron Wcl to Xi:   c l = a r g   m i n   1 ≤ j ≤ K   d  (   X i  ,  W j   )   



	                           6. Update the closest neuron: Wcl = Wcl + η⋅(Xi − Wcl)



	              7. η = η − Δη








Self-organizing Kohonen maps [15,39] produce a mapping from a multidimensional input space onto a lattice of neurons. The mapping is topology-preserving in that neighboring neurons respond to “similar” input patterns. SOMs are typically organized as one- or two- dimensional lattices for the purpose of visualization and dimensionality reduction. During training, the winner neuron and its topological neighbors are adapted to make their weight vectors more similar to the input pattern that caused the activation. SOM algorithm with time limit is represented in Algorithm 2.



Thus, the SCL algorithm is a particular case of the SOM algorithm, when the neighborhood is reduced to zero. The magnitude of the changes decreases with time and is smaller for neurons far away from the winning neuron. The learning rates and neighborhood functions can be applied in various ways. However, these functions should be decreasing [48].



	Algorithm 2. Basic SOM algorithm



	Required: Set of initial data X1, …, XN, where N is the number of points; set the number of neurons K; η0 (η = η0), where η0 is the initial learning rate.



	1. Set the weight of each neuron Wj (  j = 1 , K  )



	2. t = 0



	3. While maximum time is not exceeded: t ≤ Tmax:



	       4. Randomly choose Xi from initial data X1, …, XN.



	       5. Find the closest neuron Wcl to Xi:   c l = a r g   m i n   1 ≤ j ≤ K   d  (   X i  ,  W j   )   



	       6. Update the closest neuron Wcl and its neighbors V(Wcl).



	             Here, V(Wcl) is the set of indexes in the neighborhood of Wcl, including Wcl:



	             For each p in V(Wcl):



	                 Wp = Wp + η(t) · h(t,d (Wp,Wcl)) · (Xi − Wp),



	                 where η(t) is learning rate, h(t,d (Wp,Wcl)) is neighborhood function.



	       7. t = t + 1



	8. End while








Several methods can be used to initialize the neurons. The simplest one is when the initial values are chosen randomly. Another method is to initialize the weights by the average of the minimum and the maximum values of the elements of the vectors that have to be classified.



Moreover, there are different types of stopping rules that can be applied at step 2 of Algorithm 1 and step 3 of Algorithm 2. A fixed threshold for the error, time limit of fixed number of algorithm repeating can be used.




2.3. Proposed Algorithms


For our purposes, we take as a basis the Kohonen network. First, we use vector quantization type (Algorithm 3). The idea is to initialize the excess number of neurons and then gradually decrease their number. The algorithm processes data points one by one. After a certain step, the neuron is removed, the removal of which shows the smallest increase in the value of the objective function. The learning rate decreases after a certain number of steps SN.



	Algorithm 3. SCL-based algorithm with a greedy agglomerative heuristic (SCL-GREEDY)



	Required: Set of initial data X1, …, XN, where N is the number of points; set the number of neurons K1; η0 (η = η0), where η0 is the initial learning rate; set the step of changing the learning rate Δη



	1.  Increase the number of neurons k times K = K · K1



	2.  Set the weight of each neuron Wj (  j = 1 , K  )



	3.  Determine the number of steps to calculate η: SN = trunc(N/K), jj = 1



	4.  While η > 0:



	     5.  For   i =   1 , N  ¯   , do



	          6.  For     j =   1 , K  ¯   , do



	               7.  Find the closest neuron Wcl to Xi:   c l = a r g   m i n   1 ≤ j ≤ K   d  (   X i  ,  W j   )   



	          8.  Update the closest neuron Wcl: Wcl = Wcl +η·(Xi − Wcl)



	          9.  For each neuron Wj, calculate sum of distances to the initial data



	               X1, …, Xi:



	                  S j  =   ∑  j = 1  K     ∑  q = 1  i      ‖   W j  −  X q   ‖   2       



	          10. IF i%(SN + 1) == 0, THEN Recalculate η: jj = jj + 1, η = η0/jj



	     11. IF K <> K1, THEN remove neuron Wj with the maximum sum of distances    S j   



	     12. η = η – Δη



	13. End while








SOM-based algorithm with a greedy agglomerative heuristic is represented in Algorithm 4.



Batch versions of described algorithms are similar to their online versions except that the neuron weights are recalculated after passing through all sample points. We denote batch version of SCL algorithm as BVQ (as in Ref. [46]) and batch version of SOM algorithm as BSOM.



	Algorithm 4. SOM-based algorithm with a greedy agglomerative heuristic (SOM-GREEDY)



	Required: Set of initial data X1, …, XN, where N is the number of points; set the number of neurons K1; η0 (η = η0), where η0 is the initial learning rate.



	1. Increase the number of neurons k times K = k · K1



	2. Set the weight of each neuron Wj (  j = 1 , K  )



	3. t = 0



	4. While maximum time is not exceeded: t ≤ Tmax:



	     5. Randomly choose Xi from initial data X1, …, XN.



	     6. Find the closest neuron Wcl to Xi:   c l = a r g   m i n   1 ≤ j ≤ K   d  (   X i  ,  W j   )   



	     7. Update the closest neuron Wcl and its neighbors V(Wcl).



	         Here, V(Wcl) is the set of indexes in the neighborhood of Wcl, including Wcl:



	          For each p in V(Wcl):



	            Wp = Wp + η(t) · h(t,d (Wp,Wcl)) · (Xi − Wp),



	            where η(t) is learning rate, h(t,d (Wp,Wcl)) is neighborhood function.



	8. For each neuron Wj, calculate sum of distances to the initial data X1, …, Xi:    S j  =   ∑  j = 1  K     ∑  q = 1  i      ‖   W j  −  X q   ‖   2       



	9. IF K <> K1, THEN remove neuron Wj with the maximum sum of distances    S j   



	10. η = η − Δη



	       11. t = t + 1



	12. End while










3. Computational Experiment and Analysis


For the experiment, we considered the sample consisting of four different homogeneous batches of electronic radio components [49]. The total number of devices in all batches is 446. We considered various combinations of batches: mixed lots from four, three and two batches. Four-batch mixed lot contains 62 parameters (features), three-batch mixed lot and two-batch mixed lot contain 41 parameters. The difficulty of the sample is that the number of parameters in it is large enough relative to the number of sample elements.



Each experiment is performed in online mode and in batch mode. We used different types of distance measures: Chebyshev distance (ChD), Euclidean distance (EuD), squared Euclidean distance (SEuD), Mahalanobis distance (MahD), Manhattan distance (ManD). The choice of the method for initializing the weight coefficients was also different: average, random and with preliminary clustering by the k-means algorithm. Each experiment was run 30 times.



Algorithms were implemented in Java. For the computational experiments, we used the following test system: AMD Ryzen 5-1600 6C/12T 3200MHz CPU, 16 CB RAM. Each experiment took an average of 1 min of computer time.



3.1. Experiments in Online Mode


In this section, we compare the results of the experiment performed with SCL and SCL-GREEDY methods. Experiment with initial number of neurons K1 coinciding with a given number of clusters is marked as SCL; experiments with the initial number of neurons exceeding the specified number of clusters by two (K = 2 × K1) and three (K = 3 × K1) times are marked as SCL-GREEDY(2) and SCL-GREEDY(3).



Computational experiments showed that the use of the greedy agglomerative heuristic in SCL algorithm, in most cases, improves the accuracy of batch separation. Moreover, clustering accuracy decreases with increasing number of homogeneous batches in a mixed lot (Figure 1).



With regard to the influence of the distance measure on the clustering accuracy, it can be noted that the Chebyshev distance has an advantage over the others except two-batch mixed lot. However, in the case of the Chebyshev distance, we were dealing with a large coefficient of variation and a span coefficient for 3 and 4 mixed lots.



Moreover, for various combinations of batches, the minimum (Min), maximum (Max), mean (Mean), standard deviation (σ), coefficient of variation (V) and the span factor (R) of the objective function are calculated (Table 1, Table 2, Table 3, Table 4 and Table 5, Figure 2).



Statistical significance of difference in the objective function values given by SCL algorithm and best of its greedy version were tested with Wilcoxon rank sum test. The best (minimal) mean values of objective function are given in bold if the precedence is statistically significant at p ≤ 0.05.



For Chebyshev distance, the best objective function value was achieved with SCL-GREEDY(3) algorithm for two and three batches in a mixed lot. For four batches, the difference between algorithms was insignificant. The coefficient of variation and span factor have minimal values with SCL algorithm for two-batch mixed lot and four-batch mixed lot. For three-batch mixed lot, the coefficient of variation and span factor show best result with SCL-GREEDY(3).



For Euclidean distance, the best objective function value was achieved with SCL-GREEDY(3) algorithm for two and four batches, and with SCL-GREEDY(2) for three batches. The coefficient of variation and span factor have minimal values with SCL-GREEDY(3) algorithm for almost all mixed lots. For the four-batch mixed lot, the coefficient of variation shows best result with SCL algorithm.



For squared Euclidean distance, for all mixed lots, SCL-GREEDY(3) gives the best value of objective function. Besides, SCL-GREEDY(3) algorithm gives minimal values of the coefficient of variation and span factor for the two-batch mixed lot and minimal value of the span factor for the three-batch mixed lot. SCL-GREEDY(2) algorithm gives minimal values of the coefficient of variation and span factor for the four-batch mixed lot. SCL algorithm for the three-batch mixed lot gives minimal value of the coefficient of variation.



For Mahalanobis distance, the difference between objective function values was insignificant for two-batch mixed lot. For three-batch and four-batch mixed lots, the minimal objective function value was achieved with SCL-GREEDY(3) algorithm. The coefficient of variation and span factor have minimal values with SCL-GREEDY(3) for the two-batch mixed lot. For the three-batch and four-batch mixed lots, the coefficient of variation and span factor show best result with SCL algorithm.



For Manhattan distance, the precedence of SCL-GREEDY(3) algorithm in objective function value was observed for all mixed lots. The coefficient of variation and span factor have minimal values with SCL algorithm for almost all mixed lots. For the two-batch mixed lot, the span factor shows best result with SCL-GREEDY(3) algorithm.



From Figure 2, it can be seen that the coefficient of variation is minimum with Chebyshev distance and Mahalanobis distance for mixed two-batch lot. For mixed three-batch lot, the coefficient of variation is minimum with square Euclidean distance and Manhattan distance. The worst (maximum) value it shows with Chebyshev distance for four-batch lot; other distances are similar to each other in this case.



The span factor shows the best result with Chebyshev distance and Mahalanobis distance for mixed two-batch lot. For mixed three-batch lot and four-batch lot, the span factor is the best with square Euclidean distance and Manhattan distance.




3.2. Experiments in Batch Mode


In this section, we compare the results of the experiment performed with modifications of BVQ and SOM algorithms. Experiment with initial number of neurons K1 coinciding with a given number of clusters is marked as BVQ and SOM; experiments with the initial number of neurons exceeding the specified number of clusters by two (K = 2 × K1) and three (K = 3 × K1) times are marked as BVQ-GREEDY(2), BVQ-GREEDY(3), SOM-GREEDY(2) and SOM-GREEDY(3). We used different methods for initializing the weight coefficients: by average, by random and with preliminary clustering by the k-means algorithm.



Experiments showed that, like in online mode, clustering accuracy decreases with increasing number of homogeneous batches in a mixed lot (Table 6, Table 7 and Table 8). Moreover, it can be seen that the use of the greedy agglomerative heuristic in batch mode improves the accuracy of batch separation for BVQ algorithm but degrades for SOM algorithm.



From Table 6, it can be seen that, for two-batch mixed lot, all presented algorithms exceed k-means in accuracy. However, BVQ, SOM-GREEDY(2), SOM-GREEDY(3) algorithms showed worse results for random initialization with Mahalanobis distance.



From Table 7, it can be seen that, for three-batch mixed lot, all presented algorithms were approximately equal to k-means algorithm in accuracy except Chebyshev distance. For BVQ algorithm, its greedy version was more accurate, but, for SOM algorithm, its greedy version was better only for Chebyshev distance.



From Table 8, it can be seen that, for four-batch mixed lot, all presented algorithms were approximately equal to k-means algorithm in accuracy except Chebyshev distance. For BVQ algorithm, its greedy version was more accurate. For SOM algorithm, on the contrary, result was generally better than its greedy version.



Characteristics of objective function value for batch-type algorithms with various combinations of distance measure and initialization method are given in Table A1, Table A2, Table A3, Table A4, Table A5, Table A6, Table A7, Table A8, Table A9, Table A10, Table A11, Table A12, Table A13, Table A14 and Table A15 of Appendix A. Results were tested with Wilcoxon rank sum test. Statistically significant superiority in objective function value between BVQ algorithm and its greedy version, SOM algorithm and its greedy version at p ≤ 0.05 highlighted in bold.



It turned out that, in the vast majority of cases, minimal objective function value was demonstrated by SOM algorithm without influence of initialization method or distance measure. Minimal value of coefficient of variation and span factor were achieved with Euclidean, squared Euclidean and Manhattan distance and initialization by average.



From Figure 3, Figure 4 and Figure 5, it can be seen that initialization by k-means increases the coefficient of variation value for any type of mixed lot composition.





4. Discussion


It can be summarized that the use of the greedy agglomerative heuristic procedure with the simple competitive learning algorithm in online mode improves the objective function value in the majority of the cases. In the other cases, the difference between our new algorithms and the known algorithms is insignificant (see two exceptions in our computational experiments: the four batches with Chebyshev distance and two batches with Mahalanobis distance).



It can be noted that, in the vast majority of cases, the use of a triple number of neurons in the greedy agglomerative heuristic procedure provided a smaller value of the objective function than double.



Regarding the stability of the results (coefficient of variation and span factor values), none of the algorithms have demonstrated advantages over the others.



The minimal values of the objective function were achieved with the squared Euclidean distance measure for two batches and with the Euclidean distance measure for three batches and with the Chebyshev distance measure for four batches.



In almost all the cases, the clustering accuracy of the SCL-GREEDY version was the same as or better than the SCL algorithm. The only exception was the three-batch mixed lot with Chebyshev distance.



Concerning batch mode algorithms, the situation was different. The greedy version of the BVQ algorithm demonstrated a better objective function value than the BVQ in 42% of the cases and a worse objective function value than the BVQ in 37% of the cases. In 23% of the cases, the difference was statistically insignificant. The SOM algorithm was better than its greedy version in the vast majority of cases.



The accuracy of the clustering in batch mode is similar to the situation with the objective function. Applying a greedy heuristic to the BVQ algorithm improves the clustering accuracy. However, the greedy version of the SOM algorithm exhibits less clustering accuracy.




5. Conclusions


In our work, we proposed algorithms for products clustering based on a Kohonen network and self-organizing Kohonen maps using the greedy agglomerative heuristic procedure in online and batch modes. We performed experiments with different distance measures (Euclidean, squared Euclidean, Manhattan, Chebyshev, Mahalanobis), different ways of neuron weights initialization (average, random, k-means) and different numbers of extra neurons in the greedy heuristic procedure.



The studies have shown that the used distance measure, in most cases, does not significantly affect the clustering accuracy. The way of neuron weights initialization plays a role for the stability of the objective function: the coefficient of variation for any type of mixed lot composition was higher (worse) with k-means initialization.



In batch mode, in the vast majority of cases, the minimal objective function value was demonstrated by the SOM algorithm without the influence of the initialization method or distance measure.



The computational experiments showed that the use of the greedy agglomerative heuristic in online mode, in most cases, improves the accuracy of homogeneous batch separation. In batch mode, the greedy heuristic improves the accuracy for the vector quantization algorithm and, on the contrary, reduces the accuracy for self-organized maps.



The study of the batch mode and online mode of algorithms for clustering products using the greedy agglomerative heuristic procedure on a large number of homogeneous batches is an interesting area for further research.
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Table A1. Objective function value summarized after 30 attempts (Chebyshev distance, initialization by average).






Table A1. Objective function value summarized after 30 attempts (Chebyshev distance, initialization by average).





	
Parameter

	
BVQ

	
SOM

	
BVQ-

GREEDY(2)

	
BVQ-

GREEDY(3)

	
SOM-

GREEDY(2)

	
SOM-

GREEDY(3)






	
Two-batch mixed lot




	

	
K1 = 2

	
K1 = 4

	
K1 = 6

	
K1 = 4

	
K1 = 6




	
Min

	
207.903

	
194.919

	
204.323

	
204.113

	
205.657

	
206.582




	
Max

	
207.903

	
217.269

	
204.323

	
216.201

	
205.657

	
249.768




	
Mean

	
207.903

	
203.274

	
204.323

	
205.577

	
205.657

	
222.260




	
σ

	
0.000

	
10.011

	
0.000

	
3.144

	
0.000

	
20.395




	
V

	
0.000

	
4.925

	
0.000

	
1.529

	
0.000

	
9.176




	
R

	
0.000

	
22.351

	
0.000

	
12.088

	
0.000

	
43.187




	
Three-batch mixed lot




	

	
K1 = 3

	
K1 = 6

	
K1 = 9

	
K1 = 6

	
K1 = 9




	
Min

	
342.987

	
252.824

	
294.450

	
303.473

	
258.930

	
254.905




	
Max

	
342.987

	
353.693

	
342.987

	
345.475

	
258.930

	
254.905




	
Mean

	
342.987

	
334.532

	
317.101

	
331.474

	
258.930

	
254.905




	
σ

	
0.000

	
32.018

	
25.064

	
20.495

	
0.000

	
0.000




	
V

	
0.000

	
9.571

	
7.904

	
6.183

	
0.000

	
0.000




	
R

	
0.000

	
100.869

	
48.537

	
42.001

	
0.000

	
0.000




	
Four-batch mixed lot




	

	
K1 = 4

	
K1 = 8

	
K1 = 12

	
K1 = 8

	
K1 = 12




	
Min

	
553.715

	
493.863

	
493.936

	
493.368

	
553.548

	
559.033




	
Max

	
701.325

	
578.828

	
563.388

	
561.249

	
705.364

	
701.241




	
Mean

	
613.034

	
523.175

	
548.875

	
528.842

	
576.858

	
616.482




	
σ

	
70.632

	
30.295

	
23.659

	
32.589

	
38.347

	
61.034




	
V

	
11.522

	
5.791

	
4.311

	
6.162

	
6.647

	
9.900




	
R

	
147.610

	
84.965

	
69.452

	
67.881

	
151.816

	
142.208
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Table A2. Objective function value summarized after 30 attempts (Chebyshev distance, initialization by k-means).






Table A2. Objective function value summarized after 30 attempts (Chebyshev distance, initialization by k-means).





	
Parameter

	
BVQ

	
SOM

	
BVQ-

GREEDY(2)

	
BVQ-

GREEDY(3)

	
SOM-

GREEDY(2)

	
SOM-

GREEDY(3)






	
Two-batch mixed lot




	

	
K1 = 2

	
K1 = 4

	
K1 = 6

	
K1 = 4

	
K1 = 6




	
Min

	
207.903

	
195.429

	
204.323

	
204.113

	
205.657

	
216.201




	
Max

	
207.903

	
217.037

	
335.401

	
337.849

	
335.401

	
337.849




	
Mean

	
207.903

	
204.757

	
230.805

	
320.018

	
270.697

	
307.738




	
σ

	
0.000

	
9.869

	
54.136

	
47.057

	
44.573

	
43.024




	
V

	
0.000

	
4.820

	
23.455

	
14.705

	
16.466

	
13.981




	
R

	
0.000

	
21.608

	
131.079

	
133.737

	
129.744

	
121.648




	
Three-batch mixed lot




	

	
K1 = 3

	
K1 = 6

	
K1 = 9

	
K1 = 6

	
K1 = 9




	
Min

	
258.930

	
252.467

	
294.450

	
303.473

	
258.930

	
254.905




	
Max

	
258.930

	
347.462

	
366.993

	
365.509

	
366.993

	
366.993




	
Mean

	
258.930

	
328.184

	
349.165

	
351.103

	
302.155

	
335.717




	
σ

	
0.000

	
37.900

	
19.111

	
21.056

	
54.798

	
50.449




	
V

	
0.000

	
11.548

	
5.473

	
5.997

	
18.136

	
15.027




	
R

	
0.000

	
94.995

	
72.543

	
62.036

	
108.063

	
112.088




	
Four-batch mixed lot




	

	
K1 = 4

	
K1 = 8

	
K1 = 12

	
K1 = 8

	
K1 = 12




	
Min

	
554.632

	
495.630

	
493.396

	
566.491

	
555.149

	
692.980




	
Max

	
703.198

	
664.941

	
719.547

	
719.547

	
732.274

	
878.714




	
Mean

	
648.439

	
557.872

	
589.796

	
625.305

	
690.896

	
721.950




	
σ

	
66.907

	
55.821

	
82.804

	
73.941

	
53.478

	
47.524




	
V

	
10.318

	
10.006

	
14.039

	
11.825

	
7.740

	
6.583




	
R

	
148.566

	
169.311

	
226.151

	
153.056

	
177.125

	
185.735
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Table A3. Objective function value summarized after 30 attempts (Chebyshev distance, initialization by random).






Table A3. Objective function value summarized after 30 attempts (Chebyshev distance, initialization by random).





	
Para-

meter

	
BVQ

	
SOM

	
BVQ-

GREEDY(2)

	
BVQ-

GREEDY(3)

	
SOM-

GREEDY(2)

	
SOM-

GREEDY(3)






	
Two-batch mixed lot




	

	
K1 = 2

	
K1 = 4

	
K1 = 6

	
K1 = 4

	
K1 = 6




	
Min

	
207.903

	
195.096

	
204.323

	
204.113

	
205.657

	
206.582




	
Max

	
207.903

	
218.493

	
214.846

	
216.201

	
251.462

	
249.768




	
Mean

	
207.903

	
206.037

	
205.904

	
209.754

	
225.213

	
230.583




	
σ

	
0.000

	
10.063

	
3.660

	
6.242

	
19.539

	
18.841




	
V

	
0.000

	
4.884

	
1.778

	
2.976

	
8.676

	
8.171




	
R

	
0.000

	
23.396

	
10.523

	
12.088

	
45.805

	
43.187




	
Three-batch mixed lot




	

	
K1 = 3

	
K1 = 6

	
K1 = 9

	
K1 = 6

	
K1 = 9




	
Min

	
258.930

	
252.251

	
258.930

	
254.905

	
357.439

	
254.905




	
Max

	
366.993

	
347.509

	
366.993

	
364.023

	
366.993

	
364.023




	
Mean

	
357.453

	
315.496

	
348.951

	
336.351

	
365.296

	
333.542




	
σ

	
28.002

	
44.784

	
35.296

	
44.964

	
3.362

	
49.308




	
V

	
7.834

	
14.195

	
10.115

	
13.368

	
0.920

	
14.783




	
R

	
108.063

	
95.259

	
108.063

	
109.118

	
9.554

	
109.118




	
Four-batch mixed lot




	

	
K1 = 4

	
K1 = 8

	
K1 = 12

	
K1 = 8

	
K1 = 12




	
Min

	
552.568

	
497.795

	
493.396

	
493.368

	
556.048

	
552.696




	
Max

	
698.601

	
620.549

	
561.092

	
561.078

	
705.538

	
702.573




	
Mean

	
601.527

	
533.155

	
531.922

	
513.349

	
583.717

	
614.007




	
σ

	
60.196

	
38.032

	
32.671

	
29.471

	
49.765

	
62.183




	
V

	
10.007

	
7.133

	
6.142

	
5.741

	
8.525

	
10.127




	
R

	
146.033

	
122.754

	
67.696

	
67.710

	
149.490

	
149.877
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Table A4. Objective function value summarized after 30 attempts (Euclidean distance, initialization by average).






Table A4. Objective function value summarized after 30 attempts (Euclidean distance, initialization by average).





	
Parameter

	
BVQ

	
SOM

	
BVQ-

GREEDY(2)

	
BVQ-

GREEDY(3)

	
SOM-

GREEDY(2)

	
SOM-

GREEDY(3)






	
Two-batch mixed lot




	

	
K1 = 2

	
K1 = 4

	
K1 = 6

	
K1 = 4

	
K1 = 6




	
Min

	
186.160

	
185.969

	
186.346

	
186.372

	
186.346

	
186.372




	
Max

	
186.160

	
186.207

	
186.346

	
186.372

	
186.346

	
186.372




	
Mean

	
186.160

	
186.087

	
186.346

	
186.372

	
186.346

	
186.372




	
σ

	
0.000

	
0.061

	
0.000

	
0.000

	
0.000

	
0.000




	
V

	
0.000

	
0.033

	
0.000

	
0.000

	
0.000

	
0.000




	
R

	
0.000

	
0.237

	
0.000

	
0.000

	
0.000

	
0.000




	
Three-batch mixed lot




	

	
K1 = 3

	
K1 = 6

	
K1 = 9

	
K1 = 6

	
K1 = 9




	
Min

	
314.924

	
241.647

	
241.731

	
241.795

	
314.924

	
310.298




	
Max

	
314.924

	
315.304

	
241.731

	
241.795

	
314.924

	
310.298




	
Mean

	
314.924

	
258.499

	
241.731

	
241.795

	
314.924

	
310.298




	
σ

	
0.000

	
30.571

	
0.000

	
0.000

	
0.000

	
0.000




	
V

	
0.000

	
11.826

	
0.000

	
0.000

	
0.000

	
0.000




	
R

	
0.000

	
73.657

	
0.000

	
0.000

	
0.000

	
0.000




	
Four-batch mixed lot




	

	
K1 = 4

	
K1 = 8

	
K1 = 12

	
K1 = 8

	
K1 = 12




	
Min

	
546.596

	
492.597

	
492.933

	
492.903

	
552.883

	
548.802




	
Max

	
546.596

	
655.370

	
549.751

	
492.903

	
552.883

	
548.804




	
Mean

	
546.596

	
521.356

	
541.720

	
492.903

	
552.883

	
548.803




	
σ

	
0.000

	
45.038

	
19.809

	
0.000

	
0.000

	
0.001




	
V

	
0.000

	
8.639

	
3.657

	
0.000

	
0.000

	
0.000




	
R

	
0.000

	
162.772

	
56.818

	
0.000

	
0.000

	
0.001











[image: Table] 





Table A5. Objective function value summarized after 30 attempts (Euclidean distance, initialization by k-means).






Table A5. Objective function value summarized after 30 attempts (Euclidean distance, initialization by k-means).





	
Parameter

	
BVQ

	
SOM

	
BVQ-

GREEDY(2)

	
BVQ-

GREEDY(3)

	
SOM-

GREEDY(2)

	
SOM-

GREEDY(3)






	
Two-batch mixed lot




	

	
K1 = 2

	
K1 = 4

	
K1 = 6

	
K1 = 4

	
K1 = 6




	
Min

	
186.160

	
186.007

	
186.346

	
186.372

	
186.346

	
186.372




	
Max

	
186.160

	
186.235

	
335.401

	
337.849

	
335.401

	
337.849




	
Mean

	
186.160

	
186.105

	
216.157

	
297.455

	
236.031

	
317.652




	
σ

	
0.000

	
0.061

	
61.715

	
69.337

	
72.732

	
53.300




	
V

	
0.000

	
0.033

	
28.551

	
23.310

	
30.814

	
16.779




	
R

	
0.000

	
0.227

	
149.055

	
151.477

	
149.055

	
151.477




	
Three-batch mixed lot




	

	
K1 = 3

	
K1 = 6

	
K1 = 9

	
K1 = 6

	
K1 = 9




	
Min

	
314.924

	
241.768

	
241.731

	
241.795

	
314.924

	
310.298




	
Max

	
314.924

	
312.783

	
325.737

	
325.737

	
325.737

	
323.263




	
Mean

	
314.924

	
258.406

	
264.133

	
300.787

	
316.366

	
318.737




	
σ

	
0.000

	
30.364

	
38.453

	
36.848

	
3.805

	
5.357




	
V

	
0.000

	
11.751

	
14.558

	
12.250

	
1.203

	
1.681




	
R

	
0.000

	
71.015

	
84.006

	
83.943

	
10.813

	
12.965




	
Four-batch mixed lot




	

	
K1 = 4

	
K1 = 8

	
K1 = 12

	
K1 = 8

	
K1 = 12




	
Min

	
546.596

	
492.696

	
492.933

	
492.903

	
552.883

	
561.003




	
Max

	
559.778

	
554.321

	
711.945

	
704.490

	
711.945

	
711.945




	
Mean

	
548.117

	
523.082

	
565.934

	
613.940

	
599.916

	
647.609




	
σ

	
4.069

	
28.343

	
44.202

	
78.438

	
69.019

	
73.181




	
V

	
0.742

	
5.418

	
7.811

	
12.776

	
11.505

	
11.300




	
R

	
13.182

	
61.624

	
219.011

	
211.587

	
159.062

	
150.942
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Table A6. Objective function value summarized after 30 attempts (Euclidean distance, initialization by random).






Table A6. Objective function value summarized after 30 attempts (Euclidean distance, initialization by random).





	
Para-

meter

	
BVQ

	
SOM

	
BVQ-

GREEDY(2)

	
BVQ-

GREEDY(3)

	
SOM-

GREEDY(2)

	
SOM-

GREEDY(3)






	
Two-batch mixed lot




	

	
K1 = 2

	
K1 = 4

	
K1 = 6

	
K1 = 4

	
K1 = 6




	
Min

	
186.160

	
185.954

	
186.346

	
186.372

	
186.346

	
186.372




	
Max

	
186.160

	
186.211

	
186.346

	
186.372

	
186.346

	
186.372




	
Mean

	
186.160

	
186.100

	
186.346

	
186.372

	
186.346

	
186.372




	
σ

	
0.000

	
0.062

	
0.000

	
0.000

	
0.000

	
0.000




	
V

	
0.000

	
0.033

	
0.000

	
0.000

	
0.000

	
0.000




	
R

	
0.000

	
0.258

	
0.000

	
0.000

	
0.000

	
0.000




	
Three-batch mixed lot




	

	
K1 = 3

	
K1 = 6

	
K1 = 9

	
K1 = 6

	
K1 = 9




	
Min

	
314.924

	
241.634

	
314.924

	
310.298

	
314.924

	
310.298




	
Max

	
314.924

	
312.797

	
325.737

	
320.973

	
325.737

	
320.973




	
Mean

	
314.924

	
260.991

	
315.645

	
313.145

	
315.645

	
311.722




	
σ

	
0.000

	
31.661

	
2.792

	
4.886

	
2.792

	
3.756




	
V

	
0.000

	
12.131

	
0.885

	
1.560

	
0.885

	
1.205




	
R

	
0.000

	
71.163

	
10.813

	
10.675

	
10.813

	
10.675




	
Four-batch mixed lot




	

	
K1 = 4

	
K1 = 8

	
K1 = 12

	
K1 = 8

	
K1 = 12




	
Min

	
703.485

	
492.661

	
711.930

	
699.061

	
711.945

	
707.793




	
Max

	
703.485

	
550.607

	
711.945

	
707.793

	
711.945

	
707.793




	
Mean

	
703.485

	
528.546

	
711.944

	
707.096

	
711.945

	
707.793




	
σ

	
0.000

	
25.546

	
0.004

	
2.242

	
0.000

	
0.000




	
V

	
0.000

	
4.833

	
0.001

	
0.317

	
0.000

	
0.000




	
R

	
0.000

	
57.946

	
0.015

	
8.732

	
0.000

	
0.000
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Table A7. Objective function value summarized after 30 attempts (squared Euclidean distance, initialization by average).






Table A7. Objective function value summarized after 30 attempts (squared Euclidean distance, initialization by average).





	
Parameter

	
BVQ

	
SOM

	
BVQ-

GREEDY(2)

	
BVQ-

GREEDY(3)

	
SOM-

GREEDY(2)

	
SOM-

GREEDY(3)






	
Two-batch mixed lot




	

	
K1 = 2

	
K1 = 4

	
K1 = 6

	
K1 = 4

	
K1 = 6




	
Min

	
186.160

	
185.962

	
186.346

	
186.372

	
186.346

	
186.372




	
Max

	
186.160

	
186.233

	
186.346

	
186.372

	
186.346

	
186.372




	
Mean

	
186.160

	
186.092

	
186.346

	
186.372

	
186.346

	
186.372




	
σ

	
0.000

	
0.070

	
0.000

	
0.000

	
0.000

	
0.000




	
V

	
0.000

	
0.038

	
0.000

	
0.000

	
0.000

	
0.000




	
R

	
0.000

	
0.271

	
0.000

	
0.000

	
0.000

	
0.000




	
Three-batch mixed lot




	

	
K1 = 3

	
K1 = 6

	
K1 = 9

	
K1 = 6

	
K1 = 9




	
Min

	
314.924

	
241.673

	
241.731

	
241.795

	
314.924

	
310.298




	
Max

	
314.924

	
312.911

	
241.731

	
241.795

	
314.924

	
310.298




	
Mean

	
314.924

	
265.496

	
241.731

	
241.795

	
314.924

	
310.298




	
σ

	
0.000

	
33.876

	
0.000

	
0.000

	
0.000

	
0.000




	
V

	
0.000

	
12.759

	
0.000

	
0.000

	
0.000

	
0.000




	
R

	
0.000

	
71.238

	
0.000

	
0.000

	
0.000

	
0.000




	
Four-batch mixed lot




	

	
K1 = 4

	
K1 = 8

	
K1 = 12

	
K1 = 8

	
K1 = 12




	
Min

	
546.596

	
492.541

	
549.130

	
492.903

	
552.883

	
548.802




	
Max

	
546.596

	
544.710

	
549.751

	
492.903

	
552.883

	
559.135




	
Mean

	
546.596

	
509.981

	
549.586

	
492.903

	
552.883

	
550.164




	
σ

	
0.000

	
24.249

	
0.284

	
0.000

	
0.000

	
2.840




	
V

	
0.000

	
4.755

	
0.052

	
0.000

	
0.000

	
0.516




	
R

	
0.000

	
52.169

	
0.621

	
0.000

	
0.000

	
10.333
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Table A8. Objective function value summarized after 30 attempts (squared Euclidean distance, initialization by k-means).






Table A8. Objective function value summarized after 30 attempts (squared Euclidean distance, initialization by k-means).





	
Parameter

	
BVQ

	
SOM

	
BVQ-

GREEDY(2)

	
BVQ-

GREEDY(3)

	
SOM-

GREEDY(2)

	
SOM-

GREEDY(3)






	
Two-batch mixed lot




	

	
K1 = 2

	
K1 = 4

	
K1 = 6

	
K1 = 4

	
K1 = 6




	
Min

	
186.160

	
186.010

	
186.346

	
186.372

	
186.346

	
186.372




	
Max

	
186.160

	
186.200

	
335.401

	
337.849

	
335.401

	
337.849




	
Mean

	
186.160

	
186.113

	
236.031

	
297.455

	
226.094

	
317.652




	
σ

	
0.000

	
0.050

	
72.732

	
69.337

	
68.228

	
53.300




	
V

	
0.000

	
0.027

	
30.814

	
23.310

	
30.177

	
16.779




	
R

	
0.000

	
0.189

	
149.055

	
151.477

	
149.055

	
151.477




	
Three-batch mixed lot




	

	
K1 = 3

	
K1 = 6

	
K1 = 9

	
K1 = 6

	
K1 = 9




	
Min

	
314.924

	
241.634

	
241.731

	
241.795

	
314.924

	
310.298




	
Max

	
314.924

	
315.223

	
325.737

	
323.263

	
325.737

	
325.737




	
Mean

	
314.924

	
275.027

	
269.733

	
295.038

	
317.087

	
317.326




	
σ

	
0.000

	
35.995

	
40.991

	
38.981

	
4.477

	
6.079




	
V

	
0.000

	
13.088

	
15.197

	
13.212

	
1.412

	
1.916




	
R

	
0.000

	
73.589

	
84.006

	
81.468

	
10.813

	
15.439




	
Four-batch mixed lot




	

	
K1 = 4

	
K1 = 8

	
K1 = 12

	
K1 = 8

	
K1 = 12




	
Min

	
546.596

	
492.561

	
492.933

	
560.904

	
552.883

	
560.904




	
Max

	
559.778

	
555.250

	
711.945

	
711.945

	
711.945

	
711.945




	
Mean

	
549.233

	
530.534

	
585.963

	
658.380

	
570.195

	
636.706




	
σ

	
5.458

	
24.015

	
67.564

	
71.294

	
39.403

	
73.474




	
V

	
0.994

	
4.527

	
11.530

	
10.829

	
6.911

	
11.540




	
R

	
13.182

	
62.688

	
219.011

	
151.041

	
159.062

	
151.041
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Table A9. Objective function value summarized after 30 attempts (squared Euclidean distance, initialization by random).






Table A9. Objective function value summarized after 30 attempts (squared Euclidean distance, initialization by random).





	
Para-

meter

	
BVQ

	
SOM

	
BVQ-

GREEDY(2)

	
BVQ-

GREEDY(3)

	
SOM-

GREEDY(2)

	
SOM-

GREEDY(3)






	
Two-batch mixed lot




	

	
K1 = 2

	
K1 = 4

	
K1 = 6

	
K1 = 4

	
K1 = 6




	
Min

	
186.160

	
185.969

	
186.346

	
186.372

	
186.346

	
186.372




	
Max

	
186.160

	
186.183

	
186.346

	
186.372

	
186.346

	
186.372




	
Mean

	
186.160

	
186.088

	
186.346

	
186.372

	
186.346

	
186.372




	
σ

	
0.000

	
0.048

	
0.000

	
0.000

	
0.000

	
0.000




	
V

	
0.000

	
0.026

	
0.000

	
0.000

	
0.000

	
0.000




	
R

	
0.000

	
0.214

	
0.000

	
0.000

	
0.000

	
0.000




	
Three-batch mixed lot




	

	
K1 = 3

	
K1 = 6

	
K1 = 9

	
K1 = 6

	
K1 = 9




	
Min

	
314.924

	
241.651

	
314.924

	
310.298

	
314.924

	
310.298




	
Max

	
325.737

	
315.550

	
325.737

	
320.973

	
325.737

	
320.973




	
Mean

	
315.645

	
272.613

	
316.366

	
315.280

	
315.645

	
311.010




	
σ

	
2.792

	
35.746

	
3.805

	
5.513

	
2.792

	
2.756




	
V

	
0.885

	
13.112

	
1.203

	
1.748

	
0.885

	
0.886




	
R

	
10.813

	
73.899

	
10.813

	
10.675

	
10.813

	
10.675




	
Four-batch mixed lot




	

	
K1 = 4

	
K1 = 8

	
K1 = 12

	
K1 = 8

	
K1 = 12




	
Min

	
703.485

	
492.663

	
562.352

	
561.616

	
711.909

	
707.793




	
Max

	
703.485

	
550.840

	
711.945

	
707.793

	
711.945

	
707.793




	
Mean

	
703.485

	
523.502

	
701.972

	
697.952

	
711.942

	
707.793




	
σ

	
0.000

	
26.008

	
38.625

	
37.718

	
0.009

	
0.000




	
V

	
0.000

	
4.968

	
5.502

	
5.404

	
0.001

	
0.000




	
R

	
0.000

	
58.177

	
149.592

	
146.177

	
0.035

	
0.000
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Table A10. Objective function value summarized after 30 attempts (Mahalanobis distance, initialization by average).






Table A10. Objective function value summarized after 30 attempts (Mahalanobis distance, initialization by average).





	
Parameter

	
BVQ

	
SOM

	
BVQ-

GREEDY(2)

	
BVQ-

GREEDY(3)

	
SOM-

GREEDY(2)

	
SOM-

GREEDY(3)






	
Two-batch mixed lot




	

	
K1 = 2

	
K1 = 4

	
K1 = 6

	
K1 = 4

	
K1 = 6




	
Min

	
201.387

	
194.572

	
205.657

	
206.582

	
205.657

	
206.582




	
Max

	
201.387

	
197.145

	
205.657

	
206.582

	
205.657

	
206.582




	
Mean

	
201.387

	
195.929

	
205.657

	
206.582

	
205.657

	
206.582




	
σ

	
0.000

	
0.568

	
0.000

	
0.000

	
0.000

	
0.000




	
V

	
0.000

	
0.290

	
0.000

	
0.000

	
0.000

	
0.000




	
R

	
0.000

	
2.573

	
0.000

	
0.000

	
0.000

	
0.000




	
Three-batch mixed lot




	

	
K1 = 3

	
K1 = 6

	
K1 = 9

	
K1 = 6

	
K1 = 9




	
Min

	
326.463

	
312.110

	
287.148

	
288.169

	
326.463

	
288.169




	
Max

	
326.463

	
361.353

	
348.315

	
350.407

	
326.463

	
350.407




	
Mean

	
326.463

	
342.690

	
295.317

	
332.825

	
326.463

	
325.676




	
σ

	
0.000

	
11.448

	
18.173

	
27.895

	
0.000

	
28.141




	
V

	
0.000

	
3.341

	
6.154

	
8.381

	
0.000

	
8.641




	
R

	
0.000

	
49.242

	
61.168

	
62.238

	
0.000

	
62.238




	
Four-batch mixed lot




	

	
K1 = 4

	
K1 = 8

	
K1 = 12

	
K1 = 8

	
K1 = 12




	
Min

	
758.068

	
572.730

	
728.875

	
696.210

	
757.097

	
756.752




	
Max

	
758.068

	
663.835

	
730.771

	
722.998

	
757.734

	
757.838




	
Mean

	
758.068

	
619.269

	
730.508

	
709.527

	
757.375

	
757.390




	
σ

	
0.000

	
29.509

	
0.663

	
11.950

	
0.269

	
0.344




	
V

	
0.000

	
4.765

	
0.091

	
1.684

	
0.036

	
0.045




	
R

	
0.000

	
91.104

	
1.896

	
26.788

	
0.638

	
1.086
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Table A11. Objective function value summarized after 30 attempts (Mahalanobis distance, initialization by k-means).






Table A11. Objective function value summarized after 30 attempts (Mahalanobis distance, initialization by k-means).





	
Parameter

	
BVQ

	
SOM

	
BVQ-

GREEDY(2)

	
BVQ-

GREEDY(3)

	
SOM-

GREEDY(2)

	
SOM-

GREEDY(3)






	
Two-batch mixed lot




	

	
K1 = 2

	
K1 = 4

	
K1 = 6

	
K1 = 4

	
K1 = 6




	
Min

	
201.387

	
194.573

	
205.657

	
206.582

	
205.657

	
206.582




	
Max

	
201.387

	
197.148

	
335.401

	
337.849

	
335.401

	
337.849




	
Mean

	
201.387

	
195.931

	
222.956

	
311.596

	
231.606

	
294.093




	
σ

	
0.000

	
0.680

	
45.653

	
54.350

	
53.719

	
64.052




	
V

	
0.000

	
0.347

	
20.476

	
17.442

	
23.194

	
21.779




	
R

	
0.000

	
2.575

	
129.744

	
131.268

	
129.744

	
131.268




	
Three-batch mixed lot




	

	
K1 = 3

	
K1 = 6

	
K1 = 9

	
K1 = 6

	
K1 = 9




	
Min

	
348.315

	
291.064

	
287.148

	
317.121

	
326.463

	
335.463




	
Max

	
348.315

	
361.323

	
366.993

	
366.993

	
366.993

	
365.509




	
Mean

	
348.315

	
340.856

	
347.631

	
353.627

	
337.082

	
358.806




	
σ

	
0.000

	
14.370

	
26.144

	
16.298

	
18.241

	
12.100




	
V

	
0.000

	
4.216

	
7.521

	
4.609

	
5.411

	
3.372




	
R

	
0.000

	
70.258

	
79.846

	
49.872

	
40.531

	
30.046




	
Four-batch mixed lot




	

	
K1 = 4

	
K1 = 8

	
K1 = 12

	
K1 = 8

	
K1 = 12




	
Min

	
758.068

	
554.372

	
725.168

	
701.832

	
757.148

	
763.684




	
Max

	
764.357

	
677.513

	
852.818

	
892.642

	
845.107

	
836.489




	
Mean

	
758.487

	
613.179

	
765.066

	
741.820

	
773.655

	
800.642




	
σ

	
1.624

	
34.378

	
45.733

	
43.564

	
29.147

	
34.313




	
V

	
0.214

	
5.607

	
5.978

	
5.873

	
3.768

	
4.286




	
R

	
6.289

	
123.141

	
127.650

	
190.810

	
87.959

	
72.805
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Table A12. Objective function value summarized after 30 attempts (Mahalanobis distance, initialization by random).






Table A12. Objective function value summarized after 30 attempts (Mahalanobis distance, initialization by random).





	
Para-

meter

	
BVQ

	
SOM

	
BVQ-

GREEDY(2)

	
BVQ-

GREEDY(3)

	
SOM-

GREEDY(2)

	
SOM-

GREEDY(3)






	
Two-batch mixed lot




	

	
K1 = 2

	
K1 = 4

	
K1 = 6

	
K1 = 4

	
K1 = 6




	
Min

	
331.089

	
194.303

	
205.657

	
206.582

	
335.258

	
337.849




	
Max

	
331.107

	
196.693

	
335.401

	
337.849

	
335.401

	
337.849




	
Mean

	
331.106

	
195.717

	
326.716

	
320.358

	
335.387

	
337.849




	
σ

	
0.005

	
0.503

	
33.490

	
46.116

	
0.038

	
0.000




	
V

	
0.001

	
0.257

	
10.251

	
14.395

	
0.011

	
0.000




	
R

	
0.018

	
2.390

	
129.744

	
131.268

	
0.143

	
0.000




	
Three-batch mixed lot




	

	
K1 = 3

	
K1 = 6

	
K1 = 9

	
K1 = 6

	
K1 = 9




	
Min

	
443.219

	
305.398

	
437.281

	
437.742

	
440.640

	
438.611




	
Max

	
444.607

	
361.336

	
444.378

	
439.538

	
444.607

	
439.598




	
Mean

	
444.133

	
338.766

	
442.954

	
438.906

	
444.084

	
439.413




	
σ

	
0.479

	
15.177

	
2.163

	
0.540

	
1.011

	
0.275




	
V

	
0.108

	
4.480

	
0.488

	
0.123

	
0.228

	
0.063




	
R

	
1.388

	
55.937

	
7.097

	
1.795

	
3.967

	
0.987




	
Four-batch mixed lot




	

	
K1 = 4

	
K1 = 8

	
K1 = 12

	
K1 = 8

	
K1 = 12




	
Min

	
764.357

	
564.890

	
764.433

	
771.053

	
839.280

	
838.055




	
Max

	
856.541

	
673.446

	
836.222

	
866.897

	
851.622

	
874.529




	
Mean

	
818.674

	
614.438

	
787.136

	
790.511

	
845.713

	
854.250




	
σ

	
45.914

	
27.721

	
31.284

	
37.296

	
3.154

	
13.329




	
V

	
5.608

	
4.512

	
3.974

	
4.718

	
0.373

	
1.560




	
R

	
92.185

	
108.556

	
71.789

	
95.844

	
12.342

	
36.475
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Table A13. Objective function value summarized after 30 attempts (Manhattan distance, initialization by average).






Table A13. Objective function value summarized after 30 attempts (Manhattan distance, initialization by average).





	
Parameter

	
BVQ

	
SOM

	
BVQ-

GREEDY(2)

	
BVQ-

GREEDY(3)

	
SOM-

GREEDY(2)

	
SOM-

GREEDY(3)






	
Two-batch mixed lot




	

	
K1 = 2

	
K1 = 4

	
K1 = 6

	
K1 = 4

	
K1 = 6




	
Min

	
186.160

	
185.971

	
186.346

	
186.372

	
186.346

	
186.372




	
Max

	
186.160

	
186.184

	
186.346

	
186.372

	
186.346

	
186.372




	
Mean

	
186.160

	
186.068

	
186.346

	
186.372

	
186.346

	
186.372




	
σ

	
0.000

	
0.053

	
0.000

	
0.000

	
0.000

	
0.000




	
V

	
0.000

	
0.028

	
0.000

	
0.000

	
0.000

	
0.000




	
R

	
0.000

	
0.214

	
0.000

	
0.000

	
0.000

	
0.000




	
Three-batch mixed lot




	

	
K1 = 3

	
K1 = 6

	
K1 = 9

	
K1 = 6

	
K1 = 9




	
Min

	
314.924

	
241.918

	
241.887

	
241.991

	
314.924

	
310.298




	
Max

	
314.924

	
315.391

	
241.887

	
241.991

	
314.924

	
310.298




	
Mean

	
314.924

	
247.062

	
241.887

	
241.991

	
314.924

	
310.298




	
σ

	
0.000

	
18.565

	
0.000

	
0.000

	
0.000

	
0.000




	
V

	
0.000

	
7.514

	
0.000

	
0.000

	
0.000

	
0.000




	
R

	
0.000

	
73.473

	
0.000

	
0.000

	
0.000

	
0.000




	
Four-batch mixed lot




	

	
K1 = 4

	
K1 = 8

	
K1 = 12

	
K1 = 8

	
K1 = 12




	
Min

	
690.643

	
493.142

	
551.927

	
493.236

	
703.810

	
692.768




	
Max

	
690.643

	
546.207

	
555.852

	
493.236

	
703.810

	
700.558




	
Mean

	
690.643

	
497.063

	
554.659

	
493.236

	
703.810

	
697.752




	
σ

	
0.000

	
13.597

	
1.765

	
0.000

	
0.000

	
2.854




	
V

	
0.000

	
2.735

	
0.318

	
0.000

	
0.000

	
0.409




	
R

	
0.000

	
53.065

	
3.925

	
0.000

	
0.000

	
7.790
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Table A14. Objective function value summarized after 30 attempts (Manhattan distance, initialization by k-means).






Table A14. Objective function value summarized after 30 attempts (Manhattan distance, initialization by k-means).





	
Parameter

	
BVQ

	
SOM

	
BVQ-

GREEDY(2)

	
BVQ-

GREEDY(3)

	
SOM-

GREEDY(2)

	
SOM-

GREEDY(3)






	
Two-batch mixed lot




	

	
K1 = 2

	
K1 = 4

	
K1 = 6

	
K1 = 4

	
K1 = 6




	
Min

	
186.160

	
185.934

	
186.346

	
186.372

	
186.346

	
186.372




	
Max

	
186.160

	
186.214

	
335.401

	
337.849

	
335.401

	
337.849




	
Mean

	
186.160

	
186.071

	
226.094

	
297.455

	
236.031

	
266.997




	
σ

	
0.000

	
0.064

	
68.228

	
69.337

	
72.732

	
78.067




	
V

	
0.000

	
0.035

	
30.177

	
23.310

	
30.814

	
29.239




	
R

	
0.000

	
0.281

	
149.055

	
151.477

	
149.055

	
151.477




	
Three-batch mixed lot




	

	
K1 = 3

	
K1 = 6

	
K1 = 9

	
K1 = 6

	
K1 = 9




	
Min

	
314.924

	
241.851

	
241.887

	
241.991

	
314.924

	
310.298




	
Max

	
314.924

	
315.759

	
325.737

	
325.737

	
325.737

	
323.263




	
Mean

	
314.924

	
254.400

	
269.547

	
305.952

	
317.087

	
317.568




	
σ

	
0.000

	
27.821

	
40.504

	
33.132

	
4.477

	
5.352




	
V

	
0.000

	
10.936

	
15.027

	
10.829

	
1.412

	
1.685




	
R

	
0.000

	
73.908

	
83.850

	
83.746

	
10.813

	
12.965




	
Four-batch mixed lot




	

	
K1 = 4

	
K1 = 8

	
K1 = 12

	
K1 = 8

	
K1 = 12




	
Min

	
690.643

	
493.044

	
551.927

	
493.236

	
695.985

	
696.331




	
Max

	
700.891

	
555.231

	
706.183

	
705.449

	
711.926

	
892.642




	
Mean

	
692.693

	
508.407

	
645.549

	
633.408

	
705.483

	
714.682




	
σ

	
4.243

	
25.699

	
72.850

	
81.067

	
5.039

	
49.382




	
V

	
0.613

	
5.055

	
11.285

	
12.799

	
0.714

	
6.910




	
R

	
10.247

	
62.187

	
154.257

	
212.213

	
15.941

	
196.311
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Table A15. Objective function value summarized after 30 attempts (Manhattan distance, initialization by random).






Table A15. Objective function value summarized after 30 attempts (Manhattan distance, initialization by random).





	
Para-

meter

	
BVQ

	
SOM

	
BVQ-

GREEDY(2)

	
BVQ-

GREEDY(3)

	
SOM-

GREEDY(2)

	
SOM-

GREEDY(3)






	
Two-batch mixed lot




	

	
K1 = 2

	
K1 = 4

	
K1 = 6

	
K1 = 4

	
K1 = 6




	
Min

	
186.160

	
186.004

	
186.346

	
186.372

	
186.346

	
186.372




	
Max

	
186.160

	
186.259

	
186.346

	
186.372

	
186.346

	
186.372




	
Mean

	
186.160

	
186.098

	
186.346

	
186.372

	
186.346

	
186.372




	
σ

	
0.000

	
0.061

	
0.000

	
0.000

	
0.000

	
0.000




	
V

	
0.000

	
0.033

	
0.000

	
0.000

	
0.000

	
0.000




	
R

	
0.000

	
0.255

	
0.000

	
0.000

	
0.000

	
0.000




	
Three-batch mixed lot




	

	
K1 = 3

	
K1 = 6

	
K1 = 9

	
K1 = 6

	
K1 = 9




	
Min

	
314.924

	
241.891

	
241.887

	
310.298

	
314.924

	
310.298




	
Max

	
325.737

	
315.597

	
325.737

	
320.973

	
325.737

	
310.298




	
Mean

	
318.529

	
251.905

	
312.939

	
315.280

	
315.645

	
310.298




	
σ

	
5.276

	
25.304

	
20.254

	
5.513

	
2.792

	
0.000




	
V

	
1.656

	
10.045

	
6.472

	
1.748

	
0.885

	
0.000




	
R

	
10.813

	
73.706

	
83.850

	
10.675

	
10.813

	
0.000




	
Four-batch mixed lot




	

	
K1 = 4

	
K1 = 8

	
K1 = 12

	
K1 = 8

	
K1 = 12




	
Min

	
703.264

	
493.211

	
711.715

	
704.380

	
711.772

	
867.281




	
Max

	
885.950

	
549.237

	
891.441

	
882.936

	
891.058

	
884.912




	
Mean

	
715.546

	
510.358

	
779.266

	
730.258

	
850.182

	
882.353




	
σ

	
47.141

	
24.750

	
85.747

	
60.068

	
71.982

	
4.286




	
V

	
6.588

	
4.850

	
11.004

	
8.226

	
8.467

	
0.486




	
R

	
182.686

	
56.026

	
179.727

	
178.556

	
179.286

	
17.632
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Figure 1. Accuracy of device clustering for SCL, SCL-GREEDY(2) and SCL-GREEDY(3) algorithms. 
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Figure 2. (a) Coefficient of variation of the objective function value for two-batch mixed lot; (b) span factor of the objective function value for two-batch mixed lot; (c) coefficient of variation of the objective function value for three-batch mixed lot; (d) span factor of the objective function value for three-batch mixed lot; (e) coefficient of variation of the objective function value for four-batch mixed lot; (f) span factor of the objective function value for four-batch mixed lot. 
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Figure 3. Coefficient of variation of the objective function value for the two-batch mixed lot. 
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Figure 4. Coefficient of variation of the objective function value for the three-batch mixed lot. 
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Figure 5. Coefficient of variation of the objective function value for the four-batch mixed lot. 
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Table 1. Objective function value summarized after 30 attempts (Chebyshev distance).






Table 1. Objective function value summarized after 30 attempts (Chebyshev distance).





	
Parameter

	
SCL

	
SCL-GREEDY(2)

	
SCL-GREEDY(3)






	
Two-batch mixed lot (p < 0.00001)




	

	
K1 = 2

	
K1 = 4

	
K1 = 6




	
Min

	
415.627

	
371.1297

	
301.2941




	
Max

	
415.627

	
371.1322

	
337.3007




	
Mean

	
415.627

	
371.1301

	
329.2811 1




	
σ

	
6.38E-12

	
0.000772

	
14.67288




	
V

	
1.53E-12

	
0.000208

	
4.456033




	
R

	
2.80E-11

	
0.002558

	
36.00667




	
Three-batch mixed lot (p < 0.00001)




	

	
K1 = 3

	
K1 = 6

	
K1 = 9




	
Min

	
406.912

	
397.815

	
397.787




	
Max

	
438.101

	
417.747

	
407.933




	
Mean

	
431.002

	
415.140

	
406.966




	
σ

	
8.395

	
4.783

	
2.167




	
V

	
1.948

	
1.152

	
0.533




	
R

	
31.189

	
19.933

	
10.146




	
Four-batch mixed lot (p = 0.61708)




	

	
K1 = 4

	
K1 = 8

	
K1 = 12




	
Min

	
606.056

	
596.008

	
594.863




	
Max

	
614.033

	
892.644

	
903.672




	
Mean

	
609.644

	
689.886

	
704.368




	
σ

	
2.167

	
125.611

	
136.492




	
V

	
0.355

	
18.208

	
19.378




	
R

	
7.977

	
296.636

	
308.810








1 The best mean values of objective function are given in bold if the difference between SCL algorithm and its greedy version is statistically significant at p ≤ 0.05 (statistical significance was tested using the Wilcoxon rank sum test).
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Table 2. Objective function value summarized after 30 attempts (Euclidean distance).
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Parameter

	
SCL

	
SCL-GREEDY(2)

	
SCL-GREEDY(3)






	
Two-batch mixed lot (p < 0.00001)




	

	
K1 = 2

	
K1 = 4

	
K1 = 6




	
Min

	
198.486

	
193.825

	
191.610




	
Max

	
441.215

	
395.174

	
393.348




	
Mean

	
296.329

	
251.285

	
206.390 1




	
σ

	
104.214

	
84.992

	
50.003




	
V

	
35.168

	
33.823

	
24.228




	
R

	
198.486

	
193.825

	
191.610




	
Three-batch mixed lot (p = 0.00214)




	

	
K1 = 3

	
K1 = 6

	
K1 = 9




	
Min

	
365.927

	
274.081

	
365.719




	
Max

	
372.730

	
370.565

	
369.705




	
Mean

	
371.892

	
366.467

	
367.961




	
σ

	
2.059

	
17.518

	
1.459




	
V

	
0.554

	
4.780

	
0.396




	
R

	
6.803

	
96.484

	
3.986




	
Four-batch mixed lot (p = 0.0012)




	

	
K1 = 4

	
K1 = 8

	
K1 = 12




	
Min

	
952.563

	
939.212

	
914.629




	
Max

	
1142.812

	
1133.992

	
1108.637




	
Mean

	
1113.352

	
1084.122

	
1071.603




	
σ

	
55.095

	
74.012

	
63.228




	
V

	
4.949

	
6.827

	
5.900




	
R

	
952.563

	
939.212

	
914.629








1 The best mean values of objective function are given in bold if the difference between SCL algorithm and its greedy version is statistically significant at p ≤ 0.05 (statistical significance was tested using the Wilcoxon rank sum test).
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Table 3. Objective function value summarized after 30 attempts (squared Euclidean distance).
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Parameter

	
SCL

	
SCL-GREEDY(2)

	
SCL-GREEDY(3)






	
Two-batch mixed lot (p < 0.00001)




	

	
K1 = 2

	
K1 = 4

	
K1 = 6




	
Min

	
198.486

	
193.825

	
191.611




	
Max

	
450.382

	
413.390

	
386.087




	
Mean

	
312.271

	
228.919

	
205.969 1




	
σ

	
100.749

	
74.987

	
47.677




	
V

	
32.263

	
32.757

	
23.148




	
R

	
251.896

	
219.564

	
194.475




	
Three-batch mixed lot (p < 0.00001)




	

	
K1 = 3

	
K1 = 6

	
K1 = 9




	
Min

	
367.557

	
366.012

	
366.085




	
Max

	
372.730

	
370.568

	
369.725




	
Mean

	
372.527

	
369.305

	
368.306




	
σ

	
0.942

	
1.715

	
1.324




	
V

	
0.253

	
0.464

	
0.360




	
R

	
5.173

	
4.556

	
3.640




	
Four-batch mixed lot (p = 0.02088)




	

	
K1 = 4

	
K1 = 8

	
K1 = 12




	
Min

	
952.513

	
939.456

	
914.668




	
Max

	
1142.098

	
1129.014

	
1112.335




	
Mean

	
1097.790

	
1099.933

	
1067.170




	
σ

	
73.902

	
54.806

	
69.570




	
V

	
6.732

	
4.983

	
6.519




	
R

	
189.584

	
189.558

	
197.668








1 The best mean values of objective function are given in bold if the difference between SCL algorithm and its greedy version is statistically significant at p ≤ 0.05 (statistical significance was tested using the Wilcoxon rank sum test).
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Table 4. Objective function value summarized after 30 attempts (Mahalanobis distance).
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Parameter

	
SCL

	
SCL-GREEDY(2)

	
SCL-GREEDY(3)






	
Two-batch mixed lot (p = 0.06288)




	

	
K1 = 2

	
K1 = 4

	
K1 = 6




	
Min

	
352.603

	
359.915

	
356.673




	
Max

	
458.955

	
439.944

	
421.191




	
Mean

	
399.825

	
396.924

	
388.449




	
σ

	
24.151

	
21.471

	
15.522




	
V

	
6.040

	
5.409

	
3.996




	
R

	
106.353

	
80.029

	
64.519




	
Three-batch mixed lot (p = 0.00338)




	

	
K1 = 3

	
K1 = 6

	
K1 = 9




	
Min

	
462.220

	
455.998

	
451.949




	
Max

	
493.155

	
493.356

	
490.924




	
Mean

	
484.589

	
480.276

	
476.854 1




	
σ

	
7.020

	
8.892

	
8.978




	
V

	
1.449

	
1.851

	
1.883




	
R

	
30.935

	
37.358

	
38.976




	
Four-batch mixed lot (p = 0.00034)




	

	
K1 = 4

	
K1 = 8

	
K1 = 12




	
Min

	
962.070

	
980.266

	
959.326




	
Max

	
1084.960

	
1129.044

	
1109.918




	
Mean

	
1050.083

	
1044.941

	
996.063




	
σ

	
34.760

	
63.595

	
51.328




	
V

	
3.310

	
6.086

	
5.153




	
R

	
122.890

	
148.778

	
150.592








1 The best mean values of objective function are given in bold if the difference between SCL algorithm and its greedy version is statistically significant at p ≤ 0.05 (statistical significance was tested using the Wilcoxon rank sum test).
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Table 5. Objective function value summarized after 30 attempts (Manhattan distance).
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Parameter

	
SCL

	
SCL-GREEDY(2)

	
SCL-GREEDY(3)






	
Two-batch mixed lot (p < 0.00001)




	

	
K1 = 2

	
K1 = 4

	
K1 = 6




	
Min

	
198.486

	
193.825

	
191.609




	
Max

	
437.413

	
403.538

	
396.210




	
Mean

	
360.874

	
248.205

	
224.361 1




	
σ

	
87.569

	
88.921

	
72.589




	
V

	
24.266

	
35.826

	
32.354




	
R

	
238.927

	
209.712

	
204.602




	
Three-batch mixed lot (p < 0.00001)




	

	
K1 = 3

	
K1 = 6

	
K1 = 9




	
Min

	
372.016

	
366.748

	
365.858




	
Max

	
372.730

	
370.567

	
369.709




	
Mean

	
372.636

	
369.982

	
368.337




	
σ

	
0.179

	
1.256

	
1.271




	
V

	
0.048

	
0.340

	
0.345




	
R

	
0.714

	
3.819

	
3.851




	
Four-batch mixed lot (p = 0.00096)




	

	
K1 = 4

	
K1 = 8

	
K1 = 12




	
Min

	
952.637

	
939.453

	
912.548




	
Max

	
1140.960

	
1131.118

	
1109.011




	
Mean

	
1114.074

	
1077.780

	
1062.806




	
σ

	
55.075

	
77.853

	
68.147




	
V

	
4.944

	
7.223

	
6.412




	
R

	
188.324

	
191.665

	
196.463








1 The best mean values of objective function are given in bold if the difference between SCL algorithm and its greedy version is statistically significant at p ≤ 0.05 (statistical significance was tested using the Wilcoxon rank sum test).
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Table 6. Accuracy of device clustering for BVQ, SOM, BVQ-GREEDY(2), BVQ-GREEDY(3), SOM-GREEDY(2) and SOM-GREEDY(3) algorithms (two-batch mixed lot).






Table 6. Accuracy of device clustering for BVQ, SOM, BVQ-GREEDY(2), BVQ-GREEDY(3), SOM-GREEDY(2) and SOM-GREEDY(3) algorithms (two-batch mixed lot).





	
Algorithm

	
Initialization Method

	
ChD

	
EuD

	
SEuD

	
MahD

	
ManD






	
BVQ

	
average

	
0.98

	
1

	
1

	
1

	
1




	
k-means

	
0.98

	
1

	
1

	
1

	
1




	
random

	
0.98

	
1

	
1

	
0.62

	
1




	
BVQ-GREEDY(2)

	
average

	
0.99

	
1

	
1

	
1

	
1




	
k-means

	
1

	
1

	
1

	
1

	
1




	
random

	
0.99

	
1

	
1

	
1

	
1




	
BVQ-GREEDY(3)

	
average

	
1

	
1

	
1

	
1

	
1




	
k-means

	
1

	
1

	
1

	
1

	
1




	
random

	
1

	
1

	
1

	
1

	
1




	
SOM

	
average

	
1

	
1

	
1

	
1

	
1




	
k-means

	
1

	
1

	
1

	
1

	
1




	
random

	
1

	
1

	
1

	
1

	
1




	
SOM-GREEDY(2)

	
average

	
1

	
1

	
1

	
1

	
1




	
k-means

	
1

	
1

	
1

	
1

	
1




	
random

	
1

	
1

	
1

	
0.63

	
1




	
SOM-GREEDY(3)

	
average

	
1

	
1

	
1

	
1

	
1




	
k-means

	
1

	
1

	
1

	
1

	
1




	
random

	
1

	
1

	
1

	
0.62

	
1




	
k-means

	
random

	
0.99

	
0.98

	
0.98

	
0.67

	
0.99
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Table 7. Accuracy of device clustering for BVQ, SOM, BVQ-GREEDY(2), BVQ-GREEDY(3), SOM-GREEDY(2) and SOM-GREEDY(3) algorithms (three-batch mixed lot).






Table 7. Accuracy of device clustering for BVQ, SOM, BVQ-GREEDY(2), BVQ-GREEDY(3), SOM-GREEDY(2) and SOM-GREEDY(3) algorithms (three-batch mixed lot).





	
Algorithm

	
Initialization Method

	
ChD

	
EuD

	
SEuD

	
MahD

	
ManD






	
BVQ

	
average

	
0.72

	
0.64

	
0.64

	
0.94

	
0.64




	
k-means

	
0.97

	
0.64

	
0.64

	
0.92

	
0.64




	
random

	
0.60

	
0.64

	
0.64

	
0.62

	
0.64




	
BVQ-GREEDY(2)

	
average

	
0.95

	
1

	
1

	
0.95

	
1




	
k-means

	
0.95

	
1

	
1

	
0.92

	
1




	
random

	
0.95

	
0.64

	
0.64

	
0.51

	
0.64




	
BVQ-GREEDY(3)

	
average

	
0.95

	
1

	
1

	
0.95

	
1




	
k-means

	
0.95

	
0.98

	
1

	
0.94

	
0.98




	
random

	
0.96

	
0.64

	
0.64

	
0.39

	
0.64




	
SOM

	
average

	
0.69

	
0.57

	
0.98

	
0.93

	
0.98




	
k-means

	
0.7

	
0.98

	
0.98

	
0.91

	
0.98




	
random

	
0.7

	
0.98

	
0.56

	
0.88

	
0.98




	
SOM-GREEDY(2)

	
average

	
0.96

	
0.64

	
0.64

	
0.94

	
0.64




	
k-means

	
0.96

	
0.64

	
0.64

	
0.94

	
0.64




	
random

	
0.70

	
0.64

	
0.64

	
0.44

	
0.64




	
SOM-GREEDY(3)

	
average

	
0.96

	
0.64

	
0.64

	
0.95

	
0.64




	
k-means

	
0.96

	
0.64

	
0.64

	
0.93

	
0.64




	
random

	
0.96

	
0.64

	
0.64

	
0.40

	
0.64




	
k-means

	
random

	
0.62

	
0.63

	
0.66

	
0.49

	
0.63
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Table 8. Accuracy of device clustering for BVQ, SOM, BVQ-GREEDY(2), BVQ-GREEDY(3), SOM-GREEDY(2) and SOM-GREEDY(3) algorithms (four-batch mixed lot).






Table 8. Accuracy of device clustering for BVQ, SOM, BVQ-GREEDY(2), BVQ-GREEDY(3), SOM-GREEDY(2) and SOM-GREEDY(3) algorithms (four-batch mixed lot).





	
Algorithm

	
Initialization Method

	
ChD

	
EuD

	
SEuD

	
MahD

	
ManD






	
BVQ

	
average

	
0.39

	
0.60

	
0.60

	
0.65

	
0.63




	
k-means

	
0.76

	
0.60

	
0.60

	
0.49

	
0.48




	
random

	
0.71

	
0.59

	
0.59

	
0.52

	
0.59




	
BVQ-GREEDY(2)

	
average

	
0.99

	
0.99

	
0.64

	
0.50

	
0.64




	
k-means

	
0.92

	
0.92

	
0.92

	
0.50

	
0.99




	
random

	
0.99

	
0.59

	
0.59

	
0.58

	
0.59




	
BVQ-GREEDY(3)

	
average

	
0.99

	
0.99

	
0.99

	
0.50

	
0.99




	
k-means

	
0.74

	
0.74

	
0.74

	
0.57

	
0.99




	
random

	
0.99

	
0.59

	
0.74

	
0.56

	
0.59




	
SOM

	
average

	
0.99

	
0.99

	
0.99

	
0.97

	
0.98




	
k-means

	
0.38

	
0.98

	
0.65

	
0.98

	
0.98




	
random

	
0.99

	
0.65

	
0.68

	
0.59

	
0.49




	
SOM-GREEDY(2)

	
average

	
0.99

	
0.75

	
0.75

	
0.47

	
0.47




	
k-means

	
0.72

	
0.74

	
0.74

	
0.52

	
0.59




	
random

	
0.64

	
0.58

	
0.58

	
0.56

	
0.59




	
SOM-GREEDY(3)

	
average

	
0.64

	
0.62

	
0.74

	
0.47

	
0.48




	
k-means

	
0.58

	
0.74

	
0.74

	
0.57

	
0.59




	
random

	
0.66

	
0.59

	
0.59

	
0.56

	
0.37




	
k-means

	
random

	
0.39

	
0.65

	
0.65

	
0.65

	
0.66
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