
����������
�������

Citation: Tsoulos, I.G. QFC: A

Parallel Software Tool for Feature

Construction, Based on Grammatical

Evolution. Algorithms 2022, 15, 295.

https://doi.org/10.3390/a15080295

Academic Editor: Frank Werner

Received: 9 July 2022

Accepted: 19 August 2022

Published: 21 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

QFC: A Parallel Software Tool for Feature Construction, Based
on Grammatical Evolution
Ioannis G. Tsoulos

Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece; itsoulos@uoi.gr

Abstract: This paper presents and analyzes a programming tool that implements a method for
classification and function regression problems. This method builds new features from existing
ones with the assistance of a hybrid algorithm that makes use of artificial neural networks and
grammatical evolution. The implemented software exploits modern multi-core computing units for
faster execution. The method has been applied to a variety of classification and function regression
problems, and an extensive comparison with other methods of computational intelligence is made.

Keywords: neural networks; genetic algorithms; grammatical evolution; feature construction

1. Introduction

Many problems from various research areas can be considered as classification or
regression problems, such as problems from physics [1–4], chemistry [5–7], economics [8,9],
pollution [10–12], medicine [13,14], etc. These problems are usually tackled by learning
models such as Artificial Neural Networks [15,16], Radial Basis Function (RBF)
networks [17,18], Support Vector Machines (SVM) [19], Parse-matrix evolution [20],
Multilevel Block Building [21], Development of Mathematical Expressions [22], etc. A
review of the methods used in classification can be found in the work of Kotsiantis et al. [23].

Learning data are usually divided into two parts: training data and test data. Learning
models adjust their parameters, taking the training data as input, and are evaluated on the
test data. The number of learning model parameters directly depends on the dimension
of the input problem (number of features) and this means that for large problems, large
amounts of memory are required to store and manage the learning models. In addition, as
the number of parameters of the computational models grows, a longer time is required
to adjust the parameters. Moreover, as the dimension of the data grows, more samples
(patterns) are required in order to achieve high learning rates. A discussion on how
the dimensionality of the input problems affects the effectiveness of neural networks is
presented in [24]. A common approach to reduce the dimension of the input data is
the Principal Component Analysis (PCA) technique [25–27] or the Minimum redundancy
Feature Selection (MRMR) technique [28,29]. Furtheromre, Wang et al. [30] proposed an
auto-encoder based dimensionality reduction method for large datasets. An overview of
dimensionality reduction techniques can be found in the work of Ayesha et al. [31].

The current article describes the method and the software associated with a feature
construction method based on grammatical evolution [32], which is an evolutionary process
that can create programs in any programming language. The described method constructs
subsets of features from the original ones using non-linear combinations of them. The
method is graphically illustrated in Figure 1. Initially, the method was described in [33],
and it has been utilized in a variety of cases, such as spam identification [34], fetal heart
classification [35], epileptic oscillations in clinical intracranial electroencephalograms [36],
classification of EEG signals [37], etc.

Feature construction methods have been thoroughly examined and analyzed in the
relevant literature such as the work of Smith and Bull [38], where tree genetic programming

Algorithms 2022, 15, 295. https://doi.org/10.3390/a15080295 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15080295
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a15080295
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15080295?type=check_update&version=2

Algorithms 2022, 15, 295 2 of 19

is used to construct artificial features. Devi uses the Simulated Annealing method [39] to
identify the features that are most important for data classification. Neshatian et al. [40]
construct artificial features using an entropy based fitness function for the associated genetic
algorithm. Li and Yin use another evolutionary approach for feature selection using gene
expression data [41]. Furthermore, Ma and Teng proposed [42] a genetic programming
approach that utilizes information gain ratio (IGR) to construct artificial features.

The proposed software has been implemented in ANSI C++ utilizing the freely
available library of QT from https://www.qt.io (accessed on 18 August 2022). The user
should supply the training and test data of the underlying problem as well as the desired
number of features that will be created. The evaluation of the constructed features can
be made using a variety of machine learning models, and the user can easily extend the
software to add more learning models. Moreover, the software has a variety of command
line options to control the parameters of the learning models or to manage the output of the
method. Finally, since the process of grammatical evolution can require a lot of execution
time, parallel computation is included in the proposed software through the OpenMP
programming library [43].

The proposed method differs from similar ones as it does not require any prior
knowledge of the objective problem and can be applied without any change to both
classification problems and regression problems. In addition, the method can discover any
functional dependencies between the initial features and can drastically reduce the number
of input features, significantly reducing the time required to train the subsequent machine
learning model.

Related freely available software packages on feature selection and construction are
also the Mlpack package [44], which implements the PCA method; the GSL software
package obtained from https://www.gnu.org/software/gsl/doc/html/index.html
(accessed on 18 August 2022), which also implements the PCA method, among others; the
MRMR package writen in ANSI C++ by Hanchuan Peng [28,29]; etc.

The rest of this article is organized as follows: in Section 2, the grammatical evolution
procedure is briefly described and the proposed method is analyzed; in Section 3, the
proposed software is outlined in detail; in Section 4, a variety of experiments are conducted
and presented; and finally in Section 5, some conclusions and future guidelines are discussed.

Figure 1. Schematic representation of the feature construction technique.

2. Methods

In this section, a brief overview of grammatical evolution, its applications and its
advantages is given and then presented: the creation of artificial features using grammatical

https://www.qt.io
https://www.gnu.org/software/gsl/doc/html/index.html

Algorithms 2022, 15, 295 3 of 19

evolution, the first phase of the method where features are constructed and evaluated, and
the second phase of the method, where the characteristics from the first phase are evaluated.

2.1. Grammatical Evolution

Grammatical evolution is a biologically inspired procedure that can create artificial
programs in any language. In grammatical evolution, the chromosomes enclose production
rules from a BNF (Backus–Naur form) grammar [45]. These grammars are usually described
as a set G = (N, T, S, P), where

• N is the set of non-terminal symbols.
• T is the set of terminal symbols.
• S is a non-terminal symbol defined as the start symbol of the grammar.
• P is a set of production rules in the form A→ a or A→ aB, A, B ∈ N, a ∈ T.

In order for grammatical evolution to work, the original grammar is expanded by
enumerating all production rules. For example, consider the modified grammar of Figure 2.
The symbols that are in <> are considered as non-terminal symbols. The numbers in
parentheses are the production sequence numbers for each non-terminal symbol. The
constant N is the original number of features for the input data. In grammatical evolution,
the chromosomes are expressed as vectors of integers. Every element of each chromosome
denotes a production rule from the provided BNF grammar. The algorithm starts from the
start symbol of the grammar and gradually produces some program string by replacing
non-terminal symbols with the right hand of the selected production rule. The selection of
the rule has two steps:

• Take the next element from the chromosome and denote it as V.
• Select the next production rule according to the the scheme Rule = V mod R, where R

is the number of production rules for the current non-terminal symbol.

For example, consider the chromosome

x = [9, 8, 6, 4, 16, 10, 17, 23, 8, 14]

and N = 3. The steps of mapping this chromosome to the valid expression f (x) =
x2 + cos(x3) are illustrated in Table 1.

Initially, grammatical evolution was used in cases of learning functions [46,47] and
solving trigonometric identities [48], but then it was also applied in other fields such as
automatic composition of music [49], construction of neural networks [50,51], automatic
constant creation [52], evolution of video games [53,54], energy demand estimation [55],
combinatorial optimization [56], cryptography [57], etc.

A key advantage of the grammatical evolution is its easy adaptability to a wide range
of problems, as long as the grammar of the problem and a fitness method are provided. No
additional knowledge of the problem is required such as using derivatives. Furthermore,
the method can be easily parallelized, since it is essentially a genetic algorithm of integer
values. However, there are a number of disadvantages that must be taken into account
when using the technique. In principle, in many cases a chromosome may not be able to
produce a valid expression in the underlying grammar if its elements run out. In this case,
wrapping an effect can be executed, but it is not always certain that this can again provide a
valid solution. Moreover, another important issue is the initialization of the chromosomes
of grammatical evolution. Usually the rules are very few in number and therefore, different
numbers on the chromosomes may produce the same rules.

In the next subsection, the steps of producing artificial features from the original ones
are provided and discussed.

Algorithms 2022, 15, 295 4 of 19

S::=<expr> (0)
<expr> ::= (<expr> <op> <expr>) (0)

| <func> (<expr>) (1)
|<terminal> (2)

<op> ::= + (0)
| - (1)
| * (2)
| / (3)

<func> ::= sin (0)
| cos (1)
|exp (2)
|log (3)

<terminal>::=<xlist> (0)
|<digitlist>.<digitlist> (1)

<xlist>::=x1 (0)
| x2 (1)
.........
| xN (N)

<digitlist>::=<digit> (0)
| <digit><digit> (1)
| <digit><digit><digit> (2)

<digit> ::= 0 (0)
| 1 (1)
| 2 (2)
| 3 (3)
| 4 (4)
| 5 (5)
| 6 (6)
| 7 (7)
| 8 (8)
| 9 (9)

Figure 2: BNF grammar of the proposed method.

5

Figure 2. BNF grammar of the proposed method.

Table 1. Steps to produce a valid expression from the BNF grammar.

String Chromosome Operation

<expr> 9,8,6,4,16,10,17,23,8,14 9 mod 3 = 0

(<expr><op><expr>) 8,6,4,16,10,17,23,8,14 8 mod 3 = 2

(<terminal><op><expr>) 6,4,16,10,17,23,8,14 6 mod 2 = 0

(<xlist><op><expr>) 4,16,10,17,23,8,14 4 mod 3 = 1

(x2<op><expr>) 16,10,17,23,8,14 16 mod 4 = 0

(x2+<expr>) 10,17,23,8,14 10 mod 3 = 1

(x2+<func>(<expr>)) 17,23,8,14 17 mod 4 = 1

(x2+cos(<expr>)) 23,8,14 23 mod 2 = 1

(x2+cos(<terminal>)) 8,14 8 mod 2 = 0

(x2+cos(<xlist>)) 14 14 mod 3 = 2

(x2+cos(x3))

2.2. The Feature Construction Procedure

The proposed technique is divided into two phases: in the first phase, new features
are constructed from the old ones using grammatical evolution and in the second phase,
these new features modify the control set, and a machine learning model is applied to the

Algorithms 2022, 15, 295 5 of 19

new control set. The following procedure is executed in order to produce N f features from
the original ones for a given chromosome X:

1. Split X into N f parts.
2. For i = 1 . . . N f , denote each part as xi.
3. For every part xi, construct a feature FTi using the grammar given in Figure 2.

Every feature FTi is considered as a mapping function that transforms the original
features to a new one. For example, the feature

FT1 = x2
1 + sin((x2)

is a non-linear function that maps the original feature (x1, x2) into FT1. Let (x1, x2) = (2, 1).
The mapping procedure will create the value 4 + sin(1).

2.3. The Feature Construction Step

This is the first phase of the proposed method and it has the following steps:

1. Initialization step.

(a) Read the train data. The train data contain M patterns as pairs (xi, ti),
i = 1 . . . M, where ti is the actual output for pattern xi.

(b) Set NG, the maximum number of generations.
(c) Set NC, the number of chromosomes.
(d) Set pS, the selection rate.
(e) Set N f , the desired number of features.
(f) Set pM, the mutation rate.
(g) Initialize the chromosomes of the population. Every element of each chromosome

is initialized randomly in the range [0, 255].
(h) Set iter = 1.

2. Genetic step.

(a) For i = 1, . . . , Ng do

i. Create, using the procedure of Section 2.2, a set of N f for the
corresponding chromosome gi.

ii. Transform the original train data to the new train data using the previously
created features. Denote the new train set as

(
xgi ,j, tj

)
,

j = 1, . . . , M.
iii. Apply a learning model C (such as RBF) to the new data and calculate the

fitness fi as

fi =
M

∑
j=1

(
C
(
xgi ,j

)
− tj

)2 (1)

iv. Apply the selection procedure. During selection, the chromosomes are
classified according to their fitness. The best (1− ps)× NC chromosomes are
transferred without changes to the next generation of the population. The
rest will be replaced by chromosomes that will be produced at the crossover.

v. Apply the crossover procedure. During this process, ps × Nc
chromosomes will be created. Firstly, for every pair of produced offsprings,
two distinct chromosomes (parents) are selected from the current population
using tournament selection: First, a subset of K > 1 randomly selected
chromosomes is created and the chromosome with the best fitness value is
selected as parent. For every pair (z, w) of parents, two new offsprings z̃ and
w̃ are created through one point crossover as graphically shown in Figure 3.

vi. Apply the mutation procedure. For every element of each chromosome,
select a random number r ∈ [0, 1] and alter the corresponding
chromosome if r ≤ pm.

Algorithms 2022, 15, 295 6 of 19

(b) End For

3. Set iter = iter+1.
4. If iter ≤ NG, goto Genetic Step, else terminate and obtain g∗ as the best chromosome

in the population.

1

Figure 3. Example of one-point crossover.

2.4. The Feature Evaluation Step

During the feature evaluation step, the following steps are executed:

1. Denote as T = (xi, yi), i = 1, . . . , K the original test set.
2. Obtain the best chromosome g∗ of the feature construction step.
3. Construct N f features for g∗ using the procedure of Section 2.2.
4. Transform T into T′ =

(
xg∗ ,i, yi

)
, i = 1, . . . , K using the previously constructed

features.
5. Apply a learning model such as RBF or a neural network to T′ and obtain the test error.

3. The Software

The proposed method has been fully implemented in ANSI C++ and is freely available
from the internet. This section also acts as a small manual for this software. It starts with
the software installation instructions, then all the operating parameters of the software are
presented and the use of the software is demonstrated through an analytical example.

3.1. Installation Procedure

The software is entirely written in ANSI C++ using the freely available QT
programming library. The library can be downloaded from https://www.qt.io (accessed
on 18 August 2022) As expected, the software can be installed on the majority of operating
systems, even on mobile devices (Android, iOS, etc.). The program is freely available from
https://github.com/itsoulos/QFc (accessed on 18 August 2022), and the user should issue
the following commands under most UNIX systems to compile the project:

1. Download QFc-master.zip from the above url
2. gunzip QFc-master.zip
3. cd QFc
4. qmake.
5. make

The final outcome of the previous steps is a command line program called qfc. This
program has a series of command line parameters that is illustrated subsequently.

3.2. The Program qfc

The program qfc has a variety of command line options. All options are in the form
−−key = value, where key is the name of the option and value is the actual option value.
The main options of the program are:

https://www.qt.io
https://github.com/itsoulos/QFc

Algorithms 2022, 15, 295 7 of 19

1. −−trainFile = filename, where filename is the full path to data containing the input
train set. The file must be in the format of Figure 4. The integer number D denotes the
number of features of the dataset, and M represents the number of patterns. In every
subsequent line of the file, there should be the input pattern, and the final column is
the real output (category) for the corresponding pattern.

2. −−testFile = filename, where filename is the full path to data containing the input test
set. The format of this file should be the same as the train data. The user should at
least provide the train and test set in order to execute the program.

3. −−features = n, set as the n the number of features that will be constructed by the
method. The default value is 1.

4. −−randomSeed = r, set as r the random seed generator. The default value for this
parameter is 1, and the drand48() random generator of c++ language was used.

5. −−featureCreateModel = model, the string parameter model sets the name of the
used feature construction model. The default value is “rbf”, and accepted values are:

(a) copy. With this value, no feature construction is done and the original dataset is
used for training by the model specified by the option −−featureEvaluate Model.

(b) rbf. This value is used to utilize a Radial Basis Function neural network for the
evaluation of the constructed features.

(c) neural. This value is used to use a neural network for the evaluation of the
constructed features.

(d) knn. A simple K-nearest neighbor (KNN) method is used [58].
(e) osamaRbf. A simple RBF implementation as downloaded from https://github.c

om/osama-afifi/RBF-Radial-Basis-Function-Network (accessed on 18 August
2022).

6. −−featureEvaluateModel = model, the string parameter model sets the name of
the used model for the evaluation of the constructed features. The default value is
“neural”, but other accepted values are: rbf, knn, osamaRbf, nnc. The value nnc refers
to the Neural Network Construction model as proposed by Tsoulos et al. [59].

7. −−threads=t, the number of OpenMP threads used. The default value is 1.
8. −−neural_trainingMethod = m. This is the option that defines the method used for

neural network training. The default value for m is “bfgs”, and accepted values are

(a) bfgs. This value sets as a training method a BFGS variant of Powell [60].
(b) lbfgs. This value sets as a training method the limited memory BFGS [61,62].
(c) genetic. With this value, a simple genetic algorithm [63,64] is used to train the

neural network.

9. −−neural_weights = n, the weights used in neural networks. The default value is 1.
10. −−knn_weights = n, the weights (neighbors) used in the knn model. The default

value is 1.
11. −−rbf_weights = n, the weights used in the rbf model.
12. −−ge_chromosomes = n, the number of chromosomes in the grammatical evolution

procedure. The default value is 500.
13. −−ge_maxGenerations = n, the maximum number of generations for the grammatical

evolution procedure. The default value is 200.
14. −−ge_selectionRate = f, the selection rate used in the grammatical evolution procedure.

The default value is 0.10 (10%).
15. −−ge_mutationRate = f, the mutation rate used in the grammatical evolution

procedure. The default value is 0.05 (5%).
16. −−ge_length = n, the length of chromosomes in the grammatical evolution procedure.

The default value is 40× d, where d is the number of features that will be created.
17. −−genetic_chromosomes = n, the number of chromosomes used in the genetic

algorithm for neural network training. The default value is 500.
18. −−genetic_maxGenerations = n, the maximum number of generations for the genetic

algorithm used for neural network training. The default value is 200.

https://github.com/osama-afifi/RBF-Radial-Basis-Function-Network
https://github.com/osama-afifi/RBF-Radial-Basis-Function-Network

Algorithms 2022, 15, 295 8 of 19

19. −−genetic_selectionRate = f, the selection rate used in the genetic algorithm of neural
network training. The default value is 0.1 (10%).

20. −−genetic_mutationRate = f, the mutation rate used in the genetic algorithm of neural
network training. The default value is 0.05 (5%).

21. −−bfgs_iterations = n, the maximum number of iterations for the BFGS method. The
default value is 2001.

22. −−export_train_file = f. The value f specifies the file where the training set will be
exported after new features are constructed. The new file will have the same format
and the same number of templates as the original, but the dimension will be changed
to the one defined with the parameter −−features.

23. −−export_test_file = f, the value f specifies the file where the test set will be exported
after new features are constructed. The new file will have the same format and the
same number of templates as the original, but the dimension will be changed to the
one defined with the parameter −−features.

24. −−export_cpp_file = f, where f is the output of the constructed features in the C++
programming language. As an example, consider the file outlined in Figure 5. The
function fcMap() is a function with two array arguments:

(a) The argument inx denotes an input pattern with the original dimension. For the
case of BL dataset, the original dimension is 7.

(b) The argument outx stands for the features created by the algorithm. In this case,
outx[0] is the first feature and outx[1] is the second feature.

25. −−help, prints a help screen and terminates the program.

D
M

x11 x12 . . . x1D y1
x21 x22 . . . x2D y2

...
...

...
...

...
xM1 xM2 . . . xMD yM

Figure 4. Example of input file for regression/classification.

include <math . h>
void fcMap (double * inx , double * outx)
{

double x1=inx [0] ;
double x2=inx [1] ;
double x3=inx [2] ;
double x4=inx [3] ;
double x5=inx [4] ;
double x6=inx [5] ;
double x7=inx [6] ;
outx [0] = exp ((5 . 4 * x1 / (5 . 3 * x4 * (3 8 . 5 9 9 * x1 * (x7 * cos (((− 5 5 . 6 8) / 5 . 4) * x1)))))) ;
outx [1] = ((− 8 8 . 0 0 7) * x3 / (9 . 9 9 8 * x7+cos (((− 8 . 8 1) * x5 * s q r t ((7 8 3 . 1 3 8 * x2)))))) ;

}

Figure 5. An example output file for the BL dataset.

3.3. Example Run

As an example run, consider the wdbc dataset located in the examples folder of the
distribution. The following command:

./QFc --trainFile = examples/wdbc.train --testFile =
examples/wdbc.test

--features = 2 --ge_maxGenerations=5
--featureEvaluatedModel=rbf --threads = 8

will produce the following output

Algorithms 2022, 15, 295 9 of 19

I t e r a t i o n : 1 Best F i t n e s s : −52.1562
Best program : f1 (x) = (4 4 7 . 6 3 * x7−x14+x15)
I t e r a t i o n : 2 Best F i t n e s s : −52.1562
Best program : f1 (x) = (4 4 7 . 6 3 * x7−x14+x15)
I t e r a t i o n : 3 Best F i t n e s s : −51.8369
Best program : f1 (x) = (4 1 7 . 6 3 * x7−x14+x15)
I t e r a t i o n : 4 Best F i t n e s s : −51.7176
Best program : f1 (x) = (4 1 7 . 6 3 * x7−x14 + (4 8 . 0 7 / (− 4 8 6 . 5 0 3)) * x14+exp (5 5 . 8 8 4 * x15))
I t e r a t i o n : 5 Best F i t n e s s : −51.5149
Best program : f1 (x) = (4 1 7 . 6 3 * x7−x14+x15+x16+log (((− 9 . 8 6 3) / 5 . 9) * x30+exp (s in (x5 + (4 1 7 . 6 3 / 0 7 . 5 4) * x8 +7 .494* x29))))
AVERAGES(TRAIN, TEST , CLASS) : 57 .241174 60 .60288 29.473684%

4. Experiments

A series of experiments were performed in order to evaluate the reliability and
accuracy of the proposed methodology. In these experiments, the accuracy of the proposed
methodology against other techniques, the running time of the experiments, and the
sensitivity of the experimental results to various critical parameters, such as the number of
features or the maximum number of generations of the genetic algorithm, were measured.
All the experiments were conducted 30 times with different seeds for the random number
generator each time and averages were taken. All the experiments were conducted on
an AMD Ryzen 5950X equipped with 128GB of RAM. The operating system used was
OpenSUSE Linux, and all the programs were compiled using the GNU C++ compiler. In all
the experiments, the parameter −−featureCreateModel had the value rbf, since it is the
fastest model that could be used and it has high learning rates. For classification problems,
the average classification error on the test set is shown and, for regression datasets, the
average mean squared error on the test set is displayed. In all cases, 10-fold cross-validation
was used, and the number of parameters for neural networks and for RBF networks was
set to 10. The evaluation of the features constructed by grammatical evolution was made
using the Function Parser library [65].

4.1. Experimental Datasets

The validity of the method was tested on a series of well-known datasets from the
relevant literature. The main repositories for the testing were:

1. The UCI Machine Learning Repository http://www.ics.uci.edu/~mlearn/MLReposi
tory.html (accessed on 18 August 2022)

2. The Keel repository https://sci2s.ugr.es/keel/ (accessed on 18 August 2022)
3. The Statlib repository http://lib.stat.cmu.edu/datasets/ accessed on 18 August 2022).

The classification datasets are:

1. Australian dataset [66], a dataset related to credit card applications.
2. Alcohol dataset, a dataset about Alcohol consumption [67].
3. Balance dataset [68], which is used to predict psychological states.
4. Cleveland dataset, a dataset used to detect heart disease and used in various

papers [69,70].
5. Dermatology dataset [71], which is used for differential diagnosis of erythemato-

squamous diseases.
6. Glass dataset. This dataset contains glass component analysis for glass pieces that

belong to six classes.
7. Hayes Roth dataset [72]. This dataset contains 5 numeric-valued attributes and

132 patterns.
8. Heart dataset [73], used to detect heart disease.
9. HouseVotes dataset [74], which is about votes in the U.S. House of Representatives

Congressmen.
10. Liverdisorder dataset [75], used to detect liver disorders in peoples using blood

analysis.
11. Ionosphere dataset, a meteorological dataset used in various research papers [76,77].
12. Mammographic dataset [78]. This dataset can be used to identify the severity (benign

or malignant) of a mammographic mass lesion from BI-RADS attributes and the
patient’s age. It contains 830 patterns of 5 features each.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
https://sci2s.ugr.es/keel/
http://lib.stat.cmu.edu/datasets/

Algorithms 2022, 15, 295 10 of 19

13. PageBlocks dataset. The dataset contains blocks of the page layout of a document that
has been detected by a segmentation process. It has 5473 patterns with 10 features each.

14. Parkinsons dataset, ref. [79], which is created using a range of biomedical voice
measurements from 31 people, 23 with Parkinson’s disease (PD). The dataset has
22 features.

15. Pima dataset [80], used to detect the presence of diabetes.
16. PopFailures dataset [81], used in meteorology.
17. Regions2 dataset. It is created from liver biopsy images of patients with hepatitis

C [82]. From each region in the acquired images, 18 shape-based and color-based
features were extracted, while it was also annotated from medical experts. The
resulting dataset includes 600 samples belonging to 6 classes.

18. Saheart dataset [83], used to detect heart disease.
19. Segment dataset [84]. This database contains patterns from a database of seven

outdoor images (classes).
20. Sonar dataset [85]. The task here is to discriminate between sonar signals bounced off

a metal cylinder and those bounced off a roughly cylindrical rock.
21. Spiral dataset, which is an artificial dataset with two classes. The features in the

first class are constructed as: x1 = 0.5t cos(0.08t), x2 = 0.5t cos
(
0.08t + π

2
)

and
for the second class the used equations are : x1 = 0.5t cos(0.08t + π), x2 = 0.5t
cos

(
0.08t + 3π

2
)
.

22. Wine dataset, which is related to chemical analysis of wines [86,87].
23. Wdbc dataset [88], which contains data for breast tumors.
24. EEG dataset. As a real-world example, an EEG dataset described in [89,90] is used

here. The dataset consists of five sets (denoted as Z, O, N, F, and S), each containing 100
single-channel EEG segments and each having a 23.6 sec duration. Sets Z and O have
been taken from surface EEG recordings of five healthy volunteers with eye open and
closed, respectively. Signals in two sets have been measured in seizure-free intervals
from five patients in the epileptogenic zone (F) and from the hippocampal formation
of the opposite hemisphere of the brain (N). Set S contains seizure activity, selected
from all recording sites exhibiting ictal activity. Sets Z and O have been recorded
extracranially, whereas sets N, F, and S have been recorded intracranially.

25. Zoo dataset [91], where the task is to classify animals in seven predefined classes.

The regression datasets used are the following:

1. Abalone dataset [92]. This dataset can be used to obtain a model to predict the age of
abalone from physical measurements.

2. Airfoil dataset, which is used by NASA for a series of aerodynamic and acoustic
tests [93].

3. Baseball dataset, a dataset to predict the salary of baseball players.
4. BK dataset, used to estimate the points scored per minute in a basketball game.
5. BL dataset, which is related to the effects of machine adjustments on the time to

count bolts.
6. Concrete dataset. This dataset is taken from civil engineering [94].
7. Dee dataset, used to predict the daily average price of the electricity energy in Spain.
8. Diabetes dataset, a medical dataset.
9. FA dataset, which contains percentage of body fat and ten body circumference

measurements. The goal is to fit body fat to the other measurements.
10. Housing dataset. This dataset was taken from the StatLib library and it is described

in [95].
11. MB dataset. This dataset is available from Smoothing Methods in Statistics [96], and

it includes 61 patterns.
12. MORTGAGE dataset, which contains economic data information from the USA.
13. NT dataset [97], which is related to the body temperature measurements.
14. PY dataset [98], used to learn Quantitative Structure Activity Relationships (QSARs).
15. Quake dataset, used to estimate the strength of an earthquake.

Algorithms 2022, 15, 295 11 of 19

16. Treasure dataset, which contains economic data information from the USA from 1
April 1980 to 2 April 2000 on a weekly basis.

17. Wankara dataset, which contains weather information.

4.2. Experimental Results

The parameters for the used methods are listed in Table 2. In all tables, an additional
row was added at the end showing the average classification or regression error for all
datasets, and it is denoted by the name AVERAGE. The columns of all tables have the
following meaning:

1. The column RBF stands for the results from an RBF network with H Gaussian units.
2. The column MLP stands for the results of a neural network with H sigmoidal nodes

trained by a genetic algorithm. The parameters of this genetic algorithm are listed in
Table 2.

3. The column FCRBF represents the results of the proposed method, when an RBF
network with H Gaussian units was used as the evaluation model.

4. The column FCMLP represents the results of the proposed method, when a neural
network trained by a genetic algorithm was used as the evaluation model. The
parameters of this genetic algorithm are listed in Table 2.

5. The column FCNNC stands for the results of the proposed method, when the neural
network construction model (nnc) was utilized as the evaluation model.

6. The column MRMR stands for the Minimum Redundancy Maximum Relevance
Feature Selection method with two selected features. The features selected by MRMR
are evaluated using an artificial neural network trained by a genetic algorithm using
the parameters of Table 2.

7. The Principal Component Analysis (PCA) method, as implemented in Mlpack
software [44], was used to construct two features. The features constructed by PCA
are evaluated using an artificial neural network trained by a genetic algorithm using
the parameters of Table 2.

Table 2. Experimental parameters.

PARAMETER MEANING VALUE

H Neural weights 10

NC Chromosomes 500

NF Features 2

pS Selection rate 0.10

pM Mutation rate 0.05

NG Generations 200

The experimental results for the classification datasets are listed in Table 3, and for
regression datasets in Table 4. Furtheromre, a comparison against MRMR and PCA is
performed in Tables 5 and 6, respectively.

Summarizing the conclusions of the experiments, one can say that the proposed
method obviously outperforms the other techniques in most cases, especially in the case
of regression datasets. In the case of data classification, there is a gain of the order of 30%,
and in the case of regression data, the gain from the application of the proposed technique
exceeds 50%. The gain in many cases from the application of the proposed technique can
even reach 90%. In addition, the MRMR method seems to be superior in most cases to the
PCA, possibly pointing the way for a future research on the combination of grammatical
evolution and MRMR. Furthermore, among the three cases of models used to evaluate
the constructed features (FCRBF, FCMLP, FCNNC), there does not seem to be any clear
superiority of any of the three. However, we would say that the nnc method slightly
outperforms the simple genetic algorithm.

Algorithms 2022, 15, 295 12 of 19

Table 3. Experimental results between the method and other techniques for the classification datasets.

DATASET RBF MLP FCRBF FCMLP FCNNC

ALCOHOL 49.19% 47.49% 35.56% 26.57% 28.58%

AUSTRALIAN 34.89% 32.21% 15.37% 14.31% 14.24%

BALANCE 33.42% 8.97% 14.39% 1.42% 1.52%

DERMATOLOGY 62.34% 30.58% 22.42% 15.06% 15.42%

GLASS 50.16% 60.25% 49.81% 55.94% 52.62%

HAYES ROTH 64.36% 56.18% 34.59% 29.58% 30.67%

HEART 31.20% 28.34% 18.61% 15.67% 17.21%

HOUSEVOTES 5.99% 6.62% 7.15% 5.22% 3.96%

IONOSPHERE 16.22% 15.14% 9.83% 9.48% 9.92%

LIVERDISORDER 30.84% 31.11% 30.77% 31.98% 30.24%

MAMMOGRAPHIC 21.38% 19.88% 16.68% 17.92% 16.75%

PAGEBLOCKS 10.09% 8.06% 9.24% 5.58% 5.85%

PARKINSONS 17.41% 18.05% 8.48% 10.82% 12.53%

PIMA 25.75% 32.19% 24.07% 30.02% 25.01%

POPFAILURES 7.04% 5.94% 4.94% 4.94% 4.43%

REGIONS2 37.49% 29.39% 25.49% 27.52% 24.40%

SAHEART 32.19% 34.86% 29.10% 27.91% 27.17%

SEGMENT 59.69% 57.72% 39.35% 49.52% 46.14%

SONAR 27.85% 26.97% 24.35% 25.38% 23.68%

SPIRAL 44.87% 45.77% 34.34% 45.53% 42.69%

TAE 60.07% 56.22% 50.95% 56.87% 55.67%

WDBC 7.27% 8.56% 3.39% 4.36% 4.51%

WINE 31.41% 19.20% 7.61% 11.08% 11.61%

Z_F_S 13.16% 10.73% 5.48% 6.72% 6.63%

ZO_NF_S 9.02% 8.41% 4.08% 4.25% 4.34%

ZONF_S 4.03% 2.60% 1.89% 4.62% 3.18%

Z_O_N_F_S 48.71% 65.45% 39.29% 40.93% 41.19%

ZOO 21.77% 16.67% 26.07% 13.30% 10.33%

AVERAGE 31.89% 28.80% 22.11% 22.02% 21.22%

In addition, one more experiment was done in order to establish the impact of the
number of features on the accuracy of the proposed method. In this case, the RBF (FCRBF)
network was used as the feature evaluator, and the number of generated features was
in the interval [1. . . 4]. The average classification error and the average regression error
for all datasets are shown in Table 7. From the experimental results, the robustness of
the proposed methodology is clearly visible, as one or two features seem to be enough to
achieve high learning rates for the experimental data used.

Furthermore, one more experiment was conducted to determine the effect of the
maximum number of generations on the accuracy of the proposed method. Again, as
an evaluator model, the RBF was used. The number of generations was varied from 50
to 400, and the average classification error and average regression error for all datasets
were measured. The results for this experiment are presented in Table 8. Once again, the
dynamics of the proposed method appear as a few generations are enough to achieve high
learning rates.

Algorithms 2022, 15, 295 13 of 19

Table 4. Experiments for regression datasets.

DATASET RBF MLP FCRBF FCMLP FCNNC

ABALONE 7.32 7.17 4.46 4.18 4.39

AIRFOIL 0.05 0.003 0.002 0.001 0.001

BASEBALL 78.89 103.60 48.04 52.50 51.40

BK 0.02 0.03 0.02 0.02 0.02

BL 0.01 5.74 0.04 0.001 0.01

CONCRETE 0.01 0.01 0.006 0.004 0.005

DEE 0.17 1.01 0.18 0.40 0.38

DIABETES 0.49 19.86 1.49 0.58 0.61

HOUSING 57.68 43.26 12.78 28.47 17.47

FA 0.01 1.95 0.01 0.02 0.01

MB 1.91 3.39 0.48 0.12 0.06

MORTGAGE 1.45 2.41 0.66 1.37 0.22

NT 8.15 0.05 0.25 0.007 0.02

PY 0.02 105.41 0.17 0.03 0.03

QUAKE 0.07 0.04 0.06 0.02 0.04

TREASURY 2.02 2.93 0.29 1.41 0.11

WANKARA 0.001 0.012 0.0004 0.0002 0.0002

AVERAGE 9.31 17.46 4.06 5.24 4.4

Table 5. Comparison against MRMR and PCA for the classification datasets.

DATASET MRMR PCA FCRBF FCMLP FCNNC

ALCOHOL 56.75% 70.29% 35.56% 26.57% 28.58%

AUSTRALIAN 32.92% 49.97% 15.37% 14.31% 14.24%

BALANCE 56.80% 56.48% 14.39% 1.42% 1.52%

DERMATOLOGY 68.54% 62.11% 22.42% 15.06% 15.42%

GLASS 58.35% 50.16% 49.81% 55.94% 52.62%

HAYES ROTH 61.21% 61.13% 34.59% 29.58% 30.67%

HEART 38.04% 35.84% 18.61% 15.67% 17.21%

HOUSEVOTES 3.05% 10.80% 7.15% 5.22% 3.96%

IONOSPHERE 12.93% 21.22% 9.83% 9.48% 9.92%

LIVERDISORDER 40.32% 45.01% 30.77% 31.98% 30.24%

MAMMOGRAPHIC 16.84% 17.23% 16.68% 17.92% 16.75%

PAGEBLOCKS 14.91% 13.05% 9.24% 5.58% 5.85%

PARKINSONS 17.16% 16.96% 8.48% 10.82% 12.53%

PIMA 26.29% 39.43% 24.07% 30.02% 25.01%

POPFAILURES 7.04% 31.42% 4.94% 4.94% 4.43%

REGIONS2 33.31% 32.50% 25.49% 27.52% 24.40%

SAHEART 28.78% 36.96% 29.10% 27.91% 27.17%

SEGMENT 45.72% 70.29% 39.35% 49.52% 46.14%

SONAR 43.92% 49.97% 24.35% 25.38% 23.68%

Algorithms 2022, 15, 295 14 of 19

Table 5. Cont.

DATASET MRMR PCA FCRBF FCMLP FCNNC

SPIRAL 44.87% 45.94% 34.34% 45.53% 42.69%

TAE 61.00% 64.80% 50.95% 56.87% 55.67%

WDBC 12.91% 10.28% 3.39% 4.36% 4.51%

WINE 30.73% 30.39% 7.61% 11.08% 11.61%

Z_F_S 32.71% 44.81% 5.48% 6.72% 6.63%

ZO_NF_S 33.79% 40.02% 4.08% 4.25% 4.34%

ZONF_S 10.31% 12.63% 1.89% 4.62% 3.18%

Z_O_N_F_S 43.04% 56.45% 39.29% 40.93% 41.19%

ZOO 19.03% 11.50% 26.07% 13.30% 10.33%

AVERAGE 33.97% 38.84% 22.11% 22.02% 21.22%

Table 6. Comparison against MRMR and PCA for the regression datasets.

DATASET MRMR PCA FCRBF FCMLP FCNNC

ABALONE 6.48 6.70 4.46 4.18 4.39

AIRFOIL 0.003 0.019 0.002 0.001 0.001

BASEBALL 100.21 101.87 48.04 52.50 51.40

BK 0.03 0.17 0.02 0.02 0.02

BL 0.15 0.19 0.04 0.001 0.01

CONCRETE 0.025 0.273 0.006 0.004 0.005

DEE 0.40 0.55 0.18 0.40 0.38

DIABETES 19.86 27.36 1.49 0.58 0.61

HOUSING 67.97 119.08 12.78 28.47 17.47

FA 0.02 0.08 0.01 0.02 0.01

MB 3.39 4.33 0.48 0.12 0.06

MORTGAGE 0.17 2.41 0.66 1.37 0.22

NT 0.05 1.57 0.25 0.007 0.02

PY 1.56 0.30 0.17 0.03 0.03

QUAKE 1.44 1.80 0.06 0.02 0.04

TREASURY 0.12 3.13 0.29 1.41 0.11

WANKARA 0.002 0.90 0.0004 0.0002 0.0002

AVERAGE 11.88 15.93 4.06 5.24 4.4

Table 7. Average errors regarding the number of features.

FEATURES AVERAGE CLASS AVERAGE REGRESSION

1 23.02% 4.73

2 22.11% 4.06

3 21.03% 4.23

4 22.16% 4.28

Algorithms 2022, 15, 295 15 of 19

Table 8. Average error depending on the number of generations.

GENERATIONS AVERAGE CLASS AVERAGE REGRESSION

50 22.38% 5.61

200 22.11% 4.06

400 21.46% 4.21

5. Conclusions

A feature construction method and the accompanying software were analyzed in
detail in this paper. The software is developed in ANSI C++ and is freely available on
the internet. The proposed technique constructs technical features from the existing ones
by exploiting the possible functional dependencies between the features, but also the
possibility that some of the original features do not contribute anything to the learning. The
method does not require any prior knowledge of the objective problem and can be applied
without any change to both regression and classification problems. The method is divided
into two phases: in the first phase, a genetic algorithm using grammatical evolution is
used to construct new features from the original ones. These features are evaluated for
their accuracy with some machine learning model. However, this process can be very
time consuming and as a consequence, fast learning models or parallel algorithms should
be used. Radial basis networks were used in the first phase of the method during the
experiments, which are known to have short training times, but other models could be
used in their place. In the second phase of the method after the features are generated, a
machine learning method is applied to them and the error on the test set is evaluated.

The user can choose between several learning models and can customize the course of
the technique through a series of command line parameters. From the extensive execution
of experiments and the comparison with other learning methods, the superiority of the
proposed technique and its ability to achieve high learning rates even with a limited number
of constructed features or a maximum number of iterations emerge. These results combined
with the ability of the method to run on multiple threads through the OpenMP library
make it ideal for learning large sets of data in a satisfactory execution time.

The method can be extended in several ways, such as:

1. Incorporation of advanced stopping rules.
2. Usage of more advanced learning models such as SVM.
3. Addition of more input formats such as the ARFF format or CSV format.
4. Incorporation of the MPI library [99] for a large network of computers.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The experiments of this research work were performed at the high-performance
computing system established at Knowledge and Intelligent Computing Laboratory, Dept of
Informatics and Telecommunications, University of Ioannina, acquired with the project “Educational
Laboratory equipment of TEI of Epirus” with MIS 5007094 funded by the Operational Programme
“Epirus” 2014–2020, by ERDF and national finds.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Metodiev, E.M.; Nachman, B.; Thaler, J. Classification without labels: Learning from mixed samples in high energy physics. J.

High Energy Phys. 2017, 2017, 174. [CrossRef]
2. Baldi, P.; Cranmer, K.; Faucett, T.; Sadowski, P.; Whiteson, D. Parameterized neural networks for high-energy physics. Eur. Phys.

J. C 2016, 76, 235. [CrossRef]

http://doi.org/10.1007/JHEP10(2017)174
http://dx.doi.org/10.1140/epjc/s10052-016-4099-4

Algorithms 2022, 15, 295 16 of 19

3. Valdas, J.J.; Bonham-Carter, G. Time dependent neural network models for detecting changes of state in complex processes:
Applications in earth sciences and astronomy. Neural Netw. 2006, 19, 196–207. [CrossRef]

4. Carleo, G.; Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 2017, 355, 602–606.
[CrossRef]

5. Güler, C.; Thyne, G.D.; McCray, J.E.; Turner, K.A. Evaluation of graphical and multivariate statistical methods for classification of
water chemistry data. Hydrogeol. J. 2002, 10, 455–474. [CrossRef]

6. Byvatov, E.; Fechner, U.; Sadowski, J.; Schneider, G. Comparison of Support Vector Machine and Artificial Neural Network
Systems for Drug/Nondrug Classification. J. Chem. Inf. Comput. Sci. 2003, 43, 1882–1889. [CrossRef]

7. Singh, K.P.; Basant, A.; Malik, A. Gunja Jain Artificial neural network modeling of the river water quality—A case study. Ecol.
Model. 2009, 220, 888–895. [CrossRef]

8. Kaastra, I.; Boyd, M. Designing a neural network for forecasting financial and economic time series. Neurocomputing 1996, 10,
215–236. [CrossRef]

9. Leshno, M.; Spector, Y. Neural network prediction analysis: The bankruptcy case. Neurocomputing 1996, 10, 125–147. [CrossRef]
10. Astel, A.; Tsakovski, S.; Simeonov, V.; Reisenhofer, E.; Piselli, S.; Barbieri, P. Multivariate classification and modeling in surface

water pollution estimation. Anal. Bioanal. Chem. 2008, 390, 1283–1292. [CrossRef]
11. Azid, A.; Juahir, H.; Toriman, M.E.; Kamarudin, M.K.A.; Saudi, A.S.M.; Hasnam, C.N.C.; Aziz, N.A.A.; Azaman, F.; Latif, M.T.;

Zainuddin, S.F.M.; et al. Prediction of the Level of Air Pollution Using Principal Component Analysis and Artificial Neural
Network Techniques: A Case Study in Malaysia. Water Air Soil Pollut. 2014, 225, 2063. [CrossRef]

12. Maleki, H.; Sorooshian, A.; Goudarzi, G.; Baboli, Z.; Birgani, Y.T.; Rahmati, M. Air pollution prediction by using an artificial
neural network model. Clean Technol. Environ. Policy 2019, 21, 1341–1352. [CrossRef]

13. Baskin, I.I.; Winkler, D.; Tetko, I.V. A renaissance of neural networks in drug discovery. Expert Opin. Drug Discov. 2016, 11,
785–795. [CrossRef]

14. Bartzatt, R. Prediction of Novel Anti-Ebola Virus Compounds Utilizing Artificial Neural Network (ANN). Chem. Fac. 2018, 49,
16–34.

15. Bishop, C. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995.
16. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst. 1989, 2, 303–314. [CrossRef]
17. Park, J.; Sandberg, I.W. Universal Approximation Using Radial-Basis-Function Networks. Neural Comput. 1991, 3, 246–257.

[CrossRef]
18. Yu, H.; Xie, T.; Paszczynski, S.; Wilamowski, B.M. Advantages of Radial Basis Function Networks for Dynamic System Design.

IEEE Trans. Ind. Electron. 2011, 58, 5438–5450. [CrossRef]
19. Steinwart, I.; Christmann, A. Support Vector Machines, Information Science and Statistics; Springer: Berlin/Heidelberg, Germany,

2008.
20. Luo, C.; Zhang, S.L. Parse-matrix evolution for symbolic regression. Eng. Appl. Artif. 2012, 25, 1182–1193. [CrossRef]
21. Chen, C.; Luo, C.; Jiang, Z. A multilevel block building algorithm for fast modeling generalized separable systems. Expert Syst.

Appl. 2018, 109, 25–34. [CrossRef]
22. Rivero, D.; Blanco, E.F.; Pazos, A. DoME: A deterministic technique for equation development and Symbolic Regression. Expert.

Appl. 2022, 198, 116712. [CrossRef]
23. Kotsiantis, S.B.; Zaharakis, I.D.; Pintelas, P.E. Machine learning: A review of classification and combining techniques. Artif. Intell.

Rev. 2006, 26, 159–190. [CrossRef]
24. Verleysen, M.; Francois, D.; Simon, G.; Wertz, V. On the effects of dimensionality on data analysis with neural networks. In

Artificial Neural Nets Problem Solving Methods; Mira, J., Álvarez, J.R., Eds.; IWANN 2003; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2003; Volume 2687.

25. Erkmen, B. Tülay Yıldırım, Improving classification performance of sonar targets by applying general regression neural network
with PCA. Expert Syst. Appl. 2008, 35, 472–475. [CrossRef]

26. Zhou, J.; Guo, A.; Celler, B.; Su, S. Fault detection and identification spanning multiple processes by integrating PCA with neural
network. Appl. Soft Comput. 2014, 14, 4–11. [CrossRef]

27. Ravi Kumar, G.; Nagamani, K.; Anjan Babu, G. A Framework of Dimensionality Reduction Utilizing PCA for Neural Network
Prediction. In Advances in Data Science and Management; Borah, S., Emilia Balas, V., Polkowski, Z., Eds.; Lecture Notes on Data
Engineering and Communications Technologies; Springer: Singapore, 2020; Volume 37.

28. Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and
min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [CrossRef]

29. Ding, C.; Peng, H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 2005,
3, 185–205. [CrossRef]

30. Wang, Y.; Yao, H.; Zhao, S. Auto-encoder based dimensionality reduction. Neurocomputing 2016, 184, 232–242. [CrossRef]
31. Ayesha, S.; Hanif, M.K.; Talib, R. Overview and comparative study of dimensionality reduction techniques for high dimensional

data. Inf. Fusion 2020, 59, 44–58. [CrossRef]
32. O’Neill, M.; Ryan, C. Grammatical evolution. IEEE Trans. Evol. Comput. 2001, 5, 349–358. [CrossRef]
33. Gavrilis, D.; Tsoulos, I.G.; Dermatas, E. Selecting and constructing features using grammatical evolution. Pattern Recognit. Lett.

2008, 29, 1358–1365. [CrossRef]

http://dx.doi.org/10.1016/j.neunet.2006.01.006
http://dx.doi.org/10.1126/science.aag2302
http://dx.doi.org/10.1007/s10040-002-0196-6
http://dx.doi.org/10.1021/ci0341161
http://dx.doi.org/10.1016/j.ecolmodel.2009.01.004
http://dx.doi.org/10.1016/0925-2312(95)00039-9
http://dx.doi.org/10.1016/0925-2312(94)00060-3
http://dx.doi.org/10.1007/s00216-007-1700-6
http://dx.doi.org/10.1007/s11270-014-2063-1
http://dx.doi.org/10.1007/s10098-019-01709-w
http://dx.doi.org/10.1080/17460441.2016.1201262
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1162/neco.1991.3.2.246
http://dx.doi.org/10.1109/TIE.2011.2164773
http://dx.doi.org/10.1016/j.engappai.2012.05.015
http://dx.doi.org/10.1016/j.eswa.2018.05.021
http://dx.doi.org/10.1016/j.eswa.2022.116712
http://dx.doi.org/10.1007/s10462-007-9052-3
http://dx.doi.org/10.1016/j.eswa.2007.07.021
http://dx.doi.org/10.1016/j.asoc.2013.09.024
http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.1142/S0219720005001004
http://dx.doi.org/10.1016/j.neucom.2015.08.104
http://dx.doi.org/10.1016/j.inffus.2020.01.005
http://dx.doi.org/10.1109/4235.942529
http://dx.doi.org/10.1016/j.patrec.2008.02.007

Algorithms 2022, 15, 295 17 of 19

34. Gavrilis, D.; Tsoulos, I.G.; Dermatas, E. Neural Recognition and Genetic Features Selection for Robust Detection of E-Mail
Spam. In Advances in Artificial Intelligence; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006;
Volume 3955, pp. 498–501.

35. Georgoulas, G.; Gavrilis, D.; Tsoulos, I.G.; Stylios, C.; Bernardes, J.; Groumpos, P.P. Novel approach for fetal heart rate classification
introducing grammatical evolution. Biomed. Signal Process. Control. 2007, 2, 69–79. [CrossRef]

36. Smart, O.; Tsoulos, I.G.; Gavrilis, D. George Georgoulas Grammatical evolution for features of epileptic oscillations in clinical
intracranial electroencephalograms. Expert Syst. Appl. 2011, 38, 9991–9999. [CrossRef]

37. Tzallas, A.T.; Tsoulos, I.; Tsipouras, M.G.; Giannakeas, N.; Androulidakis, I.; Zaitseva, E. Classification of EEG signals using
feature creation produced by grammatical evolution. In Proceedings of the 24th Telecommunications Forum (TELFOR), Belgrade,
Serbia, 22–23 November 2016; pp. 1–4.

38. Smith, M.G.; Bull, L. Genetic Programming with a Genetic Algorithm for Feature Construction and Selection. Genet. Program.
Evolvable Mach. 2005, 6, 265–281. [CrossRef]

39. Devi, V.S. Class Specific Feature Selection Using Simulated Annealing. In Proceedings of the Mining Intelligence and Knowledge
Exploration, MIKE 2015, Hyderabad, India, 9–11 December 2015; Prasath, R., Vuppala, A., Kathirvalavakumar, T., Eds.; Lecture
Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9468.

40. Neshatian, K.; Zhang, M.; Andreae, P. A Filter Approach to Multiple Feature Construction for Symbolic Learning Classifiers
Using Genetic Programming. IEEE Trans. Evol. Comput. 2012, 16, 645–661. [CrossRef]

41. Li, X.; Yin, M. Multiobjective Binary Biogeography Based Optimization for Feature Selection Using Gene Expression Data. IEEE
Trans. Nanobiosci. 2013, 12, 343–353. [CrossRef]

42. Ma, J.; Teng, G. A hybrid multiple feature construction approach for classification using Genetic Programming. Appl. Soft Comput.
2019, 80, 687–699. [CrossRef]

43. Dagum, L.; Menon, R. OpenMP: An industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 1998,
5, 46–55. [CrossRef]

44. Curtin, R.R.; Cline, J.R.; Slagle, N.P.; March, W.; Ram, P.; Mehta, N.A.; Gray, A.G. MLPACK: A Scalable C++ Machine Learning
Library. J. Mach. Learn. 2013, 14, 801–805.

45. Backus, J.W. The Syntax and Semantics of the Proposed International Algebraic Language of the Zurich ACM-GAMM Conference.
In Proceedings of the International Conference on Information Processing, UNESCO, Unesco, Paris, 15–20 June 1959; pp. 125–132.

46. Ryan, C.; Collins, J.; O’Neill, M. Grammatical evolution: Evolving programs for an arbitrary language. In Genetic Programming.
EuroGP 1998; Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 1998; Volume 1391.

47. O’Neill, M.; Ryan, M.C. Evolving Multi-line Compilable C Programs. In Genetic Programming. EuroGP 1999; Poli, R., Nordin, P.,
Langdon, W.B., Fogarty, T.C., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1598.

48. Ryan, C.; O’Neill, M.; Collins, J.J. Grammatical evolution: Solving trigonometric identities. In Proceedings of the Mendel, 4th
International Mendel Conference on Genetic Algorithms, Optimization Problems, Fuzzy Logic, Neural Networks, Rough Sets,
Brno, Czech Republic, 24–26 June 1998.

49. Puente, A.O.; Alfonso, R.S.; Moreno, M.A. Automatic composition of music by means of grammatical evolution. In Proceedings
of the APL ’02: Proceedings of the 2002 Conference on APL: Array Processing Languages: Lore, Problems, and Applications,
Madrid, Spain, 22–25 July 2002; pp. 148–155.

50. Campo, L.M.L.; Oliveira, R.C.L.; Roisenberg, M. Optimization of neural networks through grammatical evolution and a genetic
algorithm. Expert Syst. Appl. 2016, 56, 368–384. [CrossRef]

51. Soltanian, K.; Ebnenasir, A.; Afsharchi, M. Modular Grammatical Evolution for the Generation of Artificial Neural Networks.
Evol. Comput. 2022, 30, 291–327. [CrossRef]

52. Dempsey, I.; Neill, M.O.; Brabazon, A. Constant creation in grammatical evolution. Int. J. Innov. Appl. 2007, 1, 23–38. [CrossRef]
53. Galvün-Lüpez, E.; Swafford, J.M.; Neill, M.O.; Brabazon, A. Evolving a Ms. PacMan Controller Using Grammatical Evolution. In

Applications of Evolutionary Computation; EvoApplications 2010; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2010; Volume 6024.

54. Shaker, N.; Nicolau, M.; Yannakakis, G.N.; Togelius, J.; O’Neill, M. Evolving levels for Super Mario Bros using grammatical
evolution. In Proceedings of the 2012 IEEE Conference on Computational Intelligence and Games (CIG), Granada, Spain, 11–14
September 2012; pp. 304–331.

55. Martünez-Rodrüguez, D.; Colmenar, J.M.; Hidalgo, J.I.; Micü, R.J.V.; Salcedo-Sanz, S. Particle swarm grammatical evolution for
energy demand estimation. Energy Sci. Eng. 2020, 8, 1068–1079. [CrossRef]

56. Sabar, N.R.; Ayob, M.; Kendall, G.; Qu, R. Grammatical Evolution Hyper-Heuristic for Combinatorial Optimization Problems.
IEEE Trans. Evol. Comput. 2013, 17, 840–861. [CrossRef]

57. Ryan, C.; Kshirsagar, M.; Vaidya, G.; Cunningham, A.; Sivaraman, R. Design of a cryptographically secure pseudo random
number generator with grammatical evolution. Sci. Rep. 2012, 12, 8602. [CrossRef]

58. Fix, E.; Hodges, J.L. Joseph, Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties; USAF School of Aviation
Medicine: Randolph Field, TX, USA, 1951.

59. Tsoulos, I.; Gavrilis, D.; Glavas, E. Neural network construction and training using grammatical evolution. Neurocomputing 2008,
72, 269–277. [CrossRef]

http://dx.doi.org/10.1016/j.bspc.2007.05.003
http://dx.doi.org/10.1016/j.eswa.2011.02.009
http://dx.doi.org/10.1007/s10710-005-2988-7
http://dx.doi.org/10.1109/TEVC.2011.2166158
http://dx.doi.org/10.1109/TNB.2013.2294716
http://dx.doi.org/10.1016/j.asoc.2019.04.039
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1016/j.eswa.2016.03.012
http://dx.doi.org/10.1162/evco_a_00302
http://dx.doi.org/10.1504/IJICA.2007.013399
http://dx.doi.org/10.1002/ese3.568
http://dx.doi.org/10.1109/TEVC.2013.2281527
http://dx.doi.org/10.1038/s41598-022-11613-x
http://dx.doi.org/10.1016/j.neucom.2008.01.017

Algorithms 2022, 15, 295 18 of 19

60. Powell, M.J.D. A Tolerant Algorithm for Linearly Constrained Optimization Calculations. Math. Program. 1989, 45, 547–566.
[CrossRef]

61. Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. 1995, 16,
1190–1208. [CrossRef]

62. Byrd, R.; Nocedal, J.; Schnabel, R. Representations of Quasi-Newton Matrices and their use in Limited Memory Methods’. Math.
Program. 1994, 63, 129–156. [CrossRef]

63. Michaelewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin, Germany, 1996.
64. Kaelo, P.; Ali, M.M. Integrated crossover rules in real coded genetic algorithms. Eur. J. Oper. Res. 2007, 176, 60–76. [CrossRef]
65. Nieminen, J.; Yliluoma, J. Function Parser for C++, v2.7. Available online: http://warp.povusers.org/FunctionParser/ (accessed

on 18 August 2022).
66. Quinlan, J.R. Simplifying Decision Trees. Int. J. Man-Mach. Stud. 1987, 27, 221–234. [CrossRef]
67. Tzimourta, K.D.; Tsoulos, I.; Bilero, I.T.; Tzallas, A.T.; Tsipouras, M.G.; Giannakeas, N. Direct Assessment of Alcohol Consumption

in Mental State Using Brain Computer Interfaces and Grammatical Evolution. Inventions 2018, 3, 51. [CrossRef]
68. Shultz, T.; Mareschal, D.; Schmidt, W. Modeling Cognitive Development on Balance Scale Phenomena. Mach. Learn. 1994, 16,

59–88. [CrossRef]
69. Zhou, Z.H.; Jiang, Y. NeC4.5: Neural ensemble based C4.5. IEEE Trans. Knowl. Data Eng. 2004, 16, 770–773. [CrossRef]
70. Setiono, R.; Leow, W.K. FERNN: An Algorithm for Fast Extraction of Rules from Neural Networks. Appl. Intell. 2000, 12, 15–25.

[CrossRef]
71. Demiroz, G.; Govenir, H.A.; Ilter, N. Learning Differential Diagnosis of Eryhemato-Squamous Diseases using Voting Feature

Intervals. Artif. Intell. Med. 1998, 13, 147–165.
72. Hayes-Roth, B.; Hayes-Roth, B.F. Concept learning and the recognition and classification of exemplars. J. Verbal Learning Verbal

Behav. 1977, 16, 321–338. [CrossRef]
73. Kononenko, I.; üimec, E.; Robnik-üikonja, M. Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF. Appl.

Intell. 1997, 7, 39–55. [CrossRef]
74. French, R.M.; Chater, N. Using noise to compute error surfaces in connectionist networks: A novel means of reducing catastrophic

forgetting. Neural Comput. 2002, 14, 1755–1769. [CrossRef]
75. Garcke, J.; Griebel, M. Classification with sparse grids using simplicial basis functions. Intell. Data Anal. 2002, 6, 483–502.

[CrossRef]
76. Dy, J.G.; Brodley, C.E. Feature Selection for Unsupervised Learning. J. Mach. Learn. Res. 2004, 5, 845–889.
77. Perantonis, S.J.; Virvilis, V. Input Feature Extraction for Multilayered Perceptrons Using Supervised Principal Component

Analysis. Neural Process. Lett. 1999, 10, 243–252. [CrossRef]
78. Elter, M.; Schulz-Wendtland, R.; Wittenberg, T. The prediction of breast cancer biopsy outcomes using two CAD approaches that

both emphasize an intelligible decision process. Med. Phys. 2007, 34, 4164–4172. [CrossRef] [PubMed]
79. Little, M.A.; McSharry, P.E.; Hunter, E.J.; Ramig, L. Suitability of dysphonia measurements for telemonitoring of Parkinson’s

disease. IEEE Trans. Biomed. Eng. 2009, 56, 1015–1022. [CrossRef] [PubMed]
80. Smith, J.W.; Everhart, J.E.; Dickson, W.C.; Knowler, W.C.; Johannes, R.S. Using the ADAP learning algorithm to forecast the onset

of diabetes mellitus. In Proceedings of the Symposium on Computer Applications and Medical Care, Orlando, FL, USA, 7–11
November 1988; IEEE Computer Society Press: Washington, DC, USA; American Medical Informatics Association: Bethesda, MD,
USA, 1988; pp. 261–265.

81. Lucas, D.D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y. Failure analysis of parameter-induced
simulation crashes in climate models. Geosci. Model Dev. 2013, 6, 1157–1171. [CrossRef]

82. Giannakeas, N.; Tsipouras, M.G.; Tzallas, A.T.; Kyriakidi, K.; Tsianou, Z.E.; Manousou, P.; Hall, A.; Karvounis, E.C.; Tsianos, V.;
Tsianos, E. A clustering based method for collagen proportional area extraction in liver biopsy images. In Proceedings of the
Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Milan, Italy, 25–29 August
2015; Art. No. 7319047, pp. 3097–3100.

83. Hastie, T.; Tibshirani, R. Non-parametric logistic and proportional odds regression. JRSS-C (Appl. Stat.) 1987, 36, 260–276.
[CrossRef]

84. Dash, M.; Liu, H.; Scheuermann, P.; Tan, K.L. Fast hierarchical clustering and its validation. Data Knowl. Eng. 2003, 44, 109–138.
[CrossRef]

85. Gorman, R.P.; Sejnowski, T.J. Analysis of Hidden Units in a Layered Network Trained to Classify Sonar Targets. Neural Netw.
1988, 1, 75–89. [CrossRef]

86. Raymer, M.; Doom, T.E.; Kuhn, L.A.; Punch, W.F. Knowledge discovery in medical and biological datasets using a hybrid Bayes
classifier/evolutionary algorithm. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2003, 33, 802–813. [CrossRef]

87. Zhong, P.; Fukushima, M. Regularized nonsmooth Newton method for multi-class support vector machines. Optim. Methods
Softw. 2007, 22, 225–236. [CrossRef]

88. Wolberg, W.H.; Mangasarian, O.L. Multisurface method of pattern separation for medical diagnosis applied to breast cytology.
Proc. Natl. Acad. Sci. USA 1990, 87, 9193–9196. [CrossRef]

http://dx.doi.org/10.1007/BF01589118
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1007/BF01582063
http://dx.doi.org/10.1016/j.ejor.2005.07.025
http://warp.povusers.org/FunctionParser/
http://dx.doi.org/10.1016/S0020-7373(87)80053-6
http://dx.doi.org/10.3390/inventions3030051
http://dx.doi.org/10.1007/BF00993174
http://dx.doi.org/10.1109/TKDE.2004.11
http://dx.doi.org/10.1023/A:1008307919726
http://dx.doi.org/10.1016/S0022-5371(77)80054-6
http://dx.doi.org/10.1023/A:1008280620621
http://dx.doi.org/10.1162/08997660260028700
http://dx.doi.org/10.3233/IDA-2002-6602
http://dx.doi.org/10.1023/A:1018792728057
http://dx.doi.org/10.1118/1.2786864
http://www.ncbi.nlm.nih.gov/pubmed/18072480
http://dx.doi.org/10.1109/TBME.2008.2005954
http://www.ncbi.nlm.nih.gov/pubmed/21399744
http://dx.doi.org/10.5194/gmd-6-1157-2013
http://dx.doi.org/10.2307/2347785
http://dx.doi.org/10.1016/S0169-023X(02)00138-6
http://dx.doi.org/10.1016/0893-6080(88)90023-8
http://dx.doi.org/10.1109/TSMCB.2003.816922
http://dx.doi.org/10.1080/10556780600834745
http://dx.doi.org/10.1073/pnas.87.23.9193

Algorithms 2022, 15, 295 19 of 19

89. Andrzejak, R.G.; Lehnertz, K.; Mormann, F.; Rieke, C.; David, P.; Elger, C.E. Indications of nonlinear deterministic and finite-
dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E
2001, 64, 061907. [CrossRef]

90. Tzallas, A.T.; Tsipouras, M.G.; Fotiadis, D.I. Automatic Seizure Detection Based on Time-Frequency Analysis and Artificial Neural
Networks. Comput. Neurosci. 2007, 2007, 80510. [CrossRef]

91. Koivisto, M.; Sood, K. Exact Bayesian Structure Discovery in Bayesian Networks. J. Mach. Learn. Res. 2004, 5, 549–573.
92. Nash, W.J.; Sellers, T.L.; Talbot, S.R.; Cawthor, A.J.; Ford, W.B. The Population Biology of Abalone (_Haliotis_ species) in Tasmania.

I. Blacklip Abalone (_H. rubra_) from the North Coast and Islands of Bass Strait, Sea Fisheries Division; Technical Report No. 48;
Department of Primary Industry and Fisheries, Tasmania: Hobart, Australia, 1994; ISSN 1034-3288.

93. Brooks, T.F.; Pope, D.S.; Marcolini, A.M. Airfoil Self-Noise and Prediction. Technical Report, NASA RP-1218. July 1989. Available
online: https://ntrs.nasa.gov/citations/19890016302 (accessed on 18 August 2022).

94. Yeh, I.C. Modeling of strength of high performance concrete using artificial neural networks. Cem. Concr. Res. 1998, 28, 1797–1808.
[CrossRef]

95. Harrison, D.; Rubinfeld, D.L. Hedonic prices and the demand for clean ai. J. Environ. Econ. Manag. 1978, 5, 81–102. [CrossRef]
96. Simonoff, J.S. Smooting Methods in Statistics; Springer: Berlin/Heidelberg, Germany, 1996.
97. Mackowiak, P.A.; Wasserman, S.S.; Levine, M.M. A critical appraisal of 98.6 degrees f, the upper limit of the normal body

temperature, and other legacies of Carl Reinhold August Wunderlich. J. Am. Med. Assoc. 1992, 268, 1578–1580. [CrossRef]
98. King, R.D.; Muggleton, S.; Lewis, R.; Sternberg, M.J.E. Drug design by machine learning: The use of inductive logic programming

to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase. Proc. Nat. Acad. Sci.
USA 1992, 89, 11322–11326. [CrossRef]

99. Graham, R.L.; Woodall, T.S.; Squyres, J. Open MPI: A Flexible High Performance MPI. In Parallel Processing and Applied Mathematics;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3911, pp. 228–239.

http://dx.doi.org/10.1103/PhysRevE.64.061907
http://dx.doi.org/10.1155/2007/80510
https://ntrs.nasa.gov/citations/19890016302
http://dx.doi.org/10.1016/S0008-8846(98)00165-3
http://dx.doi.org/10.1016/0095-0696(78)90006-2
http://dx.doi.org/10.1001/jama.1992.03490120092034
http://dx.doi.org/10.1073/pnas.89.23.11322

	Introduction
	Methods
	Grammatical Evolution
	The Feature Construction Procedure
	The Feature Construction Step
	The Feature Evaluation Step

	The Software
	Installation Procedure
	The Program qfc
	Example Run

	Experiments
	Experimental Datasets
	Experimental Results

	Conclusions
	References

