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Abstract: Rolling bearings and gears are important components of rotating machinery. Their op-
erating condition affects the operation of the equipment. Fault in the accessory directly leads to
equipment downtime or a series of adverse reactions in the system, which brings enormous pecuniary
loss to the institution. Hence, it is of great significance to detect the operating status of rolling bearings
and gears for fault diagnosis. At present, the vibration method is considered to be the most common
method for fault diagnosis, a method that analyzes the equipment by collecting vibration signals.
However, rotating-machinery fault diagnosis is challenging due to the need to select effective fault
feature vectors, use appropriate machine-learning classification methods, and achieve accurate fault
diagnosis. To solve this problem, this paper illustrates a new fault-diagnosis method combining
successive variational-mode decomposition (SVMD) entropy values and machine learning. First, the
simulation signal and the real fault signal are used to analyze and compare the variational-mode
decomposition (VMD) and SVMD methods. The comparison results prove that SVMD can be a useful
method for fault diagnosis. Then, these two methods are utilized to extract the energy entropy and
fuzzy entropy of the gearbox dataset of Southeast University (SEU), respectively. The feature vector
and multiple machine-learning classification models are constructed for failure-mode identification.
The experimental-analysis results successfully verify the effectiveness of the combined SVMD entropy
and machine-learning approach for rotating-machinery fault diagnosis.

Keywords: rotating machinery; fault diagnosis; successive variational-mode decomposition; machine
learning; entropy

1. Introduction

As the core components of rotating machinery, rolling bearings have the characteris-
tics of complex structure, high running speed, and large load. However, they have high
requirements for precision and are very sensitive to materials such as metal crumbs. Gears
are characterized by high working accuracy, a wide application range, and excellent effi-
ciency. However, the manufacturing, installation, and environmental requirements are high.
Therefore, rolling bearings and gears have various types of failures and are fragile. Taking
wind turbines as an example, as they work in the field and complex environments where
temperature and humidity are volatile and loads are unstable, the operational equipment
is under heavy stress, which results in a higher probability of damage to rotating parts of
wind turbines and high potential maintenance costs [1,2]. Studies have shown that rolling
bearings account for 30% of failures in the mechanical drive of wind turbines [3,4]. In
addition, an annual check of 40% of train bearings found that one third of them need to be
replaced. Meanwhile, gears are easily damaged, accounting for approximately 10% of all
rotating-machinery failures [5,6].
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In the process of fault diagnosis, the collected vibration signals are used to estimate
the occurrence of the fault. However, the collected fault-vibration signals are characterized
by nonlinear and non-smooth status. An algorithm is required to decompose the fault-
vibration signals into multiple smooth signals and extract the feature signals. Therefore,
a series of signal-decomposition algorithms was developed [7] that greatly promoted
the development of theoretical research and engineering applications in the field of fault
diagnosis.

The requirement of wavelet-transform application is restricted and requires expert
a priori knowledge. The mother wavelet and decomposition levels in particular need
to be manually determined in advance [8]. Local mean decomposition (LMD) is highly
affected by noise and adds redundant frequency components when performing signal
decomposition [9]. The mechanical-fault-diagnosis method based on empirical-mode de-
composition (EMD) [10–12] can adaptively extract the mode components of the local eigen
structure of the signal. Ensemble empirical-mode decomposition (EEMD) is a noise-assisted
signal-analysis method that is added to EMD to improve the mode-aliasing phenomenon
in signal decomposition [13,14]. Complete ensemble empirical-mode decomposition with
adaptive noise (CEEMDAN) is an improved EEMD method and has better performance in
signal denoising [15,16]. Intrinsic time-scale decomposition (ITD) can suppress endpoint
effects more effectively and has good computational efficiency compared with EMD and
LMD; however, ITD also has problems with distorting some signals during decomposing.
In addition, the quality requirements of the signal are high [17,18]. Variational-mode de-
composition (VMD) is a signal-processing method proposed by Dragomiretskiy [19] that
has strong robustness to noise and excellent performance [20–22]. In recent years, many
improved algorithms for VMD have been studied, but the problem of under-decomposition
inevitably is caused by the limitations of the algorithm [23–25]. Kim presented real case
studies of fault diagnosis based on deep convolutional networks and principal component
analysis [26,27]. Regarding the topic of fault diagnosis for rotating machinery, many studies
have been conducted; however, the following difficulties and challenges are posed:

• Selection of fault-feature vectors. Effective fault-feature vectors are crucial for rotating-
machinery fault diagnosis, but it is challenging to choose the right ones due to the
many types of faults and their corresponding feature vectors.

• Machine-learning classification methods. Machine-learning algorithms are used for
classification, but it is challenging to choose the appropriate algorithm, adjust the
hyperparameters, and handle the problem of data imbalance due to the small amount
of fault data and the imbalance of sample sizes for different fault types.

• Accurate fault diagnosis. Accurately diagnosing faults is the main goal, but it is
challenging due to the need to analyze the fault-feature vectors and machine-learning
classification results, select different diagnosis methods for different fault types, and
achieve real-time diagnosis during operation.

This paper proposes a new fault-diagnosis method combing successive variational-
mode decomposition (SVMD) [28] entropy values and machine learning, which allows for
continuous extraction of modes when the number of modes is unknown. This method,
similar to the VMD method, treats the modes as the most spectrally compact signals
and achieves mode decomposition by adding criteria to deal with the VMD-optimization
problem. In this paper, the new method is validated using simulation data. The results
show that the new method can basically converge to the same pattern of modes as VMD
with a known number of modes, in the case where the number of modes is unknown.

The sections of this paper are organized as follows: Section 2 introduces the basic
principles of signal-decomposition methods such as VMD and SVMD, and illustrates the
effects of signal decomposition with simulated signals as examples. Section 3 focuses
on the fault-specific feature-extraction methods of energy entropy and fuzzy entropy.
Section 4 details the experimental dataset, experimental results, and related discussions.
The discussion and open issues for future directions are presented in Section 5. Section 6
provides the conclusions of the whole study.
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2. Signal-Decomposition Methods
2.1. Variational-Mode Decomposition (VMD)

In the VMD algorithm, the intrinsic-mode function (IMF) is redefined as an AM–FM
signal with Equation (1):

uk(t) = Ak(t)cos(Φk(t)) (1)

where Ak(t) is the instantaneous amplitude of uk(t); Φk(t) is the instantaneous phase of
uk(t).

When the VMD algorithm obtains the IMF component, it gets rid of the circular-
sieving and stripping-signal-processing method used by the EMD algorithm and transfers
the signal-decomposition process to the variational framework, realizing the adaptive
decomposition of the signal by searching for the optimal solution of the constrained
variational model. The frequency center and bandwidth of each IMF component are
constantly updated in the process of iteratively solving the variational model. Finally, the
adaptive division of the signal-frequency band can be completed according to the frequency-
domain characteristics of the actual signal, and several narrowband IMF components can
be obtained. Assuming that the original signal is decomposed into K IMF components, the
corresponding expression of the constrained variational model is as follows:

min
uk ,ωk

{
∑k

∥∥∥∂t

[(
δ(t) + i

πt

)
uk(t)

]
e−iωkt

∥∥∥2

2
∑k uk = f

}
(2)

where uk represents K IMF components obtained by the decomposition, ωk denotes the
central frequency of each component, and δ(t) is the Dirac function.

To find the optimal solution of the above constrained variational problem, an incre-
mental Lagrange function of the following form is introduced:

L(uk, ωk, λ) = α∑k

∥∥∥∂t

[(
δ(t) + i

πt

)
uk(t)

]
e−iωkt

∥∥∥2

2

+‖ f (t)−∑k uk(t)‖2
2 + 〈λ(t), f (t)−∑k uk(t)〉

(3)

where α is the penalty factor, and λ is the Lagrange multiplier.
The alternating direction-multiplier algorithm is used to find the saddle point of the

above incremental Lagrange function, which is the optimal solution of the constrained
variational model of Equation (3), so as to decompose the original signal into K narrowband
IMF components. The specific implementation process is as follows.

(1) Initialize u1
k , ω1

k , λ1, and n to 0.
(2) n = n + 1; execute the entire loop.

(3) Execute the first loop of the inner level based on un+1
k = arguk

minL
(

un+1
i<k , λn , un

i≥k,
ωn

i ) and update uk.
(4) k = k + 1 and repeat step (3) until k = K; then end the first loop of the inner layer.
(5) Execute the second loop of the inner level based on ωn+1

k = argωk
minL(un+1

i ,

ωn+1
i<k , ωn+1

i≥k , λn) and update ωk.
(6) k = k + 1 and repeat step (5) until k = K, then end the second loop in the inner layer.

(7) Based on λn+1 = λn + τ
(

f −∑k un+1
k

)
, update λ.

(8) Repeat steps (2)∼(7) until the iteration-stop condition ∑k

(∥∥∥un+1
k − un

k

∥∥∥2

2
/
∥∥un

k

∥∥2
2

)
< ε

is satisfied, end the whole loop, and output the result to get K narrowband IMF
components.
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2.2. Successive Variational-Mode Decomposition (SVMD)

SVMD is an efficient and fast signal-variational adaptive-decomposition method that
extends variational-mode extraction (VME) [29]. VME is used to extract specific signal
modes by approximating the center frequency of the intrinsic mode function. This new
decomposition method extracts all modes in a continuous manner. Compared to VMD, this
continuous method does not require mode-number information and is highly robust. The
specific implementation of VME is as follows.

(1) Initialize û1
d, λ̂1, ŵ1

d and n to 0.
(2) n = n + 1; execute the entire loop.

(3) Update all ûd, where w ≥ 0 based on ûn+1
d (w) =

f̂ (w)−α2(w−wn+1
d )

4
ûn

d (w)+
λ̂(w)

2[
1+α2(w−wn+1

d )
4][

1+2α(w−wn
d)

2] .

(4) Update wd based on wn+1
d =

∫ ∞
0 w|ûn+1

d (w)|2dw∫ ∞
0 |ûn+1

d (w)|2dw
.

(5) Update λ̂, where all w ≥ 0 base on λ̂n+1 = λ̂n + τ

[
f̂ (w)−ûn+1

d (w)

1+α2
m(w−wn+1

d )
4

]
.

(6) Repeat steps (2)∼(5) until the iteration-stop condition ‖ûn+1
d −ûn

d‖
2
2

‖ûn
d‖

2
2

< ε is satisfied; then

end the whole loop and output the result.

The specific implementation process of SVMD is as follows:

(1) Set parameters αmin, αmax, ε1, ε2, and σ2.
(2) L← 0 , L = L + 1; execute the entire loop.
(3) Set û1

L, λ̂1, n = 0, m = 0, and α1 ← αmin , and w1
L is initialized to 0 or a random value

between 0 and π.
(4) m = m + 1; execute the first loop of the inner level.
(5) n = n + 1; execute the second inner loop.
(6) Update all ûL, where w ≥ 0 based on ûn+1

L (w) =

f̂ (w)+(w−wn
L)

4
ûn

L(w)+ λ̂(w)
2[

1+α2
m(w−wn

L)
4][

1+2αm(w−wn
L)

2
+∑L−1

i=1
1

α2
m(w−wi)

4

] .

(7) Update wL based on wn+1
L =

∫ ∞
0 w|ûn+1

L (w)|2dw∫ ∞
0 |ûn+1

L (w)|2dw
.

(8) Update all λ̂, where w ≥ 0 based on λ̂n+1 = λ̂n + τ

[
f̂ (w)−

(
ûn+1

L (w)+[
α2

m(w−wn+1
L )

4
( f̂ (w)−ûn+1

L (w)−∑L−1
i=1 ûn+1

i (w)+ λ̂(w)
2 )−∑L−1

i=1 ûi(w)

1+α2
m(w−wn+1

L )
4

]
+ ∑L−1

i=1 ûn+1
i (w)

)]
.

(9) Repeat steps (5)∼(8) until the iteration-stop condition ‖ûn+1
L −ûn

L‖
2
2

‖ûn
L‖

2
2

< ε1 is satisfied and

end the second loop in the inner layer.
(10) Set û1

L, λ̂1, n = 0, w1
L = wn+1

L , and αm+1 = 2αm; repeat step (4)∼(9) until αm+1 ≤ αmax
is satisfied; and end the first loop of the inner layer.

(11) Repeat steps (2)∼(10) until
∣∣∣σ2 − 1

T ‖( f (t)−∑i=1:L ui(t))‖2
2

∣∣∣/σ2 < ε2 is satisfied, end
the whole loop, and output the result.

2.3. Simulated Signal Analysis

Create the simulation signal x(t) as shown in Equations (4) and (5):
x1(t) = 3 ∗ sin(2π35t)
x2(t) = 2 ∗ sin(2π65t)

x3(t) = 1/2 ∗ cos(2π105t)

 (4)

x(t) = x1(t) + x2(t) + x3(t) (5)
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The time-domain and frequency-domain plots of the simulated signal are shown in
Figure 1.
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Figure 1. Time-domain–frequency-domain diagram of the simulated signal: (a) signal time-domain
waveform; (b) signal frequency-domain diagram.

The decomposition of the simulated signal by VMD and SVMD is shown in
Figures 2 and 3, respectively. The information on the decomposition of the simulated
signal by other signal-decomposition methods is shown in Table 1. It can be seen from the
figures and tables that VMD had better performance for the simulated signal, SVMD was
the second best, and the other methods all showed mode mixing. However, when the value
of K was set to 4, mode aliasing occurred.
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Table 1. Decomposition of the simulated signal by several signal-decomposition algorithms.

Signal-Decomposition Method Running Time (s) Decomposition Fraction (pcs) Problem

EMD 1.270 7 Mode mixing
LMD 1.857 4 Mode mixing
ITD 1.666 5 Mode mixing

VMD 1.100 3 None
SVMD 1.277 4 One more invalid component

In the simulated signal x(t), based on the random function, randn(·) is superimposed
on a random signal composition X(t). The random signal and X(t) are shown in Figure 4.
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Figure 4. Time-domain–frequency-domain diagram of the simulated signal with superimposed
random signal: (a) time-domain diagram of the random signal; (b) X(t) signal time-domain frequency-
domain diagram.
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Figures 5 and 6 show the X(t) signal-decomposition-component of the time-domain–
frequency-domain plots for VMD and SVMD, respectively. The statistical results are shown
in Table 2. From the experimental results, it can be seen that VMD was the most efficient
way to achieve results, but one of the characteristic frequencies could not be separated
effectively. The third characteristic frequencies could be separated when the k value was
set to 4. SVMD took slightly less time and could separate each feature frequency at one
time, which had better robustness. The other methods took more time, had serious mode
overlap, and could not separate the feature frequencies effectively.
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Table 2. Decomposition of simulated signals with superimposed random signals by several signal-
decomposition algorithms.

Signal-Decomposition Method Running Time (s) Decomposition Fraction (pcs) Problem

EMD 1.692 9 Mode mixing

LMD 2.077 5 All three eigenfrequencies are in the
same component

ITD 1.940 7 Mode mixing

VMD 1.558 3 The third characteristic frequency is
not effectively separated

SVMD 1.674 5 Invalid fraction exists

3. Fault Feature-Extraction Method
3.1. Energy Entropy

The operation of rolling bearings with different faults produces different resonant-
frequency components in the vibration signal. The energy of the fault signal changes
in different frequency bands [30]. The IMF components are obtained by decomposing
the signal through the adaptive-decomposition method. The energy distribution of each
IMF component is different. Therefore, the fault characteristics of the equipment can be
characterized by finding the energy entropy of each IMF component.

For the n IMF components decomposed from the vibration signal, c1(t), c2(t), · · · , cn(t),
and the energy of each component is calculated using Equation (6).

Ei =
∫ +∞

−∞
|ci(t)|2dt (6)

Define the energy entropy expressed as:

HEN = −
n

∑
i=1

pilog2 pi (7)

where pi = Ei/E, E = ∑n
i=1 Ei, x(t) is the simulated signal of Equation (5), and X(t) is a

superimposed random signal by the function randn(·).
Decomposition of VMD and SVMD is performed to obtain the component-energy

entropy, as shown in Figure 7. Figure 7a illustrates that the component-energy entropy of
VMD decomposition is basically consistent with that of SVMD decomposition. In addition,
it can be seen that the correlations of the IMF1, IMF2, and IMF3 components of VMD
decomposition and the correlations of the IMF2, IMF3, and IMF4 components of SVMD
decomposition also remained the same. Similarly, the energy entropies of the first two
components of X(t) decomposed by VMD and SVMD from Figure 7b were basically the
same, but the IMF3 component of the VMD decomposition was more complex and the
eigenfrequencies were masked, at which point its energy-entropy value was half that of the
IMF3 component of the SVMD decomposition.

Figures 8 and 9 show the correlation analysis of the simulation signal and components.
From Figure 8, it can be seen that the correlation between the components of the VMD
decomposition and the simulated signal x(t) was the same size as the correlation between
the components of the SVMD decomposition (except IMF1) and the simulated signal x(t),
which also indirectly indicates that there was not much difference between the two methods.
Similarly, it can be seen from Figure 9 that the correlation between the VMD decomposition
components and the simulation signal X(t) remained basically the same as the correlation
between the SVMD decomposition components (the first three components), but the IMF3
characteristic frequency of VMD was hidden by other information and it is not easy to
determine the effective components if only correlation analysis is performed.
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3.2. Fuzzy Entropy

The value of the fuzzy entropy [31] is used to represent the signal complexity, and it
uses the mean algorithm and the affiliation-function method to make the similarity measure
between vectors fuzzy. The fuzzy entropy is similar to the theoretical properties of sample
entropy and approximate entropy, and its fuzzy-entropy value is more stable than when
the parameters are changed.

With a set of sampling points of N of sequences {u(i) : 1 ≤ i ≤ N}, the fuzzy entropy
is solved as follows.

(1) The sequence is formed as m dimensional vector, as shown in Equation (8):

X(i) = {u(i), u(i + 1), · · · , u(i + m− 1)} − u0(i) (8)

where i = (1 , 2, · · · , N), and u0(i) is the mean of vector {u(i), u(i + 1), · · · ,
u(i + m− 1)}.

(2) Calculate the maximum amount dij of the distance difference between the vectors Xi
and Xj, as shown in Equation (9).

dij = max
{∣∣Xi − Xj

∣∣} (9)

(3) Calculate the similarity Dij, which is defined by the exponential function u, as shown
in Equation (10):

Dij = u
(
dij , n , r) = exp

[
−
(
dij/r

)n
]

(10)

where u is the fuzzy-affiliation function of Xi and Xj, and n and r are the gradient and
the width of its boundary, respectively.

(4) Define ϕm(n, r); the result is shown in Equation (11):

ϕm(n, r) =
1

N −m

N−m

∑
i=1

( 1
N −m + 1

N−m+1

∑
j=1,j 6=i

Dij
m
)

(11)

where the affiliation function Dij
m = e−(dij

m/r)n
, and r is the similarity-tolerance limit.

(5) Solve the fuzzy-entropy value of N for the infinite value, as shown in Equation (12).

FE(m, n, r) = lim
N→∞

[
ln ϕm(n, r)−ln ϕm+1(n, r)

]
(12)

Generally, N is the finite value, and the above equation is converted as shown in
Equation (13).

FE(m, n, r) = ln ϕm(n, r)−ln ϕm+1(n, r) (13)

In the process of fuzzy-entropy calculation, the embedding dimension m, threshold r,
and n are the main factors affecting the accuracy of the calculation, and in this paper m was
3, r was 0.15SD (SD is the standard deviation of the input vibration signal), and n was 2.

Similarly, the fuzzy entropy of the components was obtained by VMD and SVMD
decomposition of the simulated signals x(t) and X(t), as shown in Figure 10. The fuzzy-
entropy values of the components of the VMD decomposition of the simulated signal and
the SVMD decomposition remained the same. The fuzzy-entropy value of IMF3 component
decomposed by VMD was twice as large as that of IMF3 component decomposed by SVMD,
and it can be obviously concluded that the IMF3 component decomposed by VMD was
more complicated.
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Figure 10. Simulated signal-component fuzzy entropy: (a) component fuzzy entropy of x(t);
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4. Experimental Analysis

In this paper, the above method was investigated through the gearbox-fault-diagnosis
dataset of Southeast University (SEU), and the experimental flow is shown in Figure 11.
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4.1. SEU Dataset Introduction

The gearbox dataset was from Southeast University (SEU), China. These data were
collected from the Drivetrain Dynamic Simulator. This dataset contains two subdatasets,
including bearing data and gear data, which were both acquired from the Drivetrain
Dynamics Simulator (DDS). There are two kinds of working conditions with the rotating
speed-load configurations set to 20-0 and 30-2, which were used to build the separate
model. Within each file, there are eight rows of signals, which represent (1) motor vibration;
(2, 3, 4) vibration of the planetary gearbox in three directions: x, y, and z; (5) motor torque;
and (6, 7, 8) vibration of the parallel gearbox in three directions: x, y, and z. The signals of
rows 2, 3, and 4 were all effective. The rolling bearing dataset-failure types were rolling-
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body failure, inner-ring–outer-ring mixed failure, normal condition, inner-ring failure, and
outer-ring failure, as shown in Table 3.

Table 3. Data set of rolling bearings of SEU.

Operation
Conditions Dataset Data Length Fault Type

I

Ball_20_0 1,048,560 Rolling-body failure
Comb_20_0 1,048,560 Inner-ring and outer-ring mixed failure
Health_20_0 1,048,560 Normal condition
Inner_20_0 1,048,560 Inner-ring failure
Outer_20_0 1,048,560 Outer-ring failure

II

Ball_30_2 1,048,560 Rolling-body failure
Comb_30_2 1,048,560 Inner-ring and outer-ring mixed failure
Health_30_2 1,048,560 Normal condition
Inner_30_2 1,048,560 Inner-ring failure
Outer_30_2 1,048,560 Outer-ring failure

In the planetary-gear dataset, there were five types of broken-tooth faults: normal
conditions, missing-tooth faults, root faults, and tooth-surface faults, as shown in Table 4.

Table 4. Planetary-gear dataset of SEU.

Operation
Conditions Dataset Data Length Fault Type

I

Chipped_20_0 1,048,560 Broken-tooth failure
Health_20_0 1,048,560 Normal condition
Miss_20_0 1,048,560 Missing-tooth failure
Root_20_0 1,048,560 Tooth-root failure

Surface_20_0 1,048,560 Tooth-surface failure

II

Chipped_30_2 1,048,560 Broken-tooth failure
Health_30_2 1,048,560 Normal condition
Miss_30_2 1,048,560 Missing-tooth failure
Root_30_2 1,048,560 Tooth-root failure

Surface_30_2 1,048,560 Tooth-surface failure

4.2. Analytical Comparison

The energy entropy and fuzzy entropy of each component were obtained by de-
composing the bearing- and gear-vibration signals through VMD and SVMD. Each of
them was constructed into an energy-entropy sample set and a fuzzy-entropy sample
set. A machine-learning [32,33] classification model was established to perform intelligent
diagnosis of faults.

Firstly, the gear data of two working conditions of the SEU dataset were be studied,
and the data length of each class of gear was 1,048,560. This paper took the length of 4096
as a data sample, which could be divided into 255 in total, and then used the VMD and
SVMD methods for mode decomposition of each data sample.

When computing energy entropy and fuzzy entropy as feature vectors, it is generally
sufficient to take the first six components. The disadvantage of choosing more or fewer
components is that choosing more components can increase the computation burden and
may lead to overfitting problems, where the model performs well on training data but
poorly on unknown data. Additionally, too many components can increase the complexity
of the model, making it harder to interpret and understand. Choosing fewer components
may result in the loss of important information and a decrease in model accuracy. Therefore,
selecting an appropriate number of components, specifically the first six orders, can ensure
model accuracy while avoiding issues of excessive complexity and computational burden.
Therefore, in this paper, we sought the energy-entropy value and fuzzy-entropy value
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of the first six components. There were five types of gears. The final composition of the
energy-entropy and fuzzy-entropy sample-set size was 1275 × 6 (the former represents
rows and the latter represents columns, except for labeled columns). In this paper, there
were no training datasets, and all data were used for testing.

Then, a machine-learning classification model was built for pattern recognition.
Figures 12 and 13 show the diagnostic effect of the support-vector machine (SVM) [34] in
the form of a confusion matrix for the sample set of energy entropy and fuzzy entropy of
the SEU gearwork data. The parameters of the two classification models were derived in
the form of a grid search. In the SVM model, the penalty factor was [0.01, 0.1, 1, 10, 100] and
the kernel-function parameter was [0.01, 0.1, 1, 10, 100]. Here, the optimal parameters were
100 and 100. It was also found that the SVM classification effect of SVMD energy entropy
was better than that of VMD energy entropy, whereas the SVM classification effect of the
VMD fuzzy-entropy and the SVMD fuzzy-entropy classification effect was about the same.
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For the SVM and k-nearest neighbors (k-NN) [35] classification methods, in general,
the classification accuracy of SVM is higher than that of k-NN. However, for smaller
datasets, k-NN can obtain the same results as SVM or even better. In this paper’s dataset,
the number of samples was sourced from the same time series and the sample differences
were small, so the results obtained by k-NN were slightly better than those obtained by
SVM. In addition, k-NN and SVM can be applied without using a large amount of data for
model training and can obtain better models quickly.

Integrated learning is a good strategy to achieve learning by combining multiple
learners, both on datasets with large and small amounts of data. The current integrated
learning methods can be broadly classified into two categories: One is sequential integration
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methods, such as boosting in AdaBoost and gradient-boost decision tree (GBDT) [36]. The
other is parallel integration methods, such as bagging and random forest (RF) [37].

The classification results of the energy-entropy and fuzzy-entropy sample sets obtained
from the VMD and SVMD decompositions of the bearing data in the gearbox of SEU in
the SVM, k-NN, RF, and GBDT models are shown in Table 5. The table shows that the
accuracy of the SVMD fuzzy entropy k-NN, RF, and GBDT models in the gearbox working
condition I data of SEU was the same as that of the VMD fuzzy-entropy RF and GBDT
models, reaching 99.22%; the accuracy of the VMD fuzzy-entropy SVM and RF models in
the working condition II data was the highest, reaching 99.61%.

Table 5. Accuracy of gearbox bearing data at SEU.

Data Gearbox Bearing Data of SEU

Operation Condition Operation Condition I Operation Condition II

Model SVM k-NN RF GBDT SVM k-NN RF GBDT

VMD energy entropy 97.57% 97.34% 98.04% 98.04% 97.25% 96.86% 96.08% 97.25%
SVMD energy entropy 97.25% 96.86% 96.47% 97.25% 94.12% 93.33% 91.76% 94.51%

VMD fuzzy entropy 99.13% 98.98% 99.22% 99.22% 99.61% 92.16% 99.61% 99.22%
SVMD fuzzy entropy 93.96% 99.22% 99.22% 99.22% 94.90% 97.25% 95.69% 95.29%

The SVMD feature-extraction (energy entropy, fuzzy entropy) machine learning in this
paper was compared with the machine-learning classification results in the literature [38],
as shown in Table 6. From the table, it can be seen that in the fault diagnosis of the
bearing, the machine-learning classification effect of the SVMD method was better than the
identification result of this data in the literature, and in the gearbox, the two were difficult
to distinguish.

Table 6. Comparison of SVMD feature extraction and classification results and those from other
literature.

Algorithm
Component: Bearing Component: Gear

20-0 30-2 20-0 30-2

Literature [36]
K-NN 80.80% 86.40% 93.20% 89.20%
SVM 83.30% 88.60% 94.40% 90.10%

Our paper

SVMD fuzzy entropy + k-NN 99.22% 97.25% 94.42% 90.98%
SVMD energy entropy + SVM 97.25% 94.12% 91.27% 90.20%

SVMD fuzzy entropy + RF 99.22% 95.69% 96.02% 93.33%
SVMD fuzzy entropy + GBDT 99.22% 95.29% 95.22% 89.41%

In the paper, the grid-search method was also chosen to select the two model pa-
rameters of RF and GBDT. When performing the grid search, the n_estimators parameter
and the max_depth parameter in RF were both set to integers between 5 and 13, the
min_samples_split parameter was set to 2, and other parameters were set by default. In
GBDT, the n_estimators parameter was set to an integer between 50 and 150 with an interval
of 10, and other parameters were set by default.

4.3. Additional Dataset Validation

In addition to Southeast University experimental dataset introduced above, to further
validate the proposed method, we also used the experimental data collected by the GDS3000
(SpectraQuest, Inc., Richmond, VA, USA) experimental platform. The platform is equipped
with switchable normal bearings, inner fault bearings, outer fault bearings, rolling-element
fault bearings, and compound fault bearings (with inner and outer fault), as shown in
Figure 14.
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Using the GDS3000 experimental platform, data were collected based on two working
conditions: medium–high speed (1540 r/min) and high speed (1788 r/min). The experi-
mental results in Table 7 show that the fuzzy entropy was superior to the energy entropy.

Table 7. Results of GDS 3000 experimental platform.

Operation Conditions Medium–High Speed (1540 r/min) High Speed (1788 r/min)

Model SVM KNN RF GBDT SVM KNN RF GBDT

VMD energy entropy 98.40% 98.53% 98.53% 97.44% 98.53% 98.53% 98.17% 97.44%
SVMD energy entropy 98.17% 95.60% 95.24% 94.14% 94.46% 97.42% 94.46% 94.10%

VMD fuzzy entropy 94.56% 98.40% 98.53% 98.17% 96.70% 98.90% 91.58% 95.97%
SVMD fuzzy entropy 97.07% 98.53% 95.97% 96.34% 96.31% 97.42% 95.94% 94.84%

5. Discussion and Open Issues
5.1. Classification-Model Design

In this paper, we used four classification models: SVM, KNN, RF, and GBDT. Table 8
shows the comparison of the classification models for reference. However, in practical
industrial applications, the design of a classification method requires the consideration of
several factors, including the type of data, the type of classification problem, the size of
the data set and the number of features, the accuracy requirements, the interpretability,
and the complexity of the model. When designing a model, these factors need to be
considered comprehensively, and the most appropriate model should be selected based on
practical applications.

Table 8. Comparison of classification models.

Model Applicable Data Classification Problem Training Time Storage Space

SVM Low-dimensional Linear classification Long Low
KNN Low-dimensional Nonlinear classification Short High

RF High-dimensional Nonlinear classification Long Low
GBDT High-dimensional Nonlinear classification Long Low

5.2. Research Limitations

In terms of the limitations of our research, we agree that further optimization of the
classification-model parameters is needed to improve accuracy. Additionally, our study
focused on a limited dataset, and more industrial data are needed to validate the model’s
performance in real-world applications.

As for future research directions, we plan to explore more advanced optimization
techniques to further improve the accuracy of the classification model. We also plan to
collect more diverse and comprehensive industrial data to better validate the model’s
performance in various industrial applications. In addition, we plan to investigate the
potential of incorporating other datasets to further enhance the model’s accuracy. We
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believe that these future research directions will contribute to the development of more
robust and accurate models for industrial applications.

6. Conclusions

An effective signal-decomposition method is an important tool for mechanical-fault
diagnosis. The original vibration signal contains a lot of information. By decomposing the
original signal into individual components and analyzing each of them, it is easy to find the
faults present in the machine. This paper used an iterative SVMD method that decomposes
the signal into its constituent components, which is a successive implementation of VMD.
It can also be seen as an extension of the VME method. This method was built by adding
some criteria to the VMD algorithm to distinguish it from the previous one. The advantage
of SVMD over VMD is that it does not need to know the number of modes available in the
signal and converges to almost the same mode pattern as VMD with a known number of
modes k. The performance was even better than VMD in some cases.

The energy entropy and fuzzy entropy of each component were obtained by decom-
posing the vibration signals under two working conditions of SEU gears by VMD and
SVMD. Each of them was constructed into the energy-entropy sample sets and fuzzy-
entropy sample sets, which were trained and tested in the established machine-learning
classification models SVM, k-NN, RF, and GBDT. The results show that in SEU gearbox
working condition I, the SVMD energy entropy, the fuzzy entropy in SVM and k-NN
models, and the classification accuracy of VMD energy entropy were above 90%. The clas-
sification accuracy of the VMD energy entropy was poor. Whereas in integrated learning,
the classification accuracy of VMD and SVMD fuzzy entropy and energy entropy were not
much different, in SEU gearbox case II, the classification accuracy of SVMD energy entropy
and fuzzy entropy was the highest in SVM and k-NN classification. The accuracy was close
to 90%. The classification accuracy of VMD was even worse compared with SVMD. The
same phenomenon occurred in integrated learning, as well.

Finally, the SVMD feature-extraction diagnosis results of this paper for the gearbox
data of SEU were compared with the results of other literature The overall effect was better
than the results of the method in the literature, which verifies the effectiveness of the SVMD
feature-extraction method.
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