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Abstract: The demand for explainable and transparent models increases with the continued success
of reinforcement learning. In this article, we explore the potential of generating shallow decision
trees (DTs) as simple and transparent surrogate models for opaque deep reinforcement learning
(DRL) agents. We investigate three algorithms for generating training data for axis-parallel and
oblique DTs with the help of DRL agents (“oracles”) and evaluate these methods on classic control
problems from OpenAI Gym. The results show that one of our newly developed algorithms, the
iterative training, outperforms traditional sampling algorithms, resulting in well-performing DTs
that often even surpass the oracle from which they were trained. Even higher dimensional problems
can be solved with surprisingly shallow DTs. We discuss the advantages and disadvantages of
different sampling methods and insights into the decision-making process made possible by the
transparent nature of DTs. Our work contributes to the development of not only powerful but also
explainable RL agents and highlights the potential of DTs as a simple and effective alternative to
complex DRL models.

Keywords: reinforcement learning; decision tree; explainable AI; rule learning

1. Introduction

One of the most significant drawbacks of powerful deep reinforcement learning (DRL)
algorithms is their opacity. The well-performing decision-making process is buried in the
depth of artificial neural networks, which might constitute a major barrier to the application
of reinforcement learning (RL) in various areas.

In a recent publication [1], we proposed an algorithm for obtaining simple decision
trees (DTs) from trained DRL agents (“oracles”). The basic idea is to observe how a trained
DRL agent acts in an environment while logging the data pairs (state, action) as samples.
These samples are then used to train a DT to predict actions with high accuracy. This
approach has notable advantages:

1. It is conceptually simple, as it translates the problem of explainable RL into a super-
vised learning setting.

2. DTs are fully transparent and (at least for limited depth) offer a set of easily under-
standable rules.

3. The approach is oracle-agnostic: it does not rely on the agent being trained by a
specific RL algorithm, as only a training set of state–action pairs is required.

Although the algorithm in [1] was successful on some problems, it failed on others
because no well-performing shallow DT could be found. In this work, we investigate
the reasons for those failures and propose three algorithms to generate training samples
for the DTs: The first one is entirely based on evaluation episodes of the DRL agent
(described in [1] and evaluated further in this article), the second one applies random
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sampling on a subregion of the observation space, and the third approach is an iterative
algorithm involving the DRL agent’s predictions for regions explored by the DT. We test
all approaches on seven environments of varying dimensionality, including all classic
control problems from OpenAI Gym. Our results show that DTs of shallow depth can
solve all environments, that DTs can even surpass DRL agents, and that the third algorithm
(the iterative approach) outperforms the other two methods in finding simple and well-
performing trees. As a particularly surprising result, we show that an 8-dimensional control
problem (LUNARLANDER) can be successfully solved with a DT of only depth 2.

To achieve these results, we had to address the challenges of sampling data from
an oracle in a way that would be useful for tree learning. The first challenge is that data
from successful oracle episodes may have regions of severe oversampling in the state
space. For example, an agent being successful in pole balancing will have most samples
concentrated in a small region around the unstable equilibrium. These samples are not
only redundant for tree learning but will overshadow the other samples that are important
to perform a successful episode. The second challenge is that data from successful episodes
may omit regions in state space that are physically reachable but never visited by those
episodes. These are regions that a successful agent has learned to avoid because they are
unfavorable. As a consequence, it does not transmit the knowledge of the right action to
the samples, and thus the decision tree will likely not take the right action in those regions.
We will describe in Section 3 several methods to address these challenges.

Explainable artificial intelligence (XAI) is becoming increasingly significant today. This
is because one wants to bring artificial intelligence applications into practice in a way that
ensures reliable and trustworthy models. The reason that we want to build successful DTs is
that they represent simple models that offer various options for explainability that opaque
DRL models do not have. We will discuss in Section 4 the advantages and disadvantages
of the three algorithms’ computational complexity and how the transparent, simple nature
of DTs provides interesting options for explainability that are not directly applicable to
non-transparent DRL models.

The remainder of the article is structured as follows: In Section 2, we present related
work. Section 3 contains a detailed description of our methods and the experimental setup.
In Section 4, we present our results and discuss the explainability of DTs. We place our
results in a broader context and discuss future research in Section 5 before drawing a short
conclusion in Section 6.

2. Related Work

In recent years, interest in explainable and interpretable algorithms for Deep Learning
algorithms has grown steadily. This is shown by review articles for XAI and explainable
machine learning in general [2–4] and, more recently, by review articles for explainable
reinforcement learning (XRL) in particular [5–7]. Lundberg et al. [8] give an overview of
efficient algorithms for generating explanations, especially for trees.

A variety of rule deduction methods have been developed over the years. Liu et al. [9]
apply a mimic learning approach to RL using comparably complex Linear Model U-
trees to approximate a Q-function. Our approach differs insofar as the DTs we obtain
are arguably simpler and represent a transparent policy, translating state into action.
Mania et al. [10] propose Augmented Random Search, another algorithm for finding linear
models that solve RL problems. Coppens et al. [11] distill PPO agents’ policy networks
into Soft Decision Trees [12] to obtain insights. Another interesting approach to explainable
RL, which does not use DTs, is the approach by Verma et al. [13] called Programmatically
Interpretable RL (PIRL) through Neurally Directed Program Synthesis (NDPS). In this
method, the DRL guides the search of a policy consisting of specific operators and input
variables to obtain interpretable rules mimicking PID controllers. As Verma et al. [13] also
test their algorithms on OpenAI Gym’s classic control problems, a direct comparison is
possible and was made in [1]. However, their results were not reproducible by us (see
Appendix A) and we show how our algorithms yield better results at low DT depths than
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the reported ones. An oracle-free approach is the programmatic RL of Qiu and Zhu [14].
Their method consists of relaxing the discrete architecture space of a programmatic policy
to be continuous and subsequently optimizing policy parameters and architecture by ap-
plying gradient methods based on reward. It will be an interesting task for future work
to apply our methods to environments used in their approach (OpenAI Gym MuJoCo).
One of our algorithms presented in this article (ITER, Section 3.4.3) has strong similarities
to the DAgger algorithm described by Ross et al. [15] regarding the aggregation of the
dataset. They do, however, not use DRL algorithms for the predictions nor DTs as classi-
fiers. They benchmark their method using image feature inputs of two video games and a
handwriting recognition task. This approach was later extended by Bastani et al. [16] to
leverage the Q-function of the DRL oracle. They describe an algorithm to train DTs (they
use the axis-parallel CART) and test their methods, among others, on the shorter CARTPOLE

version with 200 timesteps, for which they found a CART of depth 1 with perfect return.
Zilke et al. [17] propose an algorithm for distilling DTs from neural networks. With their
method “DeepRED”, the authors translate each layer of a feedforward network into rules
and aim to simplify those.

The work presented here extends our earlier research in [1]. We apply it to additional
environments and introduce new sampling algorithms to overcome the drawbacks of [1].
To the best of our knowledge, no other algorithms are available in the current state of the
art to construct simple DTs from trained DRL agents for a large variety of RL environments.

Concerning the iterative learning of trees outside of RL, well-known iterative meta-
heuristics such as boosting and its particular form AdaBoost [18,19] exist, which are often
applied to trees. However, boosting is iterative with respect to weak learners and outputs
an ensemble of them, while our approach is iterative in the data, retrains many trees,
and outputs only the best-performing one.

Rudin [20] has emphasized the importance of building inherently interpretable models
instead of trying to explain black box models. While Rudin [20] applied this to standard ma-
chine learning models for application areas including criminal justice, healthcare, and com-
puter vision, we try to take her valuable arguments over to the area of control problems
and RL and show how we can substitute black box models with inherently transparent DTs
without loss of performance. Although we use a DRL model to construct our DT, the final
DT can be used in operation and interpreted without referencing the DRL model.

3. Methods

In this section, we explain our methods, starting with a short overview of the RL
environments, and short subsections about DRL methods and DT algorithms. The main
part of this section is the subsection about DT training methods, where we describe in detail
our previous method (EPS) from [1] and two new sampling methods (BB and ITER). Finally,
a subsection on the experimental setup describes the general algorithmic procedures and
parameters that we use in all our experiments.

Our experiments were implemented in the Python programming language version
3.9.16 using a variety of different packages and methods described in the following (the
code for the experiments can be found in the Github repository https://github.com/
MarcOedingen/Iterative-Oblique-Decision-Trees (accessed on 25 May 2023)).

3.1. Environments

We test our different approaches of training DTs from DRL agents on all classic control
problems and the LUNARLANDER challenge offered by OpenAI Gym [21], and on the
CARTPOLE-SWINGUP problem as implemented in [22]. This selection of environments
offers a variety of simple but not trivial control tasks with continuous, multi-dimensional
tabular observables and one-dimensional discrete or continuous actions. Table 1 gives
an overview of the different environments used in this article. For the two environments
without predefined solved-thresholds, we assigned a threshold corresponding to quick and
stable swing-ups determined by visual inspection of episodes’ renderings.

https://github.com/MarcOedingen/Iterative-Oblique-Decision-Trees
https://github.com/MarcOedingen/Iterative-Oblique-Decision-Trees
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Table 1. Overview of environments used. A task is considered solved when the average return in
100 evaluation episodes is ≥ Rsolved. Environments with an undefined official threshold Rsolved have
been assigned a reasonable one. This number is then reported in parenthesis.

Environment Observation Space (O) Action Space (A) Rsolved

Acrobot-v1

First angle cos(θ1) ∈ [−1, 1],
First angle sin(θ1) ∈ [−1, 1],

Second angle cos(θ2) ∈ [−1, 1],
Second angle sin(θ2) ∈ [−1, 1],

Angular velocity θ̇1 = ω1 ∈ [−4π, 4π],
Angular velocity θ̇2 = ω2 ∈ [−9π, 9π]

a ∈ Apply torque{-1 (0),
0 (1),
1 (2)}

−100

CartPole-v1

Position cart x ∈ [−4.8, 4.8],
Velocity cart v ∈ (−∞, ∞),

Angle pole θ ∈ [−0.42, 0.42],
Velocity pole ω ∈ (−∞, ∞)

a ∈ Accelerate{left (0),
right (1)} 475

CartPole-
SwingUp-v1

Position cart x ∈ [−2.4, 2.4],
Velocity cart v ∈ (−∞, ∞),

Angle pole cos(θ) ∈ [−1, 1],
Angle pole sin(θ) ∈ [−1, 1],

Angular velocity pole ω ∈ (−∞, ∞)

a ∈ Accelerate{left (0),
not (1),

right (2)}

undef.
(840)

LunarLander-v2

Position x ∈ [−1.5, 1.5],
Position y ∈ [−1.5, 1.5],

Velocity vx ∈ [−5, 5],
Velocity vy ∈ [−5, 5],
Angle θ ∈ [−π, π],

Angular velocity θ̇ = ω ∈ [−5, 5],
Contact left leg ll ∈ {0, 1},

Contact right leg lr ∈ {0, 1}

a ∈ Fire{not (0),
left engine (1),

main engine (2),
right engine (3)}

200

MountainCar-v0
Position x ∈ [−1.2, 0.6],

Velocity v ∈ [−0.07, 0.07]

a ∈ Accelerate{left (0),
not (1),

right (2)}
−110

MountainCar
Continuous-v0

Same as MountainCar-v0 a ∈ Accelerate [−1, 1] 90

Pendulum-v1
Angle cos(θ) ∈ [−1, 1],
Angle sin(θ) ∈ [−1, 1],

Angular velocity ω ∈ [−8, 8]
a ∈ Apply torque [−2, 2] undef.

(−170)

3.2. Deep Reinforcement Learning

Our algorithms require a DRL agent to predict actions for given observations. We train
DRL agents (“oracles”) using PPO [23], DQN [24], and TD3 [25] algorithms as implemented
in the Python DRL framework Stable-Baselines3 (SB3) [26]. It is necessary to test all those
algorithms because no single DRL algorithm solves all environments used in this paper.

3.3. Decision Trees

For the training of DTs, we rely on two algorithms representing two “families” of DTs: The
widely-used Classification and Regression Trees (CARTs) as described by Breiman et al. [27]
and implemented in [28] partition the observation space with axis-parallel splits. The de-
cision rules use only one observable at a time, which makes them particularly easy to
interpret. On the other hand, Oblique Predictive Clustering Trees (OPCTs), as described
and implemented in [29], can generate DTs where each decision rule compares the weighted
sum of the features oi to a threshold τ:

w1o1 + w2o2 + . . . + wnon ≤ τ (1)

Such rules subdivide the feature space with oblique splits (tilted hyperplanes), al-
lowing them to describe more complex partitions with fewer rules and, consequently,
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lower depth. However, the oblique split rules make the interpretation of such trees more
challenging. We will address this topic in Section 4.4.

3.4. DT Training Methods

In this subsection, we describe our different algorithms to generate datasets of samples
for the training of DTs.

3.4.1. Episode Samples (EPS)

The basic approach has been described in detail in [1]. In brief, it consists of three steps:

1. A DRL agent (“oracle”) is trained to solve the problem posed by the studied environment.
2. The oracle acting according to its trained policy is evaluated for a set number of

episodes. At each time step, the state of the environment and action of the agent are
logged until a total of ns samples are collected.

3. A decision tree (CART or OPCT) is trained from the samples collected in the previ-
ous step.

3.4.2. Bounding Box (BB)

Detailed investigations of the failures of DTs trained on episode samples for the
pendulum environment show that a well-performing oracle only visits a very restricted
region of the observation space and oversamples specific subregions. A good oracle
is able to swing the pendulum in the upright position quickly and keeps the system
in a small region around the corresponding point in the state space for the rest of the
episode’s duration.

To counteract this issue, we investigated an approach based on querying the oracle at
random points in the observation space. The algorithm consists of three steps:

1. The oracle is evaluated for a certain number of episodes. Let Li and Ui be the lower and
upper bound of the visited points in the ith dimension of the observation space and
IQRi their interquartile range (difference between the 75th and the 25th percentile).

2. Based on the statistics of visited points in the observation space from the previous
step, we take a certain number ns of samples from the uniform distribution within
a hyperrectangle of side lengths [Li − 1.5 · IQRi, Ui + 1.5 · IQRi]. The side length is
clipped, should it exceed the predefined boundaries of the environment.

3. For all investigated depths d, OPCTs are trained from the dataset consisting of the ns
samples and the corresponding actions predicted by the oracle.

It should be noted that this algorithm has its peculiarities. Randomly chosen points
in the observation space might correspond to inconsistent states. While this is evident for
the example of PENDULUM (the observations contain cos θ and sin θ (see Table 1), which
was solved here by sampling θ and generating observations from that), less apparent
constraints between observables may occur in other cases. We cannot guarantee that we
will always generate samples that meet the constraints. We found Algorithm BB to still work
if constraint-violating samples are added, but the oracle may be evaluated at points that
cannot occur in actual episodes. Such evaluations may lead to performance degradation of
BB. This limitation exists only for algorithm BB, not for EPS or ITER, and was, in fact, one of
the main reasons for developing the ITER algorithm, which we describe in the next section.

3.4.3. Iterative Training of Explainable RL Models (ITER)

The DTs in [1] were trained solely based on samples from the oracle episodes. In the
iterative algorithm, ITER, the tree with the best performance (from all iterations so far) is
used as a generator for new observations.

The procedure is shown in Algorithm 1 and can be described as follows: The initial
tree is trained on samples of oracle evaluation episodes. We use these initial samples to fit
the tree to the oracle’s predictions and use the tree’s current, somewhat imperfect decision-
making to generate observations in areas the oracle maybe does not access anymore. Often,
the points in the observation space that are essential for the formation of a successful tree lie
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in regions adjacent to the oracle trajectories, as will be shown in Section 4.1. The imperfect
decision-making is demonstrated in the figures of Section 4.1 as well with the low return
R in early iterations. Generating samples next to the oracle trajectories with a not yet fully
trained tree allows the next iteration’s tree to fit its decisions to these previously unknown areas.

Algorithm 1 Iterative Training of Explainable RL Models (ITER)

Require: Oracle policy πO, maximum iteration Imax, number nb of base samples, number
of trees Tmax, evaluation episodes neps, DT depth d, number of samples added in each
iteration nsamp . O: observations, A: actions.

1: Sc ← (Ob,Ab) . collect nb samples by running πO in environment
2: M← ∅ . the setM collects triples for each tree
3: for i = 0, . . . , Imax do
4: for j = 1, . . . , Tmax do
5: Ti,j ← train_tree(Sc, d) . tree Ti,j
6: Mj ←

(
Ti,j, eval_tree(Ti,j, neps)

)
. tripleMj (eval_tree returns OTi,j ,RTi,j )

7: M.append(Mj)
8: end for
9:

(
Ti,∗,OTi,∗ ,RTi,∗

)
← pick_best(M) . pick tripleMj with highest rewardRTi,j

10: ÔTi,∗ ← choice
(
OTi,∗ , nsamp

)
. pick nsamp random observations

11: Snew ←
(
ÔTi,∗ , πO(ÔTi,∗)

)
12: Sc ← Sc ∪ Snew
13: end for
14: return TImax ,∗ . return the best tree from all iterations

After each iteration, the generated observations from the so-far best tree are labeled
with the oracle’s predictions. The tree will likely revisit the region of these observations
in the future, and therefore has to know the correct predictions at these points in the
observation space. Finally, the selected samples are joined with the previous ones, and the
next iteration begins. After a predetermined number of iterations, the overall best tree is
returned. A flowchart of the iterative generation of samples for a given tree depth is shown
in Figure 1.

Oracle

Base samples Sb

Current samples Sc

T1 T2 TnTn−1

Evaluation −→ T∗

AT∗OT∗OracleAO

New samples Snew

∪

(Imax + 1)× ⇒ TImax,∗

Figure 1. Flowchart of ITER (Algorithm 1).
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A possible variant is to include in line 11 of Algorithm 1 only samples for which the
action of the tree AT and of the oracle differ; while this potentially reduces the training set
for the DTs, both the oracle’s and the DT’s predictions are still required for comparison.
Since our tests showed no noticeable difference in performance, we do not delve into this
variant further.

3.5. Experimental Setup

All algorithms for sample generation presented in Section 3.4 are evaluated on all
environments of Section 3.1 and for all tree depths d = 1, . . . , 10. Each such trial is called an
experiment. For every experiment, the return R is obtained by averaging over 100 evalua-
tion episodes. Each experiment is repeated for 10 runs with different seeds, and both mean
µ and standard deviation σ of the return R are calculated.

Whenever we create an OPCT, we actually create Tmax = 10 trees and pick the one
with the highest return R. This method was chosen due to the high fluctuation of OPCTs
depending on the random seeds that initialized the oblique cuts in the observation space
(see implementation in [29]).

In algorithms EPS and BB, we use ns = 30,000 samples. In ITER (Algorithm 1), we
set nb = 20,000 and nsamp = 1000 to have the same total number of samples across our
tested algorithms. The ratio between nb and nsamp or the total number of samples ns
are hyperparameters that have not yet been tuned to optimal values. It could be that
other values would lead to significantly higher sample efficiency. Future work should
address the multi-objective optimization task of reducing ns (high sample efficiency) while
maintaining or even increasing the high return of DTs. The other tunable parameter Imax
is set to 10. Adding more than 10 iterations merely resulted in samples generated from a
tree that had already been adapted to the oracle. In general, the return experiences its most
prominent increase in the first few iterations and no significant improvement is observed
for iterations above 10 (see Figure 4). Therefore, we choose this value Imax = 10 for all our
experiments below.

4. Results

In this section, we discuss the results and computational complexity, and highlight the
advantages of shallow DTs in terms of additional insights and explainability.

4.1. Solving Environments

Figure 2 shows our main result: For all environments and all presented algorithms,
we plot the return R as a function of DT depth d. ITER usually reaches the solved-threshold
(dash-dotted green line) at lower depths than the other two algorithms. It is the only one to
solve all investigated environments (at depths up to 10). For each environment, we select
one of the successful DRL agents (see Table 2).

Table 2a shows these results in compact quantitative form: which is the minimum
depth needed to reach the solved-threshold of an environment? (Note that these numbers
can be deceptive; a 10+ might be from a tree being below the threshold only by a tiny
margin or a 5 might hide the fact that a depth-4 tree is only slightly below the threshold.)
As can be seen, ITER outperforms the other algorithms. Its sum of depths is roughly half of
the other algorithms’ sums. Depth (1) for MOUNTAINCARCONTINUOUS + BB has been
put in brackets because it is somewhat unstable. At depths 2 and 3 the performance is
below the threshold, as can be seen from Figure 2. Additionally, Table 2 shows algorithms
EPS and ITER for CART as baseline experiments. In both cases, CART does not reach the
performance of OPCT, at least not for shallow depths.

Figure 2 shows another remarkable result: DTs can often even surpass the performance
of the DRL agents they originate from (the oracles, dashed orange lines). In Table 2b, we
report the minimum depths at which DT performances exceeds the oracle’s performance.
While these numbers can be deceptive too (CARTPOLE-SWINGUP + ITER almost reaches
oracle performance at depth 8), they show that there is not necessarily a trade-off between
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model complexity and performance. DTs require orders of magnitude fewer parameters
(see Section 4.4.1) and can exhibit higher performance. Again, ITER is the best-performing
algorithm in this respect. In Sections 4.3 and 5, we discuss why such a performance better
than the oracle’s can occur.
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Figure 2. Return R as a function of DT depth d for all environments and all presented algorithms.
The solved-threshold is shown as dash-dotted green line, the average oracle performance as dashed
orange line, and the DTs performances as solid lines with average and±1σ of ten repetitions as shaded
area. Note: (i) For ACROBOT we show two plots to include the BB curve. (ii) Good performance in
CARTPOLE leads to overlapping curves: oracle, BB, and ITER are all constantly at R = 500.
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Table 2. The numbers show the minimum depth of the respective algorithm for (a) solving an
environment and (b) surpassing the oracle. (. . . )+ means no DT of investigated depths could reach
the threshold. See main text for explanation of (1) or (3). Bold numbers mark the best result(s) in
each row.

(a) Solving an environment

Algorithms

EPS EPS BB ITER ITER

Environment Model CART OPCT OPCT CART OPCT

Acrobot-v1 DQN 1 1 10+ 1 1
CartPole-v1 PPO 3 3 1 3 1
CartPole-SwingUp-v1 DQN 10+ 10+ 10+ 10+ 7
LunarLander-v2 PPO 10+ 10+ 2 10+ 2
MountainCar-v0 DQN 3 3 5 3 1
MountainCarContinuous-v0 TD3 1 1 (1) 1 1
Pendulum-v1 TD3 10+ 9 6 7 5

Sum 38+ 37+ 35+ 35+ 18

(b) Surpassing the oracle

Acrobot-v1 DQN 3 3 10+ 2 1
CartPole-v1 PPO 5 6 1 (3) 1
CartPole-SwingUp-v1 DQN 10+ 10+ 10+ 10+ 10+

LunarLander-v2 PPO 10+ 10+ 2 10+ 3
MountainCar-v0 DQN 3 5 6 3 4
MountainCarContinuous-v0 TD3 10+ 1 4 2 1
Pendulum-v1 TD3 10+ 9 8 10 6

Sum 51+ 44+ 41+ 40+ 26+

Figures 3 and 4 demonstrate the evolution of OPCT performance in algorithm ITER.
The first iterations provide samples in new regions of the observation space (Figure 3,
as compared to the regions visited by the oracle) and they are marked by a sharp increase
in performance R (Figure 4).

−2 0 2
θ

−5

0

5

ω

Iteration 0 (base samples)

−2 0 2
θ

Iteration 1

−2 0 2
θ

Iteration 2

−2 0 2
θ
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Pendulum-v1, OPCT depth d = 5

Samples’ origin

Previous iteration(s) Current iteration

Figure 3. Evolution of the training dataset with iterations for OPCT of depth 5 for PENDULUM

(observables mapped back to 2D). The plots show from left to right the observations added to the
dataset in each iteration (by the oracle in iteration 0 and by the tree in iterations 1–3).
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Figure 4. Evolution of OPCT performance with iterations. Shown are mean ±1σ of 10 repetitions.
Generally, the return increases notably in the first few iterations. For most environments, a significant
improvement after 10 iterations is not observed. (The OPCTs’ depths are chosen according to Table 2a.)

4.2. Computational Complexity

The algorithms presented here differ significantly in computing time, as shown in
Table 3. All experiments were performed on a CPU device (i7-10700K 8 × 3.8 GHz). To
ensure methodological consistency, we let each algorithm generate the same total number
of samples, namely ns = 30,000.

In every algorithm, we average over 10 trees for each depth d = 1, . . . , 10 due to
fluctuations, and to represent the time needed in tOPCT . Additionally, ITER performs
Imax + 1 iterations for all depths. Hence, a single run takes ≈ 10 · tOPCT time for both EPS
and BB while taking ≈ 10 · (Imax + 1) · tOPCT time for ITER. (Here, the time tOPCT reflects
the performance of an algorithm in the particular environment, depending on whether
more or less time is required for a desired result.) However, the most time-consuming
part of a run is the evaluation of the trees, i.e., the generation of samples by running
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100 evaluation episodes in the environment. According to these observations, ITER takes
the most time to complete.

Table 3. Computation times of our algorithms for some environments (we selected those with
different observation space dimensions D). Shown are the averaged results from 10 runs. trun:
average time elapsed for one run covering all depths d = 1, . . . , 10. tOPCT : average time elapsed to
train and evaluate 10 OPCTs. ns: total number of samples used. Note how the bad performance of BB
in the ACROBOT environment leads to longer episodes and therefore longer evaluation times tOPCT .

Environment dim D Algorithm trun [s] tOPCT [s] ns

Acrobot-v1 6
EPS 124.82 ± 1.96 11.71 ± 0.95 30,000
BB 477.70 ± 7.89 47.56 ± 2.92 30,000

ITER 1189.14 ± 28.70 10.76 ± 1.02 30,000

CartPole-v1 4
EPS 187.39 ± 3.64 18.06 ± 2.29 30,000
BB 202.65 ± 1.26 19.11 ± 1.13 30,000

ITER 2040.16 ± 21.46 18.50 ± 1.64 30,000

MountainCar-v0 2
EPS 85.39 ± 1.50 7.93 ± 0.57 30,000
BB 104.92 ± 2.05 10.27 ± 0.54 30,000

ITER 849.90 ± 19.79 7.68 ± 0.61 30,000

4.3. Decision Space Analysis

Two-dimensional observation spaces offer the possibility of visual inspection of the
agents’ decision-making. This can provide additional insights and offer explanations of bad
results in certain settings. Figure 5 shows the decision surfaces of DRL agents and OPCTs
for MOUNTAINCAR in the discrete (top row) and continuous (bottom row) versions. DRL
agents can often learn a needlessly complicated partitioning of the observation space, as can
be seen prominently in the top left plot, e.g., by yellow patches of “no-acceleration” in the
upper left or the blue “accelerate right” area in the bottom right, which are never visited by
oracle episodes. This poses a problem for the BB algorithm because it samples, e.g., from
the blue bottom right area and therefore, DTs learn in part “wrong” actions, resulting in
poor performance. Thus, the inspection of the oracle’s decision space reveals the reason for
the partial failure of the BB algorithm in the case of MOUNTAINCAR at low depths.

On the other hand, algorithm ITER will not be trained with samples from regions
never visited by oracle or tree episodes. Hence, it has no problem with the blue bottom right
area. It delivers more straightforward rules at depth d = 1 or d = 2 (shown in columns
2 and 3 of Figure 5), and yields returns slightly better than the oracle because it generalizes
better given its fewer degrees of freedom.

4.4. Explainability for Oblique Decision Trees in RL

Explainability is significantly more difficult to achieve for agents operating in environ-
ments with multiple time steps than in those with single time steps (by “single time step”
we mean that a decision follows directly in response to a single input record, e.g., classifica-
tion or regression). This is because the RL agent has to execute a possibly long sequence
of action decisions before collecting the final return (also known as the credit assignment
problem [30,31]).

Given their simple, transparent nature, DTs offer interesting options for explainability
in such environments with multiple time steps, which are not immediately applicable to
opaque DRL models. This section will illustrate steps towards explainability in RL through
shallow DTs.
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Figure 5. Decision surfaces for MOUNTAINCAR (MC, discrete actions) and MOUNTAINCARCONTIN-
UOUS (MCC, continuous actions). Column 1 shows the DRL agents. The OPCTs in column 2 (depth 1)
and column 3 (depth 2) were trained with algorithm ITER. The number in brackets in each subplot
title is the average return R. The black dots represent trajectories of 100 evaluation episodes with
same starting conditions across the different agents. They indicate the regions actually visited in the
observation space.

4.4.1. Decision Trees: Compact and Readable Models

Trees are useful for XAI since they are usually much more compact than DRL models
and consist of a set of explicit rules, which are simple in that they are linear inequalities
in the input features (for oblique DTs). As an example of the models’ simplicity, Figure 6
shows a very compact OPCT of depth 1 for the MOUNTAINCAR challenge. On the other
hand, DRL models have many trainable parameters and form complex, nonlinear features
from the input observations. Table 4 shows the number of trainable weights for all our SB3
oracles (DRL models) which are, in all cases, orders of magnitude larger than the number
of trainable tree parameters.

0.3072 x− 34.55 v ≤ −0.1461

rightleft

false true

Figure 6. OPCT of depth 1 obtained by ITER solving MOUNTAINCAR with a return of R = −107.47 in
100 evaluation episodes.
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Table 4. Oracle and tree complexity. (D denotes the dimension of the observation space.)

Number of Parameters

Environment Dim D Model Oracle ITER Depth d

Acrobot-v1 6 DQN 136,710 9 1
CartPole-v1 4 PPO 9 155 7 1
CartPole-SwingUp-v1 5 DQN 534,534 890 7
LunarLander-v2 8 PPO 9 797 31 2
MountainCar-v0 2 DQN 134,656 5 1
MountainCarContinuous-v0 2 TD3 732,406 5 1
Pendulum-v1 3 TD3 734,806 156 5

The number of parameters in the oracle can be computed from the architecture of the
respective policy network. For example, in MOUNTAINCAR with input dimension D = 2,
the DQN consists of 2 networks: a Q- and a target network. Each has D + 1 = 2 + 1 inputs
(including bias), 3 action outputs, and a (256, 256) hidden layer architecture (we do not use
overly complex DRL architectures but keep the default parameters suggested by the SB3
methods [26]), which results in

2 · ((2 + 1) · 256 + (256 + 1) · 256 + 256 · 3) = 134, 656 weights.

The number of parameters in the tree is a function of the tree’s depth and the input
dimension. For example, in LUNARLANDER with input dimension D = 8, the oblique
tree of depth d = 2 (as obtained by, e.g., ITER) has 2d − 1 = 3 = 1 + 2 split nodes and
2d = 4 leaf nodes. Each split node has D + 1 = 9 parameters (one weight for each input
dimension + threshold), and each leaf node has one adjustable output parameter (the
action), resulting in

3 · 9 + 4 = 31 parameters.

However, it should be emphasized that all our DTs have been trained with the guidance
of a DRL oracle. At least so far, we could not find a procedure to construct successful DTs
solely from interaction with the environment. Such direct tree learning is left for future
work. In this paper, we rely on the guidance of the oracle, whose samples demonstrate
reasonable solutions to the tree and facilitate learning.

In a sense, the DT “explains” the oracle by offering a simpler surrogate action model.
The surrogate is often nearly as good as or even better than the DRL model in terms of
mean reward.

It is a surprising result of our investigations that trees of small depth delivering such
high rewards could be found at all. Most prominently, for the environments ACROBOT and
LUNARLANDER with their higher input dimensions 6 and 8, it was not expected beforehand
to find successful trees of depth 1 and 2, respectively.

4.4.2. Distance to Hyperplanes

Further insights that help to explain a DT can be gained by visualizing the distance
to hyperplanes of the nodes of a DT. According to Equation (1), each split node has an
associated hyperplane in the observation space so that observations above or below this
hyperplane take a route to different subtrees (or leaves) of this node.

Although hyperplanes in higher dimensions are difficult to visualize and interpret,
the distance to each hyperplane is easy to visualize, regardless of the dimension of the
observation space. It can be shown that even an anisotropic scaling of the observation space
leaves the relations between all distances to a particular hyperplane intact, i.e., they are
changed only by a common factor (see Appendix B).

Figure 7 shows the distance plots for the three nodes 0, 1, 2 of the ITER OPCT for
LUNARLANDER. A distance plot shows the distances of the observations to the node’s
hyperplane for a specific episode as a function of time step t. Each observation is colored
by the action the DT has taken. It is seen in Figure 7 that after a short transient period
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(t ≤ 40), the distances for every node stay small while the lander sinks. At about time step
t ≈ 280, the lander touches the ground and the distances increase (because all velocities
are forced to be zero, all positions and angles are forced to certain values prescribed by the
shape of the ground), which is, however, irrelevant for the control of the lander and the
success of the episode. All nodes are attracting nodes (points are attracted to the respective
hyperplane), which bring the ship to an equilibrium (a sinking position with constant vy)
that guarantees a safe landing.

Another example is shown in Figure 8 for the three nodes 0, 1, 2 of the ITER OPCT
for PENDULUM. These are the three upper nodes of a tree with depth 3 and, therefore,
seven split nodes. Node 0 is an attracting one (“equilibrium node”) because the distances
approach zero (here: for t ≥ 64). Nodes 1 and 2 do not exhibit a zero distance in the
equilibrium state; instead, they are “swing-up nodes” responsible for bringing energy into
the system through appropriate action switching.

Figure 7. Distance to hyperplanes for LUNARLANDER. The diagrams show root node, left child,
and right child from top to bottom. Small points: node is “inactive” for this observation (the
observation is not routed through this node). Big points: node is “active”.
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Figure 8. Distance plots for PENDULUM. Three of the diagrams show the distance to the hyperplanes
of root node 0, left child node 1, and right child node 2. The lower left plot shows the distance to the
equilibrium point (1, 0, 0) in observation space. The vertical line at t = 64 marks the step where the
distance for node 0 approaches zero.

The lower left plot (“distance to equilibrium”) of Figure 8 shows the distance of each
observation to the unstable equilibrium point (cos θ, sin θ, ω) = (1, 0, 0) (the desired goal
state). Interestingly, at t = 64 (vertical gray line), where the distance to node 0 is already
close to zero, the distance to the equilibrium point is not yet zero (but soon will be). This is
because the hyperplane is oriented in such a way that for small angle θ, the angular velocity
ω is approximately ω = −5.3 sin(θ) (read off from the node’s parameters). The hyperplane
tells us on which path the pole approaches the equilibrium point. The control strategy is to
raise ω for points below the hyperplane and to lower ω for points above. This amounts to
the fact that a tilted pole obtains an ω (corresponding to a certain kinetic energy) such that
the pole will come to rest at θ = 0. The exact physical equation requires that the kinetic
energy has the same value as the necessary change in potential energy,

Ekin(ω) = ∆Epot(θ)

1
6

m`2ω2 = mg
`

2
−mg

`

2
cos(θ),

leading to the angular velocity

ω = −
√

3g
2`

(1− cos θ) ≈ −5.5 sin(θ/2) (for g = 10, ` = 1)

which is not too far from the control strategy found by the node.
Similar patterns (equilibrium nodes + swing-up nodes) can be observed in those

environments where the goal is to reach or maintain certain (unstable) equilibrium points
(CARTPOLE-SWINGUP, CARTPOLE). Environments like MOUNTAINCAR(CONTINUOUS) or
ACROBOT, which do not have an equilibrium state as goal, consist only of swing-up nodes
as shown in Figure 9 for ACROBOT.
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Figure 9. Distance plot for ACROBOT. The tree has only one node.

In summary, the distance plots show us two characterizing classes of nodes:

• Equilibrium nodes (or attracting nodes): nodes with distance near to zero for all ob-
servation points after a transient period. These nodes occur only in those environments
where an equilibrium has to be reached.

• Swing-up nodes: nodes that do not stabilize at a distance close to zero. These nodes
are responsible for swing-up, for bringing energy into a system. The trees for environ-
ments MOUNTAINCAR, MOUNTAINCARCONTINUOUS, and ACROBOT consist only
of swing-up nodes because, in these environments, the goal state to reach is not an
equilibrium.

4.4.3. Sensitivity Analysis

An individual rule of an oblique tree is simple in mathematical terms (it is a linear
inequality). It is, nevertheless, difficult to interpret for humans. This is because the
individual input features (usually different physical quantities) are multiplied with weights
and added up, which has no direct physical interpretation.

For example, the single-node tree of CARTPOLE has the rule

4.904x− 0.1829vs. + 19.1497θ + 1.5203ω ≤ −0.0003 (2)

⇔ wxx + wvvs. + wθθ + wωω ≤ τ

which does not directly tell which input features are important for success and is as such
difficult to interpret. However, due to the simple mathematical relationship, we may vary
each weight wi or the threshold τ individually and measure the effect on the reward. This
is shown in Figure 10. The weights are varied in a wide range of [−100%, 200%] of their
nominal value, the threshold τ (being close to 0) is varied in the range τ−w+ [0%, 200%] ·w,
where w is the mean of all weight magnitudes |wi| of the node.

From Figure 10a, we learn that the angle θ is the most important input feature. If wθ

is below its nominal value, performance starts to degrade, while a higher wθ keeps the
optimal reward. The most important parameter is the threshold τ, which has to be close
to 0; otherwise, performance quickly degrades on both sides. This makes sense because
the essential control strategy for the CARTPOLE is to react to slightly positive or negative θ
with the opposite action.

On the other hand, the weight for velocity v is the least important parameter; varying
it in Figure 10a does not change the reward, and setting its weight wv to 0 and varying the
other weights leads to essentially the same picture in Figure 10b.

One could object that these sensitivity analyses results could have also been read off
directly from Equation (2) because θ has the largest, and v has the most negligible weight
in magnitude. However, this is only an accidental coincidence. For many other nodes that
we examined using sensitivity analysis, the most/least important feature in terms of mean
return did not coincide with the largest/smallest weight.
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(a) (b)
Figure 10. OPCT sensitivity analysis for CARTPOLE: (a) including all weights, (b) with velocity
weight wv set to zero. Parameter angle is the most important, velocity is least important.

Suppose an OPCT has more than one node, e.g., for LUNARLANDER at depth d = 2
with its three split nodes. In that case, we can perform a sensitivity analysis for each node
separately, or vary the respective weights and thresholds for all nodes simultaneously.
The latter is shown in Figure 11. We see that strengthening their weights (setting them
to higher values than nominal ones) only leads to slow degradation for all input features.
A faster degradation occurs when lowering the weight for a certain input feature. The
features vy, θ, and vx (in this order) are the most important in that respect. On the other
hand, the legs (boolean variables signaling the ground-contact of the lander’s legs), are
least important. The curves in Figure 11b only change slightly if the legs are removed from
the decisions by setting their weights to zero. This makes sense because the legs have a
constant no-contact value during the majority of episode steps (and when the legs do reach
ground-contact, the success or failure of an episode is usually already determined).

Note that the sensitivity analysis shown here is, in a sense, more detailed than a
Shapley value analysis [32] because it allows us to disentangle the effects of intensifying or
weakening an input feature. In contrast, the Shapley value only compares the presence or
absence of a feature. (It is of course also less detailed, because it does not take coalitions of
features into account as Shapley does.) It is also computationally less intensive; measuring
the Shapley value for RL problems by computing the mean reward over many environment
episodes and many coalitions would be, in most cases, prohibitively time-consuming.

(a) (b)
Figure 11. OPCT sensitivity analysis for LUNARLANDER: (a) including all weights, (b) with
the weights for the legs set to zero. vy is most important, the ground-contacts of the legs are
least important.

Our sensitivity analysis has some similarity to the layer-wise relevance propagation
(LRP) investigated by Bach, Montavon, and others [33,34]. LRP has been developed in
particular for (deep) neural networks, but the concept of input feature relevance is similar.
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5. Discussion

For a broader perspective, we want to point out a number of issues related to our findings.

1. To align our work in the context of XAI, we may use the guidance of the taxonomy
proposed by (Schwalbe and Finzel [35], Section 5):

• The problem definition: The task consists of a classification or regression (for
discrete or continuous actions, respectively) of tabular, numerical data (obser-
vations). We intend a post hoc explanation of DRL oracles, by finding decision
trees described that are inherently transparent and simulatable in that a hu-
man can follow the simple mathematical and hierarchical structure of a DT’s
decision-making process.

• Our algorithm as an explanator requires a model (the oracle and also the en-
vironment’s dynamics) as input, while still being portable by not relying on a
specific type of oracle. The output data of our algorithm are shallow DTs as
surrogate models mimicking the decision-making process of the DRL oracles.
This leads to a drastic reduction of model parameters (see Table 4). Given their
simple and transparent nature, DTs lend themselves to rule-based output and to
further explanations by example or by counterfactuals, and analysis of feature
importance (as we showed in Section 4.4.3).

• As the fundamental functionally grounded metric of our algorithm, we compare
the DT’s average return in the RL environment with the oracle’s performance.
This measures the fidelity to the oracle in the regions relevant to successfully
solve the environment and the accuracy with respect to the original task of the
environment. We do not evaluate human-grounded metrics. (Human-grounded
metrics are defined by Schwalbe and Finzel [35] as metrics involving human
judgment of the explainability of the constructed explanator (here: DT): how
easy is it for humans to build a mental model of the DT, how accurately does
the mental model approximate the explanator model, and so on.) Instead, we
trust that the simple structure and mathematical expressions used in the DTs
generated by our algorithms, as well as the massively reduced number of model
parameters, lead to an interpretability and effectiveness of predictions that could
not be achieved with DRL models. In Section 4.4, we have explained aspects
connected to this in more detail.

2. Can we understand why the combination ITER + OPCT is successful, while the com-
bination EPS + OPCT is not? We have no direct proof, but from the experiments
conducted, we can share these insights: Firstly, equilibrium problems such as CART-
POLE or PENDULUM exhibit a severe oversampling of some states (i.e., the upright
pendulum state). If, as a consequence, the initial DT is not well-performing, ITER
allows to add the correct oracle actions for problematic samples and to improve the
tree in critical regions of the observation space. Secondly, for environment PENDULUM

we observed that the initial DT was “bad” because it learned only from near-perfect
oracle episodes. It had not seen any samples outside the near-perfect episode region
and hypothesized the wrong actions in the outside regions (see Figure 3). Again,
ITER helps; a “bad” DT is likely to visit these outside regions and then add samples
combined with the correct oracle actions to its sample set.
We conclude that algorithm ITER is successful because it strikes the right balance
between being too exploratory, like algorithm BB (which might sample from constraint-
violating regions or from regions unknown to the oracle), and not exploratory enough,
like algorithm EPS (which might sample only from the narrow region of successful
oracle trajectories). Algorithm ITER solves the sampling challenges mentioned in
Section 1. It works well based on its iterative nature, which results in self-correction
of the tree. At every iteration, the trajectories generated by the tree form a dataset of
state–action pairs. The oracle corrects the wrong actions, and the tree can improve its
behavior based on the enlarged dataset.
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3. We investigated another possible variant of an iterative algorithm. In this variant,
observations were sampled while the oracle was training (and probably also visited
unfavorable regions of the observation space). After the oracle had completed its
training, the samples were labeled with the action predictions of the fully trained
oracle. These labeled samples were presented to DTs in a similar iterative algorithm
as described above. However, this algorithm was not successful.

4. A striking feature of our results is that DTs (predominantly those trained with ITER)
can outperform the oracle they were trained from. This seems paradoxical at first
glance, but the decision space analysis for MOUNTAINCAR in Section 4.3 has shown
the likely reason. In Figure 5, the decision spaces of the oracles are overly complex
(similar to overfitted classification boundaries, although overfitted is not the proper
term in the RL context). With their significantly reduced degrees of freedom, the DTs
provide simpler, better generalizing models. Since they do not follow the “mistakes”
of the overly complex DRL models, they exhibit a better performance. It fits to this
picture that the MOUNTAINCARCONTINUOUS results in Figure 2 are best at d = 1
(better than oracle) and slowly degrade towards the oracle performance as d increases;
the DT obtains more degrees of freedom and mimics the (slightly) non-optimal oracle
better and better. The fact that DTs can be better than the DRL model they were
trained on is compatible with the reasoning of Rudin [20], who stated that transparent
models are not only easier to explain but often also outperform black box models.

5. We applied algorithm ITER to OPCTs. Can CARTs also benefit from ITER? The solved-
depths shown in column ITER + CART of Table 2a add up to 35+, which is nearly as
bad as EPS + CART (38+). Only the solved-depth for PENDULUM improved somewhat
from 10+ to 7. We conclude that the expressive power of OPCTs is important for being
successful in creating shallow DTs with ITER.

6. What are the limitations of our algorithms? In principle, the three algorithms EPS, BB,
and ITER are widely applicable since they are model-agnostic concerning the DRL
and DT methods used and applicable to any RL environment. However, the limitation
of the current work is that, so far, we have only tested environments with one-
dimensional action spaces (discrete or continuous). There is no principled reason
why the algorithms should not be applicable to multi-dimensional action spaces
(OPCTs can be trained for multi-dimensional outputs as well). Still, the empirical
demonstration of successful operation in multi-dimensional action spaces is a topic
for future work. One obvious limitation of the three algorithms is that they need a
working oracle. A less obvious limitation is that algorithm EPS only needs static,
pre-collected samples from oracle episodes (in other applications, these might be
“historical” samples). In contrast, the algorithms BB and ITER really need an oracle
function to query for the right action at arbitrary points in the observation space.
Which points are needed is not known until the algorithms BB and ITER are run.

7. A last point worth mentioning is the intrinsic trustworthiness of DTs. They partition
the observation space in a finite (and often small) set of regions, where the decision is
the same for all points. (This feature includes smooth extrapolation to yet-unknown
regions.) DRL models, on the other hand, may have arbitrarily complex decision
spaces. If such a model predicts action a for point x, it is not known which points in
the neighborhood of x will have the same action.

6. Conclusions

In this article we have shown that a considerable range of classic control RL problems
can be solved with DTs. Even higher-dimensional problems (ACROBOT and LUNARLAN-
DER) can be solved with surprisingly simple trees. We have presented three algorithms for
generating training data for DTs. The training data are composed of the RL environment’s
observations and the corresponding DRL oracle’s decisions.

These algorithms differ in the way the points of the observation space are selected. In
EPS, all samples visited by the oracle during evaluation episodes are used, BB means that
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random samples from a hyperrectangle in the observation space are taken, while ITER is
an algorithm that takes points in the observation space visited by previous iterations of
trained DTs. Our experiments show how DTs derived with these algorithms can generally
not only solve the challenges posed by classic control problems at very moderate depths
but also reach or even surpass the performance of the oracle. ITER produces good results
on all tested environments with equal or lower DT depths than the other two algorithms.
Furthermore, we discuss the advantages of transparent DT models with very few parame-
ters, especially compared to DRL networks, and show how they allow to gain insights that
would otherwise be hidden by opaque DRL decision-making processes.

However, our algorithms still require DRL agents as a prerequisite for creating suc-
cessful DTs.

Future work should test our algorithms on increasingly complex RL environments.
ITER still requires fine-tuning of parameters, such as the number of base samples and
number of samples per iteration, to optimize sample efficiency and performance.

Our work is intended to provide helpful arguments for simple, transparent RL agents
and to advance the knowledge in the field of explainable RL.
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SB3 Stable-Baselines3
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Appendix A. Reproduction of PIRL via NDPS Results

Verma et al. [13] provide policies found by their method for the classic control problems
ACROBOT, CARTPOLE (in the shorter version v0), and MOUNTAINCAR in ([13], Appendix B,
Figures 8–10) as well as returns obtained by optimal policies found by two versions of
their algorithm in rows NDPS-SMT and NDPS-BOPT of ([13], Appendix A, Table 6). We
implemented the provided policies in Python and evaluated them on 100 episodes in each

https://github.com/MarcOedingen/Iterative-Oblique-Decision-Trees
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respective environment. (In the case of MOUNTAINCAR, there must have been a typo-
graphic error as the reported policy produced the lowest possible return of R = −200± 0.
Therefore, we switched the actions, leading to the results reported below.)

As shown in Table A1, our results differ from the reported ones for two of the three
environments. Compatible results could only be reproduced for ACROBOT.

Table A1. Results of two versions of NDPS (SMT and BOPT) as published in [13], and the average
return R and standard deviation of our implementations of the reported policies in 100 episodes.

Verma et al. [13] Our Reproduction
Environment RSMT , RBOPT R ± σ Rsolved

Acrobot-v1 − 84.16,−127.21 −93.29 ± 25.19 −100
CartPole-v0 183.15, 143.21 46.66 ± 15.34 195
MountainCar-v0 −108.06,−143.86 −163.02 ± 3.48 −110

Appendix B. Effect of Observation Space Normalization on the Distances
to Hyperplane

In a D-dimensional observation space every point is given by x = (x1, x2, . . . , xD).
Every decision hyperplane is defined by

x ·w = x1 · w1 + x2 · w2 + . . . + xD · wD = b (A1)

with weight vector wT = (w1, w2, · · · , wD) and bias b.
The distance d of a point x to a given hyperplane is computed by

d =
|∑D

i=1 xi · wi − b|√
∑D

i=1 w2
i

(A2)

Now we perform an anisotropic scaling of the observables by subtracting a dimension-
specific constant µi and by dividing with another dimension-specific constant σi for
i = 1, 2, . . . , D:

x′i =
xi − µi

σi
(A3)

The hyperplane in the scaled space is defined by

x′ ·w′ = b′ (A4)

Substituting (A3) in (A4) leads to

x1 − µ1

σ1
· w′1 +

x2 − µ2

σ2
· w′2 + . . . +

xn − µD
σD

· w′D = b′ (A5)

x1
w′1
σ1
− µ1

σ1
w′1 + x2

w′2
σ2
− µ2

σ2
w′2 + . . . + xD

w′D
σD
− µD

σD
w′D = b′ (A6)

Comparison of coefficients with (A1) results in

wi =
w′i
σi

(A7)

b = b′ +
D

∑
i=1

µi
σi

w′i (A8)
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or, respectively,

w′i = wi · σi (A9)

b′ = b−
D

∑
i=1

µi
σi

wiσi = b−
D

∑
i=1

µiwi (A10)

The distance in the scaled space is

d′ =
|∑D

i=1 x′i · w′i − b′|√
∑D

i=1 w′2i
(A11)

Substituting (A3), (A9), and (A10)

d′ =
|∑D

i=1
xi−µi

σi
· wiσi − b + ∑D

i=1 µiwi|√
∑D

i=1(wiσi)2
(A12)

=
|∑D

i=1(xi − µi)wi − b + ∑D
i=1 µiwi|√

∑D
i=1(wiσi)2

(A13)

=
|∑D

i=1(xiwi − µiwi)− b + ∑D
i=1 µiwi|√

∑D
i=1(wiσi)2

(A14)

=
|∑D

i=1 xiwi −∑D
i=1 µiwi − b + ∑D

i=1 µiwi|√
∑D

i=1(wiσi)2
(A15)

=
|∑D

i=1 xiwi − b|√
∑D

i=1(wiσi)2
(A16)

Finally a comparison with (A2) results in

d′ = d

√
∑D

i=1 w2
i√

∑D
i=1(wiσi)2

= d

√
∑D

i=1 w2
i√

∑D
i=1 w′2i

= d
||w||
||w′|| (A17)

Thus, we have shown that anisotropic scaling changes the distances of all points
to a given hyperplane only by a common factor (unlike point-to-point distances, which
usually change by different factors depending on the direction of the vector connecting
these points).
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