
Citation: Dai, M.; Jiang, Z.

Multiprocessor Fair Scheduling

Based on an Improved Slime Mold

Algorithm. Algorithms 2023, 16, 473.

https://doi.org/10.3390/a16100473

Academic Editors: Alexandre Dolgui,

David Lemoine, María I. Restrepo,

Frank Werner

Received: 25 September 2023

Revised: 4 October 2023

Accepted: 4 October 2023

Published: 7 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Multiprocessor Fair Scheduling Based on an Improved Slime
Mold Algorithm
Manli Dai † and Zhongyi Jiang *,†

School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China;
dml6891@outlook.com
* Correspondence: jzy@cczu.edu.cn
† These authors contributed equally to this work.

Abstract: An improved slime mold algorithm (IMSMA) is presented in this paper for a multiproces-
sor multitask fair scheduling problem, which aims to reduce the average processing time. An initial
population strategy based on Bernoulli mapping reverse learning is proposed for the slime mold
algorithm. A Cauchy mutation strategy is employed to escape local optima, and the boundary-check
mechanism of the slime mold swarm is optimized. The boundary conditions of the slime mold popu-
lation are transformed into nonlinear, dynamically changing boundaries. This adjustment strengthens
the slime mold algorithm’s global search capabilities in early iterations and strengthens its local search
capability in later iterations, which accelerates the algorithm’s convergence speed. Two unimodal and
two multimodal test functions from the CEC2019 benchmark are chosen for comparative experiments.
The experiment results show the algorithm’s robust convergence and its capacity to escape local
optima. The improved slime mold algorithm is applied to the multiprocessor fair scheduling problem
to reduce the average execution time on each processor. Numerical experiments showed that the
IMSMA performs better than other algorithms in terms of precision and convergence effectiveness.

Keywords: slime mold algorithm; fair scheduling; Bernoulli mapping; reverse learning;
Cauchy mutation

1. Introduction

Multiprocessor systems are widely used in various fields, including medical systems,
smartphones, aerospace, and more [1]. With the increasing demand for high performance
and low power consumption in today’s society, the use of multiprocessor systems has
been greatly promoted [2], leading to extensive research on task scheduling problems on
multiprocessors. This paper investigates the problem of fair scheduling on multiprocessors,
aiming to achieve a balanced average processing time across the processors when executing
multiple independent nonpreemptive tasks. The motivation for this problem stems from a
factory scenario, where there is a desire to allocate tasks to transportation vehicles in such a
way that the average mileage for each vehicle is balanced. This model is also applicable to
the fair scheduling problem of taxis, ensuring that the average distance covered by each
taxi for deliveries is the same.

The fairness problem in scheduling was initially introduced by Fagin and Williams [3],
who abstracted it as the carpool problem for their study. Subsequently, fairness scheduling
problems started to emerge in the context of online machine scheduling. The goal of
the scheduling problems is to minimize the maximum sum of processing time of the
machines. In recent years, there has been an increasing focus on fairness in scheduling,
particularly in the context of optimal real-time multiprocessor scheduling algorithms [4].
Research on proportionate fairness scheduling has long been conducted in the fields of
operating systems, computer networks, and real-time systems [5]. The scheduling strategies
for proportionate fairness are largely based on the concept of maintaining proportional

Algorithms 2023, 16, 473. https://doi.org/10.3390/a16100473 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16100473
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0009-0001-9423-5040
https://doi.org/10.3390/a16100473
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16100473?type=check_update&version=2

Algorithms 2023, 16, 473 2 of 15

progress rates among all tasks [6]. Due to its ability to balance system throughput and
fairness, proportionate fairness scheduling has gained widespread adoption in practice [7].

Ensuring a fair allocation of resources can significantly impact the performance of
scheduling algorithms. While various fair scheduling algorithms have been emerging
rapidly, research on fair scheduling on multiprocessors is relatively limited. It has been
established that the job scheduling problem for processors is NP-hard, and ensuring
fairness in scheduling can improve the utilization of processor resources to some extent.
The typical objective of fairness scheduling problems is usually to minimize the maximum
total processing time on machines. This paper, however, sets the fairness scheduling
objective as minimizing the average execution time on each processor.

Scheduling problems with the objective of minimizing the maximum average process-
ing time can be applied to tasks such as taxi and courier dispatch, which require handling a
large number of scheduling tasks in a short time, necessitating algorithms that are efficient
and have short processing times. The fair scheduling issue for multiprocessor multitasking
is addressed in this research using a modified slime mold method.

Swarm intelligence algorithms are mainly inspired by the evolution of organisms in the
natural environment and the hunting, foraging, and survival processes of
populations [8]. Some common swarm intelligence algorithms include particle swarm
optimization (PSO) [9], the whale optimization algorithm (WOA) [10], the sparrow search
algorithm (SSA) [11], the butterfly optimization algorithm (BOA) [12], and so on. These
swarm intelligence algorithms have been studied and used extensively in a variety of fields,
such as photovoltaic maximum power point tracking [13], multiobjective optimization
problems [14], and COVID-19 infection prediction [15]. They have demonstrated good
performance in solving problems in specific domains. A recently developed metaheuristic
algorithm called the slime mold algorithm (SMA), which was introduced by Li et al. [16] in
2020, simulates the behavior and morphological changes of slime molds during natural
foraging. Compared with other intelligent optimization algorithms, slime mold algorithm
has the advantages of a simple principle, few adjustment parameters, a strong optimization
ability, and an easy implementation.

The slime mold algorithm has been successfully applied in many fields, especially in
engineering optimization. Premkumar et al. [14] proposed a multiobjective slime mold
algorithm based on elite undominated ranking. They applied the slime mold algorithms to
solving multiobjective optimization problems and proved that the proposed algorithm was
effective in solving complex multiobjective problems. Gong et al. [17] proposed a hybrid
algorithm based on a state-adaptive slime mold model and fractional order ant system
(SSMFAS) to solve the traveling salesman problem (TSP). Experimental results showed
that the algorithm had the competitiveness to find better solutions on TSP instances. By
integrating chaos mapping and differing evolution strategies for overall optimization,
Chen et al. [18] devised an enhanced slime mold algorithm, which was applied to engi-
neering optimization problems. The whale optimization algorithm and the slime mold
algorithm were combined by Abdel-Basset et al. [19] to tackle a chest X-ray separation
of images issue. Gush et al. [20] used slime mold algorithms to optimize the optimal
intelligent inverter control system of photovoltaic and energy storage systems to improve
the photovoltaic carrying capacity of the distribution network.

In this paper, an improved slime mold algorithm is considered to study the fair
scheduling of multiprocessor and multitasking. Through in-depth research on slime mold
algorithms, it was found that there were still certain limitations. For example, the pop-
ulation diversity is not rich enough, the convergence speed is slow, and it is easy to fall
into a local optimal solution. In the standard iteration process of the SMA, the random
initialization of the slime mold swarm reduces the potential for population diversity. It
also lacks effective solutions when addressing population converged to local optima. The
fixed boundary check strategy in the standard SMA makes it difficult to return to the
better positions when slime molds exceed the boundaries. This paper makes multistrategy
improvements to the standard slime mold algorithm.

Algorithms 2023, 16, 473 3 of 15

The main contributions of this paper are as follows:

1. A reverse learning initialization population strategy based on Bernoulli chaotic map-
ping is introduced to increase the diversity of populations.

2. Cauchy mutations are introduced to help slime mold populations jump out of a local
optimal solution.

3. A nonlinear dynamic boundary improvement strategy is introduced to accelerate the
convergence rate of the population.

4. The IMSMA is applied to solving the fair scheduling problem on multiprocessors to
minimize the average processing time on each processor.

The article organization is as follows. Section 1 introduces the research about fair
scheduling problems and the slime mold algorithm. Section 2 describes some relevant
literature on fair scheduling. The conventional slime mold algorithm is presented in
Section 3. Section 4 provides detailed improvement strategies for the improved slime mold
algorithm (IMSMA). The simulation tests are presented in Section 5. Section 6 models the
fair scheduling problem on multiprocessors and applies the IMSMA to solve it. Section 7
provides numerical experiments for fair scheduling on multiple processors. Conclusions
are given in Section 8.

2. Related Work

Guaranteeing the fair distribution of resources can have a notable influence on
the effectiveness of scheduling algorithms. In the realm of scheduling problems, fair-
ness can be defined in various ways. There exists a wealth of literature dedicated to
defining fairness concepts and designing efficient algorithms with fair constraints [21].
Zhong et al. [22] addressed the fair scheduling problem of multicloud workflow tasks and
proposed a reinforcement learning-based algorithm. In response to cache contention issues
in on-chip multiprocessors, a thread cooperative scheduling technique considering fairness
was proposed by Xiao et al. [23]. It was based on non-cooperative game theory. They
wanted to ensure equitable thread scheduling in order to improve the performance of the en-
tire system. On heterogeneous processors with multiple cores, Salami et al. [24] suggested
an energy-efficient framework for addressing fairness-aware schedules. This framework
simultaneously addressed fairness and efficiency issues in multicore processors. For mul-
tiprocess contexts, Mohtasham et al. [25] developed a fair resource distribution method
that aimed to maximize the overall system utility and fairness. This technique enabled
the concurrent execution of multiple scalable processes even under CPU load constraints.
Jung et al. [26] presented a multiprocessor-system fair scheduling algorithm based on
task satisfaction metrics, which achieved a high proportion of fairness even under highly
skewed weight distributions. Their algorithm quantified and evaluated fairness using
service-time errors. A review of pertinent research on fair scheduling is given in Table 1.

Table 1. Research on fair scheduling in the relevant literature.

Zhong et al.
[22]

To optimize the scheduling
order for multiple workflow

tasks, they designed a
reinforcement learning-based
fair scheduling algorithm for

multiworkflow tasks.

The authors created an evolving priority-driven method
to avoid service level agreement violations through

dynamic scheduling. Additionally, they implemented
load balancing between virtual machines using a

reinforcement learning algorithm.

Xiao et al.
[23]

They proposed a fairness-aware
thread collaborative scheduling

algorithm based on
uncooperative game theory, and

the on-chip multiprocessor
cache congestion problem

was addressed.

The authors aimed to enhance the overall system
performance by fairly scheduling threads. They employed
an uncooperative game approach to address the thread

collaborative schedule problem and introduced an
iterative algorithm for finding the Nash equilibrium in
non-cooperative games. This allowed them to obtain a

collaborative scheduling solution for all threads.

Algorithms 2023, 16, 473 4 of 15

Table 1. Cont.

Salami et al.
[24]

Specifically addressing the
different multicore

processors’ fair
energy-effective schedule

dilemma, they proposed an
energy-efficient framework

that took into account
fairness in a

heterogeneous context.

Dynamic voltage and frequency scaling was used in
the authors’ suggested energy-effective framework
with a heterogeneous fairness awareness in order to

satisfy fairness restrictions and offer an efficient
energy-effective schedule. In comparison to the
Linux regular scheduler, experimental results

showed a significant improvement in both
efficiency of energy and fairness.

Mohtasham
et al. [25]

The authors proposed a fair
distribution of resources

method for a multiprocess
context aimed at

maximizing overall system
utility and fairness.

The allocation of resources issue was first
formalized as an NP-hard issue. Then, in
pseudo-polynomial time, they employed
approximation strategies and the convex

optimization theory to identify the best answer to
the posed problem. This fair resource allocation
technique could run multiple scalable processes

under CPU load constraints.

Jung et al.
[26]

They proposed a
multiprocessor-system fair

scheduling algorithm based
on task satisfaction metrics.

Their algorithm quantified and evaluated fairness
using service time errors. It achieved a high

proportion of fairness even under highly skewed
weight distributions.

3. Standard Slime Mold Algorithm (SMA)

The slime mold algorithm was inspired by the foraging behavior of multicephalic
velvet fungus, and the corresponding mathematical model was established. There are
three phases: approaching food, surrounding food, and grabbing food [16]. In the stage
of approaching food, the slime mold is spontaneously approaching food according to the
smell in the environment. The expansion law can be expressed by the formula:

X(t + 1) =
{

Xb(t) + vb× (W × XA(t)− XB(t)), r1 < p
vc× X(t), r1 ≥ p

(1)

where X(t + 1) and X(t) indicate the position of slime molds at the (t + 1)th and tth
iterations, respectively. The operation "×" represents multiplication. Xb(t) represents the
fittest location of the slime molds in terms of fitness from the beginning to the current
iteration. XA(t) and XB(t) stand for two random positions of the slime mold in the
population chosen randomly. r1 is a random number between zero and one. vb is an
arbitrary quantity within [−a, a], where the variation of vb simulates the slime mold’s
choice between approaching food or continuing the search. vc is the oscillation vector of
the slime mold, which modifies its search trajectory. It ranges linearly from one to zero.
The parameter a and the selection probability p are determined as follows:

a = arctan h(1− t/T) (2)

p = tan h(|S(i)− DF|) (3)

The population size of slime molds is expressed by the number i = 1, 2, . . . , N. t
embodies the current iteration number, and T is the maximum number of iterations. S(i)
symbolizes the fitness score of the ith slime mold, and DF stands for the best fitness score
obtained throughout all iterations.

The following is the weight W’s updating formula:

W(IndexSorted(i))

{
1 + r2 × log bF−S(i)

bF−wF + 1, i = condition
1− r2 × log bF−S(i)

bF−wF + 1, i = others
(4)

Algorithms 2023, 16, 473 5 of 15

IndexSorted = sort(S) (5)

where condition represents slime mold individuals with the top half of fitness values; and
others represents the remaining individuals. r1 is a random number between zero and one.
bF and wF represent the best and worst fitness scores of the present iteration, respectively.
The operation "×" represents multiplication. The logarithm function is applied in the
formula to slow down the rate of numerical changes caused by the contraction of the slime
mold, stabilizing the frequency of contraction. Condition simulates the process where the
slime mold alters its location based on the quantity of food, with higher food concentrations
leading to higher weights for slime molds in the vicinity. The sorted list of fitness values is
expressed by IndexSorted.

During the course of looking for food, slime mold individuals separate a portion of
the population to discover new territory and attempt to discover better quality solutions.
This increases the possibilities of solution. The position update formula for the slime mold
algorithm is expressed by:

X(t + 1) =

rand× (ub− lb) + lb, rand < z
Xb(t) + vb× (W × XA(t)− XB(t)), rand ≥ z, r1 < p
vc× X(t), rand ≥ z, r1 ≥ p

(6)

where rand represents a random number between zero and one; ub and lb represent
the lower and upper boundaries of the searching area. The operation "×" represents
multiplication, and z represents the probability of slime mold individuals separating from
the population to search for alternative food sources. Typically, z is set to 0.03.

4. Improved Slime Mold Algorithm (IMSMA)
4.1. Population Initialization Strategy Based on Bernoulli Mapping and Reverse Learning

The effectiveness of an algorithm is greatly influenced by the population initializa-
tion. Chaotic mapping methods possess the characteristics of traversing and randomness,
which are appropriate for early-stage exploration of possible regions and can increase the
algorithm’s variety [18]. Common chaotic mapping models include tent mapping [27]
and logistics mapping [28]. Compared to them, Bernoulli mapping [29] exhibits a more
uniform distribution. Therefore, this study incorporated Bernoulli chaotic mapping into
the population’s initialization method in of the slime mold algorithm. The equation is

yk+1 =

{
yk/(1− λ), yk ∈ (0, 1− λ]
(yk − 1 + λ)/λ, yk ∈ (1− λ, 1)

(7)

X = lb + (ub− lb)× y. (8)

In Equation (7), k stands for the times of chaotic iterations, and λ is the chaotic
mapping’s parameter, typically set to 0.4. The generated chaotic sequence y is mapped
to the search space of solutions, as shown in Equation (8). Here, X represents the value
mapped within the solution interval lb and ub are the slime mold’s boundaries. The
operation "×" represents multiplication.

In addition, the opposite learning approach adopts the idea of obtaining reverse
solutions from the initial population. By adding reverse solutions, it is possible to further
boost population variety [30], enhancing the search capability of the algorithm. Therefore,
in this study, after applying the Bernoulli mapping to the population, the opposite learning
approach was employed. The opposite learning approach is an improvement approach
proposed by Tizhoosh in the field of swarm intelligence in 2005 [31]. Its concept is to
generate a reverse solution based on the current solution in the course of the optimization
procedure. In order to choose the best solution for the subsequent iteration, the objective

Algorithms 2023, 16, 473 6 of 15

function values of the present solution and the opposite solution are compared. The
following is the formula for producing the opposite solution:

X∗ = lb + ub− X. (9)

In Equation (9), X∗ denotes the reverse solution of the slime mold population, lb
and ub are the highest and lowest boundaries of the searching space for the slime mold
population, and X represents the current solution of the slime mold population. The ob-
tained reverse solution is then merged with the original solution to form a new population
X = (X∗ ∪ X). According to their objective function values, the new population’s fitness
values are computed. Subsequently, the fitness values are sorted, and the first half of the
population is selected as the initial population.

4.2. Cauchy Mutation Strategy for Escaping Local Optima

The Cauchy distribution is where the Cauchy mutation comes from [32]. The following
describes the standard Cauchy distribution’s probability density function:

f (x) =
1
π
· 1

1 + x2 , x ∈ (−∞, ∞). (10)

Figure 1 illustrates the probability density function curved lines of the standard
Gaussian distribution, the standard Cauchy distribution, and the standard t-distribution.
Through an analysis of the curves, it can be observed that comparing the Gaussian and
t-distributions to the Cauchy distribution reveals that it is broader and flatter, and it ap-
proaches zero more slowly. Additionally, in comparison to the Gaussian and t-distributions,
the Cauchy distribution’s origin peak is smaller. This smaller peak guides individuals to
use a lesser time trying to find the optimal position [33]. Therefore, the Cauchy mutation ex-
hibits a stronger perturbation and is more conducive to helping the slime mold population
escape local optima.

Figure 1. Probability density functions for t-distribution, Gaussian distribution, and Cauchy distribution.

The update strategy for the current best solution is as follows:

Xnew
ij = Xij + cauchy(0, 1) · Xij. (11)

In Equation (11), cauchy(0, 1) represents the common Cauchy distribution. The Cauchy
distribution’s randomly generating function is written as η = tan(π · (ξ − 0.5)), where
ξ indicates a randomly vector ranging from 0 to 1. xij symbolizes the location of the ith

Algorithms 2023, 16, 473 7 of 15

individual at the jth dimension, and xnew
ij stands for the fresh location of the ith individual

at the jth dimension after undergoing a Cauchy mutation.
If the population’s global best solution has not been updated for more than 5 iterations

throughout the iterative updating procedure of the slime mold algorithm, it is considered
that the population may be stuck in its local optimum. In order to boost the likelihood of
escape the regional optimal, a Cauchy mutation is applied. The condition for defining that
the population’s global best value was not updated is that the absolute difference between
the fitness value f t

best obtained from the current iteration’s best position and the global best
value fGbest is less than ∆, as shown in the following equation:

∆ ≥
∣∣ f t

best − fGbest
∣∣ (12)

where t is the current iteration number, and by definition, when ∆ = 0.001, the algorithm is
stuck at a local optimum. In this instance, the slime mold population utilizes the Cauchy
mutation to assist it in eluding the local optimum.

4.3. Nonlinear Dynamic Boundary Conditions

The traditional SMA often experiences the issue of slime mold positions exceeding
the boundaries during the early iterations. The typical approach for handling boundary
conditions is to set the value of individuals exceeding the top edge to the top border
value, and set the value of individuals exceeding the lower border to the lower border
value. However, this boundary condition handling method is not conducive to algorithm
convergence [13]. In this study, we propose a nonlinear dynamic boundary condition, as
shown in the following equation:

Xij(t) =

 Xrand
ij (t) + c1 · k

(
ub− Xrand

ij (t)
)

, Xij(t) > ub

Xrand
ij (t)− c2 · k

(
Xrand

ij (t)− lb
)

, Xij(t) ≤ lb
(13)

k = k1

(
T − t

T

)k2
t
T

(14)

where Xrand
ij (t) represents a random slime mold position; c1 and c2 are two random numbers

between 0 and 1; k1 and k2 are amplitude adjustment coefficients that control the magnitude
of parameter k, with k1 and k2 set to 1.5 and 5, respectively. During the early iterations
when the slime mold positions are far from the global optimum, the value of k decreases
slowly. Slime molds that exceed the position range are greatly influenced by the coefficient
k, enhancing the slime mold algorithm’s capability to search globally. During the later
iterations, the slime mold positions are less affected by the value of k and more influenced
by the best position, leading to a stronger local search capability and quicker algorithm
convergence rate.

4.4. IMSMA Flowchart and Pseudocode

The flowchart of the improved slime mold algorithm (IMSMA) is shown in Figure 2.
First, the initialization of the slime mold population is performed using the direction

learning strategy based on the Bernoulli map. Subsequently, the weights (W) of the slime
molds and the value of parameter a are calculated. Random number r is compared to
parameter z. If r is less than z, the slime mold positions are updated using the first equation
in Equation (6). If r is greater than or equal to z, the values of parameters p, vb, and vc
are updated, and then r is compared to p. If r is less than p, the slime mold positions are
updated using the second equation in Equation (6). If r is greater than or equal to p, the
slime mold positions are updated using the third equation in Equation (6). Next, nonlinear
boundary conditions are applied to modify the positions of the slime molds. The fitness
values of the slime molds are calculated, and the global optimal value is updated. It is then
checked whether the global optimal value has not been updated for more than five times.

Algorithms 2023, 16, 473 8 of 15

If it has, it is considered that the algorithm has converged to a global optimal value. In
this case, the Cauchy mutation strategy is applied to update the positions, and the global
optimal value is recalculated and updated. If the global optimal value has changed at least
once within a continuous span of 5 times, it is checked whether the termination condition
is met. If the condition is not met, the iteration continues. If the condition is met, the
algorithm terminates, and the optimal solution and the optimal fitness value are outputted.

Begin

Initialization; Initializing the slime mold population

based on the Bernoulli mapping and reverse learning

strategy; Calculating the fitness values.

Calculating the weights W

and parameter a.

r < z ?

Updating the slime mold

positions according to the first

equation in Equation (6).

Update p, vb, vc.

Y N

r < p ?

Updating the slime mold positions

according to the second equation

in Equation (6).

Updating the slime mold positions

according to the third equation in

Equation (6).

Y N

Modifying the slime mold

positions based on the nonlinear

boundary conditions.

Calculating the fitness

value; Updating the

global best solution.

Number of times the global best

solution has not been updated >5?

Perform Cauchy

mutation.

Satisfies the termination condition?

Output the best

solution and its

fitness value.

End

YN

Y

N

Figure 2. IMSMA Flowchart.

The pseudocode for the improved slime mold algorithm (IMSMA) is as follows:

Step 1. Initialization: T, Dim, slime mold population N, z, lb, ub.
Step 2. Based on the Bernoulli mapping reverse learning strategy, initialize the posi-
tions of the slime mold population. Do the fitness calculations and rank them in order
to find the best fitness value bF and the poorest fitness value wF.
Step 3. Calculate the values of the weight W and the parameter a.
Step 4. If rand < z: on the basis of the first equation in Equation (6), adjust the locations
of the slime molds; go to step 6.

Else: update p, vb, vc; go to step 5.
Step 5. If r < p: on the basis of the second equation in Equation (6), adjust the locations
of the slime molds; go to step 6.

Else: on the basis of the third equation in Equation (6), adjust the locations of the
slime molds; go to step 6.

Algorithms 2023, 16, 473 9 of 15

Step 6. Revise the locations of the slime molds based on the nonlinear dynamic bound-
ary conditions. Update the global optimal solution after calculating the fitness values.
Step 7. If the global best solution has not changed more than five times, perform a
Cauchy mutation on the positions of the slime molds; go to step 6.
Step 8. If the termination condition is not satisfied, go to step 3.

Else: generate the best answer and its fitness value, and terminate the program.

5. Performance Testing and Analysis of the Improved Slime Mold Algorithm

To test the performance of the improved slime mold algorithm, simulation experiments
were conducted. The experimental environment utilized an 11th Gen Intel® CoreTM i5-
11400H CPU with a clock speed of 2.70 GHz (Intel Corporation, Santa Clara, CA, USA),
16 GB of RAM, and a 64-bit Windows 11 operating system. The programming language
used was Python, version 3.6. Four test functions, namely F1 to F4, were selected for
the experiments. F1 and F2 are unimodal functions, while F3 and F4 are multimodal
functions from the CEC2019 benchmark test functions. Detailed information about these
four benchmark test functions is provided in Table 2.

Table 2. Benchmark test functions details.

Function Function Expressions Number of Peaks Variable Range

F1 f1(x) = ∑n
i=1 |xi |+ ∏n

i=1 |xi | Unimodal [−10, 10]

F2 f2(x) = ∑n
i=1

(
∑i

j=1 xj

)2
Unimodal [−100, 100]

F3 f3(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 Multimodal [−600, 600]

F4 f4 = ∑n
i=1
(
x2

i − 10 cos(2πxi) + 10
)

Multimodal [−5.12, 5.12]

The algorithm’s performance was assessed using the four chosen test functions, and a
comparison was made among the WOA, BOA, SSA, SMA, and the IMSMA proposed in this
paper. To ensure fairness in the experiments, the testing environment and algorithm parame-
ters were set to the same values. The swarm size was fixed at 30 for all intelligent algorithms,
with a dimension of 30 and a maximum iteration of 500. The convergence curved lines of the
five algorithms are displayed in Figure 3 after each benchmark function was executed
30 times.

(a) Curves of F1 convergence. (b) Curves of F2 convergence.

(c) Curves of F3 convergence. (d) Curves of F4 convergence.

Figure 3. Curves of the test functions’ convergence.

Algorithms 2023, 16, 473 10 of 15

The specific test results of the five algorithms are shown in Table 3.

Table 3. Comparison table of algorithms’ test results.

Function Algorithms Average Fitness Value Standard Deviation Best Value Worst Value

F1

WOA 8.5850 × 100 5.3670 × 100 1.3076 × 100 2.2033 × 101

BOA 1.2247 × 10−6 4.0456 × 10−7 3.7431 × 10−7 2.1905 × 10−6

SSA 4.1472 × 10−5 0.0002 × 100 1.5931 × 10−96 0.0010 × 100

SMA 3.2471 × 10−138 1.7486 × 10−137 2.9324 × 10−278 9.7413 × 10−137

IMSMA 1.1214 × 10−295 0.0000 × 100 0.0000 × 100 3.3642 × 10−294

F2

WOA 9.2021 × 104 2.6686 × 104 4.9993 × 104 1.4113 × 105

BOA 5.5098 × 10−10 3.9426 × 10−11 4.7340 × 10−10 6.3100 × 10−10

SSA 8.0274 × 10−8 3.2021 × 10−7 0.0000 × 100 1.7711 × 10−6

SMA 5.3711 × 10−241 0.0000 × 100 0.0000 × 100 1.6113 × 10−239

IMSMA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

F3

WOA 2.5141 × 101 2.5713 × 101 1.5288 × 100 1.0146 × 102

BOA 1.2962 × 10−9 2.4117 × 10−10 9.6035 × 10−10 2.0675 × 10−9

SSA 4.2729 × 10−10 1.5760 × 10−10 0.0000 × 100 7.3477 × 10−9

SMA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

IMSMA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

F4

WOA 2.4084 × 102 8.0646 × 101 6.5122 × 101 3.4340 × 102

BOA 1.1291 × 102 8.6531 × 101 8.1465 × 10−9 2.0361 × 102

SSA 5.8915 × 10−7 2.5701 × 10−6 0.0000 × 100 1.4265 × 10−5

SMA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

IMSMA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

Analyzing the experimental results and the convergence curves of algorithms, for func-
tion F1, from its convergence curve, it can be observed that the IMSMA starts to converge
around 260 iterations, while SMA starts to converge around 280 iterations. The IMSMA
exhibits a slightly faster convergence speed. From the final results of 30 experiments, the
IMSMA achieves an average fitness value of 1.1214 × 10−295, as can be observed, which
is even closer to the theoretical optimum value of 0. For function F2, the IMSMA starts to
converge around 300 iterations, and it exhibits the fastest convergence speed. From Table 3,
it is evident that the IMSMA obtains a fitness value of zero on average, indicating that it
can find the optimal result. For function F3, the convergence curve plot shows that the SSA
and BOA have better convergence performance than the IMSMA in the first 300 iterations.
However, after 300 iterations, the SSA gets trapped in local optima and struggles to escape,
while BOA’s convergence curve becomes flatter, resulting in a slower convergence speed.
On the other hand, the IMSMA and SMA quickly converge and find the optimal value
around 300 iterations. Comparing the IMSMA and SMA individually, it can be observed
that the IMSMA rapidly converges at around 270 iterations and finds the optimal value
of zero, while SMA converges faster at around 330 iterations. Table 3 also shows that the
IMSMA has an average fitness value, best value, and worst value of zero, indicating that the
IMSMA outperforms the SMA. For function F4, the early versions of the SSA provide the
best convergence performance, as can be seen from the graphic of the convergence curves.
However, in subsequent iterations, its convergence speed becomes significantly slower.
On the other hand, the IMSMA shows a good ability to escape local optima between the
200th and 300th iterations, and it reaches the ideal value after only 300 iterations. The SMA
converges to the optimal value at around 410 iterations. Through testing the algorithms
on the four functions, it can be concluded that the WOA performs the worst and exhibits
a convergence stagnation. The IMSMA achieves the best performance with the fastest
convergence speed and a good ability to escape local optima.

Algorithms 2023, 16, 473 11 of 15

6. Solving Multiprocessor Fair Scheduling Problem with IMSMA
6.1. Establishment of the Multiprocessor Fair Scheduling Problem Model

The task scheduling problem on multiprocessors has been proven to be an NP-hard
problem. Ensuring fairness in scheduling can improve the utilization of processor resources
to some extent. Depending on different application scenarios, the definition of fairness
may vary. To accomplish fair scheduling, we focused on the average process time on each
processor and aimed to minimize the maximum average execution time on each processor
to achieve fair scheduling. We established a model for the multiprocessor fair scheduling
problem based on this objective. Assuming n jobs and m processors, let Pij represent the
time required for job i to be executed on processor j. We introduce a binary variable xij to
indicate whether job i is run on processor j or not. The formulation is as follows:

xij =

{
1, condition
0, other

. (15)

The condition represents the case where job i is run on processor j, and other represents
all other cases. One processor can handle only one task at a time, so the constraint conditions
are as follows:

m

∑
j=1

xij = 1, i = 1 · · · n. (16)

Assuming the total execution time on each processor is P, we have the following
constraint:

Pj =
n

∑
i=1

Pijxij, j = 1 · · ·m. (17)

The average execution time on each processor Pavg
j is represented as follows:

Pavg
j =

Pj

∑n
i=1 xij

, j = 1 · · ·m. (18)

The following is a representation of the objective function:

F(x) = min
(

max
{

Pavg
1 , Pavg

2 , Pavg
3 , · · · , Pavg

m

})
(19)

s.t. =

(15)
(16)
(17)
(18)

(20)

The objective function is constrained by Equations (15)–(18). To facilitate solving the
equation, let us consider the continuous approximation of the discrete objective function:

F(x) = min
(

Pavg
1 + Pavg

2 + · · ·+ Pavg
m

)
+ µ1

n

∑
i=1

(xi1 + xi2 + · · ·+ xim − 1) + µ2

n

∑
i=1

m

∑
j=1

(
xij − x2

ij

)
. (21)

In the equation, µ1 and µ2 are two random numbers between zero and one. The two
additional terms added afterwards are introduced to represent that xij is a binary variable.

6.2. Description of Multiprocessor Fair Scheduling Algorithm Based on IMSMA

Suppose a system with n tasks and m processors. When initializing the slime mold
population, it is important to set the dimension of the slime mold swarm size to n×m. The
description of the IMSMA for multiprocessor fair scheduling is as follows:

Step 1. Initialization: T, Dim, slime mold population N, z, lb, ub, n, m.

Algorithms 2023, 16, 473 12 of 15

Step 2. Based on the Bernoulli mapping reverse learning strategy, initialize the posi-
tions of the slime mold population.
Step 3. Input the objective function for multiprocessor fair scheduling. Calculate the
fitness values and sort them to obtain the greatest fitness value bF and the poorest
fitness value wF.
Step 4. Calculate the values of the weight W and the parameter a.
Step 5. If rand < z: on the basis of the first equation in Equation (6), adjust the locations
of the slime molds; go to step 7.

Else: update p, vb, vc; go to step 6.
Step 6. If r < p: on the basis of the second equation in Equation (6), adjust the locations
of the slime molds; go to step 7.

Else: determine the location of the slime molds using the third equation in
Equation (6); go to step 7.

Step 7. Revise the locations of the slime molds based on the nonlinear dynamic bound-
ary conditions. Update the global optimal solution after calculating the fitness values.
Step 8. If the global best solution has not been changed more than five times, perform
Cauchy mutation on the positions of the slime molds; go to step 7.
Step 9. If the termination condition is not satisfied, go to step 4;

Else: generate the best answer and its fitness value, and terminate the program.

7. Numerical Experiment

We performed simulation experiments on the multiprocessor fair scheduling problem,
with the same experimental environment as the performance testing of the improved
slime mold algorithm. Assuming there were 1000 tasks and 10 processors with varying
efficiencies, we randomly initialized a matrix Pij with dimensions 1000 rows by 10 columns.
The elements of the matrix were set to values between 1 and 1000. The value at the ith row
and jth column corresponded to the execution time of the ith task when executed on the
jth processor. We used the IMSMA to solve the multiprocessor fair scheduling problem.
The swarm size of the slime mold was fixed to 30, and the dimension was fixed to n×m,
which corresponded to the size of matrix Pij.

Experiments were carried out on a range of problem sizes with a 100-iteration setting.
The results for the objective values obtained by each algorithm are presented in Table 4.

Table 4. Comparison of objective values obtained by different algorithms for various problem sizes.

Number of Experiments n m IMSMA SMA WOA BOA SSA

Experiment 1 500 10 3378 3434 3534 4639 4293
Experiment 2 500 20 6544 6797 6854 9352 8753
Experiment 3 500 30 9915 10,409 10,173 13,966 13,155
Experiment 4 1000 10 3761 3953 3935 4804 4679
Experiment 5 1000 20 7593 7932 7925 9483 9428
Experiment 6 1000 30 11,634 11,709 11,858 14,483 13,878
Experiment 7 1500 10 4070 4092 4114 4788 4746
Experiment 8 1500 20 8092 8145 8235 9713 9519
Experiment 9 1500 30 12,038 12,205 12,152 14,321 14,398

The convergence curves of various algorithms for solving problems of different scales
are shown in Figure 4.

Algorithms 2023, 16, 473 13 of 15

(a) Convergence curves of experiment 1. (b) Convergence curves of experiment 2. (c) Convergence curves of experiment 3.

(d) Convergence curves of experiment 4. (e) Convergence curves of experiment 5. (f) Convergence curves of experiment 6.

(g) Convergence curves of experiment 7. (h) Convergence curves of experiment 8. (i) Convergence curves of experiment 9.

Figure 4. Curves of test functions’ convergence.

Based on the data shown in Figure 4 and Table 4, it can be concluded that the IMSMA
achieves the lowest objective function values and performs the best in solving the fair
scheduling problem on multiple processors. The IMSMA effectively enhances the efficiency
of solving the fair scheduling problem on multiple processors.

8. Conclusions

This paper investigated the fair scheduling problem on multiprocessors and proposed
a new improved slime mold algorithm (IMSMA) built upon the original slime mold algo-
rithm. The IMSMA introduces a population initialization strategy based on the Bernoulli
mapping and reverse learning to enhance the population’s diversity of slime mold. It
employs a Cauchy mutation strategy to facilitate escaping from local optima when the
algorithm gets trapped. Furthermore, the boundary conditions of the slime mold algorithm
were modified to nonlinear dynamic boundary conditions to improve the convergence
efficiency and accuracy. Simulation experiments were conducted using two unimodal
functions and two multimodal test functions to examine the algorithm’s effectiveness. The
results demonstrated that the IMSMA exhibited a good convergence efficiency and the
ability to escape local optima. Then, the paper modeled the fair scheduling problem on
multiple processors, with the objective function set to minimize the average execution time
on each processor. Finally, the IMSMA was utilized to solve the fair scheduling problem
on multiple processors, and the outcomes were assessed against those of other algorithms.
The comparison revealed that IMSMA achieved the best objective value and exhibited

Algorithms 2023, 16, 473 14 of 15

superior convergence performance compared to the other algorithms. The IMSMA can
be applied not only to solve the fair scheduling problem on multiprocessors but also in
various scenarios such as taxi dispatch systems and courier scheduling.

Author Contributions: Conceptualization, M.D. and Z.J.; methodology, M.D. and Z.J.; software,
M.D.; validation, M.D. and Z.J.; formal analysis, Z.J.; investigation, M.D. and Z.J.; resources, Z.J.; data
curation M.D.; writing—original draft preparation, M.D.; writing—review and editing, M.D. and Z.J.;
visualization, M.D.; supervision, Z.J.; project administration, M.D.; funding acquisition, M.D. and Z.J.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the Jiangsu Postgraduate Research and Practice
Innovation Program grant number KYCX233076, in part by the Changzhou university research
project grant number KYP2202236C, KYP2202735C, in part by the Jiangsu Engineering Research
Center of Digital Twinning Technology for Key Equipment in Petrochemical Process grant number
DT2020720. The APC was funded by the Changzhou university research project grant number
KYP2202236C.

Data Availability Statement: Not applicable.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References
1. Agarwal, G.; Gupta, S.; Ahuja, R.; Rai, A.K. Multiprocessor task scheduling using multi-objective hybrid genetic Algorithm in

Fog–cloud computing. Knowl.-Based Syst. 2023, 272, 110563.
2. Tang, Q.; Zhu, L.H.; Zhou, L.; Xiong, J.; Wei, J.B. Scheduling directed acyclic graphs with optimal duplication strategy on

homogeneous multiprocessor systems. J. Parallel Distrib. Comput. 2020, 138, 115–127.
3. Fagin, R.; Williams, J.H. A fair carpool scheduling algorithm. IBM J. Res. Dev. 1983, 27, 133–139.
4. Alhussian, H.; Zakaria, N.; Hussin, F.A. An efficient real-time multiprocessor scheduling algorithm. J. Converg. Inf. Technol. 2014,

9, 136.
5. Li, T.; Baumberger, D.; Hahn, S. Efficient and scalable multiprocessor fair scheduling using distributed weighted round-robin.

ACM Sigplan Not. 2009, 44, 65–74.
6. Nair, P.P.; Sarkar, A.; Biswas, S. Fault-tolerant real-time fair scheduling on multiprocessor systems with cold-standby. IEEE Trans.

Dependable Secur. Comput. 2019, 18, 1718–1732.
7. Li, Z.; Bai, Y.; Liu, J.; Chen, J.; Chang, Z. Adaptive proportional fair scheduling with global-fairness. Wirel. Netw. 2019,

25, 5011–5025.
8. Wei, D.; Wang, Z.; Si, L.; Tan, C. Preaching-inspired swarm intelligence algorithm and its applications. Knowl.-Based Syst. 2021,

211, 106552.
9. Hou, J.; Liu, Z.; Wang, S.; Chen, Z.; Han, J.; Xie, W.; Fang, C.; Liu, J. Intelligent coordinated damping control in active distribution

network based on PSO. Energy Rep. 2022, 8, 1302–1312.
10. Nasiri, J.; Khiyabani, F.M. A whale optimization algorithm (WOA) approach for clustering. Cogent Math. Stat. 2018, 5, 1483565.
11. Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020,

8, 22–34. [CrossRef]
12. Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734.
13. Dong, M.; Hu, J.; Yang, J.; Song, D.; Wan, J. Jiyu gaijin nianjun youhua shuanfa de guangfu duofeng MPPT kongzhi celue

[Multi-peak MPPT Control Strategy for Photovoltaic Systems Based on Improved Slime Mould Optimization Algorithm]. Control
Theory Appl. 2023, 40, 1440–1448. (In Chinese)

14. Premkumar, M.; Jangir, P.; Sowmya, R.; Alhelou, H.H.; Heidari, A.A.; Chen, H. MOSMA: Multi-objective slime mould algorithm
based on elitist non-dominated sorting. IEEE Access 2020, 9, 3229–3248. [CrossRef]

15. Al-Qaness, M.A.; Ewees, A.A.; Fan, H.; Abualigah, L.; Abd Elaziz, M. Marine predators algorithm for forecasting confirmed cases
of COVID-19 in Italy, USA, Iran and Korea. Int. J. Environ. Res. Public Health 2020, 17, 3520.

16. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future
Gener. Comput. Syst. 2020, 111, 300–323.

17. Gong, X.; Rong, Z.; Wang, J.; Zhang, K.; Yang, S. A hybrid algorithm based on state-adaptive slime mold model and fractional-
order ant system for the travelling salesman problem. Complex Intell. Syst. 2023, 9, 3951–3970.

18. Chen, H.; Li, X.; Li, S.; Zhao, Y.; Dong, J. Improved slime mould algorithm hybridizing chaotic maps and differential evolution
strategy for global optimization. IEEE Access 2022, 10, 66811–66830.

19. Abdel-Basset, M.; Chang, V.; Mohamed, R. HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization
algorithm for tackling the image segmentation problem of chest X-ray images. Appl. Soft Comput. 2020, 95, 106642.

http://doi.org/10.1080/21642583.2019.1708830
http://dx.doi.org/10.1109/ACCESS.2020.3047936

Algorithms 2023, 16, 473 15 of 15

20. Gush, T.; Kim, C.H.; Admasie, S.; Kim, J.S.; Song, J.S. Optimal Smart Inverter Control for PV and BESS to Improve PV Hosting
Capacity of Distribution Networks Using Slime Mould Algorithm. IEEE Access 2021, 9, 52164–52176. [CrossRef]

21. Vakilian, A.; Yalciner, M. Improved approximation algorithms for individually fair clustering. Proc. Mach. Learn. Res. 2022,
151, 8758–8779.

22. Zhong, J.H.; Peng, Z.P.; Li, Q.R.; He, J.G. Multi workflow fair scheduling scheme research based on reinforcement learning.
Procedia Comput. Sci. 2019, 154, 117–123.

23. Xiao, Z.; Chen, L.; Wang, B.; Du, J.; Li, K. Novel fairness-aware co-scheduling for shared cache contention game on chip
multiprocessors. Inf. Sci. 2020, 526, 68–85.

24. Salami, B.; Noori, H.; Naghibzadeh, M. Fairness-aware energy efficient scheduling on heterogeneous multi-core processors. IEEE
Trans. Comput. 2020, 70, 72–82.

25. Mohtasham, A.; Filipe, R.; Barreto, J. FRAME: Fair resource allocation in multi-process environments. In Proceedings of the 2015
IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS), Melbourne, Australia, 14–17 December 2015;
pp. 601–608.

26. Jung, J.; Shin, J.; Hong, J.; Lee, J.; Kuo, T.W. A fair scheduling algorithm for multiprocessor systems using a task satisfaction
index. In Proceedings of the International Conference on Research in Adaptive and Convergent Systems, Kraków, Poland, 20–23
September 2017; pp. 269–274.

27. Kanwal, S.; Inam, S.; Othman, M.T.B.; Waqar, A.; Ibrahim, M.; Nawaz, F.; Nawaz, Z.; Hamam, H. An Effective Color Image
Encryption Based on Henon Map, Tent Chaotic Map, and Orthogonal Matrices. Sensors 2022, 22, 4359. [CrossRef]

28. Zhang, C.; Ding, S. A stochastic configuration network based on chaotic sparrow search algorithm. Knowl.-Based Syst. 2021,
220, 106924.

29. Yang, C.; Pan, P.; Ding, Q. Image encryption scheme based on mixed chaotic bernoulli measurement matrix block compressive
sensing. Entropy 2022, 24, 273. [CrossRef]

30. He, J.; Guo, X.; Chen, H.; Chai, F.; Liu, S.; Zhang, H.; Zang, W.; Wang, S. Application of HSMAAOA Algorithm in Flood Control
Optimal Operation of Reservoir Groups. Sustainability 2023, 15, 933.

31. Tizhoosh, H.R. Opposition-based learning: A new scheme for machine intelligence. In Proceedings of the International
Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; Volume 1,
pp. 695–701.

32. Yu, H.; Song, J.; Chen, C.; Heidari, A.A.; Liu, J.; Chen, H.; Zaguia, A.; Mafarja, M. Image segmentation of Leaf Spot Diseases on
Maize using multi-stage Cauchy-enabled grey wolf algorithm. Eng. Appl. Artif. Intell. 2022, 109, 104653.

33. Zhang, X.; Liu, Q.; Bai, X. Improved slime mould algorithm based on hybrid strategy optimization of Cauchy mutation and
simulated annealing. PLoS ONE 2023, 18, e0280512.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2021.3070155
http://dx.doi.org/10.3390/s22124359
http://dx.doi.org/10.3390/e24020273

	Introduction
	Related Work
	Standard Slime Mold Algorithm (SMA)
	Improved Slime Mold Algorithm (IMSMA)
	Population Initialization Strategy Based on Bernoulli Mapping and Reverse Learning
	Cauchy Mutation Strategy for Escaping Local Optima
	Nonlinear Dynamic Boundary Conditions
	IMSMA Flowchart and Pseudocode

	Performance Testing and Analysis of the Improved Slime Mold Algorithm
	Solving Multiprocessor Fair Scheduling Problem with IMSMA
	Establishment of the Multiprocessor Fair Scheduling Problem Model
	Description of Multiprocessor Fair Scheduling Algorithm Based on IMSMA

	Numerical Experiment
	Conclusions
	References

