
Citation: Gaudioso, M.; Taheri, S.;

Bagirov, A.M.; Karmitsa, N. Bundle

Enrichment Method for Nonsmooth

DC Programming. Algorithms 2023,

16, 394. https://doi.org/10.3390/

a16080394

Academic Editor: Binlin Zhang

Received: 2 August 2023

Revised: 18 August 2023

Accepted: 19 August 2023

Published: 21 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Bundle Enrichment Method for Nonsmooth Difference of
Convex Programming Problems
Manlio Gaudioso 1,*, Sona Taheri 2, Adil M. Bagirov 3 and Napsu Karmitsa 4

1 DIMES (Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica),
Università della Calabria, 87036 Rende, CS, Italy

2 School of Mathematical Sciences, RMIT University, Melbourne 3000, Australia; sona.taheri@rmit.edu.au
3 Centre for Smart Analytics, Institute of Innovation, Science and Sustainability,

Federation University Australia, Ballarat 3350, Australia; a.bagirov@federation.edu.au
4 Department of Computing, University of Turku, FI-20014 Turku, Finland; napsu@karmitsa.fi
* Correspondence: manlio.gaudioso@unical.it

Abstract: The Bundle Enrichment Method (BEM-DC) is introduced for solving nonsmooth difference
of convex (DC) programming problems. The novelty of the method consists of the dynamic man-
agement of the bundle. More specifically, a DC model, being the difference of two convex piecewise
affine functions, is formulated. The (global) minimization of the model is tackled by solving a set of
convex problems whose cardinality depends on the number of linearizations adopted to approximate
the second DC component function. The new bundle management policy distributes the information
coming from previous iterations to separately model the DC components of the objective function.
Such a distribution is driven by the sign of linearization errors. If the displacement suggested by the
model minimization provides no sufficient decrease of the objective function, then the temporary
enrichment of the cutting plane approximation of just the first DC component function takes place
until either the termination of the algorithm is certified or a sufficient decrease is achieved. The
convergence of the BEM-DC method is studied, and computational results on a set of academic test
problems with nonsmooth DC objective functions are provided.

Keywords: DC optimization; nonconvex nonsmooth optimization; cutting plane; bundle method

1. Introduction

Optimization approaches are essential for solving a wide range of practical prob-
lems. There are various problems based on these approaches including unconstrained
and constrained problems, problems with linear and nonlinear as well as smooth and
nonsmooth objective and/or constraint functions, and problems with continuous and
integer decision variables [1]. The majority of optimization problems from applications
have special structures (for example, convexity) which can be exploited to design efficient
and accurate methods for their solutions. Difference of convex (DC) optimization problems
are among such problems, where the objective and/or constraint functions are represented
as a difference of two convex functions.

In this research work, we consider the unconstrained nonsmooth DC programming
problem

min
x∈Rn

f (x), (1)

where f : Rn → R is, in general, nonsmooth and is expressed as a difference of two convex
functions f1, f2 : Rn → R:

f (x) = f1(x)− f2(x).

Here, f1 − f2 is called a DC representation (decomposition) of f while f1 and f2 are DC
components of the function f . The DC components f1 and f2 are, in general, nonsmooth [2–5].

Algorithms 2023, 16, 394. https://doi.org/10.3390/a16080394 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16080394
https://doi.org/10.3390/a16080394
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-2075-1699
https://doi.org/10.3390/a16080394
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16080394?type=check_update&version=2

Algorithms 2023, 16, 394 2 of 21

Nonsmooth DC programming is an important subclass of DC optimization prob-
lems [6], and many practical problems are modeled as a DC programming problem. They
include the bridge location problem, the design centering problem [7], the packing prob-
lem [8], the production–transportation planning problem [9], the location planning prob-
lem [10], the edge detection problem [11], the conic programming problem [12], cluster
analysis [13], and regression analysis [14]. Recently, DC optimization problems with un-
certain data has become an interesting topic, and the results from robust optimization, in
particular those obtained in [15–17], can be extended to robust DC optimization.

DC optimization problems have been studied in the context of both local and global
problems, and various methods have been developed for solving these problems glob-
ally [7,18]. To the best of our knowledge, the first local search algorithm for solving DC
optimization problems is the difference of convex algorithm (DCA) introduced in [19]
and further explored, for example, in [8,20]. Since then, the development of local DC
optimization methods for solving Problem (1) has attracted remarkable scholarly attention.
Next, we provide a short description of such methods and give references for more details.
These methods can be classified into three categories:

• The first category consists of the DCA and its modifications. The basic idea of the DCA
is to linearize the concave part − f2 around the current iterate by using its subgradient
while keeping the convex part f1 as it is in the minimization process. To improve the
convergence of the DCA, various modifications have been developed, for instance,
in [21–23]. The boosted DC algorithm (BDCA), proposed in [21,22], accelerates the
convergence of the DCA by using an additional line search step. The inertial DCA,
introduced in [23], defines trial points whose sequence of functional values is not
necessarily monotonically decreasing. This controls the algorithm from converging to
a critical point that is not d-stationary. In [24], the BDCA is combined with a simple
derivative-free optimization method. This allows one to force the d-stationarity (lack
of descent direction) at the obtained point. To avoid the difficulty of solving the DCA’s
subproblem, in [25], the first DC component is replaced with a convex model, and the
second DC component is used without any approximation;

• The methods in the second category, which we refer to as DC-Bundle, are various
extensions of the bundle methods for convex problems. The piecewise linear under-
estimates or subgradients of both DC components are utilized to compute search
directions. The methods include the codifferential method [26], the proximal bun-
dle method with the concave affine model [27,28], the proximal bundle method for
DC optimization [29,30], the proximal point algorithm [31], the proximal linearized
algorithm [32], the double bundle method [33], and the nonlinearly constrained DC
bundle method [34];

• The methods in the third category are those that use the convex piecewise linear
model of the first DC component and one subgradient of the second DC component to
compute search directions at each iteration [35,36]. They differ from those in the first
category as at each iteration of these methods, the model of the first DC component
is updated and the new subgradient of the second component is calculated. They
also differ from those in the second category as they use only one subgradient of the
second DC component at each iteration whereas the DC-Bundle methods may use
more than one subgradient of this component to build its piecewise linear model.
Note that some overlapping is unavoidable when classifying methods into different
categories: for instance, the proximal bundle method for DC optimization [30] may be
classified into both the second and the third categories. The other methods in the third
category include the aggregate subgradient method for DC optimization [35] and the
augmented subgradient method [36]. In the former method, the aggregate subgradient
of the first DC component and one subgradient of the second component are utilized
to compute search directions. In the latter method, augmented subgradients of convex
functions are defined and used to model the first DC component. Then, this model

Algorithms 2023, 16, 394 3 of 21

and one subgradient of the second DC component are used for computing search
directions.

The proposed BEM-DC method belongs to the DC-bundle family whose main features,
with respect to the DCA, are

• developing a model function based on cutting-plane approximations of f1 and, possi-
bly, f2;

• adding a regularization term (typically a proximity one) to the model for stabilization
purposes.

We assume the familiarity of the reader with the basic notions of bundle methods. We
refer to the following books and articles from the vast literature available [37–45]. In our
iterative scheme, we adopt two cutting-plane approximations (based, as usual in bundle
methods, on information coming from previous iterations) for f1 and f2, respectively.
Consequently, we have a model which is still DC, being the difference of two convex
piecewise affine functions. Similarly to [29,33], we tackle the (global) minimization of the
model by solving a set of convex problems whose cardinality depends on the number of
linearizations adopted to approximate the function f2. The novelty of the approach consists
of the dynamic management of the bundle. This enables us to achieve a parsimonious use
of the information available, in view of reducing the computational burden to minimize
the model function at each iteration. The adopted strategies are based on the following:

• The information coming from the previous iterates contributes to the approximation of
exactly one of the DC components f1 and f2, depending on the sign of the linearization
error relative to the current iterate. During the iterative process, every time a new
point is generated, subgradients of both component functions f1 and f2 are calculated,
but only one of them will enter the calculation of the search direction: the choice
being driven, at each of the successive iterations, by the sign of the linearization
error with respect to the current point. Such sign may change at each iteration.
Therefore, we define a dynamic bundling strategy, which implies a consistent reduction
(approximately one-half) of the size of the auxiliary problems to be solved;

• If the displacement suggested by the model minimization provides no sufficient
decrease of the objective function (the null step in bundle parlance), the temporary
enrichment exclusively of the cutting-plane approximation of f1 takes place.

Note that a significant difference between the proposed approach with those intro-
duced in [29,33] is in the reduction of the size of the bundle of the function f2. This has a
strong impact on the solution of the auxiliary problem to be solved at each iteration.

The structure of the paper is organized as follows. Section 2 provides necessary
notations and some preliminaries. Section 3 presents the new model function formulation.
Section 4 describes the new method, and its convergence is discussed in Section 5. Section 6
reports the results of numerical experiments. Section 7 provides some concluding remarks.

2. Notations and Background

First, we provide some notations and definitions that we will use throughout the paper.
The inner product in Rn is 〈u, v〉 = ∑n

i=1 uivi, and ‖ · ‖ is the associated norm. For x ∈ Rn

and ε > 0, B(x; ε) is an open ball of the radius ε > 0 centered at x. The function f : Rn → R

is locally Lipschitz continuous on Rn if for every x ∈ Rn, there exists a Lipschitz constant
L > 0 and ε > 0 such that | f (y)− f (z)| ≤ L‖y− z‖ for all y, z ∈ B(x; ε).

For a convex function f : Rn → R, its subdifferential at a point x ∈ Rn is [38,41]

∂ f (x) =
{

ξ ∈ Rn : f (y)− f (x) ≥ 〈ξ, y− x〉 for all y ∈ Rn
}

,

and for ε > 0, its ε-subdifferential is

∂ε f (x) =
{

ξε ∈ Rn : f (y)− f (x) ≥ 〈ξε, y− x〉 − ε for all y ∈ Rn
}

.

Algorithms 2023, 16, 394 4 of 21

Each vector ξ ∈ ∂ f (x)
(
ξε ∈ ∂ε f (x)

)
is called a subgradient (ε-subgradient) of f at x.

A point x∗ ∈ Rn is called a critical point of Problem (1) if

∂ f1(x∗) ∩ ∂ f2(x∗) 6= ∅,

and a point x̄∗ ∈ Rn is said to be an ε-critical point if [31]

∂ε f1(x̄∗) ∩ ∂ε f2(x̄∗) 6= ∅.

Next, we recall the basic idea of the standard cutting-plane model for any convex
nonsmooth function f . Let xk ∈ Rn be the current iteration point, xj ∈ Rn be some auxiliary
points (from past iterations), ξ j ∈ ∂ f (xj) be the subgradients of the function f computed at
the point xj ∈ Rn for j ∈ Jk, and Jk is a nonempty subset of {1, . . . , k}. The cutting-plane
model for the function f can be given by

f̂ k(x) = max
j∈Jk

f̄ j(x),

where f̄ j(x) = f (xj) + 〈ξ j, x− xj〉. The linearization error

αk
j = f (xk)− f̄ j(xk) for all j ∈ Jk

defines how well f̄ j approximates the function f at the current iteration point xk.
In this paper, we assume that f is the DC function, and due to the lack of its convexity,

the straightforward application of the cutting-plane approach is meaningless. Nevertheless,
it can be separately applied to model the DC components fi, i = 1, 2. Thus, we have

f̂ k
i (x) = max

j∈Jk

{
fi(xj) + 〈ξi,j, x− xj〉

}
for x ∈ Rn.

Here, ξi,j ∈ ∂ fi(xj), i = 1, 2 are the subgradients of the DC components fi computed at the
auxiliary point xj ∈ Rn for j ∈ Jk. This approximation can be rewritten as

f̂ k
i (x) = max

j∈Jk

{
fi(xk) + 〈ξi,j, x− xk〉 − αk

i,j

}
, (2)

where xk ∈ Rn is the current iteration point, and αk
i,j, i = 1, 2 are the linearization errors

associated with the j-th first order expansion of fi, i = 1, 2 rooted at the point xj, given by

αk
i,j = fi(xk)− fi(xj)− 〈ξi,j, xk − xj〉 for all j ∈ Jk.

Suppose that information coming from some auxiliary points xj ∈ Rn, j ∈ Jk, along
with

(
xk, ξ1,k ∈ ∂ f1(xk), ξ2,k ∈ ∂ f2(xk)

)
, is available. We condense all such information

into a bundle set Bk defined as a set of tuples, one for each point xj. That is,

b(xj) =
(

xj, f1(xj), f2(xj), ξ1,j ∈ ∂ f1(xj), ξ2,j ∈ ∂ f2(xj), αk
1,j, αk

2,j

)
.

In general, we assume that for some appropriate index j, the tuple

b(xk) =
(

xk, f1(xk), f2(xk), ξ1,k ∈ ∂ f1(xk), ξ2,k ∈ ∂ f2(xk), 0, 0
)

(3)

associated with xk is in the bundle too.

Algorithms 2023, 16, 394 5 of 21

3. The New Model Function

In this section, we formulate our new model function. First, we distribute the bundle
index set Jk into the subsets

Jk
1 =

{
j : j ∈ Jk, αk

j ≤ 0
}

and Jk
2 =

{
j : j ∈ Jk, αk

j ≥ 0
}

, (4)

where Jk = Jk
1 ∪ Jk

2 . It is worth noting that this does not properly define a partition of
Jk as the indexes corresponding to αk

j = 0 are in both subsets Jk
1 and Jk

2 . In addition,

αk
j = αk

1,j − αk
2,j can take any sign due to the nonconvexity of the function f . Based on the

sign of αk
j , we extract elements from the set Jk and modify the definition of the cutting-plane

models, given in (2), accordingly. It is clear that αk
j ≤ 0 corresponds to αk

1,j ≤ αk
2,j. That is,

the linearization error at xk associated with the linearization of the function f1 rooted at
xj is not bigger than that associated with the function f2. This means that the information
provided by xj is more suited to approximate f1 than f2 around xk. The reverse holds for
the case αk

j ≥ 0.

Remark 1. The structures of the subsets Jk
i , i = 1, 2 depend on the point xk. Thus, they should be

updated every time a new iterate xk+1 is calculated.

Consider the subsets Jk
i , i = 1, 2. Aiming at a parsimonious use of the available

information, we restrict the definition of the cutting-plane functions, given in (2), as

f̂ k
i (x) = max

j∈Jk
i

{
fi(xk) + 〈ξi,j, x− xk〉 − αk

i,j

}
, i = 1, 2,

which reduces the number of affine pieces defining the convex approximations of the
functions fi, i = 1, 2.

Next, we introduce the variable d = x− xk and define the function hk(d) (the model
of the difference function f (xk + d)− f (xk)) as

hk(d) = hk
1(d)− hk

2(d) = max
j∈Jk

1

(
〈ξ1,j, d〉 − αk

1,j

)
−max

j∈Jk
2

(
〈ξ2,j, d〉 − αk

2,j

)
,

and calculate
wk = min

d
wk(d) = min

d
hk(d) +

1
2

δk‖d‖2. (5)

Here, δk is the proximity parameter used in most bundle methods, and 1
2 δk‖d‖2 is a stabi-

lizing term used to guarantee the existence of the solution. Letting dk be the solution to (5),
we take xk+1 = xk + dk as the (tentative) new iterate point. Then, we check this point for a
possible sufficient decrease in the objective function f as follows:

f (xk + dk) ≤ f (xk) + µvk, (6)

where µ ∈ (0, 1) is a given parameter, and vk is the predicted reduction of the function f
provided by the model function hk(d). That is, vk = vk

1 − vk
2, where

vk
1 = hk

1(dk) =max
j∈Jk

1

〈ξ1,j, dk〉 − αk
1,j, and

vk
2 = hk

2(dk) =max
j∈Jk

2

〈ξ2,j, dk〉 − αk
2,j.

Algorithms 2023, 16, 394 6 of 21

Note that we have vk ≤ 0. It is sufficient to observe that both functions hk
1(d) and hk

2(d)
are non-positive at d = 0. If (6) is satisfied (serious step in bundle method parlance), then
the point xk+1 = xk + dk becomes the new estimate of a minimum. Thus, the related infor-
mation to this point is appended to the bundle, and the bundle index set is updated. Next,
the elements of the new index set Jk+1 are distributed between Jk+1

1 and Jk+1
2 according to

(4) (see Remark 1), and the procedure is iterated.
If the condition (6) is not satisfied, that is f (xk + dk) > f (xk) + µvk, then there is no

sufficient decrease (null step). Taking into account µ ∈ (0, 1) and vk ≤ 0, it follows that

f1(xk + dk)− f2(xk + dk) > f1(xk)− f2(xk) + µ(vk
1 − vk

2)

> f1(xk)− f2(xk) + vk
1 − vk

2,

which in turn implies that(
f1(xk + dk)− f1(xk)

)
− vk

1 >
(

f2(xk + dk)− f2(xk)
)
− vk

2. (7)

This means that whenever a sufficient decrease does not occur, then the gap between the
actual and the predicted reduction for the function f1 is bigger than that of f2. Such an
observation is at the basis of our bundle enlargement strategy in the case of the null step.
More precisely, whenever a null step occurs, we invest in improving the approximation of
f1 more than in that of f2.

The following proposition ensures that in the case of the null step, by inserting the
point xk+1 = xk + dk into the bundle, any couple

(
ξ+1 , α+

)
generates a substantial cut of the

epigraph of hk
1 and, thus, an improved model of the function f1. Here, ξ+1 ∈ ∂ f1(xk + dk)

and

α+ = f1(xk)− f1(xk + dk) + 〈ξ+1 , dk〉.

Proposition 1. Assume that vk < −η for some η > 0, and the sufficient decrease condition (6) is
not fulfilled at the point xk + dk. Then, for any ξ+1 ∈ ∂ f1(xk + dk), we have

〈ξ+1 , dk〉 − α+ > vk
1 + ρη,

where ρ = 1− µ.

Proof. From the definition of α+, it follows

〈ξ+1 , dk〉 − α+ = f1(xk + dk)− f1(xk).

Further, from (7), considering the definition of vk
2 and vk = vk

1 − vk
2 ≤ 0, we have

〈ξ+1 , dk〉 − α+ = f1(xk + dk)− f1(xk)

> f2(xk + dk)− f2(xk) + µ(vk
1 − vk

2)

≥ vk
2 + µ(vk

1 − vk
2) = vk

1 + ρ(vk
2 − vk

1)

= vk
1 − ρvk ≥ vk

1 + ρη.

This completes the proof.

4. The Proposed BEM-DC Algorithm

In this section, we describe the BEM-DC algorithm for solving Problem (1) and give its
step-by-step format. The algorithm has both inner and outer iterations. The inner iteration
contains the evaluation, in terms of the decrease in the objective function, of tentative
displacements from the current point. Null steps might occur within the inner iteration
whenever a sufficient decrease is not achieved. Once, instead, such reduction is obtained

Algorithms 2023, 16, 394 7 of 21

(serious step), the current estimate of the minimum is updated and a new outer iteration
takes place. Based on Proposition 1, a subgradient accumulation process takes place any
time a null step occurs within the inner iteration. The specific feature of the BEM-DC
algorithm is such that a process involves only information about the function f1 which is
stored in a temporary bundle of tuples, thus exclusively enriching the bundle Jk

1 .
Let us denote the outer iteration counter by k. We use l to count for the l-th inner

iteration within the k-th outer iteration. Denote the current temporary bundle by TBl and
its corresponding index set by TJl . Then, the displacement finding subproblem (5) at the
inner iteration l within the k-th iteration takes the following form:

wk
l = min

d
wk

l (d).

Define

dk
l = arg min

d
wk

l (d) = arg min
d

hk
l (d) +

1
2

δk‖d‖2, and

vk
l = hk

l (d
k
l). (8)

Then, considering the presence of two distinct bundles for the function f , we have

hk
l (d) = hk

1,l(d)− hk
2(d),

where

hk
1,l(d) = max

{
max
j∈Jk

1

(
〈ξk

1,j, d〉 − αk
1,j
)
, max

j∈TJl

(
〈ξk

1,j, d〉 − αk
1,j
)}

= max
j∈Jk

1∪TJl

(
〈ξk

1,j, d〉 − αk
1,j
)
, and

hk
2(d) = max

j∈Jk
2

(
〈ξk

2,j, d〉 − αk
2,j
)
.

The sets TBl and TJl are updated at each inner iteration, while they are reset to the empty
sets at the beginning of each outer iteration. Note that the set Jk

2 remains unchanged during
the inner iteration process.

Let us focus on Problem (8). Note that it is a DC programming problem whose global
optimal solution can be found by solving |Jk

2 | convex problems (see [29,33]). Consider the
following (convex) problem Pk

l,j, j ∈ Jk
2 :

min
d

wk
l,j(d)

with
wk

l,j(d) = hk
1,l(d)−

(
〈ξk

2,j, d〉 − αk
2,j
)
+

1
2

δk‖d‖2.

Let dk
l,j = arg mind wk

l,j(d). It is clear that, defining

j∗ = arg min
j∈Jk

2

wk
l,j(d

k
l,j),

the global optimal solution of Problem (8) is

dk
l = dk

l,j∗ = arg min
d

wk
l,j∗(d), and

vk
l = hk

l (d
k
l) = hk

1,l(d
k
l)−

(
〈ξk

2,j∗ , dk
l 〉 − αk

2,j∗
)
.

Algorithms 2023, 16, 394 8 of 21

Summing up, dk
l is a global optimal solution of Problem (8), and the couple (dk

l , vk
l) is

the unique optimal solution of the convex problem Pk
l,j∗

min
d∈Rn , v∈R

v +
1
2

δk‖d‖2

v ≥ 〈ξk
1,j − ξk

2,j∗ , d〉 −
(
αk

1,j − αk
2,j∗
)
, j ∈ Jk

1 ∪ TJl .
(9)

Then, applying the standard duality arguments to Problem (9), we have the following
primal-dual relations:

dk
l =−

1
δk

(
∑

j∈Jk
1∪TJl

λjξ
k
1,j − ξk

2,j∗
)

, (10)

vk
l =−

1
δk

∥∥∥ ∑
j∈Jk

1∪TJl

λjξ
k
1,j − ξk

2,j∗

∥∥∥2
− ∑

j∈Jk
1∪TJl

λjα
k
1,j + αk

2,j∗ , (11)

wk
l =−

1
2δk

∥∥∥ ∑
j∈Jk

1∪TJl

λjξ
k
1,j − ξk

2,j∗

∥∥∥2
− ∑

j∈Jk
1∪TJl

λjα
k
1,j + αk

2,j∗ . (12)

Here, λj ≥ 0, j ∈ Jk
1 ∪ TJl , with ∑j∈Jk

1∪TJl
λj = 1, are the optimal variables of the dual of

Problem (9). In addition, the definition of the set of problems Pk
l,j, j ∈ Jk

2 implies that

wk
l = min

d
wk

l (d) = wk
l,j∗(d

k
l,j∗) ≤ wk

l,j(d
k
l,j), j ∈ Jk

2 .

Since in the bundle index set Jk
2 , there exists an index, say j0, associated with the tuple

b(xk) (see (3)) for which ξk
2,j0
∈ ∂ f2(xk) and αk

2,j0
= 0, we have

wk
l ≤ wk

l,j0 = wk
l,j0(d

k
l,j0) = −

1
2δk

∥∥∥ ∑
j∈Jk

1∪TJl

λ0
j ξk

1,j − ξk
2,j0

∥∥∥2
− ∑

j∈Jk
1∪TJl

λ0
j αk

1,j, (13)

for λ0
j ≥ 0, j ∈ Jk

1 ∪ TJl , with ∑j∈Jk
1∪TJl

λ0
j = 1. This together with (12) suggests a possible

termination criterion for the proposed algorithm. In fact, whenever wk
l ≥ −η, we have

1
2δk

(∥∥∥ ∑
j∈Jk

1∪TJl

λ0
j ξk

1,j − ξk
2,j0

∥∥∥2)
+ ∑

j∈Jk
1∪TJl

λ0
j αk

1,j ≤ η,

which indicates that the subgradient ξk
2,j0
∈ ∂ f2(xk) is at a distance not bigger than

√
2δkη

from the ε-subdifferential of f1 at xk, where

ε = ∑
j∈Jk

1∪TJl

λ0
j αk

1,j ≤ η.

This property can be interpreted as the approximate satisfaction at the point xk of
criticality. Nevertheless, we implement the termination test of the proposed algorithm in
the more common form of vk

l ≥ −η. In fact, from (10) and (11), vk
l ≥ −η implies wk

l ≥ −η.
Further, the fulfillment of the condition wk

l,j0
≥ −η provides an alternative termination

criterion as

vk
l,j0 = − 1

δk

(∥∥∥ ∑
j∈Jk

1∪TJl

λ0
j ξk

1,j − ξk
2,j0

∥∥∥2)
− ∑

j∈Jk
1∪TJl

λ0
j αk

1,j ≥ −η. (14)

Algorithms 2023, 16, 394 9 of 21

Remark 2. In the above case, we embed the switching direction technique. That is, we use dk
l as a

tentative displacement, and if the descent failure occurs, then we implement an Armijo-type line
search along the direction dk

l,j0
. Only in the case of failure of the latter is a null step declared.

Next, we present the proposed BEM-DC algorithm 1 in the step-by-step format. We
denote by ids = 1 when the switching direction technique is embedded.

Algorithm 1: BEM-DC.

Require: The stopping tolerance parameter η > 0, the null step parameter θ > 0, the proximity threshold
δmin > 0, the sufficient descent parameter µ ∈ (0, 1), and the step size reduction parameters σ1, σ2 ∈ (0, 1).

Ensure: An approximate critical points of Problem (1).

Select a starting point x1 ∈ Rn. Compute ξ1,1 ∈ ∂ f1(x1) and ξ2,1 ∈ ∂ f2(x1).

Set B1 =
{(

x1, f1(x1), f2(x1), ξ1,1, ξ2,1, 0, 0
)}

, J1
1 = {1}, J1

2 = {1}, and k = 1.

Outer iteration
Set TB1 = TJ1 = ∅, and ids = 0. Compute the proximity parameter δk , and set l = 1.

Inner iteration
Step 1. (Calculation of dk

l and vk
l) If ids = 0, then compute dk

l and vk
l using (8). Otherwise,

compute vk
l,j0

from (14) and dk
l,j0

according to Remark 2. Set dk
l = dk

l,j0
and vk

l = vk
l,j0

.

Step 2. (Stopping test). If vk
l ≥ −η, then STOP.

Step 3. Set t = 1.
Step 4. (Descent test) If

f (xk + tdk
l)− f (xk) < tµvk

l , (15)

then EXIT the inner iteration and go to Step 8.
Step 5. (Step size update). If ids = 0, then set t = σ1t, else t = σ2t. If t‖dk

l ‖ > θ, then go to Step 4.
If t‖dk

l ‖ ≤ θ and ids = 0, then set ids = 1 and go to Step 1. Otherwise, go to the next step.

Step 6. (Null step). Set y = xk + tdk
l . Compute ξk

1,l ∈ ∂ f1(y). Construct

b(y) =
(
y, f1(y), ξk

1,l , αk
1,l
)
, where αk

1,l = f1(xk)− f1(y) + t〈ξk
1,l , dk

l 〉.

Step 7. (Bundle enrichment). Update TBl = TBl ∪ {b(y)} and TJl = TJl ∪ {l}. Set ids = 0,
l = l + 1 and go to Step 1.

Step 8. (Serious step). Set xk+1 = xk + tdk
l . Compute ξ1,k+1 ∈ ∂ f1(xk+1) and ξ2,k+1 ∈ ∂ f2(xk+1).

Construct the bundle tuple

b(xk+1) =
(

xk+1, f1(xk+1), f2(xk+1), ξ1,k+1, ξ2,k+1, 0, 0
)

.

Step 9. (Bundle and index sets update). Set Bk+1 = Bk ∪ {b(xk+1)} and Jk+1 = Jk ∪ {k + 1}. For each
bundle point, re-calculate the linearization error with respect to xk+1, update the sets Jk+1

1 and
Jk+1
2 according to (4). Set k = k + 1 and go to the next outer iteration.

Remark 3. We update the proximity parameter δk using the following formula given in [46]:

δ̄k+1 = δk

(
1− f (xk + dk)− f (xk)

vk

)
,

δk+1 = max
{

δ̄k+1, δk/10, δmin

}
. (16)

Remark 4. An outline of the main differences between BEM-DC and PBDC described in [29] is in
order.

• In BEM-DC, only one of the two subgradients ξ1,j and ξ2,j, gathered at any iteration j, enters
into the calculation of the tentative displacement at each of the successive iterations; the choice
is driven by the sign of the linearization error at the current iterate. This is not the case in
PBDC;

• In BEM-DC, there exists a temporary bundle whose “birth and death” takes place within the
procedure for escaping from the null step and does not increase the bundle size once a descent

Algorithms 2023, 16, 394 10 of 21

is achieved, while PBDC adds more information to the bundles at each step and, thus, increases
the bundle sizes at every iteration;

• In BEM-DC, a second direction is checked for the descent before the null step is declared (see
Remark 2), whereas there is only one possible direction used in each step of PBDC.

5. Termination Property of Algorithm BEM-DC

In this section, we provide the proof of the Algorithm BEM-DC, taking any starting
point x1 ∈ Rn as an input, that returns an approximate critical point x∗. Assume that the set

F1 ,
{

x ∈ Rn : f (x) ≤ f (x1)
}

is bounded and the numbers L1 and L2 are the Lipschitz constants of f1 and f2, respectively,
on the set F1. Note that, whenever the tuple b(y) is inserted into the temporary bundle
TBl associated with the function f1 at the trial point y (see Step 6), then t‖dk

l ‖ ≤ θ implies
ξ+1 (y) ∈ ∂ε f1(xk) for ε ≤ 2θL1θ , where L1θ is the Lipschitz constant of f1 on the set

Fθ ,
{

x ∈ Rn : dist(x,F1) ≤ θ
}

.

Lemma 1. Let L1θ and L2 be the Lipschitz constants of f1 and f2, respectively, on the set Fθ . Then
the following bound holds:

‖dk
l ‖ ≤

L1θ + L2

δmin
= D. (17)

Proof. Throughout the algorithm, we have δk ≥ δmin, and thus, the inequality follows
from (10).

Remark 5. The bound given in (17) is also valid for ‖d∗l,j0‖.

Next, we prove that the number of inner iterations of algorithm BEM-DC is finite.

Lemma 2. At any given k-th outer iteration, the inner iteration terminates, either fulfilling the
sufficient decrease condition (Step 4) or satisfying the stopping condition (Step 2).

Proof. Suppose by contradiction that the inner iteration does not terminate. Since (see
Remark 5) ‖d∗l,j0‖ is bounded and t becomes arbitrarily small, the algorithm cannot loop
infinitely many times between Steps 4 and 5. Thus, it loops infinitely many times between
Steps 1 and 7, giving rise to an infinite number of null steps.

Observe now that every time a null step occurs and the tuple b(y) is generated at
Step 6, we have

f (xk + tldk
l)− f (xk) = f1(xk + tldk

l)− f2(xk + tldk
l)−

(
f1(xk)− f2(xk)

)
≥ tlµvk

l , for some 0 < tl < 1.

Considering
αk

1,l+1 = f1(xk)− f1(xk + tldk
l) + tl〈ξk

1,l+1, dk
l 〉,

the convexity of f2, and ξk
2,j0
∈ ∂ f2(xk), it follows

〈ξk
1,l+1 − ξk

2,j0 , dk
l 〉 − αk

1,l+1 ≥
(1

tl
− 1
)

αk
1,l+1 + µvk

l > µvk
l . (18)

Furthermore, since the sequence {wk
l }l→∞, is monotonically non-decreasing and

bounded from above by zero, it is convergent. Note that the sequence {wk
l,j0
}l→∞ (see (13))

is convergent as well. Consequently, from boundedness of ‖dk
l,j0
‖, there exists a convergent

Algorithms 2023, 16, 394 11 of 21

subsequence {dk
l,j0
}l∈L → d̄k

0, and thus, the subsequence {vk
l,j0
}l∈L also converges to a limit,

say v̄k
0 ≤ 0, for some subset of indices L ⊂{1, 2, . . .}.
Next, consider two successive indices p, q ∈ L. From (18) and the definition of Problem

Pk
l,j0

, we obtain

〈ξk
1,p+1 − ξk

2,j0 , dk
p〉 − αk

1,p+1 > µvk
p,j0 , and

〈ξk
1,p+1 − ξk

2,j0 , dk
q〉 − αk

1,p+1 ≤ vk
q,j0 .

Therefore, we obtain
vk

q,j0 − µvk
q,j0 > 〈ξk

1,p+1 − ξk
2,j0 , dk

q − dk
p〉.

Passing this to the limit, we have (1− µ)v̄k
0 ≥ 0, which, taking into account v̄k

0 ≤ 0, implies
v̄k

0 = 0. This contradicts that the stopping condition at Step 2 is not satisfied infinitely many
times.

The next theorem proves the termination of Algorithm BEM-DC.

Theorem 1. For any starting point x1 ∈ Rn, the algorithm terminates after finitely many iterations
at a point satisfying the stopping criterion at Step 2.

Proof. Assume the contrary. That is, the stopping criterion at Step 2 is never fulfilled. This
implies, taking into account Lemma 2, that an infinite sequence of serious steps takes place,
giving rise to infinitely many outer iterations.

Note that every time a serious step is achieved, considering the failed stopping test
at Step 2, we have vk

l ≤ −η < 0. Furthermore, it holds that either t = 1 or t‖dk‖ > θ.
Consequently, it follows from (15) that in the case of t = 1, we obtain

f (xk + tdk)− f (xk) < −µη, (19)

or in the second case, considering (17), we have

f (xk + tdk)− f (xk) < −
µηθ

D
.

This together with (19) implies that the decrease of the objective function value in both
cases is bounded away from zero every time a serious step occurs. This is a contradiction
under the assumption that F1 is bounded.

Remark 6. The “escape procedure” (Algorithm 1, introduced in [33]) can escape from critical points
which are not Clarke stationary. Algorithm BEM-DC can be combined with this procedure to design
an algorithm for finding Clarke stationary points of Problem (1). More precisely, once an approximate
critical point is obtained by BEM-DC, the escape procedure could be applied to approximate the
Clarke subdifferential at this point [42,43]. Then, it verifies whether this approximation contains the
origin with respect to some tolerance. During this approximation, the procedure generates directions
that are used to find elements of the Clarke subdifferential. It is proved that this procedure is finitely
convergent. That is, after a finite number of steps, it either confirms that the current critical point is
also Clarke stationary or the descent direction is found to escape this point (see [33] for more details
about different stationary points and their relationships).

6. Numerical Experiments

To evaluate the performance of the BEM-DC algorithm and to compare it with some
existing nonsmooth DC programming algorithms, we carry out numerical experiments
using different known academic test problems designed for DC programming. Problems
1–9 are from [29], Problems 11–14 are described in [33], and Problems 15–17 are designed
in [36]. We exclude Problem 10 from [29] in our experiments as it has many local minimizers
and its usage does not provide an unbiased picture of the performance of local search

Algorithms 2023, 16, 394 12 of 21

solvers. For the formulations, optimal values, and initial points of these test problems, we
refer to references [29,33,36].

6.1. Solvers and Parameters

We consider the following nonsmooth DC optimization solvers in our comparison:

• Augmented subgradient method for nonsmooth DC optimization (ASM-DC) [36];
• Aggregate subgradient method for nonsmooth DC optimization (AggSub) [35];
• Proximal bundle method for nonsmooth DC optimization (PBDC) [29];
• DC Algorithm (DCA) [8,20];
• Proximal bundle method for nonsmooth DC programming (PBMDC) [30];
• Sequential DC programming with cutting-plane models (SDCA-LP) [25].

The parameters in algorithm BEM-DC are chosen as follows: η = 10−7, δmin = 10−5,
θ = 0.5, µ = 0.2, σ1 = 0.2, and σ2 = 0.4. The same set of parameters is used with all the
test problems. The initial value of the proximity parameter is computed according to the
recommendation given in [46]; that is, δ1 = ‖ξ1,1 − ξ2,1‖. We select the parameters of other
algorithms considering the recommendations given in their references.

The algorithms BEM-DC, ASM-DC, AggSub, PBDC, and DCA are implemented in
Fortran 95 and compiled using the gfortran compiler. For PBMDC and SDCA-LP, we
use their MATLAB implementations, available at http://www.oliveira.mat.br/solvers
(accessed on 1 August 2023). Since the SDCA-LP algorithm requires the feasible set to be
compact, to apply this method to unconstrained problems, we define a large n-dimensional
box around the starting point and consider only those points generated by the SDCA-LP
that belong to this box.

We set a time limit for all algorithms. For solvers in MATLAB, we consider the
limit to be three hours, and for those in Fortran, the limit is half an hour. The source
code of algorithm BEM-DC is freely available on GitHub: https://github.com/SnTa2019/
Nonsmooth-Optimization (accessed on 1 August 2023) and at http://napsu.karmitsa.fi/
bemdc (accessed on 1 August 2023). We carry out our numerical experiments on a computer
with Intel(R) Core (TM), i7-9750H, CPU @ 2.60 GHz, 32GB (RAM), under Windows 10,
64Bits. Since the solvers PBMDC and SDCA-LP are implemented in MATLAB, we do not
report their CPU time in our comparison.

6.2. Evaluation Measures and Notations

We report the numbers of function and subgradient evaluations and the final value
of the objective function found by algorithms. We also provide the computational time
(in seconds) required by the algorithms implemented in the same platform (Fortran). The
following notations are used:

• Prob. is the label of the problem;
• n is the number of variables;
• N f is the number of function evaluations for the objective function f ;
• Nξ is the number of subgradient evaluations defined as the average of subgradient

evaluations for the DC components f1 and f2;
• CPU is the computational time in seconds;
• f ∗A is the best value of the objective function obtained by algorithm A.

All methods used in this paper are local search methods. In this case, a method is
successful if it can find a stationary point of a problem with the given accuracy. For each
test problem, a subset of stationary points is known. This subset contains, in particular,
stationary points found in methods used in this paper. We say that an algorithm “A” finds
a solution with respect to a tolerance β1 if

0 ≤ f ∗A − fopt

| fopt|+ 1
≤ β1, (20)

http://www.oliveira.mat.br/solvers
https://github.com/SnTa2019/Nonsmooth-Optimization
https://github.com/SnTa2019/Nonsmooth-Optimization
http://napsu.karmitsa.fi/bemdc
http://napsu.karmitsa.fi/bemdc

Algorithms 2023, 16, 394 13 of 21

where fopt is the value of the objective function at one of the known stationary points. Oth-
erwise, we say that the solver fails. We set β1 = 10−4. In addition, we apply performance
profiles, introduced in [47], to analyze the results.

6.3. Results

In this subsection, we report and discuss the results of the numerical experiments. We
present the results obtained by algorithms for Problems 1–9 from [29] and Problems 11–14
from [33]. We consider two cases by using two types of starting points. In the first case,
for each problem, we use one starting point, given in [29,33]. In this case, using tables, we
report the values of the objective functions and the numbers of function and subgradient
evaluations. In the second case, we use 20 randomly generated starting points for each
problem and present the results by applying performance profiles. We also report the
average CPU time required by the BEM-DC algorithm on these problems for a different
number of variables using both 1 and 20 randomly generated starting points. Further, we
show the results for three large-scale test problems from [36] by reporting the values of
objective functions and the numbers of function and subgradient evaluations. Tables 1–5
report the results, and the sign “–” is used to show the failure of a method in finding the
correct solution.

6.3.1. Results with One Starting Point

Table 1 presents the best value of the objective function obtained by solvers using
one starting point. We can see that the BEM-DC algorithm is sufficiently accurate in
finding local solutions. Except for Problem 9, it finds global minimizers of DC optimization
problems in all other cases. Other solvers fail in one or several problems. More specifically,
ASM-DC, AggSub, and DCA fail to find solutions in Problem 4 with n = 200. Furthermore,
AggSub fails in Problems 5 and 14 with n = 5, 10, 50, 100, 200; PBDC fails in Problem 12
with n = 50, 100, 200 and in Problem 13; DCA fails in Problem 8; PBMDC fails in Problems
7, 12, 13 and also fails in Problem 14 with n = 100, 200; and finally, SDCA-LP fails in
Problems 1, 8, 9, 13 and also fails in Problem 12 with n = 10, 50, 100, 200.

In Table 2, we report the number of function and subgradient evaluations required by
the algorithms. These numbers are computed as an average of the number of function and
subgradient evaluations of DC components. Note that in SDCA-LP, the number of function
and subgradient evaluations are the same. The results show that, in general, PBMDC
requires the least number of function and subgradient evaluations among all algorithms.
These numbers are similar for PBDC and SDCA-LP. We can see that the computational
effort required by the BEM-DC is reasonable and in some instances it is similar to that of by
PBMDC, PBDC, and SDCA-LP. Here, Problem 4 with n = 50, 100, 200 is an exception. Three
other solvers, ASM-DC, AggSub, and DCA also require a reasonable computational effort
in most cases; however, in general, they use (in some cases significantly) more function and
subgradient evaluations than BEM-DC PBMDC, PBDC, and SDCA-LP.

Table 1. Best values of the objective functions obtained by solvers (one starting point).

Prob. n BEM-DC ASM-DC AggSub PBDC DCA PBMDC SDCA-LP

1 2 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 –
2 2 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000
3 4 0.00000 0.00001 0.00001 0.00000 0.00000 0.00000 2.00000
4 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
4 5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
4 10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
4 50 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
4 100 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Algorithms 2023, 16, 394 14 of 21

Table 1. Cont.

Prob. n BEM-DC ASM-DC AggSub PBDC DCA PBMDC SDCA-LP

4 200 0.00000 – – 0.00000 – 0.00000 0.00000
5 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
5 5 0.00000 0.00000 – 0.00000 0.00000 0.00000 0.00000
5 10 0.00001 0.00000 – 0.00000 0.00000 0.00000 0.00001
5 50 0.00004 0.00001 – 0.00000 0.00011 0.00000 0.00002
5 100 0.00000 0.00001 – 0.00000 0.00031 0.00000 0.00007
5 200 0.00000 0.00001 – 0.00000 0.00003 0.00000 0.00008
6 2 −2.50000 −2.50000 −2.50000 −2.50000 −2.50000 −2.50000 −2.50000
7 2 0.50000 0.50000 0.50000 0.50000 1.00000 – 0.50000
8 3 3.50000 3.50000 3.50000 3.50000 – 3.50000 –
9 4 9.20000 9.20000 9.20000 1.83333 9.20000 1.83333 –

11 3 116.33333 116.33333 116.33377 116.33333 116.33333 116.33330 116.33330
12 2 0.61804 0.61804 0.61804 1.61803 0.61803 – 1.61809
12 5 0.61803 0.61804 0.61804 1.61803 0.61803 – 0.61803
12 10 0.61803 0.61804 0.61804 0.61803 0.61803 – –
12 50 0.61803 0.61804 0.61804 – 0.61804 – –
12 100 0.61803 0.61803 0.61804 – 0.61804 – –
12 200 0.61803 0.61803 0.61804 – 0.61804 – –
13 10 0.00000 0.00000 0.00000 – 0.00000 – –
14 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
14 5 0.00001 0.00000 – 0.00000 0.00000 0.00001 0.00001
14 10 0.00000 0.00000 – 0.00000 0.00000 0.00001 0.00003
14 50 0.00002 0.00000 – 0.00000 0.00000 0.00002 0.00005
14 100 0.00007 0.00001 – 0.00000 0.00000 – 0.00006
14 200 0.00003 0.00003 – 0.00000 0.00000 – 0.00003

Table 2. Number of function and subgradient evaluations required by solvers (one starting point).

Prob. n BEM-DC ASM-DC AggSub PBDC DCA PBMDC SDCA-LP
N f Nξ N f Nξ N f Nξ N f Nξ N f Nξ N f Nξ N f , Nξ

1 2 105 25 189 52 162 75 22 17 60 41 10 16 –
2 2 175 25 109 41 255 92 18 13 72 54 3 5 7
3 4 87 17 149 53 391 174 23 11 222 181 5 8 16
4 2 75 17 43 19 64 31 6 3 52 28 2 2 6
4 5 40 9 126 44 235 120 13 6 165 124 3 4 13
4 10 70 18 256 88 545 273 16 10 361 309 5 8 26
4 50 1865 874 3430 1124 3206 1597 52 32 2915 2807 25 38 103
4 100 9049 4379 10,878 3539 6824 3405 102 66 6312 6232 50 75 204
4 200 40,713 19,626 – – – – 475 546 – – 101 151 403
5 2 8 3 231 50 75 31 18 4 37 24 2 3 8
5 5 64 26 118 44 – – 15 7 474 297 6 8 9
5 10 87 42 335 111 – – 23 15 54,116 53,287 12 24 34
5 50 526 235 1413 457 – – 135 124 247,813 246,256 17 24 55
5 100 141 71 1337 438 – – 47 25 471,198 469,845 20 29 63
5 200 129 65 1885 594 – – 108 52 46,2821 461,267 18 28 66
6 2 39 10 135 43 105 55 22 14 41 33 17 24 29
7 2 303 48 388 111 285 107 72 47 3368 2471 – – 49
8 3 125 49 271 75 176 88 60 32 – – – – –
9 4 9 3 199 63 169 80 86 72 63 56 17 25 –
11 3 146 28 174 61 258 126 10 7 18 17 5 8 14
12 2 130 26 290 79 127 64 20 15 61 60 – – 37
12 5 202 52 457 122 213 103 58 39 67 65 – – 696
12 10 393 105 831 257 359 170 1415 1257 76 74 – – –

Algorithms 2023, 16, 394 15 of 21

Table 2. Cont.

Prob. n BEM-DC ASM-DC AggSub PBDC DCA PBMDC SDCA-LP
N f Nξ N f Nξ N f Nξ N f Nξ N f Nξ N f Nξ N f , Nξ

12 50 739 156 3015 771 1411 694 – – 99 97 – – –
12 100 1032 173 6998 2519 1239 907 – – 117 115 – – –
12 200 2757 174 15,302 5090 2850 1397 – – 338 337 – – –
13 10 145 21 26 13 70 38 – – 20 19 – – –
14 2 19 4 50 23 71 34 9 5 56 54 11 16 29
14 5 145 26 206 73 226 100 109 105 63 61 22 31 58
14 10 249 59 357 107 322 155 6169 6151 61 60 34 50 107
14 50 1168 439 672 211 1653 790 991 966 16 14 59 89 280
14 100 2273 708 1779 549 – – 780 740 18 16 – – 552
14 200 2591 724 1746 541 – – 983 961 28 26 – – 619

6.3.2. Results with 20 Starting Points

Performance profiles using the number of function evaluations, the number of sub-
gradient evaluations, and the computational time (CPU time) required by algorithms are
depicted in Figures 1–3. Here, we use results obtained by solving Problems 1–9 and 11–14
with 20 random starting points. We report the pairwise comparison of performance profiles
as per the note by [48]. The comparison with other methods shows that the BEM-DC
is more efficient and robust than the AggSub, DCA, PBMDC, and SDCA-LP methods.
Compared with the ASM-DC method, we can see that the BEM-DC uses significantly fewer
subgradient evaluations, and the performance of these two methods are similar concerning
two other measures. The performance of the BEM-DC and PBDC methods are similar
for the number of function and subgradient evaluations; however, the BEM-DC is more
efficient than PBDC if one uses computational time. One reason for this can be the fact
that the BEM-DC better manages the bundle of the second DC component than PBDC and
decreases the number of the solving of the quadratic programming subproblems required
to find search directions.

For a given number n of variables, we also report the average CPU time (in seconds)
required by the BEM-DC for Problems 1–9 and 11–14 (29 problems considering different
variables) with 1 starting point and 20 random starting points. The results given in Table 3
indicate that the CPU time required by this algorithm is very small for problems with
n ≤ 10 number of variables.

Table 3. CPU time (in seconds) required by BEM-DC.

n 2 3 4 5 10 50 100

1 starting point 0.000 0.000 0.001 0.012 0.009 0.672 16.328

20 starting points 0.000 0.000 0.002 0.018 0.616 14.613 42.461

6.3.3. Results for Large-Scale Problems

Tables 4 and 5 provide the results obtained by different algorithms for three large-scale
problems from [36]: PL1, PL2, and PL3. More specifically, Table 4 contains the best objective
function values found by each solver, and Table 5 displays the number of function and
subgradient evaluations. As we mentioned above, the number of function and subgradient
evaluations are the same for SDCA-LP. Only two algorithms, BEM-DC and ASM-DC, can
find approximate solutions to all three problems. AggSub fails in Problem PL3, PBDC
in Problem PL1, DCA in Problems PL1 and PL3, PBMDC in Problem PL1, and SDCA-LP
in Problems PL1 and PL2. Summarizing results from Table 4, we can conclude that the
BEM-DC is the most accurate among all algorithms for solving large-scale problems used
in numerical experiments.

Algorithms 2023, 16, 394 16 of 21

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

BEM-DC
ASM-DC

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

BEM-DC
AggSub

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

BEM-DC
PBDC

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

BEM-DC
DCA

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

BEM-DC
PBMDC

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

BEM-DC
SDCA-LP

Figure 1. Performance profiles using the number of function evaluations (20 starting points).

Algorithms 2023, 16, 394 17 of 21

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

BEM-DC
ASM-DC

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

BEM-DC
AggSub

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

BEM-DC
PBDC

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

BEM-DC
DCA

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

BEM-DC
PBMDC

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

BEM-DC
SDCA-LP

Figure 2. Performance profiles using the number of subgradient evaluations (20 starting points).

Algorithms 2023, 16, 394 18 of 21

Version August 2, 2023 submitted to Journal Not Specified 17 of 20

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

BEM-DC
ASM-DC

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

BEM-DC
AggSub

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

BEM-DC
PBDC

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

BEM-DC
DCA

Further, for a given number n of variables, we report the average CPU time in seconds required 344

by the BEM-DC for Problems 1-9, 11-14 (29 problems considering different variables) with one 345

starting point and also with 20 random starting points. The results are given in Table 3. We can see 346

that the CPU time required by the BEM-DC is very small for test problems with the number of 347

variables n ≤ 10. 348

Table 3. CPU time (in seconds) required by BEM-DC.

n 2 3 4 5 10 50 100

One starting point 0.000 0.000 0.001 0.012 0.009 0.672 16.328

20 starting points 0.000 0.000 0.002 0.018 0.616 14.613 42.461

6.3.3. Results for large-scale problems 349

In Tables 4 and 5, we report the results obtained by different algorithms for three large-scale test 350

problems from [9]: PL1,PL2 and PL3. More specifically, Table 4 contains the best objective function 351

values found by each solver, and Table 5 displays the number of function and subgradient evaluations. 352

As we mentioned above, the number of function and subgradient evaluations are the same for 353

SDCA-LP. Only two algorithms, the BEM-DC and ASM-DC, can find approximate solutions to 354

all three problems. AggSub fails in Problem PL3, PBDC in Problem PL1, DCA in Problems PL1 and 355

PL3, PBMDC in Problem PL1 and SDCA-LP in Problems PL1 and PL2. Summarizing results from 356

Table 4 we can conclude that the BEM-DC is the most accurate among all algorithms for solving 357

large-scale problems used in numerical experiments. 358

Results presented in Table 5 show that among all algorithms the BEM-DC uses the least 359

number of function and subgradient evaluations for solving Problem PL1 and PBMDC requires 360

the least computational effort for solving Problems PL2 and PL3. Although the BEM-DC can find 361

accurate solutions for Problems PL2 and PL3, nevertheless it requires more, and in the case of Problem 362

PL3 significantly more, function and subgradient evaluations than other solvers. All other algorithms 363

also require reasonable computational effort in problems where they succeeded to find solutions. 364

Figure 3. Performance profiles using CPU time (20 starting points).

Table 4. Best values of objective functions obtained by solvers for large-scale problems.

P n BEM-DC ASM-DC AggSub PBDC DCA PBMDC SDCA-LP

PL1 200 0.00000 0.00006 0.00007 98.56721 153.29050 − −
PL1 500 0.00000 0.00009 0.00007 249.00000 539.99295 − −
PL1 1000 0.00000 0.00032 0.00032 499.00000 510.84581 − −
PL1 1500 0.00000 0.00072 0.00051 749.00000 1.90755× 103 − −
PL1 2000 0.00000 0.00247 0.00083 999.00000 1.00229× 103 − −
PL2 200 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3.59539× 103

PL2 500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.08151× 104

PL2 1000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 2.43987× 104

PL2 1500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 3.90289× 104

PL2 2000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00003 5.43386× 104

PL3 200 0.00004 0.00000 4.66526 0.00000 0.16124 0.00001 0.00005
PL3 500 0.00001 0.00001 7.91275 0.00000 0.08352 0.00002 0.00015
PL3 1000 0.00006 0.00037 17.32160 0.00000 0.05060 0.00001 0.00004
PL3 1500 0.00002 0.00157 10.50161 0.00000 2.78735 0.00001 0.00011
PL3 2000 0.00008 0.00056 12.63033 0.00000 26.17493 0.00002 0.00003

Results presented in Table 5 show that among all algorithms, BEM-DC uses the least
number of function and subgradient evaluations for solving Problem PL1, and PBMDC
requires the least computational effort for solving Problems PL2 and PL3. Although the
BEM-DC can find accurate solutions for Problems PL2 and PL3, it nevertheless requires
more—and in the case of Problem PL3, significantly more—function and subgradient
evaluations than other solvers. All other algorithms also require reasonable computational
effort in problems where they succeeded to find solutions.

Algorithms 2023, 16, 394 19 of 21

Table 5. Number of function and subgradient evaluations for large-scale problems.

Prob. n BEM-DC ASM-DC AggSub PBDC DCA PBMDC SDCA-LP

N f Nξ N f Nξ N f Nξ N f Nξ N f Nξ N f Nξ N f , Nξ

PL1 200 49 3 2328 628 1075 277 60 48 2508 2502 − − −
PL1 500 94 3 2083 456 1400 364 146 115 2006 2002 − − −
PL1 1000 158 3 2165 497 2127 607 50 37 3511 3503 − − −
PL1 1500 218 4 2691 664 1734 479 102 80 1003 1001 − − −
PL1 2000 244 4 3123 793 1299 631 49 34 4526 4515 − − −
PL2 200 863 248 1835 593 1604 787 974 780 5010 5005 108 177 4509
PL2 500 1430 424 2161 705 2342 1157 1355 1057 5010 5005 144 23 2264
PL2 1000 3589 1057 3153 1041 2277 1125 1664 1416 5904 5896 219 360 1655
PL2 1500 4293 1329 3966 1310 2722 1344 2044 1740 4158 4153 295 482 1509
PL2 2000 6433 1817 4433 1466 2936 1459 2244 1914 5511 5505 299 497 955
PL3 200 1989 536 1044 333 14639 7151 1928 1845 3006 3003 55 97 97
PL3 500 4598 729 1444 469 12869 6252 2539 2513 3507 3503 58 99 3555
PL3 1000 13,844 3006 3445 1107 21,456 10,555 2980 2958 3006 3003 73 126 370
PL3 1500 12,384 2291 2408 730 41,096 20,239 2763 2747 1503 1501 69 121 1130
PL3 2000 17,520 3156 4017 1283 34,758 17,149 3766 3741 1503 1501 73 127 1090

7. Conclusions

In this paper, a new method, named the bundle enrichment method (BEM-DC), is
introduced for solving nonsmooth unconstrained difference of convex (DC) optimization
problems. This method belongs to the family of bundle-type methods. It exploits cutting
plane models of DC components to build the model of the DC objective function. The main
difference between the proposed method and other bundle methods for DC optimization is
in the dynamic management of the bundle. In the implementation of most bundle methods,
the size of the bundle for the cutting plane models of the second DC component is given
by the user, and it is restricted to reduce the number of subproblems for finding search
directions. However, in the BEM-DC, this size is self-determined by the method. This
allows for avoiding solving subproblems that do not provide descent directions.

We prove that the BEM-DC computes approximate critical points of the unconstrained
DC optimization problems in a finite number of iterations. The performance of this method
is evaluated using two groups of nonsmooth DC optimization test problems: small- and
medium-sized sized test problems and test problems with a large number of variables.
We consider two types of starting points for problems from the first group: the single
starting point available in the literature and 20 randomly generated starting points. The
use of randomly generated starting points allows us to investigate the robustness of the
proposed method. In addition, we provide a comparison of the BEM-DC with six other DC
optimization methods.

Results of numerical experiments show that the BEM-DC is able to find accurate
solutions using reasonable computational effort in most test problems. Nevertheless, in
some large-scale problems, the number of function and subgradient evaluations required
by the BEM-DC algorithm may increase significantly as the number of variables increases.
This means that the BEM-DC algorithm may not be applicable to some nonsmooth DC
optimization problems with a very large number of variables (n ≥ 5000). The extension of
this method for solving such problems will be the subject of future research.

The remarkable feature of the BEM-DC is that it is able to dynamically manage the
number of subgradients of the second DC components and significantly decrease the
number of quadratic programming subproblems for finding search directions. Results
obtained using many randomly generated starting points allow us to conclude that the
BEM-DC is efficient and is among the most robust methods used in numerical experiments.
Further, the BEM-DC algorithm is able to efficiently solve relatively large nonsmooth DC
optimization problems.

Algorithms 2023, 16, 394 20 of 21

Author Contributions: All authors contribute equally. All authors have read and agreed to the
published version of the manuscript.

Funding: A.M. Bagirov’s research is funded by the Australian Government through the Australian
Research Council’s Discovery Projects (Project No. DP190100580), and the research by N. Karmitsa is
supported by the Research Council of Finland (Projects No. 345804 and No. 345805)

Data Availability Statement: The source code of BEM-DC is freely available on GitHub: https://
github.com/SnTa2019/Nonsmooth-Optimization (accessed on 1 August 2023) and at http://napsu.
karmitsa.fi/bemdc (accessed on 1 August 2023).

Acknowledgments: A.M. Bagirov’s research is funded by the Australian Government through the
Australian Research Council’s Discovery Projects (Project No. DP190100580), and the research by
N. Karmitsa is supported by the Academy of Finland (Projects No. 345804 and No. 345805).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bertsekas, D.P. Nonlinear programming. In Theoretical Solutions Manual, 3rd ed.; Athena Scientific: Nashua, NH, USA, 2016.
2. Hiriart-Urruty, J.B. Generalized differentiability/ duality and optimization for problems dealing with differences of convex

functions. In Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1986; Volume 256,
pp. 37–70.

3. Strekalovsky, A.S. Global optimality conditions for nonconvex optimization. J. Glob. Optim. 1998, 12, 415–434. [CrossRef]
4. Strekalovsky, A.S. On a Global Search in D.C. Optimization Problems. In Optimization and Applications; Springer: Cham,

Swizerland, 2020; pp. 222–236.
5. Strekalovsky, A.S. Local Search for Nonsmooth DC Optimization with DC Equality and Inequality Constraints. In Numerical

Nonsmooth Optimization; Springer: Cham, Swizerland, 2020; pp. 229–261.
6. de Oliveira, W. The ABC of DC programming. Set-Valued Var. Anal. 2020, 28, 679–706. [CrossRef]
7. Horst, R.; Thoai, N.V. DC programming: Overview. J. Optim. Theory Appl. 1999, 103, 1–43. [CrossRef]
8. An, L.T.H.; Tao, P.D. The DC (difference of convex functions) programming and DCA revisited with DC models of real world

nonconvex optimization problems. Ann. Oper. Res. 2005, 133, 23–46. [CrossRef]
9. Holmberg, K.; Tuy, H. A production-transportation problem with stochastic demand and concave production costs. Math.

Program. 1999, 85, 157–179. [CrossRef]
10. Pey-Chun, C.; Hansen, P.; Jaumard, B.; Tuy, H. Solution of the multisource Weber and conditional Weber problems by DC

programming. Oper. Res. 1998, 46, 548–562. [CrossRef]
11. Khalaf, W.; Astorino, A.; D’Alessandro, P.; Gaudioso, M. A DC optimization-based clustering technique for edge detection. Optim.

Lett. 2017, 11, 627–640. [CrossRef]
12. Sun, X.K. Regularity conditions characterizing Fenchel–Lagrange duality and Farkas-type results in DC infinite programming. J.

Math. Anal. Appl. 2014, 414, 590–611. [CrossRef]
13. Bagirov, A.M.; Karmitsa, N.; Taheri, S. Partitional Clustering via Nonsmooth Optimization; Springer: Berlin/Heidelberg, Germany,

2020.
14. Bagirov, A.M.; Taheri, S.; Cimen, E. Incremental DC Optimization Algorithm for Large-Scale Clusterwise Linear Regression. J.

Comput. Appl. Math. 2021, 389, 113323. [CrossRef]
15. Sun, X.; Teo, K.L.; Zeng, J.; Liu, L. Robust approximate optimal solutions for nonlinear semi-infinite programming with uncertainty.

Optimization 2020, 69, 2109–2129. [CrossRef]
16. Sun, X.; Tan, W.; and Teo, K.L. Characterizing a Class of Robust Vector Polynomial Optimization via Sum of Squares Conditions.

J. Optim. Theory Appl. 2023, 197, 737–764. [CrossRef]
17. Sun, X.; Teo, K.L.; Long, X.J. Some characterizations of approximate solutions for robust semi-infinite optimization problems. J.

Optim. Theory Appl. 2021, 191, 281–310. [CrossRef]
18. Tuy, H. Convex Analysis and Global Optimization; Kluwer: Dordrecht, The Netherlands, 1998.
19. Tao, P.D.; Souad, E.B. Algorithms for solving a class of nonconvex optimization problems: Methods of subgradient. North-Holl.

Math. Stud. 1986, 129, 249–271.
20. An, L.T.H.; Tao, P.D.; Ngai, H.V. Exact penalty and error bounds in DC programming. J. Glob. Optim. 2012, 52, 509–535.
21. Artacho, F.J.A.; Fleming, R.M.T.; Vuong, P.T. Accelerating the DC algorithm for smooth functions. Math. Program. 2018, 169,

95–118. [CrossRef]
22. Artacho, F.J.A.; Vuong, P.T. The Boosted Difference of Convex Functions Algorithm for Nonsmooth Functions. Siam J. Optim.

2020, 30, 980–1006. [CrossRef]
23. de Oliveira, W.; Tcheou, M.P. An inertial algorithm for DC programming. Set-Valued Var. Anal. 2019, 27, 895–919. [CrossRef]
24. Artacho, F.J.A.; Campoy, R.; Vuong, P.T. Using positive spanning sets to achieve d-stationarity with the boosted DC algorithm.

Vietnam. J. Math. 2020, 48, 363–376. [CrossRef]
25. de Oliveira, W. Sequential difference-of-convex programming. J. Optim. Theory Appl. 2020, 186, 936–959. [CrossRef]

https://github.com/SnTa2019/Nonsmooth-Optimization
https://github.com/SnTa2019/Nonsmooth-Optimization
http://napsu.karmitsa.fi/bemdc
http://napsu.karmitsa.fi/bemdc
http://doi.org/10.1023/A:1008277314050
http://dx.doi.org/10.1007/s11228-020-00566-w
http://dx.doi.org/10.1023/A:1021765131316
http://dx.doi.org/10.1007/s10479-004-5022-1
http://dx.doi.org/10.1007/s101070050050
http://dx.doi.org/10.1287/opre.46.4.548
http://dx.doi.org/10.1007/s11590-016-1031-7
http://dx.doi.org/10.1016/j.jmaa.2014.01.033
http://dx.doi.org/10.1016/j.cam.2020.113323
http://dx.doi.org/10.1080/02331934.2020.1763990
http://dx.doi.org/10.1007/s10957-023-02184-6
http://dx.doi.org/10.1007/s10957-021-01938-4
http://dx.doi.org/10.1007/s10107-017-1180-1
http://dx.doi.org/10.1137/18M123339X
http://dx.doi.org/10.1007/s11228-018-0497-0
http://dx.doi.org/10.1007/s10013-020-00400-8
http://dx.doi.org/10.1007/s10957-020-01721-x

Algorithms 2023, 16, 394 21 of 21

26. Dolgopolik, M.V. A convergence analysis of the method of codifferential descent. Comput. Optim. Appl. 2018, 71, 879–913.
[CrossRef]

27. Gaudioso, M.; Giallombardo, G.; Miglionico, G. Minimizing piecewise-concave functions over polytopes. Math. Oper. Res. 2018,
43, 580–597. [CrossRef]

28. Gaudioso, M.; Giallombardo, G.; Miglionico, G.; Bagirov, A.M. Minimizing nonsmooth DC functions via successive DC piecewise-
affine approximations. J. Glob. Optim. 2018, 71, 37–55. [CrossRef]

29. Joki, K.; Bagirov, A.M.; Karmitsa, N.; Mäkelä, M.M. A proximal bundle method for nonsmooth DC optimization utilizing
nonconvex cutting planes. J. Glob. Optim. 2017, 68, 501–535. [CrossRef]

30. de Oliveira, W. Proximal bundle methods for nonsmooth DC programming. J. Glob. Optim. 2019, 75, 523–563. [CrossRef]
31. Sun, W.Y.; Sampaio, R.J.B.; Candido, M.A.B. Proximal point algorithm for minimization of DC functions. J. Comput. Math. 2003,

21, 451–462.
32. Souza, J.C.O.; Oliveira, P.R.; Soubeyran, A. Global convergence of a proximal linearized algorithm for difference of convex

functions. Optim. Lett. 2016, 10, 1529–1539. [CrossRef]
33. Joki, K.; Bagirov, A.M.; Karmitsa, N.; Mäkelä, M.M.; Taheri, S. Double bundle method for finding Clarke stationary points in

nonsmooth DC programming. Siam J. Optim. 2018, 28, 1892–1919. [CrossRef]
34. Ackooij, W.; Demassey, S.; Javal, P.; Morais, H.; de Oliveira, W.; Swaminathan, B. A bundle method for nonsmooth dc programming

with application to chance–constrained problems. Comput. Optim. Appl. 2021, 78, 451–490. [CrossRef]
35. Bagirov, A.M.; Taheri, S.; Joki, K.; Karmitsa, N.; Mäkelä, M.M. Aggregate subgradient method for nonsmooth DC optimization.

Optim. Lett. 2020, 15, 83–96. [CrossRef]
36. Bagirov, A.M.; Hoseini, M.N.; Taheri, S. An augmented subgradient method for minimizing nonsmooth DC functions. Comput.

Optim. Appl. 2021, 80, 411–438. [CrossRef]
37. Astorino, A.; Frangioni, A.; Gaudioso, M.; Gorgone,E. Piecewise quadratic approximations in convex numerical optimization.

SIAM J. Optim. 2011, 21, 1418–1438. [CrossRef]
38. Bagirov, A.M.; Gaudioso, M.; Karmitsa, N.; Mäkelä, M.M.; Taheri, S. (Eds.) Numerical Nonsmooth Optimization, State of the Art

Algorithms; Springer: Berlin/Heidelberg, Germany, 2020.
39. Gaudioso, M.; Monaco, M.F. Variants to the cutting plane approach for convex nondifferentiable optimization. Optimization 1992,

25, 65–75. [CrossRef]
40. Hiriart–Urruty, J.B.; Lemaréchal, C. Convex Analysis and Minimization Algorithms; Springer: Berlin, Germany, 1993; Volume I and II.
41. Bagirov, A.M.; Karmitsa, N.; Mäkelä, M.M. Introduction to Nonsmooth Optimization: Theory, Practice and Software; Springer: New

York, NY, USA, 2014.
42. Mäkelä, M.M.; Neittaanmäki, P. Nonsmooth Optimization; World Scientific: Singapore, 1992.
43. Clarke, F.H. Optimization and Nonsmooth Analysis; John Wiley & Sons: New York, NY, USA, 1983.
44. Demyanov, V.F.; Vasilev, L.V. Nondifferentiable Optimization; Springer: New York, NY, USA, 1985.
45. Polyak, B.T. Minimization of unsmooth functionals. Ussr Comput. Math. Math. Phys. 1969, 9, 14–29. [CrossRef]
46. Kiwiel, K.C. Proximity control in bundle methods for convex nondifferentiable minimization. Math. Program. 1990, 46, 105–122.

[CrossRef]
47. Dolan, E.D.; More, J.J. Benchmarking optimization software with performance profiles. Math. Program. 2002, 91, 201–213.

[CrossRef]
48. Gould, N.; Scott, J. A note of performance profiles for benchmarking software. Acm Trans. Math. Softw. 2016, 43, 1–5. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10589-018-0024-0
http://dx.doi.org/10.1287/moor.2017.0873
http://dx.doi.org/10.1007/s10898-017-0568-z
http://dx.doi.org/10.1007/s10898-016-0488-3
http://dx.doi.org/10.1007/s10898-019-00755-4
http://dx.doi.org/10.1007/s11590-015-0969-1
http://dx.doi.org/10.1137/16M1115733
http://dx.doi.org/10.1007/s10589-020-00241-8
http://dx.doi.org/10.1007/s11590-020-01586-z
http://dx.doi.org/10.1007/s10589-021-00304-4
http://dx.doi.org/10.1137/100817930
http://dx.doi.org/10.1080/02331939208843808
http://dx.doi.org/10.1016/0041-5553(69)90061-5
http://dx.doi.org/10.1007/BF01585731
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1145/2950048

	Introduction
	Notations and Background
	The New Model Function
	The Proposed BEM-DC Algorithm
	Termination Property of Algorithm BEM-DC
	Numerical Experiments
	Solvers and Parameters
	Evaluation Measures and Notations
	Results
	Results with One Starting Point
	Results with 20 Starting Points
	Results for Large-Scale Problems

	Conclusions
	References

