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Abstract: The massive nature of modern university programming courses increases the burden on
academic workers. The Digital Teaching Assistant (DTA) system addresses this issue by automating
unique programming exercise generation and checking, and provides means for analyzing programs
received from students by the end of semester. In this paper, we propose a machine learning-based
approach to the classification of student programs represented as Markov chains. The proposed
approach enables real-time student submissions analysis in the DTA system. We compare the
performance of different multi-class classification algorithms, such as support vector machine (SVM),
the k nearest neighbors (KNN) algorithm, random forest (RF), and extreme learning machine (ELM).
ELM is a single-hidden layer feedforward network (SLFN) learning scheme that drastically speeds
up the SLFN training process. This is achieved by randomly initializing weights of connections
among input and hidden neurons, and explicitly computing weights of connections among hidden
and output neurons. The experimental results show that ELM is the most computationally efficient
algorithm among the considered ones. In addition, we apply biology-inspired algorithms to ELM
input weights fine-tuning in order to further improve the generalization capabilities of this algorithm.
The obtained results show that ELMs fine-tuned with biology-inspired algorithms achieve the best
accuracy on test data in most of the considered problems.

Keywords: program text classification; Markov chains; extreme learning machines; population-based
algorithms; biology-inspired algorithms

1. Introduction

The digitalization of the economy has led to increased demand for IT specialists,
especially software developers. This adds to the massive nature of modern programming
courses at universities and colleges, and hence increases the burden on academic workers.
Regular cheating by students has become the new norm, so programming instructors have
to address this issue in order to improve the quality of education.

One way to prevent cheating is the development of source code plagiarism detection
algorithms and systems [1–5] that can be used to analyze program texts that students
send to programming instructors. Such systems allow finding similar patterns in different
programs by comparing either sets of weighted keywords extracted from program texts [1],
or sets of programming language-independent tokens [2], or abstract syntax trees (ASTs) [3]
and their fingerprints [4]. Besides, methods based on preliminary code vectorization
exist [5] that employ unsupervised machine learning techniques while analyzing programs
written by students. A more reliable approach to cheating prevention is using unique sets
of programming tasks generated for every student [6,7]. Automatic programming exercise
generation with support for automatic grading has tremendous potential for teaching
programming to a large and diverse audience [8].
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The Digital Teaching Assistant system (DTA) [9,10], which automates the Python
programming course at MIREA-Russian Technological University, offers means for Python
programming tasks generation of various types, as well as means for automatic assessment
of student submissions. The DTA system consists of three modules, namely: the core
module responsible for unique programming tasks generation for every student using
the generate and test approach [6], and which is also responsible for submitted solutions
checking; the web application module, allowing students to interact with the core module
via a web-based user interface (UI) [9]; the analytics module, allowing programming
instructors to track progress statistics of every student and to analyze the large number of
submitted programs with the help of machine learning.

Machine learning algorithms allow solving complex problems by analyzing large
datasets with minimal human intervention; such algorithms automatically discover pat-
terns hidden in datasets. When the DTA system generates unique programming exercises
of various types for every student [6,10], students can barely cheat. However, every task of
the given type can be solved using different methods, and automatic discovery of the most
commonly used methods using a clustering-based approach helped teachers to identify
knowledge gaps of students by the end of semester.

During the massive Python programming course held in spring semester 2022 at
MIREA-Russian Technological University, more than 1500 students submitted more than
60,000 program texts to the DTA system, and 14,600 solutions of unique programming exer-
cises were accepted by the DTA automatic task checker. Manually determining the most
common approaches used by students while solving their own automatically generated
tasks would take a lot of time. However, program text analysis is required while assessing
the quality of programming task generators, as well as assessing the gaps in knowledge
of students from different groups, and the application of machine learning algorithms to
program text analysis can help to overcome this issue by automating program text analy-
sis. Classical plagiarism detection algorithms are not suitable in case of the DTA system
while every student receives unique programming exercises generated using probabilistic
grammars [10], and the implementation details of the programs solving the exercises differ.

As shown in [5], the DTA analytics module vectorizes the programs received from
students before applying a clustering algorithm. Source code vectorization is performed by
constructing ASTs for every program. Then, the obtained ASTs are mapped into Markov
chains, where vertices represent types of AST nodes, edges represent transitions between
AST nodes, and weights of edges denote transition probabilities. Finally, sparse weighted
adjacency matrices of the obtained Markov chains are reshaped into sparse vectors. The
DTA analytics module outputs marked-up datasets, one per each task type. Every i-th
object

→
v i ∈ Rm belonging to such a dataset is a vector representing i-th source code. The

m ∈ N value denotes the vector component count and is equal to the squared count of
different AST node types in all Markov chains belonging to the dataset. Every i-th object
→
v i has an assigned class label yi ∈ N.

The goal of the current research is the development of multi-class classifiers for every
task type and their incorporation into the DTA system. Currently, the analytics module in
DTA is only able to process all programs at once using a machine learning-based approach
when a sufficient program count is obtained from students. This typically happens by the
end of semester. On the one hand, source code classification would allow teachers to identify
knowledge gaps of students from different groups anytime, by analyzing the classification
results in real time, not only by the end of semester. If programming instructors identify the
most popular methods used in a particular group, they can demonstrate and explain the
least popular methods, aiming to keep students informed about programming language
features they have not yet learned. On the other hand, the statistics obtained from classifiers
can be shown to students in the web UI, keeping them informed about the popularity of
their method. Finally, the program classifiers allow building a system of achievements in
the educational digital environment for improving learning motivation [11].
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Problems of classification of data into multiple classes arise in various fields, and hence
many different machine learning algorithms have been proposed aiming to solve such
problems with acceptable accuracy and performance. Multi-class classification algorithms
include support vector machine (SVM) [12], the k nearest neighbor algorithm (KNN) [13],
their improved versions [14], random forest (RF) [15], and neural networks [16].

Neural networks are typically trained iteratively using either backpropagation and
gradient-based methods [17], or population-based algorithms [18,19], allowing high accu-
racy in both classification and regression problems. However, the iterative training process
is time consuming. Recent research introduced a novel single-hidden layer feedforward
network (SLFN) learning scheme named extreme learning machine (ELM) [20] aiming
to considerably speed up SLFN training. ELM is a SLFN, where weights of connections
among input and hidden neurons are initialized randomly, and weights of connections
among hidden and output neurons are computed using Moore–Penrose pseudoinverse [21]
of the hidden layer output matrix, assuming hidden layer activation function is infinitely
differentiable [20]. Despite the absence of the iterative training process inherent to regular
neural networks, ELMs show good generalization capabilities in different domains [22–24]
alongside excellent computational efficiency. ELMs can be applied to any regression or
classification problem [20] where input objects are represented by vectors.

However, random initialization of weights among input and hidden layer does not
guarantee that one obtains the best ELM configuration from all possible options [24]. Hence,
researchers and practitioners employ biology-inspired algorithms in order to fine-tune
ELM models for the specific tasks [24–26]. Biology-inspired algorithms are heuristic opti-
mization techniques that are inspired by nature and process a variety of solutions in every
iteration. Examples of such algorithms include genetic algorithms [27], particle swarm
optimization [28], differential evolution [29], fish school search [30] and others. Biology-
inspired algorithms are parallel in nature and do not require the optimized function to be
differentiable, so such algorithms have been successfully applied to neural network archi-
tecture optimization [31,32], to hyperparameter optimization of other machine learning
algorithms [33], and also to ELM networks fine-tuning [24–26].

In this paper we compare the SVM, KNN, RF, and ELM algorithms applied to the
classification of program texts submitted to DTA by students, where the programs are
solving unique tasks automatically generated by the DTA system. We employ a grid search
in order to find optimal hyperparameters of each classification algorithm for every dataset
containing program texts. We compare the tuned classification algorithms using different
metrics, such as accuracy, precision, recall, and F1 measure. In addition, we compare
the time spent by each algorithm during training and prediction phases. Fish school
search showed superior performance in neural network structure optimization [19,32], as
differential evolution did [31,34], so we employed these algorithms in order to further
improve the best ELM model obtained with the grid search. The experimental results show
that ELM is the most computationally efficient algorithm among the considered ones; this
applies both to training and making predictions. ELM models that were preliminarily fine-
tuned with biology-inspired algorithms produced the most accurate classification results.

The rest of the paper is organized as follows. Section 2 briefly describes the DTA system
and the different types of unique programming exercises generated in order to prevent
students from cheating. Section 3 describes algorithms used to transform program texts
received from students into vectors, before applying machine learning techniques. Section 4
formulates the multi-class classification problem of program texts represented as vectors,
provides a brief survey of the machine learning algorithms considered in this research,
and lists metrics commonly used while estimating the performance of different multi-class
classification models. Section 5 describes the design of the numerical experiment, and
provides the results of experimental runs. Finally, Section 6 presents our conclusions and a
discussion regarding future work.
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2. Digital Teaching Assistant

The Digital Teaching Assistant system automates the massive Python programming
course at MIREA-Russian Technological University. DTA automatically generates [6]
unique programming exercises of 11 different types and automatically checks the programs
submitted by students [9,10]. Brief descriptions of programming exercise types generated
by DTA are listed in Table 1. Some examples of formulations for unique tasks generated
automatically by the DTA system are shown in Figure 1.

Table 1. Brief descriptions of programming exercise types available in DTA.

Task Type Brief Description

1 Implement a function
2 Implement a piecewise function
3 Implement an iterative function
4 Implement a recurrent function
5 Implement a function that operates on vectors
6 Implement a function that computes a decision tree
7 Implement bit fields conversion
8 Implement text format parsing
9 Implement a Mealy finite-state machine
10 Implement tabular data transformation
11 Implement binary data format parsing
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automatically generated [6] by the DTA system [9,10]: (a) implement a decision tree, (b) implement
an iterative function, (c) implement bit fields conversion.

Every program submitted by a student to DTA via a web-based UI is stored in an
immutable table of a relational database, and the submissions are later checked one by
one automatically in a background process [9]. By the end of semester, teachers employ
clustering techniques available in the DTA analytics module in order to automate submitted
source code analysis, with an intention to identify approaches commonly used by students
while solving automatically generated unique programming tasks. The results are then
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used to identify knowledge gaps of students from different groups as well as to assess the
quality of programming exercise generators.

The DTA analytics module is able to process all programs at once only when sufficient
program texts are received from students, and the development of classification models
discussed in this paper allows us to overcome this limitation, enabling real-time analysis of
submitted source codes. Real-time analysis would allow teachers to assess student skills
anytime, aiming to fill gaps in students’ knowledge by explaining the least frequently
used approaches to solving automatically generated tasks. Classification results could
also be used to keep programming course students informed about the popularity of
their approach; a system of achievements could be built as well for improving learning
motivation in the DTA digital environment [11].

3. Program Text Vectorization

The unsupervised learning algorithms used in the DTA analytics module require
program texts to be preliminarily transformed into vectors. Code to vector transformation
is also required during classifier training and prediction-making [35], so in this section we
briefly describe vectorization of program texts submitted by students. Several approaches
to source code to vector transformation exist [35,36], but the DTA analytics module uses
its own vectorization algorithm, which respects the specifics of the generators of unique
programming exercises [6,10].

The source code vectorization problem might be reduced to the development of
a mapping f : P→ Rm , where P denotes the set of program texts, and m denotes the
dimensionality of the target vector space. The vectorization algorithm used in DTA first
constructs an AST ai for every program text pi ∈ P using the AST module from the Python
standard library. Then, nodes belonging to the set {Import, Load, Store, alias, arguments, arg,
Module, keyword} are removed from the AST. The resulting AST ai of a program that solves
one of the automatically generated tasks of type 6 (see Table 1, see Figure 1a) using a pattern
matching-based approach is shown in Figure 2. The AST visualization was obtained using
the graphviz library [37].
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see Figure 1a) using a pattern matching-based approach, after applying AST transformations during
program text vectorization in DTA.

Assuming the fact that the unique task generators used in DTA are based on proba-
bilistic grammars [6,10], the AST ai of each program text pi ∈ P is then transformed into a
Markov chain state transition graph gi. A Markov chain is a model describing a sequence
of events E0, E1, . . . , En, where the probability of event En, n ≥ 1, only depends on the state
attained on the previous event En−1 [38]. In a Markov chain graph, vertices represent types
of AST nodes, edges represent transitions between AST nodes, and weights of edges denote
transition probabilities. While constructing a Markov chain state transition graph gi for
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every AST ai of each program text pi ∈ P, a number of AST node replacements listed in
Table 2 are performed depending on task type.

Table 2. Replacements of AST node types while building Markov chain state transition graphs.

Replacements for 1–11 Task Types Replacements for 6–11 Task Types

Replaceable Vertex Replacement Replaceable Vertex Replacement

Constant, Attribute Name List, Tuple, Set List
BoolOp, Call, UnaryOp, BinOp Op Lambda, JoinedStr, FormattedValue Name

Lt, LtE Less Pass, Break, Continue None
Gt, GtE Greater ExceptHandler Try

AugAssign, AnAssign Assign IfExp If
match_case, MatchStar, MatchAs, MatchOr,

MatchSingleton, MatchSequence,
MatchMapping, MatchClass

MatchValue
For, While, ListComp, SetComp,

DictComp, GeneratorExp,
comprehension

Loop

UAdd Add
USub Sub

The examples of Markov chain state transition graphs obtained for programs that
employ different approaches to solve different automatically generated tasks of type 6 (see
Table 1, see Figure 1a) are shown in Figure 3.
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operators; (b) solution using pattern matching; (c) solution using dictionaries.

While different program texts may contain different node types, the set H containing all
different AST node types that occur in Markov chains in a particular dataset is preliminarily
constructed. All weighted adjacency matrices are constructed based on the H set, and every
weighted adjacency matrix belongs to R|H|×|H|. The probabilities of transitions among
node types that do not exist in a particular program text pi but exist in other program texts
are set to zeros in the resulting weighted adjacency matrix.

In the final step, the weighted adjacency matrices of Markov chain state transition
graphs are reshaped to vectors belonging to Rm, where m = |H|2. This way the mapping
f : P→ Rm is implemented, where P denotes the set of program texts, and m is the

dimensionality of a vector. Algorithm 1 summarizes the vectorization process of a dataset
containing source codes of programs solving automatically generated tasks of a particular
type (see Table 1).
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Algorithm 1 Vectorization of a set of program texts based on Markov chains.

Input: P = {p1, . . . , pi, . . . , pn}-a set containing n program texts.
1. Define the set of Markov chain state transition graphs G = ∅.
2. Define R = {Import, Load, Store, alias, arguments, arg, Module, keyword}.
3. For each program text pi ∈ P do:
4. Construct an AST ai for pi using Python standard library (see Figure 2).
5. Remove nodes belonging to the R set from ai.
6. Replace nodes in ai according to Table 2.
7. Construct Markov chain state transition graph gi for ai (see Figure 3).
8. G ← G ∪ {gi} .
9. End loop.

10. Define the set H with all different node types existing in graphs from G.
11. Define the set of vector representations of program texts V = ∅.
12. For each Markov chain state transition graph gi ∈ G do:
13. Construct an adjacency matrix mi ∈ R|H|×|H| for the weighted graph gi.
14. Reshape the mi matrix to vector

→
v i ∈ Rm, where m = |H|2.

15. V ← V ∪
{→

v i

}
.

16. End loop.
17. Return the set of vector representations of program texts V and the set H.

In the DTA analytics module, programs solving automatically generated tasks are
vectorized all at once according to Algorithm 1, which only requires a set of program texts
as input. After applying an unsupervised machine learning algorithm to the vectorized
data, the DTA analytics module outputs a marked-up dataset. In that dataset, every
i-th object is represented by a

→
v i ∈ Rm vector, where m = |H|2, and H denotes the set

containing all different AST node types that occur in all Markov chains obtained while
vectorizing a particular set of program texts. Every i-th object has an associated class label
yi ∈ Y, where Y is the set containing all possible classes discovered for a given dataset.

Algorithm 1 is only able to vectorize a set of program texts. However, vectorization
of a single program text is required for unseen data classification. In order to vectorize a
single program text pi ∈ P, Algorithm 2 is used. Algorithm 2 uses the H set while building
a weighted adjacency matrix; the H set is obtained from Algorithm 1 and saved to disk
before applying Algorithm 2.

Algorithm 2 Vectorization of a single program text pi based on Markov chains.

Input: pi-a program text,
H-a set with all different node types that exist in Markov chains of programs solving
tasks of the same type as pi, this set is obtained by Algorithm 1.

1. Define R = {Import, Load, Store, alias, arguments, arg, Module, keyword}.
2. Construct an AST ai for pi using Python standard library (see Figure 2).
3. Remove nodes belonging to the R set from ai.
4. Replace nodes in ai according to Table 2.
5. Construct Markov chain state transition graph gi for ai (see Figure 3).
6. Construct an adjacency matrix mi ∈ R|H|×|H| for the weighted graph gi.
7. Reshape the mi matrix to vector

→
v i ∈ Rm, where m = |H|2.

8. Return the vector
→
v i representing the program text.

To sum up, the main difference between Algorithms 1 and 2 is that Algorithm 1 can
only vectorize a set of program texts solving automatically generated tasks of a given type.
This is particularly useful when applying a clustering algorithm to the whole dataset, with an
intention to automatically discover the most common methods used by students while solving
programming tasks of a given type. Algorithm 2, in contrast, can only be used to vectorize
a single program text solving unique tasks of the same type, using the persisted H set that
has been preliminarily obtained from Algorithm 1. Algorithm 2 is particularly useful when
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performing new data classification in real time, aiming to determine the solution method used
in a newly submitted program text.

4. Program Text Classification

The DTA analytics module outputs marked-up datasets containing vector represen-
tations of program codes, and every vector has an associated class label. These datasets
can be used to train classification algorithms that can be later used to classify new program
texts submitted by students.

In a classification problem, a set of objects X = XL ∪XT is given, where XL denotes the
training set, XT denotes the testing set; a set of possible answers Y is given as well, and an
unknown target function f : X → Y , which maps the set of objects into the set of answers.
The values of f are known for every object from the X set. The XL set is used while training
a classifier, and the XT set is used while assessing classifier performance. Objects from the
X set are represented as vectors and X =

{→
x 1, . . . ,

→
x i . . . ,

→
x s
}

, s denotes objects count in

the dataset. Every j-th component of the i-th object
→
x i =

(
hi,1, . . . , hi,j, . . . , hi,n

)
encodes j-th

characteristic of the object, hij ∈ R, and
→
x i ∈ Rn. The goal of a classification algorithm is to

construct such mapping as a : X → Y, that approximates the unknown target function f
even on data unseen by a classifier.

In this paper we consider such classification algorithms as SVM, KNN, RF, and ELM.
The implementations of SVM, KNN, and RF algorithms used in this research are based on
the sklearn library [39]. ELM is implemented using the numpy library [40].

4.1. Support Vector Machine Classifier

The core idea of the SVM algorithm is that input vectors are nonlinearly mapped
into a higher-dimensional space where a linear decision surface is constructed [12]. This
algorithm was initially designed for binary classification. However, several methods exist
that extend SVM to multi-class classification [22,41].

The two most common approaches are the “one-against-one” method and the “one-
against-all” method. In the former approach, several binary SVM classifiers are constructed.
Each classifier is trained using data from two classes, and the decisions of the classifiers are
combined together. In the latter approach, each class is trained against the aggregate of all
other classes. In this study the “one-against-one” approach for multi-class classification is
used, which is implemented in the sklearn library [39].

4.2. K Nearest Neighbors Classifier

Neighbors-based classification does not attempt to construct a general model. Instead,
it internally stores instances of training data, and the decision on which class to assign
to an unseen sample is made based on a majority vote of the k nearest neighbors of a
sample [14,39]. Nearest neighbor count k ∈ N is a data-dependent hyperparameter of KNN,
and the performance of this simple classification algorithm highly depends on k.

4.3. Random Forest Classifier

RF is an ensemble-based algorithm that fits a number of decision tree classifiers
to training data [15,39]. The decision tree classifiers then consolidate their outcomes
over a voting procedure. The most generally used collective strategies are bagging and
boosting [42]. The hyperparameters of RF include the maximum number of decision trees in
an ensemble, maximum decision tree depth, and the size of random subsets of features [39].

4.4. Extreme Learning Machine Classifier

Extreme learning machine (ELM) is a supervised machine learning algorithm proposed
in [20]. ELMs originate from such algorithms as neural networks with random weights
(NNRW) [43] and random vector functional link networks (RVFL) [44], and have been suc-
cessfully applied to various real-world problems [22–24,26]. An ELM is a computationally
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inexpensive algorithm in comparison with neural networks trained with backpropagation
or with evolutionary algorithms [45].

The structure of the ELM adopted for classification is shown in Figure 4. The weights
of connections among neurons in ELM can be modeled as two matrices, α and β. Cells of
the α matrix represent weights of connections among n input neurons h1, h2, . . . , hn and d
hidden neurons k1, k2, . . . , kd, so α ∈ Rd×n. Cells of the α matrix are initialized randomly,
as well as hidden layer biases b1, b2, . . . , bd (see Figure 4).
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The matrix β ∈ Rd×m containing the weights of connections among d hidden neurons
k1, k2, . . . , kd and m output neurons o1, o2, . . . , om is computed according to:

β = H†YL, (1)

where YL ∈ Rs×m denotes a matrix containing one-hot encoded class labels for s objects
from the training set XL that is represented as a matrix XL ∈ Rs×n, m denotes the dimen-
sionality of s one-hot encoded class labels, m also equals to class count, n denotes the
dimensionality of input vectors, n equals to input neurons count in ELM. H† denotes the
Moore–Penrose pseudoinverse [21] of the hidden layer output matrix H, the H† matrix
belongs to Rd×s, where s denotes objects count in XL, d denotes hidden neuron count, the
hidden layer output matrix pseudoinverse H† ∈ Rd×s is computed as:

H† =
(

HTH + γI
)−1

HT , (2)

where H ∈ Rs×d is the hidden layer output matrix; HT ∈ Rd×s is the transpose of the
hidden layer output matrix H; I ∈ Rd×d denotes the identity matrix; γ ∈ R is the scalar
regularization parameter, regularization is required in order to handle cases when the
matrix being inverted is singular, and γ is one of the hyperparameters of the ELM algorithm.

The hidden layer output matrix H is computed according to:

H = σ
(

XLα
T + b

)
, (3)

where XL ∈ Rs×n is the training set represented as a matrix and containing s rows, every row
encodes an n-dimensional vector; αT ∈ Rn×d is the transpose of the α matrix containing
weights of connections among n input and d hidden neurons, α ∈ Rd×n, the cells in α are
randomly initialized and belong to [−1, 1]; b ∈ Rs×d is a matrix containing hidden layer

biases that is obtained by transforming the bias vector
→
b = (b1, b2, . . . , bd) belonging to Rd

(see Figure 4) to a matrix belonging to Rs×d by mapping Rd into R1×d, and then cloning

the first row s times, the components of the bias vector
→
b ∈ Rd are randomly initialized as
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well; σ is an infinitely differentiable [20] activation function that is applied to every cell of
the hidden layer output matrix, sigmoid works best [45] in ELMs.

The sigmoid activation function is given by the following equation:

σ(x) =
1

1− e−x′ (4)

where x denotes the cell of the H ∈ Rs×d matrix before activation.
Input neuron count s depends on the considered classification or regression problem,

hidden layer neuron count d is the hyperparameter of ELM, and output neuron count m is
either set to 1 if a regression problem is considered, or is equal to the count of classes in a
multi-class classification problem, where each class label is one-hot encoded.

The training process in ELM is described in Algorithm 3.

Algorithm 3 Extreme learning machine training.

Input: XL ∈ Rs×n-matrix of s rows encoding n-dimensional input vectors,
YL ∈ Rs×m-matrix of s rows encoding m-dimensional output vectors,
γ ∈ R-regularization parameter,
d ∈ N-hidden neuron count,
σ-hidden layer activation function.

1. Initialize the weights α ∈ Rd×n with uniformly distributed random numbers.
2. Initialize the biases

→
b ∈ Rd with uniformly distributed random numbers.

3. Compute b ∈ Rs×d by cloning
→
b ∈ Rd s times.

4. Compute hidden layer output matrix H = σ
(
XLα

T + b
)
.

5. Initialize the identity matrix I ∈ Rd×d.
6. Compute pseudoinverse H† =

(
HTH + γI

)−1HT .
7. Compute the weights β ∈ Rd×m according to β = H†YL.
8. Return input weights α ∈ Rd×n, biases

→
b ∈ Rd, output weights β ∈ Rd×m.

The series of steps performed while making predictions in ELM is described in
Algorithm 4. Such ELM parameters as regularization coefficient γ and hidden layer size d
are typically tuned using grid search.

Algorithm 4 Extreme learning machine predictions.

Input: XT ∈ Rs×n-matrix of s rows encoding n-dimensional input vectors,
γ ∈ R-regularization parameter,
d ∈ N-hidden neuron count,
σ-hidden layer activation function,
α ∈ Rd×n-input weights,
→
b ∈ Rd-hidden layer biases,
β ∈ Rd×m-output weights.

1. Compute b ∈ Rs×d by cloning
→
b ∈ Rd s times.

2. Compute hidden layer output matrix H = σ
(
XTα

T + b
)
.

3. Compute the output matrix YT = Hβ belonging to Rs×m.
4. Return the YT matrix of s rows encoding m-dimensional output vectors.

4.5. Multi-Class Classification Metrics

The most commonly used classification metrics are Accuracy, Precision, Recall, and F1
score [46]. Precision for binary classification is computed according to:

Precision =
TP

TP + FP
, (5)
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where TP denotes true positive elements—such elements that have been labeled as positive by
a classification model and they are actually positive; FP denotes false positive elements—such
elements that have been labeled as positive, but they are negative.

Recall for binary classification is computed according to:

Recall =
TP

TP + FN
, (6)

where TP denotes true positive elements; FN denotes false negative elements—such
elements that have been labeled as negative by a classifier, but they are actually positive.

F1 score is the harmonic mean of Precision (5) and Recall (6) scores, given by:

F1 score = 2 ·
(

Precision · Recall
Precision + Recall

)
. (7)

For a problem of data classification into K classes, accuracy, Precision, Recall, and F1
score metrics are computed for every k-th class label separately, assuming elements with the
k-th class label as positive and elements with any other class label as negative. Next, either
a weighted or unweighted average is computed for scores for every class label.

Unweighted averages of Precision (5), Recall (6), F1 score (7) are also known as macro
averages [46]. Macro Precision (5) for multi-class classification is given by:

MacroPrecision =
1
K ∑K

k=1

(
TPk

TPk + FPk

)
, (8)

where k denotes class label index; TPk denotes true positive elements for the k-th class label;
FPk denotes false positive elements for the k-th class label, K denotes total count of classes
in a multi-class classification problem.

Macro Recall (6) for multi-class classification is given by:

MacroRecall =
1
K ∑K

k=1

(
TPk

TPk + FNk

)
, (9)

where k denotes class label index; TPk denotes true positive elements for the k-th class label;
FNk denotes false negative elements for the k-th class label, K denotes total count of classes
in a multi-class classification problem.

Finally, the Macro F1 score that is the harmonic mean for (8) and (9) is given by:

Macro F1 score = 2 ·
(

MacroPrecision · MacroRecall
MacroPrecision + MacroRecall

)
. (10)

Such metrics as (8), (9), and (10) are useful when searching for a classifier without bias
towards classes that occur in a dataset most frequently.

Finally, the Accuracy score for multi-class classification is the sum of true positive
and true negative elements of each class k divided by class count K. The formula for the
Accuracy score is as follows:

Accuracy =
1
K ∑K

k=1

(
TPk + TNk

TPk + TNk + FPk + FNk

)
, (11)

where k denotes class label index, TPk denotes true positive elements for the k-th class
label; TNk denotes true negative elements for the k-th class label-such elements that have
been correctly labeled as negative; FPk denotes false positive elements; FNk denotes false
negative elements for the k-th class label, K denotes total count of classes in a multi-class
classification problem.
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4.6. Biology-Inspired Algorithms-Enhanced Extreme Learning Machines

Preliminary experiments have shown that the ELM algorithm is the fastest multi-class
classification technique among the considered ones in terms of prediction making, and
one of the fastest techniques in terms of model training, hence we considered an ELM
fine-tuning technique that only slightly slowed down the classifier development process,
but allowed us to obtain highly accurate and fast ELM classification models. Notably, other
discussed classifiers such as SVM or KNN could also be either hybridized [47] or improved
with fine-tuning methods [48,49].

Random initialization of weights of connections among input and hidden neurons α

and hidden layer biases
→
b does not guarantee that the optimal ELM structure is obtained

during training (see Algorithm 3). In order to overcome this issue, researchers often apply
biology-inspired algorithms to input weights and hidden biases tuning [24–26]. In [25],
the authors use the particle swarm optimization (PSO) algorithm in order to improve
the accuracy of ELM applied to short-term traffic flow forecasting. In [26], the authors
fine-tune ELM models using the genetic algorithm (GA). In [24], the authors compare the
performance of GA, PSO, and fish school search (FSS) optimization algorithms applied to
input weights and biases tuning of ELMs solving regression problems. The FSS algorithm
with exponential step decay (ETFSS) [50] showed the best performance.

In this paper, we apply the differential evolution (DE) [29] algorithm and the FSS
algorithm with exponential step decay (ETFSS) [50] to input weights and hidden biases
fine-tuning of ELMs used for program text classification. The Macro F1-score (10) is used
as a fitness function. In order to enhance the generalization capabilities of ELM, the
Macro F1 score (10) is obtained from test data that is not used during ELM training ac-
cording to Algorithm 3. When optimizing the input weights α ∈ Rd×n, where d de-
notes hidden neuron count and n denotes the dimensionality of input vectors, and biases
→
b ∈ Rd, every l-th agent in a biology-inspired algorithm is encoded as a real vector{
αl

11, αl
12, . . . , αl

1n, αl
21, αl

22, . . . , αl
2n, . . . , αl

d1, αl
d2, . . . , αl

dn, bl
1, bl

2, . . . , bl
d
}

[24,25].

5. Numerical Experiment

The experiments were conducted using 11 datasets containing program texts solving
automatically generated tasks of 11 different types (see Table 1). The program texts were
submitted by students to the DTA system and accepted by the DTA core task checker. Every
dataset was preliminary vectorized using Algorithm 1. Every dataset was split into training
and testing parts using the stratified split strategy available in sklearn [39]. The sizes of
training and testing datasets are listed in Table 3, as well as class counts.

Table 3. Brief information about datasets of programs solving tasks of different types.

Task Type Training Dataset Size Testing Dataset Size Class Count

1 918 394 4
2 903 387 4
3 847 364 3
4 830 356 5
5 863 370 5
6 862 370 8
7 871 374 6
8 860 369 5
9 861 370 8
10 847 364 5
11 821 353 14

Vectors obtained using Algorithm 1 were passed to SVM, RF, KNN, and ELM classi-
fiers. The hyperparameters of the classifiers were estimated on full datasets using a grid
search [39] maximizing the Macro F1 score (10). The best parameters are listed in Table 4. The



Algorithms 2022, 15, 329 13 of 20

process of the regularization parameter γ and hidden neuron count d selection for ELMs is
shown in Figure 5 for six of the most complex task types with the most diverse solutions.

Table 4. Parameters selected for SVM, RF, KNN, and ELM using grid search maximizing (10).

Task Type
RF SVM KNN ELM

Depth Trees C Kernel K Weights γ Neurons

1 10 40 1 Linear 3 Uniform 10−6 25
2 20 120 10 RBF 3 Uniform 0.001 125
3 10 100 1 RBF 3 Uniform 10−6 150
4 10 100 1 Linear 3 Uniform 10−6 75
5 20 100 1 Linear 3 Uniform 10−6 25
6 10 80 25 Sigmoid 3 Distance 1 250
7 20 60 1 Linear 8 Uniform 0.001 50
8 20 120 20 RBF 4 Distance 0.001 100
9 20 60 5 Linear 3 Uniform 0.001 225

10 20 120 5 Linear 4 Distance 0.001 200
11 20 120 5 Linear 3 Distance 10−6 225
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According to Figure 5, ELM performance depends on the combination of γ and d, so
these parameters should be tuned depending on the considered problem. The comparison
of the considered SVM, RF, KNN, and ELM algorithms is provided in Table 5.

Table 5. Accuracy and performance comparison of the considered algorithms.

Task Type Alg.

Classifier Quality, % Classifier Performance, ms

Accuracy Precision Recall F1
Training Predictions

Mean SD Mean SD

1

RF 99.90 99.86 99.92 99.88 128.78 1.92 11.86 0.18
SVM 100.00 100.00 100.00 100.00 12.17 1.48 8.92 0.87
KNN 100.00 100.00 100.00 100.00 0.79 0.01 19.67 2.71
ELM 100.00 100.00 99.99 99.99 2.60 0.58 1.84 0.11

2

RF 98.06 96.77 98.31 97.45 489.33 11.52 38.69 0.47
SVM 99.80 99.59 99.83 99.70 38.87 2.85 48.10 2.99
KNN 99.79 99.54 99.81 99.67 1.09 0.02 32.60 1.39
ELM 99.82 99.72 99.82 99.77 10.06 1.03 6.93 0.27

3

RF 99.51 98.59 99.71 99.04 330.80 11.42 27.99 0.56
SVM 99.98 99.99 99.99 99.99 18.71 2.00 14.79 1.07
KNN 99.96 99.97 99.98 99.97 1.02 0.03 26.97 1.21
ELM 99.93 99.95 99.96 99.95 10.57 0.95 6.98 0.47

4

RF 99.91 99.96 99.97 99.96 330.49 5.95 28.11 0.43
SVM 99.99 99.90 99.99 99.94 35.33 3.85 17.46 1.51
KNN 99.83 96.89 99.53 97.95 1.10 0.03 31.69 1.80
ELM 99.95 99.30 99.98 99.59 6.83 0.87 5.04 0.96

5

RF 99.20 94.22 99.68 99.12 363.29 9.06 31.29 1.48
SVM 99.98 99.75 99.99 99.82 29.86 3.90 16.75 2.02
KNN 99.90 98.48 99.96 98.98 1.00 0.02 27.43 1.23
ELM 99.98 99.76 99.99 99.83 3.34 0.28 2.47 0.24

6

RF 98.52 90.45 97.50 92.97 255.22 8.04 24.90 1.79
SVM 99.07 92.66 96.15 93.62 53.89 3.80 28.18 1.52
KNN 98.88 90.49 95.31 91.69 1.23 0.42 35.63 2.93
ELM 98.67 91.40 96.07 92.84 21.21 1.50 12.90 0.50

7

RF 99.65 98.51 99.87 99.13 174.05 3.52 15.62 0.34
SVM 99.96 99.97 99.88 99.92 32.82 4.73 12.10 1.03
KNN 99.96 99.99 99.86 99.92 1.01 0.04 30.25 7.93
ELM 99.89 99.54 99.25 99.34 4.76 0.48 3.55 0.41

8

RF 97.72 90.14 97.25 92.76 428.32 10.20 35.97 2.29
SVM 98.81 97.34 98.47 97.78 90.66 4.54 125.96 7.29
KNN 97.82 94.37 97.43 95.63 1.25 0.03 39.30 2.36
ELM 97.05 90.08 96.18 92.14 9.34 0.95 6.63 0.29

9

RF 99.34 97.98 99.29 98.57 177.96 7.13 17.52 1.08
SVM 99.58 98.98 98.68 98.78 29.89 2.40 17.81 3.70
KNN 99.31 98.72 98.30 98.43 1.06 0.02 28.54 0.82
ELM 99.35 98.26 98.37 98.24 16.96 1.86 10.19 0.26

10

RF 95.61 61.14 78.67 63.92 450.90 7.94 36.64 2.40
SVM 98.65 93.07 96.61 94.36 107.51 29.80 34.93 5.39
KNN 97.13 71.53 94.62 77.60 1.51 0.47 50.30 15.69
ELM 98.23 88.95 94.62 90.75 20.44 3.75 13.29 2.69

11

RF 96.63 89.00 96.71 91.37 440.21 8.95 39.89 0.58
SVM 99.01 97.58 98.69 97.94 84.74 5.19 66.09 4.43
KNN 98.95 96.38 98.80 97.19 1.25 0.02 38.36 1.07
ELM 98.24 95.66 97.74 96.30 20.05 1.34 12.56 0.35

According to Table 5, ELM is the fastest classification algorithm among the considered
ones. RF appeared to be the slowest algorithm due to its ensemble-based nature; however,
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it produces easily interpretable results modeled as decision trees. The performance of
SVM heavily depends on the kernel function used: linear kernel is faster than RBF (see
Tables 4 and 5), however, ELM trains and predicts faster even when compared to linear
SVM models. Even without additional tuning, ELM showed the best accuracy comparing
to all other algorithms in two classification problems, and in one showed the same accuracy
as SVM and KNN. KNN outperformed all algorithms in one of the classification problems,
while in seven problems SVM showed the best accuracy.

Aiming to stabilize and further enhance the performance of the fastest classification al-
gorithm, we applied differential evolution (DE) [29] and fish school search with exponential
step decay (ETFSS) [50] to ELM input weights and hidden biases fine-tuning by maximizing
the Macro F1 score (10). The reasoning behind choosing these algorithms is described in
Section 4.6. The experimentally selected parameters of the considered biology-inspired
algorithms are listed in Table 6. The plots illustrating the convergence of the DE and ETFSS
algorithms improving ELM performance in tasks with most diverse solutions are shown in
Figure 6. The comparison of ELM with ELM models fine-tuned with DE (DELM) and with
ELM models fine-tuned with ETFSS (FELM) is shown in Table 7.

Table 6. Parameters of the considered biology-inspired algorithms.

Differential Evolution (DE) Fish School Search with Exp. Step Decay (ETFSS)

Parameter Title Value Parameter Title Value

pcrossover 0.7 stepind 0.7
pmutation 0.3 stepvol 0.7

Iteration limit 30 Iteration limit 30
Population size 20 Population size 20
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Table 7. Accuracy comparison of ELM, DELM (tuned with DE), and FELM (tuned with ETFSS).

Task Type Alg.
Accuracy on Testing Data, %

Task
Accuracy on Testing Data, %

Accuracy Precision Recall F1 Accuracy Precision Recall F1

1
ELM 100.00 100.00 99.99 99.99 99.89 99.54 99.25 99.34

DELM 100.00 100.00 100.00 100.00 7 100.00 100.00 100.00 100.00
FELM 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

2
ELM 99.82 99.72 99.82 99.77 97.05 90.08 96.18 92.14

DELM 99.90 99.76 99.90 99.83 8 97.56 97.80 97.15 97.45
FELM 99.90 99.76 99.90 99.83 97.89 97.05 97.52 97.23

3
ELM 99.93 99.95 99.96 99.95 99.35 98.26 98.37 98.24

DELM 100.00 100.00 100.00 100.00 9 99.95 99.99 99.79 99.88
FELM 100.00 100.00 100.00 100.00 99.95 99.99 99.79 99.88

4
ELM 99.95 99.30 99.98 99.59 98.23 88.95 94.62 90.75

DELM 100.00 100.00 100.00 100.00 10 99.34 95.90 98.99 97.26
FELM 100.00 100.00 100.00 100.00 99.07 96.27 97.16 96.65

5
ELM 99.98 99.76 99.99 99.83 98.24 95.66 97.74 96.30

DELM 100.00 100.00 100.00 100.00 11 99.60 99.27 99.39 99.28
FELM 100.00 100.00 100.00 100.00 99.60 99.27 99.75 99.47

6
ELM 98.67 91.40 96.07 92.84

DELM 98.76 92.22 98.01 94.54
FELM 98.76 92.43 97.96 94.55

According to Figure 6 and Table 7, the biology-inspired algorithms with small iteration
limit and small agent count show similar performance, and are able to stabilize ELM
and improve the accuracy of the resulting model up to 100% in many of the considered
multi-class classification problems. At the cost of time losses during the training phase,
biology-inspired algorithms successfully automated the development of very accurate
and fast ELM-based classifiers. The most accurate ELM-based classifiers evolved with the
DE and ETFSS algorithms were incorporated into the DTA system and enabled real-time
analysis of program texts submitted by students (see Figure 7b).
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6. Discussion

In the research presented in this paper, we consider the classification problem of
program texts solving automatically generated programming exercises of 11 different types
(see Table 1). The programming exercises were generated by the Digital Teaching Assistant
(DTA) system [9,10], which automates the massive Python programming course at MIREA-
Russian Technological University. The solutions for the exercises were submitted to DTA
by students using a web-based user interface [9].

The DTA system includes an analytics module used by teachers for the analysis of
program texts submitted by students by the end of semester. The aim of such an analysis is
to discover approaches used by students when solving the automatically generated tasks
of different types generated by the DTA core module [6]. The analytics module is based
on an unsupervised machine learning technique and preliminary transforms program
texts into vectors according to Algorithm 1. The transformation algorithm constructs an
AST (see Figure 2) for every program and uses intermediate program text representation
based on Markov chain state transition graph for an AST (see Figure 3). After applying an
unsupervised machine learning technique, the DTA analytics module outputs a marked-up
dataset where program texts are represented as vectors. Every vector in such a dataset
has an assigned class label indicating the number of the approach used by a student while
solving a unique automatically generated task.

The marked-up datasets obtained from the DTA analytics module are then passed to
the classifiers considered in this research, namely, SVM, KNN, RF, and ELM. The imple-
mentations for SVM, KNN, and RF classifiers were borrowed from the sklearn library [39],
and the ELM-based classifier was implemented according to Algorithms 3 and 4 using
numpy [40]. New program texts that were not preliminarily transformed into vectors
by the DTA analytics module were vectorized according to Algorithm 2 (see Section 3)
before being passed to a classifier. In order to estimate the performance of the considered
multi-class classifiers, such metrics as Macro Precision (8), Macro Recall (9), and Macro F1
score (10) were used. The hyperparameters for each of the considered algorithms were
tuned using a grid search [39]. The chosen parameters for most accurate classifiers of each
type for different task types are listed in Table 4.

The results of the experimental run (see Table 5) indicate that ELM is the least com-
putationally expensive algorithm among the considered ones. The performance of ELM
depends on the chosen regularization parameter value, hidden neuron count (see Figure 5),
and the input weights and hidden biases initialization. The weights and biases are ini-
tialized randomly in the original algorithm. Even without additional input weights and
hidden biases tuning, commonly applied by researchers and practitioners [24–26], ELM
outperformed other classification algorithms in two problems in terms of accuracy (see
Table 5). After applying differential evolution (DE) and fish school search with exponen-
tial step decay (ETFSS) to input weights and hidden biases tuning, the accuracy of ELM
considerably improved (Table 7) at the cost of time losses during training.

The most accurate ELM-based classifiers obtained with biology-inspired algorithms
(see Table 7 and Figure 6) were incorporated into the DTA system for real-time analysis
of student submissions. The sample web-based UI of the DTA web app [9] is shown in
Figure 7. The sample classifier decision is shown in Figure 7b. Such classifiers also enable
real-time analysis of student submissions by teachers, allowing programming instructors
to discover the most common approaches used by students while solving automatically
generated programming exercises during the semester. This allows filling the gaps in
students’ knowledge by explaining the least frequently used language features of the
Python programming language.

Future work could focus on building a system of achievements for improving the
learning motivation [11] in the DTA digital environment (see Figure 7b) by suggesting
students discover all possible approaches to solving a programming exercise of a particular
type on their own. Additionally, further research could focus on performance investigation
of modified and improved versions of the SVM [49] and KNN [48] algorithms, as well as
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their hybridized versions [47], ELMs with explicitly computed input weights [51], neural
networks [52], and transformers [53], aiming to further enhance classification accuracy and
reduce computational overhead when making class label predictions.
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