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Abstract: The Transportation Problem (TP) is a special type of linear programming problem, where
the objective is to minimize the cost of distributing a product from a number of sources to a number of
destinations. Many methods for solving the TP have been studied over time. However, exact methods
do not always succeed in finding the optimal solution or a solution that effectively approximates
the optimal one. This paper introduces two new variations of the well-established Particle Swarm
Optimization (PSO) algorithm named the Trigonometric Acceleration Coefficients-PSO (TrigAc-PSO)
and the Four Sectors Varying Acceleration Coefficients PSO (FSVAC-PSO) and applies them to solve
the TP. The performances of the proposed variations are examined and validated by carrying out
extensive experimental tests. In order to demonstrate the efficiency of the proposed PSO variations,
thirty two problems with different sizes have been solved to evaluate and demonstrate their perfor-
mance. Moreover, the proposed PSO variations were compared with exact methods such as Vogel’s
Approximation Method (VAM), the Total Differences Method 1 (TDM1), the Total Opportunity Cost
Matrix-Minimal Total (TOCM-MT), the Juman and Hoque Method (JHM) and the Bilqis Chastine
Erma method (BCE). Last but not least, the proposed variations were also compared with other PSO
variations that are well known for their completeness and efficiency, such as Decreasing Weight Parti-
cle Swarm Optimization (DWPSO) and Time Varying Acceleration Coefficients (TVAC). Experimental
results show that the proposed variations achieve very satisfactory results in terms of their efficiency
and effectiveness compared to existing either exact or heuristic methods.

Keywords: transportation problem; Particle Swarm Optimization; heuristics methods; linear pro-
gramming

1. Introduction

The Transportation Problem (TP) is one of the most significant types of linear pro-
gramming problems. The aim of the TP is to minimize the cost of transportation of a given
commodity from a number of sources or origins (e.g., factory manufacturing facility) to
a number of destinations (e.g., warehouse, store) [1]. Over the years, many classical and
stochastic search approaches have been applied for the purpose of solving the TP.

The Northwest Corner method (NWC) is one of the methods that obtains a basic
feasible solution to various transportation problems [2]. This process very easily allocates
the amounts when few demand and destination stations exist. Moreover, frequently, the
exported solution does not approach the optimal. The Minimum Cost Method (MCM) [3]
is an alternative method which can yield an initial basic feasible solution. The MCM
succeeds in lowering total costs by taking into consideration the lowest available cost
values while finding the initial solution. An innovative approach comes from the Vogel
Approximation Method (VAM); the VAM is an upgraded version of the MCM which results
in a basic feasible solution close to the optimal solution [3]. Both of them take the unit
transportation costs into account and obtain satisfactory results; however, VAM is rather
slow and computationally intensive for a large range of values. Nevertheless, it has been
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proven that in problems with a small range of values and a relatively small number of
variables, the above exact methods are quite efficient.

In some cases, TP has a complex structure, multifaceted parameters and a huge amount
of data to be studied. Therefore, exact methods do not succeed in finding a suitable so-
lution in an acceptable time period; a result, it is unpractical to use them. Taking into
consideration the above, apart from conventional solution techniques, various heuristic
and metaheuristic methods have been designed to capitalize on their potential capabilities.
Specifically, metaheuristic algorithms attempt to find the best feasible solution, surpassing
the other technique as much in terms of quality as in computational time [4]. Mitsuo
Gen, Fulya Atliparmak and Lin Lin applied a Genetic Algorithm (GA) for a two-stage TP
using priority-based encoding, showing that the GA has been receiving great attention
and can be successfully applied for combinational optimization problems [5]. Ant Colony
Optimization (ACO) algorithms have already proven their efficiency in many complex
problems; they constitute a very useful optimization tool for many transportation problems
in cases where it is impossible to find an algorithm that finds the optimal solution or in
cases where the time interval does not make it possible to approve this solution [6]. The ap-
plications of hybrid methods with the combination of two or more heuristic, metaheuristic
or even exact methods are also widespread. Interesting research was undertaken in 2019 by
Mohammad Bagher Fakhrzad, Fariba Goodarzian and Golmohammadi [7]. In their study,
four metaheuristic algorithms, including Red deer Algorithm (RDA), Stochastic Fractal
Search (SFS), Genetic Algorithm (GA) and Simulated Annealing (SA), as well as two hybrid
algorithms, the RDA and GA (HRDGA) algorithm and the Hybrid SFS and SA (HRDGA)
algorithm, were utilized to solve the TP, demonstrating significant effectiveness [7].

Motivated by the above-mentioned applications of metaheuristic algorithms to cope
with the TP, this work deals with the application of Particle Swarm Optimization (PSO)
to solve the TP effectively. The PSO algorithm was first introduced by Dr. Kennedy and
Dr. Eberhart in 1995 and was known as a novel population-based stochastic algorithm,
working out complex non-linear optimization problems [8]. The basic idea was originally in-
spired by simulations of the social behavior of animals such as bird flocking, fish schooling,
etc. Possessing their own intelligence, birds of the group connect with each other, sharing
their experiences, and follow and trust the mass in order to reach their food or migrate
safely without knowing in advance the optimal way to achieve it. The proposed research is
expected to enhance the abilities of both the social behavior and personal behavior of the
birds. It is observed that the original PSO has deficits in premature convergence, especially
for problems with multiple local optimums [9]. The swarm’s ability to function with social
experience as well as personal experience is determined in the algorithm through two
stochastic acceleration components, known as the cognitive and social components [10].
These components have the aptitude to guide the particles in the original PSO method to
the optimum point as the correct selection of their values is the key influence on the success
and efficiency of the algorithm. Much research has been carried out with a focus on finding
out the best combination of these components [10].

First, this paper examines approaches that have already been applied with great
success to solve the TP. Adding to the above, two new PSO variations are presented and
applied to solve the TP, operating proper transformations of the main PSO parameters.
Experimental results show that these new PSO variations have very good performance and
efficiency in solving the TP compared to the former methods.

In order to confirm the technical merit and the applied value of our study, 32 instances
of the TP with different sizes have been solved to evaluate and demonstrate the performance
of the proposed PSO variations. Their experimental results are compared with those of well-
known exact methods, proving their superiority over them. One major innovation of the
proposed variations is the appropriate combination of acceleration coefficients (parameters
c1, c2) and inertia weight (parameter w) [11] (see Section 3) in order to come up with better
computational results compared to existing approaches. Exhaustive experimental results
demonstrate that the performance of the new PSO variations noted significantly higher
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performance not only compared to the exact methods already applied to solve the TP but
also compared to the other PSO variations already introduced in the respective literature.
Furthermore, in order to check the stability of the proposed PSO variations, many different
combinations of the main PSO parameters were tested and validated.

The contribution of the paper is as follows:

• According to our knowledge, PSO has already been applied for solving the fixed-
charged TP, and a heuristic approach was used in order to find the shortest path in a
network of routes with a standard number of points connected to each other. For the
first time, the PSO-based algorithms are applied to solve the basic TP in a large amount
of test instances effectively, not only finding the optimal means of items distribution
but also discovering the optimal value.

• Moreover, two new PSO variations are introduced, which sustain balance between
exploration and exploitation of the search space. These variations proved to be very
efficient in solving the TP, achieving better results compared not only to deterministic
but also to other already-known PSO-based methods.

• A thorough experimental analysis has been performed on the PSO variations applied
to solve the TP to prove their efficiency and stability.

The remainder of the paper is organized as follows: Section 2 presents the mathemat-
ical formulation of the TP. The PSO algorithm is briefly described in Section 3. Section 4
presents the initialization procedure of the basic feasible solutions and the steps of the PSO
algorithm for the TP. Both the existing PSO variations as well as the new ones are presented
in detail in Section 5. A well-documented case study is conducted in Section 6, in order
to compare the performance of five exact methods with the classic PSO and its variations.
Lastly, conclusive remarks and future recommendations are presented in Section 7.

2. Transportation Problem (TP)

Many researchers have developed various types of transportation models. The most
prevalent was presented by Hitchcock in 1941 [12]. Similar studies were conducted later
by Koopmans in 1949 [13] and in 1951 by Dantzig [14]. It is well known that the problem
has become quite widespread, so several extensions of transportation model and methods
have been subsequently developed. However, how is the Transportation Problem defined?

The TP can be described as a distribution problem, with m suppliers Si (warehouses
or factories) and n destinations Dj (customers or demand points). Each of the m suppliers
can be allocated to any of the n destinations at a unit shopping cost cij, which corresponds
to the route from point i to point j. The available quantities of each supplier Si, i = 1, 2,. . .,
m are denoted as si, and those of each destination Dj, j = 1, 2, . . ., n are denoted as dj. The
objective is to determine how to allocate the available amounts from the supply stations to
the destination stations while simultaneously achieving the minimum transport cost and
also satisfying demand and supply constraints [12].

The mathematical model of the TP can be formulated as follows:

minZ = ∑m
i=1 ∑n

j=1 cij·xij; (1)

m

∑
i=1

xij ≥ dj f or j = 1, 2, . . . , n; (2)

n

∑
j=1

xij ≤ si f or i = 1, 2, . . . , m; (3)

xij ≥ 0 f or i = 1, 2, . . . , m, j = 1, 2, . . . , n. (4)

Equation (1) represents the objective function to be minimized. Equation (2) contains
the supply constraints according to which the available number of origin points must be
more than or equal to the quantity demanded from the destination points. Respectively, the
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sum of the amount to be transferred from source Si to destination Dj must be less than or
equal to the available quantity than we possess, as presented in Equation (3). A necessary
condition is depicted in Equation (4), as units xij must take positive and integer values.
Without loss of generality, we assume that in this paper, both the supplies and demands
are equal following the balanced condition model.

As already mentioned, there are several methods which can lead to finding a basic
feasible solution. However, most of the currently used methods for solving transportation
problems are considered complex and very expansive in terms of execution time. As a
result, it is appealing to seek and discover a metaheuristic approach based on the PSO
algorithm to solve the TP efficiently and effectively.

3. Particle Swarm Optimization (PSO)

The Particle Swarm Optimization (PSO) algorithm is considered to be one of the
modern innovative heuristic algorithms since its methodology over the years has become
extremely prevalent due to its simplicity of implementation; it leads very easily to satis-
factory solutions [15]. According to the PSO algorithm, the collective behavior of animals
has been analyzed in detail with an eye forward to function as a robust method in order to
solve optimization problems in a wide variety of applications [16].

In PSO, each candidate solution can be defined as a particle and the whole swarm
can be considered as the population of the algorithm. The particles improve themselves
by cooperating and sharing information among the swarm, and they succeed in learning
and improving to provide the highest possible efficiency. More precisely, each particle
through the search space is intended to find the best value for its individual fitness and,
simultaneously, to minimize the objective function by satisfying all the constraints of
the problem. Each particle is studied from a perspective that contains three different
parameters: position; velocity; and its previous best positions.

Consequently, in n-dimensional search space, each particle of the swarm is represented
by xij =

(
xi1, xi2, . . . , xij

)
, and the equation of its position is as follows:

xij(t + 1) = xij(t) + vij(t + 1), i = 1, 2, . . . , n και j = 1, 2, . . . , n, (5)

where xij(t + 1) is the current position, xij(t) is the previous position and vij(t + 1) is the
velocity which determines the movement of each particle in the current iteration (t + 1).

Respectively, the velocity of the particle is denoted by vij and is given by the following
equation:

vij(t + 1) = w vij(t) + c1r1

(
pbestij(t)− xij(t)

)
+ c2r2

(
gbestij(t)− xij(t)

)
,

i = 1, 2, . . . , n και j = 1, 2, . . . ., n.
(6)

where

• vij(t + 1) denotes the velocity in the current iteration and vij(t) is the velocity in the
previous iteration.

• w is the inertia weight, used to balance the global exploitation and local exploitation,
providing a memory of the previous particle’s direction which prevents major changes
in the suggested direction of the particles.

• r1 and r2 are two variables which are randomly derived from uniform distribution in
range [0, 1].

• c1 and c1 are defined as “acceleration coefficients” which have a huge effect on the
efficiency of the PSO method. The constant c1 conveys how much confidence a particle
has in itself, while c2 expresses how much confidence a particle has in the swarm.

• The variable pbestij(t) is the best position of the particle until the iteration t, whereas
gbestij(t) is the finest position of the whole swarm until the same iteration.

• The term c1r1

(
pbestij(t)− xij(t)

)
is known as the cognitive component; it acts as a

kind of memory that stores the best previous positions that the particle has achieved.
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The cognitive component reflects the tendency of the particles to return to their best
positions.

• The term c2r2

(
gbestij(t)− xij(t)

)
is called the social component. In this particular

case, the particles behave according to the knowledge that they have obtained from
the swarm, having as a guide the swarm’s best position.

The acceleration coefficients c1 and c2, together with the random variables r1 and
r2, affect to a great extent the evolution of cognitive and social component and hence the
velocity value, which, as is known, is mainly responsible for the ultimate direction of the
particles.

4. The Basic PSO for Solving the TP

The proposed PSO algorithm used to solve the TP is presented in this section. The
primary goal is the initialization of the particles according to the problem’s instances. This is
achieved through a sub-algorithm (an initialization algorithm), as presented below. Initially,
the amounts of the supply and demand were defined in tables. Subsequently, through
control conditions, the amounts were randomly distributed, satisfying the constraints of
the sums of supply and demand.

First, Algorithm 1 creates two vectors, namely, Supply and Demand, which are its input,
as shown in lines 1 and 2. Next, variables m and n are computed. These variables are equal
to the values of parameters Supply and Demand, respectively. Then, a matrix is created
consisting of random real numbers (line 7). In line 10, the elements of the candidate solution
matrix are rounded to the nearest integer as the amounts of commodities should be non-
negative integer values. In the following lines of the algorithm, a process of readjustment
and redistribution of matrix L begins so that its values correspond to the given Supply and
Demand amounts. In lines 11 and 12, the sum of all elements of each row of matrix L is
stored in vector Sumrow, while the sum of all elements of each column of matrix L is stored
in vector Sumcol. Then, two new vectors, namely, s and d, are created by subtracting Sumrow
from Supply and Sumcol from Demand, respectively. In the following lines, for each cell of
the final matrix, the shortcomings of the matrix are located and assembled appropriately to
each cell by zeroing out the excess amount of vectors s and d. The output of Algorithm 1 is
a matrix consisting of the initial solutions (Initial Basic Feasible Solutions—IBFS), which
comprises the input of Algorithm 2 (see below). All possible Initial Basic Feasible Solutions
(IBFS) are non-negative integer values satisfying the supply and demand constraints.

Next, we present the structure of the basic PSO algorithm, which will be applied to
solve the TP (Algorithm 2). The process starts with the initialization of the population
size npop, the maximum number of iterations tmax, the personal and social acceleration
coefficients c1 and c2, the random variables r1 and r2 and, finally, the inertia weight w
(line 1). Moreover, subsequently, the Supply, Demand and Cost matrixes are defined (line 2).

Line 6 calculates the total transport cost of each particle. Then, in lines 7 and 8, whether
the total cost of the current particle is less than the minimum transport cost calculated up
to then is checked. If the statement is true, the value of global best cost is upgraded, and
this particle is now defined as the best. This process is continued for all candidate particles.
In lines 9 to 14, through an iterative loop, the position and velocity of the particles are
calculated using Equations (5) and (6). The algorithm exports the particle with the optimal
position and its respective optimal transport cost.
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Algorithm 1: Initialization algorithm
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upgraded, and this particle is now defined as the best. This process is continued for all 
candidate particles. In lines 9 to 14, through an iterative loop, the position and velocity of 
the particles are calculated using Equations (5) and (6). The algorithm exports the particle 
with the optimal position and its respective optimal transport cost. 

  

The exported values of the particle’s position, although satisfying demand and supply
constraints, were observed to be taking occasionally negative and/or fractional values.
These values cannot support the aspect of the solution since the values are quoted in
quantities (only positive values are allowed); therefore, appropriate modifications have
been made for the final form of the particle position.

Two sub-algorithms were designed to repair the algorithm, replacing negative and frac-
tional volumes with natural numbers without breaking the supply and demand conditions.
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Algorithm 2: Particle Swarm Optimization algorithm
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Algorithm 3 takes as input a matrix—particle(i). Position—that has negative values
in its cells. The aim is for the negative elements to be eliminated as in [17]. Through an
iterative process, which is illustrated in line 3, the algorithm checks each line of the cell
of the table and sets as neg the value of the cell with the negative value. Subsequently, it
searches the maximum element of the column where its negative element was found, as
shown in lines 5 and 6. The cardinal value of the negative value is subtracted from the cell
with the largest negative value, while the cell with the negative value is set to zero. In line
9, a cell is randomly selected from the row that corresponds to the negative element. If the
value is positive, the cardinal of the negative element is subtracted from it. Simultaneously,
a cell of this row is counterbalanced by adding to it the cardinal of the negative cell as
shown in line 13. Algorithm 3 exports the particle(i).Position with non-negative values,
while sustaining the supply and demand conditions.

Applying the above transformation, the result is a matrix with positive but also
fractional elements. Algorithm 4 takes as its input the matrix of particles’ positions after
removing the negative elements. In line 3, a new matrix named pos is defined as containing
the integer elements of matrix particle(i).Position. In line 4, a vector named sumrow is created
which contains the sum of each row of the pos matrix; while in line 5, a vector named
sumcol is created, containing the sum of each column. In lines 6 and 7, the differences
between the quantities of the Supply and sumrow and Demand and sumcol matrices are noted,
respectively, in order to record the quantities missing from the pos matrix. Then, through an
iterative loop, the u cell of s(u) is compared with the v cell of d(v). The minimum quantity
of these two is selected and entered into the pos matrix, reallocating the integer amounts in
an appropriate manner to satisfy the available supply and demand items. The algorithm
terminates when vectors s and v are zeroed and the integer quantities are inserted into pos
matrix, which is the output of Algorithm 4. The final solution is a non-negative integer
solution matrix satisfying the requested constraints.
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Algorithm 3: Negative values repair algorithm

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 36 
 

Algorithm 3: Negative values repair algorithm 

1. for k = 1:m 

2.    for l = 1:n 

3.        if particle(i).Position(k, l) < 0 

4.           Set neg = particle(i).Position(k, l) 

5.           Find the maximum element of the i-th column,  

             as max= (particle(i).Position(:, l)) 

6.           Find the exact position of the maximum element 

7.           Change the value of maximum  

             as particle(i).Position(a, b) = max_element − |neg| 

8.           Set the negative element particle(i).Position(k, l) = 0 

9.           Select a random number of the k-th row 

10.           l_count = 1 

11.           while ((j_count <= n) 

12.              if particle(i).Position(k, l_count) > 0 

13.                 Set particle(i).Position(k, l_count) = particle(i).Position(k, l_count) − |neg| 

                 

14.                 Balance one element in row k as:  

                  particle(i).Position(a, l_count) = particle(i).Position(a, l_count) + |neg| 

15.               end 

16.           l_count = l_count + 1 

17.           end 

18.         end 

19.     end 

20.  end 

Applying the above transformation, the result is a matrix with positive but also frac-

tional elements. Algorithm 4 takes as its input the matrix of particles’ positions after re-

moving the negative elements. In line 3, a new matrix named pos is defined as containing 

the integer elements of matrix particle(i).Position. In line 4, a vector named sumrow is cre-

ated which contains the sum of each row of the pos matrix; while in line 5, a vector named 

sumcol is created, containing the sum of each column. In lines 6 and 7, the differences be-

tween the quantities of the Supply and sumrow and Demand and sumcol matrices are noted, 

respectively, in order to record the quantities missing from the pos matrix. Then, through 

an iterative loop, the u cell of s(u) is compared with the v cell of d(v). The minimum quan-

tity of these two is selected and entered into the pos matrix, reallocating the integer 

amounts in an appropriate manner to satisfy the available supply and demand items. The 

algorithm terminates when vectors s and v are zeroed and the integer quantities are in-

serted into pos matrix, which is the output of Algorithm 4. The final solution is a non-

negative integer solution matrix satisfying the requested constraints.  

  

Algorithm 4: Amend fractions

Algorithms 2023, 16, x FOR PEER REVIEW 9 of 36 
 

Algorithm 4: Amend fractions 

1. Set as input particle(i).Position 

2. Enter Supply, Demand 

3. pos = floor(particle(i).Position) 

4. Set as sumrow the sum of the elements of the row.  

5. Set as sumcol the sum of the column’s elements 

6. Take s = Supply − sumrow 

7. Take d = Demand − sumcol 

8. for u = 1:m 

9.        for v = 1:n 

10.                If s(u) ≤ d(v) 

11.                      ww = min(s(u), d(v))  

12.                      pos(u, v) = pos(u, v) + ww 

13.                      d(v) = d(v) − s(u)  

14.                      s(u) = 0 

15.                else if d(v) < s(u) 

16.                       ww = min(s(u), d(v)) 

17.                       pos(u, v) = pos(u, v) + ww 

18.                       s(u) = s(u) − d(v) 

19.                      d(v) = 0 

20.                 end 

21.         end  

22. end 

23. Return particle(i).position = pos 

5. Variations of PSO 

This section presents two already-known and two new variations of the classical im-

plementation of the PSO, which are presented and used in this contribution to solve the 

TP. These variations are investigated in order to improve the performance of the classical 

PSO algorithm. 

5.1. Decreasing Weight Particle Swarm Optimization (DWPSO) 

The inertia weight w is the most influential parameter with respect to both the success 

rate and the function evaluation [18]. In DWPSO, the inertia factor is linearly decreasing. 

The decision to use this variation was not arbitrary; DWPSO is one of the classic and very 

effective PSO variations since its superiority remains imperishable over years. Through 

DWPSO, the algorithm focuses on diversity at former iterations and on convergence at 

latter ones [18]. The right and proper selection of the inertia weight provides a balance 

among global and local exploitation and results in fewer iterations, on average, to find a 

sufficiently optimal solution [19]. Exploitation is the capacity of particles to converge to 

the same peak of the objective function and remain there without wanting to obtain better 

solutions in their wider field. On the contrary, in the exploration condition, the particles 

are in constant search, discovering beneficial solutions. After constant research regarding 

the figurative of inertia weight, Shi and Eberhart concluded that values in the interval [0.9, 

1.2] have a positive effect on the improvement of the solution [20]. A linearly decreasing 

inertia weight with 𝑐1 = 2, 𝑐2 = 2  and w between 0.4 and 0.9 was used by Shi and 



Algorithms 2023, 16, 372 9 of 30

5. Variations of PSO

This section presents two already-known and two new variations of the classical
implementation of the PSO, which are presented and used in this contribution to solve the
TP. These variations are investigated in order to improve the performance of the classical
PSO algorithm.

5.1. Decreasing Weight Particle Swarm Optimization (DWPSO)

The inertia weight w is the most influential parameter with respect to both the success
rate and the function evaluation [18]. In DWPSO, the inertia factor is linearly decreasing.
The decision to use this variation was not arbitrary; DWPSO is one of the classic and very
effective PSO variations since its superiority remains imperishable over years. Through
DWPSO, the algorithm focuses on diversity at former iterations and on convergence at
latter ones [18]. The right and proper selection of the inertia weight provides a balance
among global and local exploitation and results in fewer iterations, on average, to find a
sufficiently optimal solution [19]. Exploitation is the capacity of particles to converge to
the same peak of the objective function and remain there without wanting to obtain better
solutions in their wider field. On the contrary, in the exploration condition, the particles are
in constant search, discovering beneficial solutions. After constant research regarding the
figurative of inertia weight, Shi and Eberhart concluded that values in the interval [0.9, 1.2]
have a positive effect on the improvement of the solution [20]. A linearly decreasing inertia
weight with c1 = 2, c2 = 2 and w between 0.4 and 0.9 was used by Shi and Eberhart, too.
According to their claim, wnew is the new inertia weight, which linearly decreases from 0.9
to 0.4.

Equation (7) for DWPSO is given as

wnew(t) = wmax −
(wmax − wmin)·t

tmax
, (7)

where wmax is set as 0.9, performing extensive exploration, and wmin is equal to 0.4,
performing more exploitation. Moreover, t is the current iteration of the algorithm and
tmax is the maximum number of iterations. A large portion of researchers’ results illustrate
that linearly decreasing in the inertia weight can greatly improve the performance of PSO,
having better results than the classic implementation of the algorithm.

5.2. Time-Varying Acceleration Coefficients (TVAC)

In population-based optimization methods, proper control of global and local explo-
ration is essential for the efficient identification of the optimum solution.

Rathweera et al. introduced the TVAC in PSO [11]. According to their research, the
cognitive parameter c1 starts with a high value and linearly decreases to a low value,
whereas the social parameter c2 starts with a low value and linearly increases to a high
value [21]. On the one hand, with a large value for the cognitive parameter and small value
for the social parameter at the beginning, particles are moving by their own experience
according to their own best positions, being able to move freely without following the mass.
On the other hand, a small value for the cognitive parameter and a large value for the social
parameter help the particles to escape from the area around their personal best positions and
allow them to enhance the global search in the latter stages of the optimization procedure,
converging toward the global optima. This concept can be mathematically represented as

c1 = c1i −
(

c1i − c1 f

)
· t
tmax

; (8)

c2 = c2i −
(

c2i − c2 f

)
· t
tmax

, (9)
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where c1i defines the value of c1 in the first iteration equal to 2.5 and c1 f defines the value
of c1 in the last iteration equal to 0.5. Respectively, the value of c2 in the first iteration is c2i
and is set to 0.5, while the value of c2 in the first iteration is c2 f and is set to 2.5 [21].

5.3. Trigonometric Acceleration Coefficients-PSO (TrigAC-PSO)

In this subsection, a new variation is introduced. According to this variation, the
impact of parameters c1 and c2 is extensively studied. First, each particle is guided by the
knowledge and experience gained by the swarm (the value of c2 is considerably bigger
than the value of c1). Next, relying on the learning mechanism, each particle builds its
own strategy and acquires its own experience (the value of c2 is becoming smaller while
the value of c1 is becoming bigger (see Equations (10) and (11)). This decrement of c2 and
increment of c1 take place until both parameters are equalized to 2 in the last generation of
the algorithm.

The following equations are used to calculate the cognitive and social acceleration
parameters:

c1 =
c1 f

2
+ sin

2·c1i·t
tmax

·π
2

; (10)

c2 = c2i + cos
c2 f ·π·t
2 ·tmax

− 1
2

. (11)

Here, in the first iteration, c1i, which is the personal acceleration value, is equal to 0.5,
while c2i, which is the social acceleration value, is equal to 3.5. In the last iteration of the
algorithm, both personal c1 f and social c2 f are equal to 2.

The value of inertia weight w varies according to the number of the current iteration t
and the number of maximum iterations tmax.

It is described as follows in Equation (12):

w =
tmax − t

tmax
. (12)

5.4. Four Sectors Varying Acceleration Coefficients PSO (FSVAC-PSO)

In the following section, a new variation is developed. This variation is novel and
comprises the major technical merit of this contribution. The major role in this variation
is the multiple changes of the coefficient parameters c1 and c2. In this case, the solution
is approached both from the knowledge of the particle and from the experience of the
whole swarm. The number of iterations is divided into four sectors. Starting from the first
iteration, the social and cognitive acceleration coefficient is initialized to 2. In the first sector
of iterations, the value of c1 is increasing while the value of c2 is decreasing. As a result, the
particle is mostly influenced by its own knowledge, while the influence of the swarm on it is
limited; in the second sector, the value of c1 is decreasing while the value of c2 is increasing
to an equilibrium between the knowledge of the particle gained at the previous sector and
the experience of the swarm; in the third sector, the value of c1 is decreasing while the value
of c2 is increasing—explicitly, the particles are allowed to move towards the global best
position, following the swarm’s movements; as a result, information about the global best is
reallocated to all the particles for more exploration before the swarm finally converges [11];
in the fourth sector, the particles head toward both their own personal best and global best
observed by the whole swarm—the concept of this variation is based on the combination of
all types of different searching behaviors, as they arise for different values of the coefficient
acceleration parameters, culminating in equilibrium between exploitation and exploration
of the search space; finally, in the last iteration, the two coefficient parameters are equated.

The formulation is represented in detail below:

• In the first Iteration, as already mentioned:

c1 = 2
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c2 = 2;

• In the first sector:

c1 =
(2·c1 f −c1i)·t

tmax
− 1

c2 = c2i
2·c2 f

· t
tmax

 (13)

where c1i = 2, c1 f = 3,c2i = 2 and c2 f = 1;
• In the second sector:

c1 =
c1 f ·c1i ·t
2·tmax

− 1

c2 = 0.5 +
c2 f +c2i

2 · t
tmax

}
(14)

where c1i = 3, c1 f = 2, c2i = 1 and c2 f = 2;
• In the third sector:

c1 = 3
2 − (c1i−c1 f )·t

tmax

c2 = 0.5 + 2·c2i+1
c2 f

· t
tmax

, (15)

where c1i = 2, c1 f = 0.5, c2i = 2 and c2 f = 2.5;
• In the fourth sector:

c1 =
(4c1i+c1 f )·t

tmax
c2 = 3

2 + (c2 f − c2i)· t
tmax

}
, (16)

where c1i = 0.5, c1 f = 2, c2i = 2.5 and c2 f = 2;
• In the last iteration:

c1 = 2

c2 = 2.

In the above formulations, c1i, c1 f , c2i and c2 f are initial and final values of cognitive
and social components acceleration factors, respectively. To improve the solution quality,
these coefficients are updated in such a way that the values increase and decrease at a
steady pace. According to this approach, the solution avoids being trapped into a local
optimum, as shown by the experimental results presented in Section 6.

As for the inertia weight w, Equation (12) is used to provide the necessary momentum
for particles to roam across the search space.

6. Case Studies and Experimental Results

In this section, the proposed variations of the PSO algorithm are applied in thirty two
well-known numerical examples of the TP, as shown in Table 1. The numerical examples of
this study come from the research of B. Amaliah, who compared five different methods,
which will be presented briefly below, regarding their performance in solving the TP [22].

Vogel’s Approximation Method (VAM) is an iterative procedure such that in each step,
proper penalties for each available row and column are taken into account through the
least cost and the second-least cost of the transportation matrix [22]. The Total Differences
Method 1 (TDM1) was introduced by Hosseini in 2017. The method is based on VAM’s
innovation to use penalties for all rows and columns of the transportation matrix. The
TDM1 was developed by calculating penalty values only for rows of the transportation
matrix [23]. Amaliah et al., in 2019, represented their new method, known as the Total
Opportunity Cost Matrix Minimal Cost (TOCM-MT). This method has a mechanism with
which to check the value of the least-cost cell before allocating the maximum units xij; this
is in contradiction to the TDM1, which directly allocates the maximum units xij to the least
cost [24]. Juman and Hoque, in 2015, developed a formulation method called the Juman
and Hoque method (JHM). Their study is based on the distribution of supply and demand
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quantities, taking into account the two minimum-cost cells and their redistribution through
penalties [25]. Finally, the last method presented is known as the Bilqis Chastine Erma
Method (BCE), which constitutes an enhanced version of the JHM [26].

Table 1. Detail of 32 numerical examples of the TP.

No From Journal Name Problem Size Optimal Solution

1 Srinivasan and Thompson (1977) Pr.1 3·4 880
2 Deshmukh (2012) Pr.2 3·4 743
3 Ramadan and Ramadan (2012) Pr.3 3·3 5600
4 Schrenk et al. (2011) Pr.4 3·4 59
5 Samuel (2012) Pr.5 3·4 28
6 Imam et al. (2009) Pr.6 3·4 435
7 Adlakha and Kowalski (2009) Pr.7 4·5 390
8 Kaur et al. (2018) Pr.8 3·5 1580
9 G. Patel et al. (2017) Pr.9 4·4 49
10 Ahmed et al. (2016b) Pr.10 4·4 410
11 Ahmed et al. (2016b) Pr.11 3·4 2850
12 Ahmed et al. (2016a) Pr.12 3·5 183
13 Uddin and Khan (2016) Pr.13 3·4 799
14 Uddin and Khan (2016) Pr.14 3·5 273
15 Das et al. (2014a) Pr.15 3·4 1160
16 Khan et al. (2015a) Pr.16 3·4 200
17 Azad and Hossain (2017) Pr.17 3·4 240
18 Morade (2017) Pr.18 3·3 820
19 Jude (2016) Pr.19 3·4 190
20 Jude (2016) Pr.20 4·4 83
21 Hosseini (2017) Pr.21 3·4 3460
22 Amaliah et al. (2019) Pr.22 3·4 910
23 Amaliah et al. (2019) Pr.23 4·4 1670
24 Amaliah et al. (2019) Pr.24 4·4 2280
25 Amaliah et al. (2019) Pr.25 3·4 2460
26 Amaliah et al. (2019) Pr.26 3·3 291
27 Juman and Hoque (2015) Pr.27 3·3 4525
28 Juman and Hoque (2015) Pr.28 3·4 920
29 Juman and Hoque (2015) Pr.29 3·4 809
30 Juman and Hoque (2015) Pr.30 3·4 417
31 Juman and Hoque (2015) Pr.31 4·5 3458
32 Juman and Hoque (2015) Pr.32 4·6 109

The whole algorithmic approach was implemented using MATLAB R2021b. The algo-
rithm was tested on a set of different dimensional problems. All parameters of the proposed
algorithm were selected after exhaustive experimental testing. Each of the four variations
was tested using different parameter values, and those values whose computational results
were superior to other values were selected. The number of iterations is set to 100. The
parameter r1 is set as a random number derived from the uniform distribution in range
[0, 1], and r2 is set as the complement of r1; that is, r2 = 1 − r1. This modification plays a
significant part as it is different from the customary application where both r1 and r2 are
randomly derived uniformly from range [0, 1]. Using the former relationship between r1
and r2, we manage to achieve stronger control over these parameters’ values.

In the following table (Table 2) and Figure 1, the performance of both the exact methods
and the PSO-based ones are presented for 30 Monte Carlo runs; more precisely, the best
value achieved by each method is depicted. The last column presents the optimal solution
of each numerical problem. As shown, the Vogel method manages to find 9 out of the
32 test instances (28.13%); the Total Differences Method 1 (TDM1) succeeds in finding more
optimal solutions than the Vogel method by finding 13 out of 32 optimal solutions (40.63%);
using the TOCM-MT method, the results show that the method’s performance is better
still, finding the optimum in 23 out of 32 test instances (71.9%); the JHM method, which
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accumulated 21 optimal solutions, was less effective than TOCM-MT (65.62%); the BCE
method, which achieved 27 out of 32 test instances (84.4%), proved to be the most efficient
compared to all previously mentioned methods; the classic PSO, the TVAC, the TrigAC-PSO
and the FSVAG-PSO achieve the optimum in 31 out of 32 test instances (96.88%), while the
PWPSO achieves the optimum in 30 out of the 32 (93.76%).

Table 2. The optimal solution of each method for the 32 test instances.

No. Name VAM TDM1 T0CM-MT JHM BCE PSO DWPSO TVAC TrigAC-PSO FSVAC Optimal
(Op)

1 Pr.1 955 880 880 880 880 880 880 880 880 880 880
2 Pr.2 779 779 743 743 743 743 743 743 743 743 743
3 Pr.3 5600 5600 5600 5600 5600 5600 5600 5600 5600 5600 5600
4 Pr.4 59 59 61 59 59 59 59 59 59 59 59
5 Pr.5 28 28 28 28 28 28 28 28 28 28 28
6 Pr.6 475 475 435 460 435 435 435 435 435 435 435
7 Pr.7 390 400 390 390 390 390 390 390 390 390 390
8 Pr.8 1600 1595 1580 1580 1580 1580 1580 1580 1580 1580 1580
9 Pr.9 49 53 53 49 49 49 49 49 49 49 49

10 Pr.10 470 435 435 420 410 410 411 410 410 410 410
11 Pr.11 2850 2850 2850 2850 2850 2850 2850 2850 2850 2850 2850
12 Pr.12 187 186 187 183 187 183 183 183 183 183 183
13 Pr.13 859 859 799 799 799 799 799 799 799 799 799
14 Pr.14 273 273 273 273 273 290 273 273 273 273 273
15 Pr.15 1220 1160 1160 1170 1170 1160 1160 1160 1160 1160 1160
16 Pr.16 204 200 200 218 204 200 200 200 200 200 200
17 Pr.17 248 248 240 240 240 240 240 240 240 240 240
18 Pr.18 820 820 820 820 820 820 820 820 820 820 820
19 Pr.19 190 190 190 190 192 190 190 190 190 190 190
20 Pr.20 92 83 83 83 83 83 83 83 83 83 83
21 Pr.21 3520 3570 3460 3460 3460 3460 3460 3460 3460 3460 3460
22 Pr.22 990 990 910 960 910 910 910 910 910 910 910
23 Pr.23 1680 1670 1670 1690 1670 1670 1670 1670 1670 1670 1670
24 Pr.24 2400 2400 2400 2340 2280 2280 2286 2281 2284 2288 2280
25 Pr.25 2980 2980 2500 2500 2460 2460 2460 2460 2460 2460 2460
26 Pr.26 327 291 291 327 291 291 291 291 291 291 291
27 Pr.27 5125 4550 5225 4525 4525 4525 4525 4525 4525 4525 4525
28 Pr.28 960 960 930 920 920 920 920 920 920 920 920
29 Pr.29 859 849 809 809 809 809 809 809 809 809 809
30 Pr.30 476 465 417 417 417 417 417 417 417 417 417
31 Pr.31 3778 3572 3513 3487 3487 3458 3458 3458 3458 3458 3458
32 Pr.32 112 117 109 112 109 109 109 109 109 109 109
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Figure 1. The number of optimal solutions that every method achieved.
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One significant finding of our research is that the new PSO variation, TrigAC-PSO,
which is first presented in this study, achieved very good results. The following table
(Table 3) examines the deviation of VAM, TDM1, TOCM-MT, JHM, BCE, PSO, DuPSO,
TVAC, TrigAC-PSO and FSVAC-PSO. The measurement of deviation shows the difference
between the observed value and the expected value of a variable, and it is given by the
following formula:

Dev =
xij − optimal

optimal
, (17)

where xij is the current solution.

Table 3. The deviation (dev) of the methods for 32 numerical examples.

VAM TDM1 TOCMMT JHM BCE PSO DWPSO TVAC TrigAC-
PSO FSVAC

Pr.01 0.085227 0 0 0 0 0 0 0 0 0
Pr.02 0.048452 0.048452 0 0 0 0 0 0 0 0
Pr.03 0 0 0 0 0 0 0 0 0 0
Pr.04 0 0 0.033898 0 0 0 0 0 0 0
Pr.05 0 0 0 0 0 0 0 0 0 0
Pr.06 0.091954 0.091954 0 0.057471 0 0 0 0 0 0
Pr.07 0 0.025641 0 0 0 0 0 0 0 0
Pr.08 0.012658 0.009494 0 0 0 0 0 0 0 0
Pr.09 0 0.081633 0.081633 0 0 0 0 0 0 0
Pr.10 0.146341 0.060976 0.060976 0.02439 0 0 0.002439 0 0 0
Pr.11 0 0 0 0 0 0 0 0 0 0
Pr.12 0.021858 0.016393 0.021858 0 0.021858 0 0 0 0 0
Pr.13 0.075094 0.075094 0 0 0 0 0 0 0 0
Pr.14 0 0 0 0 0 0.062271 0 0 0 0
Pr.15 0.051724 0 0 0.008621 0.008621 0 0 0 0 0
Pr.16 0.02 0 0 0.09 0.02 0 0 0 0 0
Pr.17 0.0333 0.0333 0 0 0 0 0 0 0 0
Pr.18 0 0 0 0 0 0 0 0 0 0
Pr.19 0 0 0 0 0.010526 0 0 0 0 0
Pr.20 0.108434 0 0 0 0 0 0 0 0 0
Pr.21 0.017341 0.031792 0 0 0 0 0 0 0 0
Pr.22 0.087912 0.087912 0 0.054945 0 0 0 0 0 0
Pr.23 0.005988 0 0 0.011976 0 0 0 0 0 0
Pr.24 0.052632 0.052632 0.052632 0.026316 0 0 0.002632 0.000439 0.001754 0.003509
Pr.25 0.211382 0.211382 0.01626 0.01626 0 0 0 0 0 0
Pr.26 0.123711 0 0 0.123711 0 0 0 0 0 0
Pr.27 0.132596 0.005525 0.154696 0 0 0 0 0 0 0
Pr.28 0.043478 0.043478 0.01087 0 0 0 0 0 0 0
Pr.29 0.061805 0.049444 0 0 0 0 0 0 0 0
Pr.30 0.141487 0.115108 0 0 0 0 0 0 0 0
Pr.31 0.092539 0.032967 0.015905 0.008386 0.008386 0 0 0 0 0
Pr.32 0.027523 0.073394 0 0.027523 0 0 0 0 0 0
Average 0.05292 0.03583 0.014023 0.01405 0.002168 0.001946 0.000158 0.000013 0.000054 0.00011

Considering Table 3 and Figure 2, it is evident that method VAM, TDM1, TOCM-MT
and 1HM appear to be more inefficient, deviating from the optimal solution at a significant
scale. More precisely, the results of Table 3 show that the solutions achieved by VAM
differ from the optimal solution by 5.29%, the results of TDM1 by 3.58%, the results of
TOCM-MT by 1.4% and the results of JHM by 1.4%. BCE method presented higher levels
of efficiency since the values of deviation were negligible. Analysis of the data of Table 3
reveals that the percentage of the deviation in classic PSO, as well as in its variations, was
almost zero. Furthermore, the TVAC method was nearest to the optimal solution, followed
by TrigAC-PSO, FSVAC-PSO and finally by DWPSO.
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The findings from the current study provide us with the basic information for an
extensive meta-analysis, allowing us to investigate which of the presented PSO variations
has better performance in solving the TP. To serve this cause, many experiments were
carried out which investigated different values of PSO population size (number of particles).
The classic PSO, as well as each one of its variations (DWPSO, TVAC, TrigAC-PSO, FSVAC-
PSO), were tested for 10, 15 and 20 particles for all 32 numerical examples. The results
presented in Tables 4–6 show the performance of the classic PSO as well of its variations for
30 independent runs. The number of generations was stable and equal to 100 for all runs.

Evidence from this study, presented in Table 4, expounds the accuracy rate of each
algorithm for 10 particles. The accuracy rate is given by the following formulation:

Accuracy =
TOR
TR

, (18)

where TOR is the total number of runs where optimal solution was found and TR is the
number of runs.

Table 4 shows that the classic PSO obtained 38.33% accuracy rate. A significant increase
in accuracy rate, using 10 particles, was evident in DWPSO, which achieved 59.58% accuracy,
almost twice as much as the percentage of the classic PSO. Moreover, TVAC obtain a 61.45%
accuracy rate. The best results came from TrigAC-PSO, since this PSO variation achieved a
62.81% accuracy rate. Last but not least, FSVAC achieved a 59.5% accuracy rate.

Table 4. Accuracy of PSO, DWPSO, TVAC, TrigAC-PSO and FSVAC for 10 particles.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Pr.01 0.0333 0.2 0.4666 0.5667 0.2333
Pr.02 0.7667 1 1 1 1
Pr.03 1 1 1 1 1
Pr.04 1 1 1 1 1
Pr.05 0.2333 0.6667 0.8333 0.8667 0.8333
Pr.06 0.3667 1 0.9667 1 1
Pr.07 0.7667 0.9 1 1 0.9
Pr.08 0 0 0.2667 0.1667 0.1334
Pr.09 0.0333 0.3 0.2 0.2667 0.1
Pr.10 0 0 0.0333 0 0.0333
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Table 4. Cont.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Pr.11 0.1 0.1 0.1333 0.1 0.0667
Pr.12 0 0.3 0.4 0.4667 0.3667
Pr.13 0.5334 1 1 0.8667 1
Pr.14 0 0 0 0.3333 0
Pr.15 0.7 1 1 1 1
Pr.16 0 0.4667 0.4667 0.6667 0.5667
Pr.17 0.4333 0.9 0.9333 0.9 0.8333
Pr.18 1 1 1 1 1
Pr.19 0.4667 0.7 0.7667 0.5 0.7333
Pr.20 0.4667 0.8333 0.6667 0.8667 0.7667
Pr.21 0.5667 0.5333 0.3333 0.5333 0.3939
Pr.22 0.3667 1 0.9667 0.8333 1
Pr.23 0.0333 0.0333 0.1667 0.1667 0.1667
Pr.24 0 0 0 0 0
Pr.25 0.5333 0.9667 0.9333 0.9667 1
Pr.26 0.4667 0.6 0.7 0.7 0.7333
Pr.27 0.0333 0.4667 0.5667 0.4 0.4667
Pr.28 0.2 0.2667 0.0667 0.2 0
Pr.29 0.8333 1 1 1 1
Pr.30 0.8667 1 1 1 1
Pr.31 0.4 0.8333 0.7 0.7 0.7
Pr.32 0.0667 0 0 0.0333 0
Average 0.383338 0.595834 0.611459 0.6281313 0.594603

The accuracy rate results for 15 particles are presented in Table 5. DWPSO achieved
65.31% accuracy, whereas TVAC reached 66.99%. It is of particular interest that TrigAC-PSO
achieved the highest accuracy rate once again by reaching 69.8%. Finally, FSVAC obtained
an accuracy rate equal to 66.56%.

Table 5. Accuracy of PSO, DWPSO, TVAC, TrigAC-PSO and FSVAC for 15 particles.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Pr.01 0.0667 0.6 0.6333 0.6333 0.4333
Pr.02 0.9667 1 1 1 1
Pr.03 1 1 1 1 1
Pr.04 1 1 1 1 1
Pr.05 0.7 0.9 1 1 1
Pr.06 0.7 1 0.9667 1 1
Pr.07 0.7667 1 1 0.9667 0.9667
Pr.08 0 0.0667 0.3333 0.1667 0.0333
Pr.09 0.0667 0.2333 0.2333 0.2 0.1333
Pr.10 0.2667 0 0 0.0667 0
Pr.11 0.2333 0.0667 0.3 0.2 0.0333
Pr.12 0.1 0.4 0.4333 0.3333 0.2
Pr.13 0.5667 1 1 0.9667 1
Pr.14 0 0.0333 0 0.0667 0.1
Pr.15 0.3 0.9333 0.9667 1 1
Pr.16 0 0.6 0.5 0.9333 0.5333
Pr.17 0.5667 0.9 1 0.9667 1
Pr.18 1 1 1 1 1
Pr.19 0.5333 0.9 0.9 0.6667 1
Pr.20 0.6334 0.9667 0.8667 0.9333 1
Pr.21 0.6667 0.4333 0.6667 1 0.4667
Pr.22 0.6 1 1 1 1
Pr.23 0.0667 0.2 0.3667 0.2333 0.2
Pr.24 0.6666 0 0 0 0
Pr.25 0.6333 1 0.8333 1 1
Pr.26 0.3333 1 0.8 0.6667 1
Pr.27 0.3667 0.4 0.4667 0.8333 1
Pr.28 0.3333 0.1333 0.1 0.3333 0.1667
Pr.29 1 1 1 1 1
Pr.30 0.9333 1 1 1 1
Pr.31 0.3667 1 0.9333 1 1
Pr.32 0.1333 0.1333 0.1 0.1667 0.0333
Average 0.486463 0.653122 0.669894 0.69791875 0.665622
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The accuracy rate results for 20 particles are presented in Table 6 and Figure 3. A
high percentage of 53.33% was obtained by the classic PSO. Between DWPSO and TVAC,
it is evident that both rates were sufficiently close, with accuracy rates ascending up to
66.78% and 66.56%, respectively. FSVAC, the variation which has been proposed and
presented in this research, achieved accuracy rate equal to 66%. This new method evinced
positive effects in terms of its validity and effectiveness. Last but not least, TrigAC-PSO
demonstrated the best performance compared to all other variations, achieving 74.3%.
Running the algorithm using 20 particles, TrigAC-PSO found the optimal in 31 out of
32 test instances, reaching 96.88%. Moreover, in 20 out of 32 numerical examples, this
variation managed to reach the optimum in all 30 runs, with a success rate of 62.5%. The
punctuality of this method rises to 75%; hence, this variation is established, compared to
other variations, as the ideal option for the solution of the TP.

Table 6. Accuracy of PSO, DWPSO, TVAC, TrigAC-PSO and FSVAC for 20 particles.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Pr.01 0.1 0.6667 0.7333 0.7 0.6
Pr.02 1 1 1 1 1
Pr.03 1 1 1 1 1
Pr.04 1 1 1 1 1
Pr.05 0.7333 1 1 1 1
Pr.06 0.5667 1 1 0.9667 1
Pr.07 0.9 0.9667 0.9667 1 1
Pr.08 0.0667 0.2333 0.3 0.0667 0.1
Pr.09 0.0333 0.4 0.2 0.3333 0.4
Pr.10 0.2 0 0 0.1333 0.0667
Pr.11 0.3333 0.3 0.2 0.4 0.1
Pr.12 0.2333 0.5 0.4667 0.5333 0.7
Pr.13 0.8333 1 1 1 1
Pr.14 0 0.0333 0.0333 0.3 0.1
Pr.15 0.6667 1 0.9667 1 1
Pr.16 0.0333 0.6667 0.7 1 0.6
Pr.17 0.5333 0.9 1 1 1
Pr.18 1 1 1 1 1
Pr.19 0.5333 0.6333 0.5 0.6333 1
Pr.20 1 1 0.9333 0.9333 0.9667
Pr.21 0.7333 0.4 0.9 1 0.3
Pr.22 0.5333 1 0.9 1 0.3
Pr.23 0.1 0.3333 0.3333 0.7333 0.4667
Pr.24 0.0667 0 0 0 0
Pr.25 0.8333 1 1 1 0.9667
Pr.26 0.6667 1 1 1 1
Pr.27 0.4667 0.1333 0 0.6 0.2667
Pr.28 0.4667 0.1 0.1 0.2 0.1
Pr.29 1 1 1 1 1
Pr.30 0.8667 1 1 1 1
Pr.31 0.3667 1 1 1 1
Pr.32 0.2 0.1 0.0667 0.2333 0.0667
Average 0.533331 0.667706 0.665625 0.7427031 0.659381

Algorithms 2023, 16, x FOR PEER REVIEW 20 of 36 
 

Pr.15 0.6667 1 0.9667 1 1

Pr.16 0.0333 0.6667 0.7 1 0.6

Pr.17 0.5333 0.9 1 1 1

Pr.18 1 1 1 1 1

Pr.19 0.5333 0.6333 0.5 0.6333 1

Pr.20 1 1 0.9333 0.9333 0.9667

Pr.21 0.7333 0.4 0.9 1 0.3

Pr.22 0.5333 1 0.9 1 0.3

Pr.23 0.1 0.3333 0.3333 0.7333 0.4667

Pr.24 0.0667 0 0 0 0

Pr.25 0.8333 1 1 1 0.9667

Pr.26 0.6667 1 1 1 1

Pr.27 0.4667 0.1333 0 0.6 0.2667

Pr.28 0.4667 0.1 0.1 0.2 0.1

Pr.29 1 1 1 1 1

Pr.30 0.8667 1 1 1 1

Pr.31 0.3667 1 1 1 1

Pr.32 0.2 0.1 0.0667 0.2333 0.0667

Average 0.533331 0.667706 0.665625 0.7427031 0.659381

 
Figure 3. Accuracy for 20 particles. 

In summary, the proposed method FSVAC-PSO, although it did not demonstrate 
the highest average success rate, was very accurate in calculating the optimal solution in 
cases where the aforementioned variations were unable to approach the optimal solu-
tion. In more detail, this research experimented on population sizes of 10, 15, 20 particles 
over 32 well-known test instances used in the respective literature. For each problem, as 

0

0.2

0.4

0.6

0.8

1

1.2

Pr
.0

1
Pr

.0
2

Pr
.0

3
Pr

.0
4

Pr
.0

5
Pr

.0
6

Pr
.0

7
Pr

.0
8

Pr
.0

9
Pr

.1
0

Pr
.1

1
Pr

.1
2

Pr
.1

3
Pr

.1
4

Pr
.1

5
Pr

.1
6

Pr
.1

7
Pr

.1
8

Pr
.1

9
Pr

.2
0

Pr
.2

1
Pr

.2
2

Pr
.2

3
Pr

.2
4

Pr
.2

5
Pr

.2
6

Pr
.2

7
Pr

.2
8

Pr
.2

9
Pr

.3
0

Pr
.3

1
Pr

.3
2

PSO DWPSO TVAC FSVAC TrigAC-PSO

Accuracy of 20 Particles

Figure 3. Accuracy for 20 particles.



Algorithms 2023, 16, 372 18 of 30

In summary, the proposed method FSVAC-PSO, although it did not demonstrate the
highest average success rate, was very accurate in calculating the optimal solution in cases
where the aforementioned variations were unable to approach the optimal solution. In
more detail, this research experimented on population sizes of 10, 15, 20 particles over
32 well-known test instances used in the respective literature. For each problem, as already
mentioned, 30 independent experimental runs were conducted. In the case of 10 particles,
the classical PSO found the optimal solution in only in 3 out of 32 test instances in all
30 runs (9.4%); DWPSO found the optimal solution in 10 out of 32 test instances in all
30 runs (31.25%); while TVAC and Trig-PSO managed to find the optimal solution in 9 out
of 32 test instances in all 30 runs (28.13%); finally, FSVAC was shown to be the best PSO
variation, finding the optimal solution in 11 out of 32 test instances in all 30 runs (34.4%).

In the case of 15 particles, FSVAC also showed the best performance by finding in the
optimal solution in 18 out of 32 test instances in all 30 runs (56.25%); the classic PSO found
the optimal solution in 4 out of 32 (12.5%) test instances, and TVAC in 11 out of 32, in all
30 runs; last but not least, both DWPSO and TrigAC-PSO found the optimal value in 13 out
of 32 test instances in all 30 runs (40.63%).

In the case of 20 particles, the variations TrigAC-PSO and FSVAC are still more accurate
than the other PSO variations since they succeeded in finding the optimal solution in 18 out
of 32 and in 17 out of 32 test instances in all 30 runs, respectively. The other PSO variations
attained relatively lower success rates in finding the optimal solution in all of their runs.

In the following table (Table 7), the most important statistical measures in the cases
of 20 particles for 30 independent runs are represented for all PSO variations. These
experimental results demonstrate the very good performance and stability of the proposed
PSO variations in solving the TP. As presented, in all cases, the mean value is very close to
the best one, showing that all these variations are not only efficient but also quite stable.
The value of the Coefficient of Variation (CV), which is the basic measure for proving
stability of stochastic algorithms, is, for all PSO variations, quite small; more precisely, the
mean CV value is for each PSO variation is as follows: Classic PSO, 2.12%; DWPSO, 1.32%;
TVAC, 0.87%; TrigAC-PSO, 0.66%; and FSVAC, 1.26%. These values show that TrigAC-PSO,
which is one of the new PSO variations presented in this work, is the most stable one.

Table 7. Statistical measures for 20 particles.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Pr.01

Mean 894.7666 884.3 883.6 882.86667 884.4
St.Dev 22.51847 10.61278 11.2544 7.41263 8.76356
Min 880 880 880 880 880
Max 965 928 940 910 917
cv% 2.51668658 1.200133 1.273701 0.8396096 0.990905

Pr.02

Mean 743 743 743 743 743
St.Dev 0 0 0 0 0
Min 743 743 743 743 743
Max 743 743 743 743 743
cv% 0 0 0 0 0

Pr.03

Mean 5600 5600 5600 5600 5600
St.Dev 0 0 0 0 0
Min 5600 5600 5600 5600 5600
Max 5600 5600 5600 5600 5600
cv% 0 0 0 0 0

Pr.04

Mean 59 59 59 59 59
St.Dev 0 0 0 0 0
Min 59 59 59 59 59
Max 59 59 59 59 59
cv% 0 0 0 0 0

Pr.05

Mean 28.266666 28 28 28 28
St.Dev 0.4497764 0 0 0 0
Min 28 28 28 28 28
Max 29 28 28 28 28
cv% 1.591190254 0 0 0 0
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Table 7. Cont.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Pr.06

Mean 441.1333333 435 435 435 435
St.Dev 7.619092775 0 0 0 0
Min 435 435 435 435 435
Max 463 435 435 435 435
cv% 1.72716324 0 0 0 0

Pr.07

Mean 391.5 390.0333 390.4667 390 390
St.Dev 5.015493237 0.182574 2.55603 0 0
Min 390 390 390 390 390
Max 410 391 404 390 390
cv% 1.281096612 3.290831 0.654611 0 0

Pr.08

Mean 1650.933333 1593.033 1598.7 1592.1333 1629.533
St.Dev 44.7667775 17.95873 23.31367 12.23824 40.14347
Min 1580 1580 1580 1580 1580
Max 1790 1642 1661 1623 1712
cv% 2.711604194 1.127329 1.45829 0.7686698 2.463495

Pr.09

Mean 52.6 51.3 52.06667 51.6 51.16667
St.Dev 2.40114915 2.768667 1.79910 1.90462 1.89524
Min 49 109 49 49 49
Max 63 122 55 53 53
cv% 4.564922339 5.397012 3.455389 3.6911285 3.704062

Pr.10

Mean 427.4333333 427.7667 428.1 428.3 425.8
St.Dev 8.935336025 4.38401 5.16853 6.25410 5.71386
Min 410 411 411 410 410
Max 434 431 431 432 430
cv% 2.09046308 1.02486 1.20732 1.4602153 1.341913

Pr.11

Mean 2913.833333 2934.8 2864.633 2857.1 3036.767
St.Dev 186.8538214 220.8248 226.892 11.66885 380.4261
Min 2850 2850 2850 2850 2850
Max 3850 3945 2977 2891 4554
cv% 6.412646162 7.524358 1.117014 0.4084159 12.52734

Pr.12

Mean 190.5666667 184.4333 186.0333 184.33333 183.9
St.Dev 7.623391106 1.50134 4.60496 1.49327 1.39827
Min 183 183 183 183 183
Max 206 186 200 186 186
cv% 4.00038015 0.814029 2.475347 0.8100976 0.760345

Pr.13

Mean 805.3666667 799 799 799 799
St.Dev 16.77535823 0 0 0 0
Min 799 799 799 799 799
Max 878 799 799 799 799
cv% 2.082946678 0 0 0 0

Pr.14

Mean 319.9333333 302.2 290.4 290.1 292.2667
St.Dev 21.78251962 17.70525 6.69328 16.159442 8.10250
Min 292 273 273 273 273
Max 378 335 317 327 306
cv% 6.808455809 5.858785 2.304849 5.5703008 2.772298

Pr.15

Mean 1186.1 1160 1160.067 1160 1160
St.Dev 73.12122669 0 0.36514 0 0
Min 1160 1160 1160 1160 1160
Max 1401 1160 1162 1160 1160
cv% 6.164845012 0 0.031476 0 0

Pr.16

Mean 217.1333333 202.9667 202.7333 200 203.2333
St.Dev 7.946950546 5.979755 6.53338 0 6.76034
Min 200 200 200 200 109
Max 237 218 220 200 119
cv% 3.659940381 2.946176 3.222647 0 3.326397

Pr.17

Mean 244.6333333 241.6667 240 240 240
St.Dev 6.025711195 5.195046 0 0 0
Min 240 240 240 240 240
Max 256 259 240 240 240
cv% 2.463160319 2.149674 0 0 0
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Table 7. Cont.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Pr.18

Mean 820 820 820 820 820
St.Dev 0 0 0 0 0
Min 820 820 820 820 820
Max 820 820 820 820 820
cv% 0 0 0 0 0

Pr.19

Mean 190.8 190.7 190.9333 190.56667 190
St.Dev 0.924755326 0.952311 0.98026 0.81720 0
Min 190 190 190 190 190
Max 192 192 192 192 190
cv% 0.484672603 0.499377 0.513407 0.4288264 0

Pr.20

Mean 83 83 83.3 83.2 83.1
St.Dev 0 0 0.91538 0.761124 0.54772
Min 83 83 83 83 83
Max 83 83 86 86 86
cv% 0 0 1.098902 0.914813 0.659113

Pr.21

Mean 3484.5 3536.467 3468.2 3460 3536.1
St.Dev 58.99371679 71.42864 34.7804 0 63.5839
Min 3460 3460 3460 3460 3460
Max 3745 3646 3645 3460 3644
cv% 1.693032481 2.019774 1.00284 0 1.798138

Pr.22

Mean 928.3 910 913.6 910 910
St.Dev 28.61534433 0 14.8686 0 0
Min 910 910 910 910 910
Max 990 910 990 910 910
cv% 3.08255352 0 1.627476 0 0

Pr.23

Mean 1679.1 1671.133 1670.733 1671 1671.367
St.Dev 14.23291474 1.136642 0.58329 2.34888 2.02541
Min 1670 1670 1670 1670 1670
Max 1724 1675 1672 1679 1678
cv% 0.847651405 0.068016 0.034912 0.1405674 0.121183

Pr.24

Mean 2403.966667 2366.4 2372.8 2361.5667 2333.833
St.Dev 44.98005944 29.09627 31.0332 18.34287 117.1320
Min 2280 2317 2320 2322 2292
Max 2495 2430 2424 2390 2420
cv% 1.871076669 1.229559 1.307874 0.7767247 1.47626

Pr.25

Mean 2468.766667 2460 2460 2460 2460
St.Dev 24.21695521 0 0 0 0
Min 2460 2460 2460 2460 2460
Max 2563 2460 2460 2460 2460
cv% 0.980933335 0 0 0 0

Pr.26

Mean 292.6 291 291 291 291
St.Dev 2.485821865 0 0 0 0
Min 291 291 291 291 291
Max 299 291 291 291 291
cv% 0.84956318 0 0 0 0

Pr.27

Mean 4574.233333 4639.967 4666.433 4535 4634.9
St.Dev 73.42821187 60.22915 29.96973 18.34910 67.4073
Min 4525 4525 4529 4525 4525
Max 4753 4675 4677 4585 4675
cv% 1.605257243 1.298051 0.642241 0.4046109 1.454343

Pr.28

Mean 941.7 953.3667 953.0667 947.26667 947.9667
St.Dev 22.49314072 19.67404 13.35957 17.26454 13.60396
Min 920 920 920 920 920
Max 974 992 960 960 968
cv% 2.38856756 2.063638 1.401746 1.8225639 1.435068

Pr.29

Mean 809 809 809 809 809
St.Dev 0 0 0 0 0
Min 809 809 809 809 809
Max 809 809 809 809 809
cv% 0 0 0 0 0
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Table 7. Cont.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Pr.30

Mean 419.5333333 417 417 417 417
St.Dev 7.103827688 0 0 0 0
Min 417 417 417 417 417
Max 445 417 417 417 417
cv% 1.693268955 0 0 0 0

Pr.31

Mean 3480.066667 3458 3458 3458 3458
St.Dev 33.27620392 0 0 0 0
Min 3458 3458 3458 3458 3458
Max 3587 3458 3458 3458 3458
cv% 0.956194438 0 0 0 0

Pr.32

Mean 114.3 116.9333 114.4333 114.7 118.4333
St.Dev 3.761419395 4.532894 3.549485 3.77057 4.44648
Min 109 109 109 109 109
Max 122 125 127 119 125
cv% 3.290830616 3.876477 3.101794 3.2873372 3.754424

The above results urged us to continue the research for an even greater number of
particles, in order to study the behavior of new variations in a multi-solution environment.

More specifically, the aforementioned variations were also tested on the set of 40 and
50 particles. In this case, 10 independent runs were carried out for each test instance,
reducing the chances of finding the optimal solution from the 30 independent runs that we
have already performed. Selecting more particles revealed significant results.

The results showed, once again, the consistent superiority of the proposed variations.
Table 8 and Figure 4 shows the accuracy achieved by each variation for 40 particles. These
results provide further support for the hypothesis that TrigAC-PSO and FSVAC are still
more accurate than the other PSO variations, since they attained accuracy rates 88.31% and
77.5%, respectively; the DWPSO method follows with 75.94%, and TVAC with 74.38%; last
but not least is the classic PSO with 51.56%, attaining a spectacular 13% increase over the
10-particle accuracy rates, but maintaining a steady performance for 15 and 20 particles.

Table 8. Accuracy of PSO, DWPSO, TVAC, TrigAC-PSO and FSVAC for 40 particles.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Pr.01 0.2 0.8 0.8 1 0.8
Pr.02 1 1 1 1 1
Pr.03 1 1 1 1 1
Pr.04 1 1 1 1 1
Pr.05 1 1 1 1 1
Pr.06 0.4 1 1 1 1
Pr.07 0.8 1 1 1 1
Pr.08 0.2 0.2 0.3 0.7 0.1
Pr.09 0 0.5 0.3 0.6 0.3
Pr.10 0.2 0.5 0.2 0.5 0.6
Pr.11 0 0.5 0.4 0.8 0.4
Pr.12 0.2 0.7 0.7 0.7 1
Pr.13 0.7 1 1 1 1
Pr.14 0 0.3 0.5 0.7 0.5
Pr.15 0.8 1 1 1 1
Pr.16 0.2 1 0.8 1 1
Pr.17 0.3 1 1 1 1
Pr.18 1 1 1 1 1
Pr.19 0.2 0.9 0.6 0.9 1
Pr.20 1 0.9 1 1 1
Pr.21 0.6 0.5 0.6 0.7 0.4
Pr.22 0.7 1 1 1 1
Pr.23 0.1 0.7 0.9 1 0.8
Pr.24 0 0 0 0 0
Pr.25 0.7 1 1 1 1
Pr.26 0.8 1 1 1 1
Pr.27 0.8 0.5 0.2 0.9 0.6
Pr.28 0 0.1 0.4 0.6 0.3
Pr.29 1 1 1 1 1
Pr.30 1 1 1 1 1
Pr.31 0.5 1 1 1 1
Pr.32 0.1 0.2 0.1 0.2 0
Average 0.515625 0.759375 0.74375 0.853125 0.775
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Figure 4. Accuracy for 40 particles.

In the following table (Table 9), the most important statistical measures in the case of
40 particles for 10 independent runs are represented for all PSO variations. According to
the particularly low values of the Coefficient of Variation (CV), we can infer that the PSO
variations are extremely stable; more precisely, the mean CV value for each PSO variation
is as follows: Classic PSO, 2.14%; DWPSO, 0.93%; TVAC, 0.86%; TrigAC-PSO, 0.47%; and
FSVAC, 0.81%. These values show that TrigAC-PSO, which is one of the new PSO variations
presented in this work, is once again the most stable method.

Table 9. Statistical measures for 40 particles.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Pr.01

Mean 900.6 882.6 879.6 880 886.5
Var 32.69455 7.229569 2.065591 0 13.94633
Min 880 880 874 880 880
Max 975 903 882 880 918
cv% 3.630307 0.819122 0.234833 0 1.57319

Pr.02

Mean 743 743 743 743 743
Var 0 0 0 0 0
Min 743 743 743 743 743
Max 743 743 743 743 743
cv% 0 0 0 0 0

Pr.03

Mean 5600 5600 5600 5600 5600
Var 0 0 0 0 0
Min 5600 5600 5600 5600 5600
Max 5600 5600 5600 5600 5600
cv% 0 0 0 0 0

Pr.04

Mean 59 59 59 59 59
Var 0 0 0 0 0
Min 59 59 59 59 59
Max 59 59 59 59 59
cv% 0 0 0 0 0

Pr.05

Mean 28 28 28 28 28
Var 0 0 0 0 0
Min 28 28 28 28 28
Max 28 28 28 28 28
cv% 0 0 0 0 0

Pr.06

Mean 443.2 435 435 435 435
Var 11.51617 0 0 0 0
Min 435 435 435 435 435
Max 472 435 435 435 435
cv% 2.598414 0 0 0 0
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Table 9. Cont.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Pr.07

Mean 393.9 390 390 390 390
Var 8.2253 0 0 0 0
Min 390 390 390 390 390
Max 410 390 390 390 390
cv% 2.08817 0 0 0 0

Pr.08

Mean 1659.4 1595.4 1611.5 1586.3 1623.8
Var 74.99363 23.41035 53.60193 18.53555 32.25179
Min 1580 1580 1571 1580 1580
Max 1802 1650 1717 1639 1671
cv% 4.519322 1.467365 3.326213 1.168477 1.986192

Pr.09

Mean 52.4 50.2 50.5 49.7 50.4
Var 1.577621 1.619328 1.509231 1.251666 1.074968
Min 50 49 49 49 49
Max 55 53 53 53 52
cv% 3.010728 3.225752 2.988576 2.518442 2.132872

Pr.10

Mean 421.7 417 417.2 414.3 414.7
Var 11.72888 9.092121 6.924995 5.945119 6.848357
Min 410 410 410 410 410
Max 434 430 430 425 430
cv% 2.781333 2.180365 1.659874 1.434979 1.6514

Pr.11

Mean 3273.9 2894 2852.8 2850.2 3016.8
Var 557.6408 121.5237 4.391912 0.421637 255.7915
Min 2851 2850 2850 2850 2850
Max 4360 3237 2864 2851 3513
cv% 17.03292 4.199159 0.153951 0.014793 8.478901

Pr.12

Mean 190.9 185.2 183.7 183.9 183
Var 7.218033 4.289522 1.251666 1.449138 0
Min 183 183 183 183 183
Max 203 196 186 186 183
cv% 3.781054 2.316157 0.681364 0.788003 0

Pr.13

Mean 807.4 799 799 799 799
Var 13.52528 0 0 0 0
Min 799 799 799 799 799
Max 827 799 799 799 799
cv% 1.675165 0 0 0 0

Pr.14

Mean 300.9 284.6 280 276.9 281.8
Var 15.16905 10.25454 8.628119 6.707376 9.29516
Min 290 273 273 273 273
Max 330 302 290 291 292
cv% 5.041225 3.603141 3.081471 2.42231 3.298495

Pr.15

Mean 1160.4 1160 1160 1160 1160
Var 0.843274 0 0 0 0
Min 1160 1160 1160 1160 1160
Max 1162 1160 1160 1160 1160
cv% 0.072671 0 0 0 0

Pr.16

Mean 215.2 200 201.6 200 200
Var 8.243516 0 4.718757 0 0
Min 200 200 200 200 200
Max 221 200 215 200 200
cv% 3.83063 0 2.340653 0 0

Pr.17

Mean 244.7 240 240 240 240
Var 6.236986 0 0 0 0
Min 240 240 240 240 240
Max 256 240 240 240 240
cv% 2.54883 0 0 0 0

Pr.18

Mean 820 820 820 820 820
Var 0 0 0 0 0
Min 820 820 820 820 820
Max 820 820 820 820 820
cv% 0 0 0 0 0

Pr.19

Mean 191.4 190.2 190.7 190.1 190
Var 0.843274 0.632456 0.948683 0.316228 0
Min 190 190 190 190 190
Max 192 192 192 191 190
cv% 0.440582 0.332521 0.497474 0.166348 0

Pr.20

Mean 83.3 83.3 83 83 83
Var 0.948683 0.948683 0 0 0
Min 83 83 83 83 83
Max 86 86 83 83 83
cv% 1.138876 1.138876 0 0 0



Algorithms 2023, 16, 372 24 of 30

Table 9. Cont.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Pr.21

Mean 3529.4 3482.4 3479.3 3469.3 3482
Var 136.2777 28.33608 40.89567 16.54657 28.15828
Min 3460 3460 3460 3460 3460
Max 3805 3545 3590 3502 3544
cv% 3.861213 0.813694 1.175399 0.476943 0.808681

Pr.22

Mean 919.6 910 910 910 910
Var 16.46005 0 0 0 0
Min 910 910 910 910 910
Max 954 910 910 910 910
cv% 1.789914 0 0 0 0

Pr.23

Mean 1674.4 1670.3 1670.1 1670 1671
Var 4.718757 0.483046 0.316228 0 2.538591
Min 1670 1670 1670 1670 1670
Max 1686 1671 1671 1670 1678
cv% 0.281818 0.02892 0.018935 0 0.15192

Pr.24

Mean 2412.6 2370 2352.5 2349 2351.1
Var 20.74823 19.47648 34.42302 21.34895 29.51252
Min 2371 2341 2287 2315 2296
Max 2441 2397 2419 2393 2394
cv% 0.859994 0.821792 1.463253 0.908853 1.255264

Pr.25

Mean 2479 2460 2460 2460 2460
Var 31.34042 0 0 0 0
Min 2460 2460 2460 2460 2460
Max 2540 2460 2460 2460 2460
cv% 1.264237 0 0 0 0

Pr.26

Mean 292.2 291 291 291 291
Var 2.699794 0 0 0 0
Min 291 291 291 291 291
Max 299 291 291 291 291
cv% 0.923954 0 0 0 0

Pr.27

Mean 4550.9 4538.4 4578.5 4525.6 4556.4
Var 54.61471 20.28245 59.81871 1.897367 62.54634
Min 4525 4525 4525 4525 4525
Max 4657 4585 4675 4531 4675
cv% 1.200086 0.446908 1.306513 0.041925 1.372714

Pr.28

Mean 971.9 931 934.1 924.7 930.3
Var 11.97637 14.96663 15.05139 8.525126 12.5614
Min 960 920 920 920 920
Max 993 969 955 947 960
cv% 1.232263 1.607586 1.611326 0.921934 1.350253

Pr.29

Mean 809 809 809 809 809
Var 0 0 0 0 0
Min 809 809 809 809 809
Max 809 809 809 809 809
cv% 0 0 0 0 0

Pr.30

Mean 417 417 417 417 417
Var 0 0 0 0 0
Min 417 417 417 417 417
Max 417 417 417 417 417
cv% 0 0 0 0 0

Pr.31

Mean 3469.5 3458 3458 3458 3458
Var 12.40296 0 0 0 0
Min 3458 3458 3458 3458 3458
Max 3483 3458 3458 3458 3458
cv% 0.357485 0 0 0 0

Pr.32

Mean 115 118.6 121.4 115 117.1
Var 2.94392 8.126773 8.448537 4.944132 2.330951
Min 109 109 109 109 112
Max 119 129 129 123 120
cv% 2.559931 6.852254 6.959256 4.299245 1.990565

The following table (Table 10) and Figure 5 present the accuracy for the 50 particles.
The accuracy for each PSO variation is as follows: Classic PSO, 52.5%; DWPSO, 74.3%;
TVAC, 76.56%; TrigAC-PSO, 86.88%; and FSVAC, 82.19%. The two new variations range at
the highest levels. These are particularly promising results, demonstrating that the increase
in the particle’s number leads to an increase in the PSO variation’s accuracy, especially in
the case of TrigAC-PSO and FSVAC. The results of 50 particles are equal to or better than
the results that are currently presented. Overall, TrigAC-PSO was the one that obtained the
most robust results.



Algorithms 2023, 16, 372 25 of 30

Table 10. Accuracy of PSO, DWPSO, TVAC, TrigAC-PSO and FSVAC for 50 particles.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Pr.01 0.2 1 1 1 1
Pr.02 1 1 1 1 1
Pr.03 1 1 1 1 1
Pr.04 1 1 1 1 1
Pr.05 1 1 1 1 1
Pr.06 0.7 1 1 1 1
Pr.07 0.9 1 1 1 1
Pr.08 0.2 0.3 0.3 0.4 0.1
Pr.09 0 0.6 0.5 0.8 0.5
Pr.10 0.1 0.1 0.4 0.7 0.5
Pr.11 0.3 0.4 0.6 1 0.5
Pr.12 0.2 0.7 0.5 0.8 1
Pr.13 0.8 1 1 1 1
Pr.14 0 0.3 0.2 0.7 1
Pr.15 0.8 1 1 1 1
Pr.16 0.1 1 1 1 1
Pr.17 0.3 0.7 1 1 1
Pr.18 1 1 1 1 1
Pr.19 0.2 0.9 0.8 0.9 1
Pr.20 0.7 1 1 1 1
Pr.21 0.5 0.3 0.6 1 0.4
Pr.22 0.8 1 1 1 1
Pr.23 0.2 0.8 0.6 1 0.8
Pr.24 0 0 0.1 0 0
Pr.25 1 1 1 1 1
Pr.26 0.7 1 1 1 1
Pr.27 0.5 0.3 0.1 0.6 0.5
Pr.28 0.1 0.4 0.7 0.7 0.7
Pr.29 1 1 1 1 1
Pr.30 1 1 1 1 1
Pr.31 0.5 1 1 1 1
Pr.32 0 0 0.1 0.2 0.3
Average 0.525 0.74375 0.765625 0.86875 0.821875
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The results of Table 11 lead to similar conclusions. In order to examine the stability for
the 50 particles, it is worth comparing the CV values of the proposed variations with those
of the traditional variations. Superior results are seen from TrigAC-PSO, as the CV value is
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equal to 0.4%, followed by the FSVAC with 0.59%. The other values of variations ranged as
follows: Classic PSO, 2.19%; DWPSO, 0.77%; and TVAC, 0.83%.

Table 11. Statistical measures for 50 particles.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Mean 896.7 880 880 880 880
Var 17.79544 0 0 0 0

Pr.01 Min 880 880 880 880 880
Max 929 880 880 880 880
cv% 1.984548 0 0 0 0

Mean 743 743 743 743 743
Var 0 0 0 0 0

Pr.02 Min 743 743 743 743 743
Max 743 743 743 743 743
cv% 0 0 0 0 0

Mean 5600 5600 5600 5600 5600
Var 0 0 0 0 0

Pr.03 Min 5600 5600 5600 5600 5600
Max 5600 5600 5600 5600 5600
cv% 0 0 0 0 0

Mean 59 59 59 59 59
Var 0 0 0 0 0

Pr.04 Min 59 59 59 59 59
Max 59 59 59 59 59
cv% 0 0 0 0 0

Mean 28 28 28 28 28
Var 0 0 0 0 0

Pr.05 Min 28 28 28 28 28
Max 28 28 28 28 28
cv% 0 0 0 0 0

Mean 438.9 435 435 435 435
Var 6.279597 0 0 0 0

Pr.06 Min 435 435 435 435 435
Max 448 435 435 435 435
cv% 1.430758 0 0 0 0

Mean 392 390 390 390 390
Var 6.324555 0 0 0 0

Pr.07 Min 390 390 390 390 390
Max 410 390 390 390 390
cv% 1.613407 0 0 0 0

Mean 1677.3 1611.7 1601.7 1585.9 1634.5
Var 73.73986 47.30058 31.18778 7.125073 41.31518

Pr.08 Min 1580 1580 1580 1580 1580
Max 1794 1713 1672 1595 1705
cv% 4.396343 2.934825 1.947168 0.449276 2.527696

Mean 52.4 50.3 50.2 49.4 50.8
Var 0.966092 1.888562 1.549193 0.843274 2.043961

Pr.09 Min 51 49 49 49 49
Max 53 53 53 51 54
cv% 1.843687 3.754597 3.086043 1.707032 4.023546

Mean 424.1 421 418.6 412.6 416.1
Var 9.362455 8.589399 9.057839 4.299871 8.292567

Pr.10 Min 410 410 410 410 410
Max 432 430 430 421 430
cv% 2.207605 2.040237 2.163841 1.04214 1.992926

Mean 3149.1 2870.4 2856.9 2850 2898.3
Var 611.9779 44.53014 14.0115 0 95.44405

Pr.11 Min 2850 2850 2850 2850 2850
Max 4429 2990 2894 2850 3091
cv% 19.43342 1.551357 0.490444 0 3.293105
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Table 11. Cont.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Mean 187.4 183.9 184.5 183.6 183
Var 3.687818 1.449138 1.581139 1.264911 0

Pr.12 Min 183 183 183 183 183
Max 193 186 186 186 183
cv% 1.967886 0.788003 0.856986 0.688949 0

Mean 804.6 799 799 799 799
Var 11.80584 0 0 0 0

Pr.13 Min 799 799 799 799 799
Max 827 799 799 799 799
cv% 1.467293 0 0 0 0

Mean 302.8 284.2 289.2 278.1 273
Var 15.38975 7.871185 15.59772 8.491172 0

Pr.14 Min 290 273 273 273 273
Max 328 291 328 295 273
cv% 5.082481 2.769594 5.393403 3.05328 0

Mean 1184.3 1160 1160 1160 1160
Var 76.14321 0 0 0 0

Pr.15 Min 1160 1160 1160 1160 1160
Max 1401 1160 1160 1160 1160
cv% 6.429386 0 0 0 0

Mean 212.9 200 200 200 200
Var 8.69802 0 0 0 0

Pr.16 Min 200 200 200 200 200
Max 221 200 200 200 200
cv% 4.085496 0 0 0 0

Mean 246.9 241.6 240 240 240
Var 6.773314 2.796824 0 0 0

Pr.17 Min 240 240 240 240 240
Max 256 248 240 240 240
cv% 2.743343 1.157626 0 0 0

Mean 820 820 820 820 820
Var 0 0 0 0 0

Pr.18 Min 820 820 820 820 820
Max 820 820 820 820 820
cv% 0 0 0 0 0

Mean 191.6 190.1 190.3 190.1 190
Var 0.843274 0.316228 0.674949 0.316228 0

Pr.19 Min 190 190 190 190 190
Max 192 191 192 191 190
cv% 0.440122 0.166348 0.354676 0.166348 0

Mean 83.9 83 83 83 83
Var 1.449138 0 0 0 0

Pr.20 Min 83 83 83 83 83
Max 86 83 83 83 83
cv% 1.72722 0 0 0 0

Mean 3493.6 3468.4 3477.6 3460 3470.8
Var 57.87765 13.1673 24.84262 0 12.76105

Pr.21 Min 3460 3456 3460 3460 3460
Max 3625 3492 3519 3460 3495
cv% 1.656676 0.379636 0.714361 0 0.367669

Mean 914.7 910 910 910 910
Var 10.133 0 0 0 0

Pr.22 Min 910 910 910 910 910
Max 938 910 910 910 910
cv% 1.107795 0 0 0 0

Mean 1675.2 1670.2 1672 1670 1670.6
Var 7.743097 0.421637 3.018462 0 1.577621

Pr.23 Min 1670 1670 1670 1670 1670
Max 1694 1671 1679 1670 1675
cv% 0.462219 0.025245 0.18053 0 0.094434
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Table 11. Cont.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Mean 2423.4 2354.5 2336.8 2347 2355
Var 13.35165 31.64824 37.90573 26.48689 28.5151

Pr.24 Min 2401 2288 2280 2307 2309
Max 2446 2390 2404 2388 2395
cv% 0.550947 1.34416 1.622121 1.128543 1.210832

Mean 2460 2460 2460 2460 2460
Var 0 0 0 0 0

Pr.25 Min 2460 2460 2460 2460 2460
Max 2460 2460 2460 2460 2460
cv% 0 0 0 0 0

Mean 292.2 291 291 291 291
Var 1.932184 0 0 0 0

Pr.26 Min 291 291 291 291 291
Max 295 291 291 291 291
cv% 0.661254 0 0 0 0

Mean 4585.8 4549.3 4552.3 4532 4595.2
Var 69.97904 45.93486 42.05829 16.57307 75.36843

Pr.27 Min 4525 4525 4525 4525 4525
Max 4675 4675 4668 4577 4675
cv% 1.525994 1.009713 0.923891 0.36569 1.640156

Mean 957.3 928 929.9 923.3 923.6
Var 21.12424 12.26558 17.85404 8.420214 9.070097

Pr.28 Min 920 920 920 920 920
Max 990 960 967 947 949
cv% 2.206647 1.321722 1.919995 0.911969 0.982037

Mean 809 809 809 809 809
Var 0 0 0 0 0

Pr.29 Min 809 809 809 809 809
Max 809 809 809 809 809
cv% 0 0 0 0 0

Mean 417 417 417 417 417
Var 0 0 0 0 0

Pr.30 Min 417 417 417 417 417
Max 417 417 417 417 417
cv% 0 0 0 0 0

Mean 3470.4 3458 3458 3458 3458
Var 18.42221 0 0 0 0

Pr.31 Min 3458 3458 3458 3458 3458
Max 3508 3458 3458 3458 3458
cv% 0.530838 0 0 0 0

Mean 118.1 122.3 123.7 114.1 112.6
Var 5.384133 6.498718 8.590046 3.784471 3.306559

Pr.32 Min 112 11a2 109 109 109
Max 127 129 129 120 119
cv% 4.558961 5.313751 6.944257 3.316802 2.936553

The overall results demonstrate two inferences of decisive importance: first, the PSO
algorithm and its variations have successfully solved the TP with maximum accuracy and
efficiency; second, TrigAC-PSO, beyond any doubt, is the leading option for solving the TP
in terms of both stability and the solution’s quality.

7. Conclusions

As technology is developing, the need for product improvement and trading is of high
priority in obtaining a more economical solution. The PSO algorithm was applied with
success in order for the TP to be solved. Furthermore, two new variations were introduced
and compared to already-known variations. These variations induced exceptional results
and indicated their superiority against the existing variations and the well-known exact
methods in the literature. The proposed PSO variations have been tested in a variety of test
instances with different combined values of inertia weight as well as social and personal
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acceleration parameters. It was evidently proven that the solution quality is inseparably
linked with the selection of proper values for controlling the algorithm parameters. In order
to see the effectiveness and stability of the proposed variations, we compared their results
with those of other PSO variations for the same instances. Remarkably, the punctuality
of one of our variations rose to 88%, and it was finally established as the ideal option
compared to all other variations for the solution of TP.

It can be easily observed that this PSO variationis simple compared to other variations
with complex structures. It was a challenge to achieve better results by creating and running
simple computational algorithms, proving that keeping a balance between human and
artificial intelligence is the key to the success of computational intelligence.

A more comprehensive analysis may be needed in order to examine the TP to a
greater extent. Moreover, the proposed PSO variations could be applied to more complex
networks such as the Sioux Fall network [27] in order to demonstrate the algorithm’s good
performance and independence of the network’s size. Except for this, some other real
constraints can be proposed in order to find the optimal solution for the TP with PSO
algorithm variations not only in balanced instances but also in more realistic unbalanced
instances in the future. Moreover, combining the proposed PSO variations with other
meta-heuristic methods to solve the TP will be an interesting challenge.
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