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Abstract: Emotion recognition in conversation (ERC) is receiving more and more attention, as
interactions between humans and machines increase in a variety of services such as chat-bot and
virtual assistants. As emotional expressions within a conversation can heavily depend on the
contextual information of the participating speakers, it is important to capture self-dependency and
inter-speaker dynamics. In this study, we propose a new pre-trained model, SAPBERT, that learns to
identify speakers in a conversation to capture the speaker-dependent contexts and address the ERC
task. SAPBERT is pre-trained with three training objectives including Speaker Classification (SC),
Masked Utterance Regression (MUR), and Last Utterance Generation (LUG). We investigate whether
our pre-trained speaker-aware model can be leveraged for capturing speaker-dependent contexts for
ERC tasks. Experiments show that our proposed approach outperforms baseline models through
demonstrating the effectiveness and validity of our method.

Keywords: natural language processing; motion recognition in conversation; dialogue modeling;
pre-training; hierarchical BERT

1. Introduction

Advance in artificial intelligence has increased the attention to the empathetic system
and emotional interaction between the human and machine, especially in a conversation
system such as a chat-bot and virtual assistant. However, it remains a challenge for both
the machines and humans to detect an emotion within a conversation. In addition, it is
even more difficult when only the conversation text data are available.

In ERC tasks, there have been many attempts based on deep-learning to understand
human emotions with only text data. For better understanding the sequential contexts in
conversations, Poria et al. [1] and Majumder et al. [2] proposed the RNN-based model. To
alleviate the long-term dependency problems in an RNN-based model, a graph neural net-
work (GNN)-based model was introduced [3]. To understand the context of conversations,
an external commonsense knowledge was utilized [4–6].

Due to the remarkable improvement in pre-training language models in a variety
of NLP tasks [7–10], there have been attempts to use a pre-training model for ERC tasks.
Hazarika et al. [11] suggested that generative conversational models can be leveraged
to transfer knowledge for the ERC task, while Jiao et al. [12] suggested the ConvCom
(Conversation Completion) task as an effective pre-training method for the ERC task.

One of the unique properties of conversations is the nature of the participating speak-
ers, and the ERC task requires capturing speaker-related contextual information: self-
dependency (Figure 1) and inter-speaker dependency (Figure 2). Self-dependency means
the aspect of emotional influence that speakers have on themselves, while inter-speaker
dependency represents the emotional interaction among speakers during a conversation.
Capturing this contextual information can be a main challenge for understanding conver-
sations and addressing the ERC task. In this study, we propose a new pre-trained model,
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SAPBERT (Speaker-Aware Pretrained BERT), composed of the hierarchical BERT with
utterance-level and conversation-level BERT to address this challenge.

Figure 1. An example of self-dependency context. As shown in the figure, each speaker maintains a
consistent emotional state regardless of the counterpart speaker’s emotional state or utterance.

Figure 2. An example of inter-speaker dependency context. As shown in the figure, Speaker B’s
emotional state shift from neutral to frustrated is triggered by Speaker A’s response.

For model’s better understanding of conversations, we aim to enhance model’s ability
to capture the speaker-dependent contexts, the coherence of conversation and the whole
conversation context through introducing three pre-training objectives: 1. Speaker Clas-
sification, 2. Masked Utterance Regression, and 3. Last Utterance Generation. We use
the output of the SAPBERT’s pre-trained conversation-level BERT as the encoder of ut-
terances and perform experiments on two representative ERC datasets, IEMOCAP [13]
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and MELD [14]. The results show that our approach can be effective for understanding
the conversation and can assist with the ERC task. In addition, we perform an ablation
study on the pre-training objectives to demonstrate that the proposed approach, especially
Speaker Classification, is effective.

In summary, our contributions are as follows:

• We present a new pre-training strategy for better understanding of the conversation:
1. Speaker Classification, 2. Masked Utterance Regression, and 3. Last Utterance
Generation.

• We demonstrate that our pre-training strategy is effective for understanding conversa-
tions and can improve the ERC performance through experiments.

2. Related Work
2.1. Emotion Recognition in Conversation

With more accessibility to datasets such as IEMOCAP [13] and MELD [14] that have
textual features of conversations, some researchers have introduced additional approaches
to dealing with ERC with conversation text data. Poria et al. [1] proposed context LSTM [15]
to understand contextual information of the conversation. Majumder et al. [2] introduced
DialogueRNN to model the states of global, party(speaker, listener), and emotion with
GRU [16] and classify the emotion by incorporating these states with the target utterance.

RNN-based models, however, show limited performances with long sequences in
spite of the effectiveness of dealing with sequential data. This is called the long-term
dependency problem. To mitigate this issue, a graph neural network (GNN)-based model,
called DialogueGCN, was introduced [3] resulting in better performances compared to
RNN-based models. Zhong et al. [4] proposed a hierarchical self-attention [17]-based
model to alleviate the long-term dependency problem and applied external commonsense
knowledge for enriching contextual information such as COSMIC [5] and KI-Net [6].

CESTa [18] treated the ERC task as sequence tagging through choosing the best tag
sequence using CRF. DialogueCRN [19] proposed a contextual reasoning LSTM model to
capture situation-level and speaker-level context and to integrate the emotional clues. Di-
alogXL [20] employed XLNet [8] with enhanced memory and dialogue-aware self-attention.

2.2. Transfer Learning for ERC

To improve downstream conversation tasks such as ERC, pre-training with an objective
such as masked-language modeling or next sentence prediction in BERT or permutation
language modeling in XLNET can be used. Hazarika et al. [11] proposed that generative
conversational models can be leveraged to transfer knowledge for the ERC task. Given
contexts, the model’s ability to capture the whole conversation context can be enhanced by
training the model to generate a coherent next response utterance.

In addition, Jiao et al. [12] proposed the ConvCom (Conversation Completion) task as
an effective pre-training method for the ERC task. ConvCom means selecting the correct
answer from candidates to fill a masked utterance in a conversation. Such approach can
help the model capture the coherent context of the conversation and also help the system
use unlabeled conversation data for the training.

3. Conversation Types

Unlike regular documents or other textual data, conversations have a unique charac-
teristic as a ‘Speaker’.

3.1. Number of Speakers

Conversations can be classified according to the number of speakers: a dyadic conver-
sation, which is a conversation between two people (Figures 3 and 4), and a multi-party
conversation, which is a conversation between more than three speakers (Figure 5). In the
real world, there is no limit to the number of speakers during conversations. The greater



Algorithms 2023, 16, 8 4 of 16

the number of speakers in a conversation, the more difficult it could be for the model to
capture speaker-dependent contexts.

Figure 3. A one by one dyadic conversation.

Figure 4. A continuous dyadic conversation.

Figure 5. A multi-party conversation.
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3.2. Continuity

Conversations can also be classified depending on the continuous utterances from the
same speaker. A one by one dyadic conversation means that two speakers take turns one
by one during the conversation, which makes it easy for the model to classify speakers with
a certain order and capture the speaker-dependent contexts. When the speakers’ turns are
not fixed and some continuous utterances from the same speaker are in the conversation,
it may be not an easy and simple task for model to classify speakers and capture the
speaker-dependent contexts as a human.

We discovered that the composition of the speaker is different for each conversation,
and we define three types of conversation depending on the composition of speakers in
conversations: 1. One by one dyadic conversation, 2. Continuous dyadic conversation, and
3. Multi-party conversation.

Previous studies have tried to classify the speakers through physical methods such
as speaker specific node or relation type on the graph neural network based models such
as Ghosal et al. [3] or encoding utterances of each speaker separately by speaker-specific
module as Majumder et al. [2], Shen et al. [20]. However, these methods can be inflexible
to either the various number of speakers or the unpredictable turns of speakers in a
conversation. Unlike the previous studies, we propose the self-supervised learning Speaker
Classification to classify speakers only by the content of the conversation, not a fixed
module. This can help our model capture speaker-dependent contexts and understand
conversations better.

4. Methods and Materials

Conversations can be seen as a hierarchical structure. To model this aspect of conversa-
tion, we employ the hierarchical BERT architecture as our model. For better understanding
the conversations, we assume that the model should be able to capture at least three aspects
in a conversation: 1. speaker-dependent contexts, 2. coherence of the conversation, and
3. the whole conversation context. We propose three pre-training objectives to capture
these aspects and enhance the ability of understanding conversations. We also adopt the
multi-task learning for improving our pre-trained model.

We denote a dialogue with N utterances as D = (u1, . . . , uN), context as C = (u1, . . . ,
uN−1) and response as R = uN . Each ui = (wi

1, . . . , wi
M) is an utterance with M words.

4.1. Hierarchical BERT

Figure 6 shows that the two BERT models are hierarchically nested: one is utterance-
level and the other is conversation-level context encoder.

We use the pre-trained RoBERTa model as an utterance-level encoder ule. The
utterance-level encoder transforms an utterance into a list of vector representations and
takes the first vector as a representation of the utterance, as other BERT-like models regard-
ing the first vector as the embedding of the input sentence. The final representation of i-th
utterance is ci:

c1, . . . cN = ule([u1, . . . uN ]) (1)

The conversation-level encoder cle (BERT base model) transforms the sequence of
utterance representations (c1, c2, . . . , cN) into the sequence of context-encoded utterance
representation H = (h1, h2, . . . , hN). H is the final product of the conversation-level context
encoder with the hierarchical BERT:

h1, . . . hN = cle([h1, . . . hN ]) (2)
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Figure 6. Overview of Speaker Classification. The model is trained to predict the true speaker
on speaker-masked utterance using the context-encoded utterance and speaker classifier; TRM =
Transformer Encoder.

4.2. Speaker Classification

Identifying speakers in dialogues determines the ability to capture these speaker-
dependent contexts helping the system represent the dialogue contexts. Therefore, speaker-
dependent contexts, such as self-dependency and inter-speaker dependency, are essential
in understanding conversations.

The objective of Speaker Classification task (SC) is to classify the true speaker with
only the context-encoded utterance which is randomly selected. When the number of
speakers is two, the first utterance’s speaker is set as Speaker 1 and the other as Speaker 2.

The reason why only one utterance is randomly selected, not the whole utterances, is
that we aim to avoid over-fitting to the utterance position. For example, if speakers take
their turns just one by one, the model can classify speakers according to the utterance’s
position, such as Speaker 1 at the positions of odd numbers and Speaker 2 at the positions
of even numbers. In the example in Figure 6, the Speaker Classification model is trained
to classify the speaker as Speaker 2 given the context-encoded representation h2 of the
utterance ’Good thank you, how are you’:

ŝi = WSChi + bSC (3)

Lastly, the Speaker Classification task aims to minimize the cross entropy loss between
the speaker prediction ŝi and the true speaker si, where L is the total number of dialogues:

LSC = −
L

∑ silog(ŝi) (4)

4.3. Masked Utterance Regression

In order to capture the coherence of conversation, we employ masked utterance
regression task (MUR) (Figure 7), proposed by Gu et al. [21]. Like the masked LM in
BERT, we expect this task to enhance the conversation-level context representation and to
improve the coherence. Gu et al. [21] randomly selected one utterance in C. Then, they
replaced the utterance with a mask token as [CLS, MASK, SEP] 80% of time, kept the 10%
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of time unchanged, and replaced the rest of the time with a random utterance. Lastly, the
representation of the masked utterance is reconstructed.

After masking a random umasked in C, we obtain its contextual utterance representation
H using our hierarchical BERT model. Then, restore the masked utterance representation
hmasked back to the original utterance coriginal using the encoding converter, a fully connected
neural network:

ˆcmasked = WMURhmasked + bMUR (5)

Finally, a Masked Utterance Regression task is trained for minimizing the mean
squared error (MSE) between the prediction of masked utterances and their original utter-
ance representations:

LMUR =
1
L

L

∑( ˆcmasked − coriginal)
2 (6)

Figure 7. Overview of Masked Utterance Regression. The model estimates the masked utterance’s
context-encoded representation cmasked and compare the cmasked with the real one produced by the
utterance encoder.

4.4. Last Utterance Generation

In order to capture the whole dialogue context, we employ the Last Utterance Gen-
eration (LUG). We employed the generation task, inspired by Hazarika et al. [11], which
proposed the effectiveness of transfer learning from the generative conversation model to
the ERC task.

We expect that this task trains the model to catch the context in order from beginning
to end of each dialogues. Given the dialogue context C, as shown in Figure 8, we first
apply C to our model and obtain the context sensitive utterance representations H then
generate response R, the last utterance in the dialogue, using a Transformer decoder. The
decoder predicts each word of R, and lastly, the learning is driven by the cross entropy loss
of the decoder:

LLUG = −
N

∑
i=1

logPdecoder(wt
i |wt

<i, H) (7)
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For the multi-task learning, our final objective is defined as the sum of the each loss
function:

Ltotal = LSC + LMUR + LLUG (8)

Figure 8. Overview of Last Utterance Generation. The hierarchical Transformer encoder–decoder ar-
chitecture. As shown in this figure, the decoder takes the conversation-level encoded representations
of contexts as an input and generates the response.

4.5. Dataset for Pre-Training

As shown in Table 1, we use two open-domain dialogue datasets in the pre-training
phase: 1. Mutual [22] and 2. DailyDialog [23]. If the number of turns in the dialogue is less
than 3, the data are filtered out.

Table 1. Dataset for Pre-training.

Dialogues Utterances

Mutual 7908 37,650
DailyDialog 13,088 102,141

Mutual (Multi-Turn dialogue Reasoning) [22] is dialogues from the Chinese student
English listening comprehension exams. Mutual is composed of dialogue contexts and
answer candidates. In the Mutual dataset, the answers of some dialogues are not provided;
therefore, we do not include these data in our pre-training phase.

DailyDialog [23] is a widely used open-domain dialogue dataset. The dialogues in
the DailyDialog dataset present daily communication and cover various topics in day to
day life. DailyDialog is more formal than others constructed from conversations in social
networks, which can be short and noisy.

5. Emotion Recognition in Conversation
5.1. ERC Model

Context Independent Feature Extraction We employ the RoBERTa base model, fine-
tuned for emotion label classification to extract context independent utterance level feature
vectors. The k-th utterance in the i-th dialogue with special tokens [CLS] and [SEP] is
passed through the model, and the activation from the last layer corresponding to the [CLS]
token is then used as an encoded utterance representation c:

ci,k = RoBERTa([CLS], Utterancei,k, [SEP]) (9)
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Dialogue Context Encoder We employ the conversation-level BERT from the pre-
trained SAPBERT and apply the encoded utterance representations C in the i-th dialogue,
resulting from Equation (9) as an input for obtaining the dialogue context encoded repre-
sentations H:

H(hi,1, hi,2, . . . , hi,N) = SAPBERT(ci,1, ci,2 . . . ci,N) (10)

Emotion Classifier As shown in Figure 9, the dialogue context encoded representation
h, resulting from Equation (10), is classified into emotion labels using a fully connected
network for the emotion classifier (EC), and the probability is generated by a softmax layer:

ˆyi,k = so f tmax(WEChi,k + bEC) (11)

Lastly, the cross entropy loss between the emotion prediction ˆyi,k of the k-th utterance
in the i-th dialogue and the ground-truth emotion of the utterance yi,k is used to train our
ERC model:

LEC = − 1

∑L
l=1 τ(l)

L

∑
i=1

τ(i)

∑
k=1

yi,klog( ˆyi,k) (12)

where L is the total number of dialogues and τ(i) is the number of utterances in the i-th
dialogue.

Figure 9. Overview of the ERC model.

5.2. Dataset for ERC

We evaluate our model with IEMOCAP [13] and MELD [14] datasets. The statistics of
the datasets are reported in Tables 2 and 3. Both datasets are multi-modal datasets with
textual, visual, and acoustic features. In this paper, we use only textual features only for
ERC tasks.

Table 2. IEMOCAP Dataset Split.

IEMOCAP Utterances Dialogues

train + val 5810 120
test 1623 31

IEMOCAP [13] is an open-domain 2-speaker dialogue dataset for ERC tasks. The
utterances are annotated with one of six emotion labels: happy, sad, neutral, angry, excited,
and frustrated. We use the pre-defined train/test split provided in the IEMOCAP dataset.
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We extract the validation set from the randomly shuffled training set with a ratio of 80:20
since no pre-defined validation set is provided.

MELD [14] is an open-domain multi-speaker dialogue dataset collected from a TV-
series, "Friends", for an ERC task. MELD contains more than 1400 multiparty conversations
and 13000 utterances. The utterances are annotated with one of seven emotion labels: anger,
disgust, sadness, joy, surprise, fear and neutral. We use the pre-defined train, validation,
and test set split provided by the MELD dataset.

Table 3. MELD dataset split.

MELD Utterances Dialogues

train 9989 1038
val 1109 114
test 1623 280

5.3. Baselines

We compare our proposed approach with the following baselines:
cLSTM [1]: Uses Bidirectional LSTM with the attention mechanism to capture the

context from the surrounding utterance.
DialogueRNN [2]: Uses three GRUs to model speaker states, global contexts, and

emotion context.
DialogueGCN [3]: Introduces a graph-based structure for better modeling of relations

between utterances.
TL-ERC [11]: Uses the transfer learning strategy for emotion recognition during a

conversation.
KET [4]: Employs a graph attention mechanism to combine commonsense knowledge

into utterance representations.
AGHMN [24]: Introduces a hierarchical memory network architecture to store the

dialogue context.
BiERU [25]: Introduces a party-ignorant bidirectional recurrent unit that used both

sides of the conversational context for emotional predictions.
COSMIC [5]: Incorporates commonsense knowledge to learn the context of inter-

speaker dependency.
DialogXL [20]: Employs XLNet with a dialog-aware self-attention to introduce the

awareness of speaker-dependent contexts.
DialgCRN [19]: Introduces multi-turn reasoning modules to extract and integrate

clues indicating emotion during a dialogue.
KI-Net [6]: Leverages commonsense knowledge and sentimental vocabulary in con-

versations to obtain more semantic information.
CESTa [18]: Employs the CRF algorithm to capture the emotions’ pattern.
We employed 4-type models for comparing the results of our model: 1. pre-trained

model [20], 2. knowledge model [4–6], 3. transfer learning model [11], and models that
introduced a variety of methods and presented remarkable performances on Emotion
Recognition in Conversation [1–3,18,19,24,25].

6. Results

Tables 4 and 5 show the results of our proposed model and other baseline models for
the ERC task on the IEMOCAP [13] and MELD [14]. The overall results of our SAPBERT
outperforms other models on both datasets except for COSMIC [5] on the MELD dataset.
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Table 4. Categorized ERC results of the IEMOCAP and the MELD dataset; The percentage beside the category means the percentage of each category of IEMOCAP
dataset, Acc. = Accuracy, F1 = F1-score, Average(w) = Weighted average, best performances are highlighted in bold.

Model
IEMOCAP MELD

Happy (7.6%) Sad (16.8%) Neutral (23.2%) Angry (11.5%) Excited (18.1%) Frustrated (22.7%) Average (w) Average (w)
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

c-LSTM 30.56 35.63 56.73 62.90 57.55 53.00 59.41 59.24 52.84 58.85 65.88 59.41 56.32 56.19 57.50 55.90
DialogueRNN 25.69 33.18 75.1 78.7 58.59 59.21 64.71 65.28 80.27 71.86 61.15 58.91 63.4 62.75 56.1 55.9
DialgoueGCN 40.62 42.75 89.14 84.54 61.92 63.54 67.53 64.19 65.46 63.08 64.18 66.99 65.25 64.18 58.1
AGHMN 48.3 52.1 68.3 73.3 61.6 58.5 57.5 61.9 68.1 69.7 67.1 62.3 63.5 63.5 59.5 57.5
BiERU 54.24 31.53 80.6 84.21 64.67 60.17 67.92 65.65 62.79 74.07 61.93 61.27 66.11 64.65 60.84
KI-Net - 49.45 - 73.38 - 65.63 - 65.13 - 71.15 - 68.38 - 66.98 - 63.24

SAPBERT 57.26 52.99 76.19 80.31 66.31 65.70 58.82 61.62 73.47 72.85 64.67 63.55 67.34 67.16 64.44 64.28
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Table 5. Comparisons with baselines and our method. Avg(w) refers to weighted average, Acc refers
to the accuracy and F1 refers to the f1-score. Best performances are highlighted in bold.

IEMOCAP MELD
Models Avg (w) Acc. Avg (w) F1. Avg (w) F1.

TL-ERC - 59.30 -
KET - 59.56 58.18

COSMIC - 65.28 65.21
DialogXL - 65.94 62.41

DialogueCRN 66.05 66.20 58.39
CESTa - 67.10 58.36

Our Model 67.34 67.16 64.28

6.1. Implementation Details

We employed a base-sized BERT as the utterance-level encoder and RoBERTa model
as the conversation-level model (L = 12, H = 768, A = 12). We chose a base-sized BERT and
RoBerta model since Mutual and DailyDialog datasets cannot be large enough to train a
large-sized BERT and RoBERTa without over-fitting. We filtered the dialogues and less
than three utterances for each pre-training method can be applied on different utterances.
We used AdamW as an optimizer with a learning rate of 5 × 10−5. We implemented all the
experiments including modeling with the PyTorch library. The pre-training process took
place on Ubuntu 16.04 and eight RTX-2080 Ti GPUs, and the ERC process took place on
Window 10 and a single RTX-2080 Ti GPU.

6.2. Experimental Results

As shown in Table 4, our model shows the best performance in just two emotions:
happy and neutral, but with the best score of both accuracy and f1-score on average. This
may indicate that our proposed model is not specialized in capturing only specific emotions,
but overall emotions evenly well.

Unlike other models, our model is trained to distinguish the speakers in a dialogue.
Therefore, our model may be able to capture both speaker-dependent contexts and the
context of emotion such as inter-speaker dependency or self-dependency better than other
baselines.

TL-ERC [11] shows the efficiency of transfer learning from the generative task to
the ERC task. As shown in Table 5, our model achieves approximately 8% better in F-1
score than TL-ERC with the IEMOCAP dataset. This demonstrates the effectiveness of the
multi-task learning.

As shown in Tables 4 and 5, our model achieves approximately 8%, 2% and 0.2% better
than each commonsense knowledge based models, KET [4], COSMIC [5], KI-Net [6], on
the IEMOCAP dataset. This indicates that capturing speaker-dependent context can be
important.

For the MELD dataset, COSMIC [5] shows a little better performance. This may be
attributed to the structural characteristics of MELD conversation. The number of speakers
in each conversation is large (up to 9) and the average length of conversations is 10 in
the MELD dataset, while in IEMOCAP the average length of conversations is 50 and the
number of speakers is 2. This means that MELD has very few utterances per speaker in
each conversation for our model to capture speaker-dependent contexts.

Our model gains approximately 2.5% F-1 score improvement on the IEMOCAP dataset
over BiERU [25], as shown in Table 4. This indicates the importance of capturing the
speaker-dependent contexts. Approximately a 1% improvement in the F-1 score on the
IEMOCAP dataset over DialogXL [20] and DialogueCRN [19] demonstrates that Speaker
Classification can be effective for capturing the speaker-dependent contexts.
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As shown in Table 5, our model achieves approximately 6% better on the MELD
dataset and 0.1% better on the IEMOCAP dataset compared to the CESTa [18]. This can be
attributed to the capturing of the speaker-dependent contexts during a dialogue.

As shown in Table 6, the performance of our model without the pre-training of
Speaker Classification is lower than some of the baseline models such as DialogueGCN [3],
AGHMN [24], BiERU [25], KI-Net [6], COSMIC [5], DialogXL [20], DialogueCRN [19] and
CESTa [18]. This indicates that our model’s improvement may not be due to the difference
between the model structures.

7. Discussion
7.1. Error Analysis

Figures 10 and 11 show the heat map of the confusion matrix of our result on the
IEMOCAP dataset and the MELD dataset, respectively. The X-coordinate indicates our
model’s prediction and the y-coordinate indicates the ground truth.

Figure 10. The heatmap of the confusion matrix on IEMOCAP dataset; hap = happy, neu = neutral,
ang = angry, exc = excited, fru = frustrated. X-coordinate: model’s prediction and y-coordinate: the
ground truth.

With the IEMOCAP dataset, there are some misclassifications among similar emotions
such as happy–excited, frustrated–angry and frustrated–sad. Our model is confused
especially among sad, angry, and frustrated, which is consistent with the results shown in
Table 4.

With the MELD dataset, we faced a challenge of classifying categories that have
relatively small amounts of data such as sad, joy, and fear.

For the misclassification problem, the similar utterances’ representation is a possible
reason. It could be helpful to extract latent variables from utterances to distinguish the
utterances with similar emotions, and the label smoothing technique could be one of the
solutions alleviating the problem.

The classification power for each categories of the proposed model highly depends on
the number of data on each respective categories. For the class imbalance problem, it can
be alleviated by either data augmentation or adjusting the sample according to the number
of data per emotions for the future work.
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Figure 11. The heatmap of the confusion matrix on MELD dataset; ang = angry, dis = disgusting,
sur = surprise, fea = fear, neu = neutral. X-coordinate: model’s prediction and y-coordinate: the
ground truth.

7.2. Ablation Study

In this ablation study, we analyze the effects of each pre-training objective. ‘-’ denotes
the model pre-trained without the objectives. For example, ‘- Speaker Classification’ means
the SAPBERT pre-trained with Masked Utterance Regression and Last Utterance Generation
tasks only.

As shown in Table 6, the performance drops whenever any of the pre-training objective
is excluded. When the Masked Utterance Regression and Last Utterance Generation
objectives are excluded individually, the performance drops by 2.71%, 1.9%, (MUR) and
3.01%, 2.17% (LUG) on both datasets. This means that these objectives can be effective
for capturing the both coherence and the whole context of conversations. In particular,
when the Speaking Classification objective is excluded, the performance on the IEMOCAP
dataset drops considerably by 4.38%.

Table 6. Results of ablation study on IEMOCAP and MELD.

Method
F-1 Score

IEMOCAP MELD

SAPBERT 67.16 64.18
- Speaker Classification (SC) 62.78 (↓4.38) 63.09 (↓1.09)
- Masked Utterance Regression (MUR) 64.45 (↓2.71) 61.17 (↓3.01)
- Last Utterance Generation (LUG) 65.26 (↓1.9) 62.01 (↓2.17)

The datasets for the pre-training and for the ERC task present different patterns.
All the conversations in Mutual and DailyDialog datasets for the pre-training contain
two-speaker conversations with one-by-one turn taking. On the other hand, IEMOCAP
contains continuous utterances of the same speaker in some cases, while MELD has multi-
speaker conversations with relatively few utterances per speaker. The performance of
the SC excluded model does not drop with MELD as much as with IEMOCAP. This can
be attributed to the difference in the conversation pattern and the number of speakers
between the pre-training datasets and MELD. The result of the ablation study for Speaker
Classification indicates that the model is well trained for our purposes, not overfitting the
position of utterances in the conversation.
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8. Conclusions

In this paper, we introduced the SAPBERT: Speaker-Aware Pretrained BERT for Emo-
tion Recognition in Conversation. Our objective was to enhance the model’s ability to
capture three conversational contexts for the model’s better understanding of conversa-
tions: 1. speaker-dependent contexts, 2. the coherence of conversation, and 3. the whole
conversation context. To improve the ability to capture these contexts in the conversation,
we proposed the multi-task learning with three pre-training objectives: 1. Speaker Clas-
sification, 2. Masked Utterance Regression, and 3. Last Utterance Generation. Extensive
experiments were conducted on two ERC benchmarks, and the results show that our model
outperforms almost all other baselines on the ERC datasets (IEMOCAP and MELD). In
addition, the ablation study demonstrates the effectiveness of the proposed objectives for
capturing conversational contexts.
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