
Citation: Fazekas, L.; Tüű-Szabó, B.;

Kóczy, L.T.; Hornyák, O.; Nehéz, K. A

Hybrid Discrete Memetic Algorithm

for Solving Flow-Shop Scheduling

Problems. Algorithms 2023, 16, 406.

https://doi.org/10.3390/a16090406

Academic Editors: Grigorios N.

Beligiannis, Efstratios F.

Georgopoulos, Spiridon D.

Likothanassis, Isidoros Perikos,

Ioannis X. Tassopoulos and Frank

Werner

Received: 6 July 2023

Revised: 23 August 2023

Accepted: 24 August 2023

Published: 26 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Hybrid Discrete Memetic Algorithm for Solving Flow-Shop
Scheduling Problems
Levente Fazekas 1,*,†, Boldizsár Tüű-Szabó 2, László T. Kóczy 2 , Olivér Hornyák 1 and Károly Nehéz 1,†

1 Institute of Information Engineering, University of Miskolc, H-3515 Miskolc, Hungary;
oliver.hornyak@uni-miskolc.hu (O.H.); karoly.nehez@uni-miskolc.hu (K.N.)

2 Department of Information Technology, Szechenyi Istvan University, H-9026 Győr, Hungary;
tuu.szabo.boldizsar@sze.hu (B.T.-S.); koczy@sze.hu (L.T.K.)

* Correspondence: levente.fazekas@uni-miskolc.hu
† These authors contributed equally to this work.

Abstract: Flow-shop scheduling problems are classic examples of multi-resource and multi-operation
scheduling problems where the objective is to minimize the makespan. Because of the high complexity
and intractability of the problem, apart from some exceptional cases, there are no explicit algorithms
for finding the optimal permutation in multi-machine environments. Therefore, different heuristic
approaches, including evolutionary and memetic algorithms, are used to obtain the solution—or
at least, a close enough approximation of the optimum. This paper proposes a novel approach: a
novel combination of two rather efficient such heuristics, the discrete bacterial memetic evolutionary
algorithm (DBMEA) proposed earlier by our group, and a conveniently modified heuristics, the
Monte Carlo tree method. By their nested combination a new algorithm was obtained: the hybrid
discrete bacterial memetic evolutionary algorithm (HDBMEA), which was extensively tested on the
Taillard benchmark data set. Our results have been compared against all important other approaches
published in the literature, and we found that this novel compound method produces good results
overall and, in some cases, even better approximations of the optimum than any of the so far
proposed solutions.

Keywords: flow-shop; scheduling problem; discrete bacterial memetic evolutionary algorithm;
hybrid DBMEA; Monte Carlo tree search; simulated annealing

1. Introduction

Scheduling problems, in general, have been extensively studied across a wide range of
domains due to their relevance for optimizing resource allocation, improving productivity,
and reducing operational costs. Efficient scheduling has a direct impact on overall system
performance, making it a critical area of research in operations management and industrial
engineering. Flow-shop scheduling belongs to the broader class of multi-resource and
multi-operation scheduling problems. With all its variants, it belongs to the class of NP-
hard problems, which are known to have no polynomial time solution method. As a matter
of course, small tasks or very special cases may be handled in reasonable time, but in
general these problems are intractable. Obviously, the time complexity of finding a good
solution in a shorter time may essentially effect the efficiency and the costs of real industrial
and logistics applications. Alas, in such problems, the complexity increases exponentially
in terms of the number of jobs, machines, and processing steps involved. Additionally,
the presence of parallel machines and precedence constraints further complicates the
optimization process. These challenges make it computationally infeasible to find optimal
solutions for large-scale instances, necessitating the adoption of heuristic and metaheuristic
methods. Apart from some exceptional cases, there are no explicit algorithms for finding
the optimal permutation in multi-machine environments. Therefore, different heuristic
approaches and evolutionary algorithms are used to calculate solutions that are close to

Algorithms 2023, 16, 406. https://doi.org/10.3390/a16090406 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16090406
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1316-4832
https://orcid.org/0000-0003-0989-6109
https://orcid.org/0000-0002-6953-3898
https://doi.org/10.3390/a16090406
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16090406?type=check_update&version=3

Algorithms 2023, 16, 406 2 of 30

the optimal solution. Evolutionary and population-based algorithms, inspired by the
principles of natural selection and geneticsor by the behavior of groups of animals have
demonstrated rather good efficiency at solving various optimization problems, including
flow-shop scheduling.

In recent years, the field of metaheuristic algorithms has witnessed fast growing in-
terest. After the “plain” evolutionary approaches, like the didactically important genetic
algorithm (GA), a series of combines methods were proposed that increased the efficiency.
An important step was Moscato et al.’s idea, the memetic algorithm family that applied
traditional mathematical optimization techniques for local search while keeping the evolu-
tionary method for global search where the former was nested in [1]. This idea was further
developed by our group; the concept was extended to discrete problems, and various
simple graph theoretic and similar exhaustive optimization techniques were applied to
local search [2]. The advantage of this combination is that evolutionary techniques usually
lead to good results but they are rather slow, while more classical optimization may be
much faster; however, they tend to stick in local optima.

As a rather straightforward question, we started to investigate further combinations
of nested search algorithms. As so far simulated annealing (SA) delivered rather good
results, we did some tests with the discrete memetic algorithm we had proposed as “outer”
search, and SA as “inner” search. Here, it is senseless to differentiate global and local
search techniques as both heuristic algorithms could be directly applied as global searchers.
Nevertheless, the result was rather promising [3], and we found that the combined hybrid
metaheuristic delivered in most benchmark cases was a better approximation than either of
the two, without combination.

We continued these investigations and found that the development of hybrid algo-
rithms combining multiple optimization techniques leverages the components’ individual
strengths and mitigates their weaknesses. Earlier, we established some results proving
that memetic algorithms have gained prominence for their ability to incorporate problem-
specific local search procedures into the evolutionary search process [4]. Even though those
comparisons between various evolutionary approaches and their memetic extensions were
tested on continuous benchmarks, the efficiency of the memetic extension of the bacterial
evolutionary algorithm [5] presented clear advantages compared to the original GA and
even compared to the rather successful particle swarm optimization, but especially the
memetic extension of each proved to be much better for medium and large instances of
the benchmarks.

This integration of global and local search allows for a more robust exploration of
the solution space and improves the speed of finding high-quality solutions reducing
the likelihood of premature convergence to local optima. As mentioned above, the term
memetic algorithm was first introduced by Moscato et al. drawing inspiration from some
Darwinian principles of natural evolution and Richard Dawkins’ meme concept [6]. The
memes are ideas—messages broadcasted throughout the whole population via a process
that, in the broad sense, can be called imitation.

The no-free-lunch theorem states that any search strategy performs the same when
averaged over the set of all optimization problems [7]. If an algorithm outperforms another
on some problems, then the latter one must outperform the former one on others. General
purpose global search algorithms like most evolutionary algorithms perform well on a
wide range of optimization problems, but they may not approximate the performance
of highly specialized algorithms specially designed for a given problem. Nevertheless,
the no-free-lunch principle is only true in an approximate sense. In [8], we showed that
under certain conditions the balance of speed and accuracy my be optimised, and it is
not to be excluded that such optima always, or at least often, exist. Some general ideas
concerning this balance were given in [9]. Nevertheless, the insight of balanced advantages
and disadvantages leads directly to the recommendation to extend generally (globally)
applicable metaheuristics with classical application-specific (locally optimal) methods, or

Algorithms 2023, 16, 406 3 of 30

even heuristics, leading to more efficient problem solvers, an observation that fits well with
the basic concept of applying memetic and hybrid heuristic algorithms.

Above, the GA was mentioned. The bacterial evolutionary algorithm (BEA) may be
considered as its further development, where some of the operators have been changed in
a way inspired by the reproduction of bacteria [10], and so the algorithm became faster and
produced unambiguously better approximations [4].

Let us provide an overview of the basic algorithm. As mentioned above, the BEA
model replicates the process of bacterial gene crossing as seen in the nature. This process
has two essential operations: bacterial mutation and gene transfer. At the start of the
algorithm, an initial random population is generated, where each bacterium represents
a candidate for the solution in an encoded form. The new generation is created by using
the two operations mentioned above. The individual bacteria from the second generation
onward are ranked according to an objective function. Some bacteria are terminated, and
some are prioritized based on their traits. This process is repeated until the termination
criteria are met.

Its memetic version was first applied for continuous optimization [11]. This was an ex-
tension of the original memetic algorithm to the class of bacterial evolutionary approaches,
where the BEA replaced the GA. Various benchmark tests proved that the algorithm was
very effective for many other application domains for optimization tasks. Several exam-
ples showed that the BEA could be applied in various fields with success, for example,
timetable creation problems, automatic data clustering [12], and determining optimal 3D
structures [13] as well. The first implementations of the bacterial memetic evolutionary
algorithms (BMEA) were used for finding the optimal parameters of fuzzy rule-based
systems. The BMEA was later successfully extended also to discrete problems, like, among
others, the flow-shop scheduling problem itself, produced considerably better efficiency
for some problems. A novel hybrid algorithm version with a BEA wrapper and nested SA
showed remarkably good results on numerous benchmarks [3].

As discussed above, initially, the combination of bacterial evolutionary algorithms
with local search methods was proposed only for the very special aim of increasing the
ability to find the optimal estimation of fuzzy rules. In the original BEA paper, mechanical,
chemical, and electrical engineering problems were presented as benchmark applications.
In addition, a fascinating mathematical research field, namely, solving transcendental
functions, completed the list of first applications. In the first version of BMEA, where
the local search method applied was the second-order gradient method, the Levenberg-
Marquard [14] algorithm was tested on all these benchmarks.

The benchmark tests with the BMEA obtained better results than any former ones in
the literature and outscored all other approaches used to estimate the parameters of the
trapezoidal fuzzy membership functions [15]. Later, first-order gradient-based algorithms
were also investigated as local search, which seemed promising [11].

In the next, the idea of BMEA was extended towards discrete problems, where gradient-
based local search was replaced by traditional discrete optimization, such as exhaustive
search, inbounded sub-graphs. This new family of algorithms was named discrete bac-
terial memetic evolutionary algorithms (DBMEA). DBMEA algorithms were first tested
on vairous extensions of the travelling salesman problem and produced rather promising
results. DBMEA algorithms have also been investigated on discrete permutation-based
problems, where the local search methods were matching bounded discrete optimiza-
tion techniques.

In a GA-based discrete memetic type approach, n-opt local search algorithms were sug-
gested by Yamada et al. [16]. The investigations with simulations reduced the algorithms to
the consecutive running 2-opt and 3-opt methods. In the case of n ≥ 4, the computational
time was too high, thus limiting the pragmatical usability of the algorithm. The 2-opt
algorithm was first applied to solve various routing problems [17], where in the bounded
sub-graph, two graph edges were always swapped in the local search phase. It is worth
noting that 3-opt [18] is similar to the 2-opt operator; here, three edges are always deleted

Algorithms 2023, 16, 406 4 of 30

and replaced in a single step, which results in seven different ways to reconnect the graph,
in order to find the local optimum.

In this research, another class of discrete optimization problems, the flow-shop, came
to focus. Thus, in the next Section 2, the paper will give a detailed explanation of the
flow-shop scheduling problem. Section 3 is a detailed survey of commonly used classic
and state-of-the-art algorithms. The algorithms used by the novel HDBMEA algorithm
proposed in this paper will be detailed in Sections 4–6. Section 7 deals with the results
from the Taillard flow-shop benchmark set and with the comparison to relevant algorithms
selected from Section 3. Section 8 extensively analyses each parameter’s impact on the
HDBMEA algorithm’s scheduling performance and run-time. The result of our analysis is
a chosen parameter set with which we prove the abilities of our proposed algorithm.

2. The Flow-Shop Problem

Flow-shop scheduling for manufacturing is a production planning and control tech-
nique used to optimize the sequence of operations that each job must undergo in a manu-
facturing facility. In a flow-shop environment, multiple machines are arranged in a specific
order, and each job must pass through the same sequence of operations on these machines.
The objective of flow-shop scheduling is to minimize the total time required to complete all
jobs (makespan) or to achieve other performance measures such as minimizing the total
completion time, total tardiness, or maximizing resource utilization. The storage buffer
between machines is considered to be infinite. If the manufactured products are small
in physical size, it is often easy to store them in large quantities between operations [19].
Permutation flow shop is a specific type of flow-shop scheduling problem in manufacturing
where a set of jobs must undergo a predetermined sequence of operations on a series of
machines. In the permutation flow shop, the order of operations for each job remains fixed
throughout the entire manufacturing process. However, the order in which the jobs are
processed on the machines can vary, resulting in different permutations of jobs [20].

Consider a flow-shop environment, where NJ denotes the number of jobs and NR is
the number of resources (machines). A given permutation ji, i ∈ {1, 2, . . . , NJ}, where i
is the index of the job, pji ,r represents the processing times, r ∈ {1, 2, . . . , NR} is the rth
resource in the manufacturing line, Sji ,r is the starting times of job ji on machine r, and Cr,jk
is the completion time of job jk on resource r, has the following constraints:

A resource can only process one job at a time; therefore, the start time of the next job
must be equal to or greater than the completion time of its predecessor on the same resource:

Cji ,r ≤ Sji+1,r r = 1, 2, . . . , NR; i = 1, 2, . . . , NJ − 1. (1)

A job can only be present on one resource at a given time; therefore, the start time of
the same job on the next resource must be greater then or equal to the completion time of
its preceding operation:

Cji ,r ≥ Cji ,r+1 r = 1, 2, . . . , NR − 1; i = 1, 2, . . . , NJ . (2)

The first scheduled job does not have to wait for other jobs and is available from
the start. The completion time of the first job on the current machine is the sum of its
previous operations on preceding machines in the chain and its processing time on the
current machine:

Cj1,r =
r

∑
k=1

pj1,k i = 1, . . . , NR. (3)

Figure 1 shows how the first scheduled job has only one contingency: its own opera-
tions on previous machines.

Algorithms 2023, 16, 406 5 of 30

t

j1,1

j1,2

j1,3

machine 1

machine 2

machine 3

Figure 1. Example of the first job not waiting.

Jobs on the first resource are only contingent on jobs on the same resource; therefore,
the completion time of the job is the sum of the processing times of previously scheduled
jobs and its own processing time:

Cji ,1 =
i

∑
k=1

pjk ,1 j = 1, . . . , NJ . (4)

Figure 2 shows how there is only on contingency on the first machine; therefore,
operations can follow each other without downtime.

t

j1,1 j2,1 j3,1machine 1

Figure 2. Example of jobs on the first machine.

When it comes to subsequent jobs on subsequent machines, (i > 1, r > 1) the com-
pletion times depend on the same job on previous machines (Equation (2)) and previously
scheduled jobs on previous machines in the chain (Equation (1)):

Cji ,r = max
(
Cji ,r−1, Cji−1,r

)
+ pji ,r

r = 2, . . . , NR; i = 2, . . . , NJ .
(5)

Figure 3 shows the contingency of jobs. j2,2 is contingent upon j1,2 and j2,1, where it
has to wait for j2,1 to finish despite the availability of machine 2. j2,3 is contingent upon j2,2
and j1,3, where it has to wait for machine 3 to become available despite being completed on
machine 2.

t

j1,1

j1,2

j1,3

j2,1

j2,2

j2,3

machine 1

machine 2

machine 3

Figure 3. Contingency of start times.

The completion time of the last job on the last resource is to be minimized and is called
the makespan.

Cmax = CjNJ ,NR . (6)

One of the most widely used objective function is to minimize the makespan:

Cmax → min . (7)

Algorithms 2023, 16, 406 6 of 30

Figure 4 illustrates how the completion time of the last scheduled job on the last
machine in the manufacturing chain determines the makespan.

t

j1,1

j1,2

j1,3

j2,1

j2,2

j2,3

j3,1

j3,2

j3,3

machine 1

machine 2

machine 3

Cmax

Figure 4. Example for obtaining Cmax.

3. A Review of Classic and State-of-the-Art Approaches

Garey et al. proved that the flow-shop problem is NP-complete when the number of
machines exceeds two [21]. Thus, massive sized problems cannot be solved by explicit
mathematical algorithms. Generally, meta-heuristic search algorithms are used to traverse
the search space. These algorithms are often inspired by nature incorporating metaheuristic
operations into random neighborhood searches. We examined several classic and state-
of-the-art algorithms, including Nawa-Enscore-Ham algorithms (Section 3.1), simulated
annealing, particle swarm optimization algorithms, variable neighborhood search algo-
rithms (Section 3.2.), genetic algorithms (Section 3.2.1), memetic algorithms (Section 3.2.2),
Jaya algorithms (Section 3.2.3), and social engineering optimizers (Section 3.2.4), alongside
other hybrid approaches (Section 3.2.5).

3.1. Classic Approaches

One of the most referenced algorithms is the NEHT (or NEH-Tailard) algorithm. It is
based on the Nawaz–Enscore–Ham (NEH) algorithm [22] The NEH algorithm has been
widely studied and used in various fields, including manufacturing, operations research,
and scheduling problems. While it may not always find the optimal solution, it usually
provides good-quality solutions in a reasonable amount of time, making it a practical and
efficient approach for solving permutation flow-shop scheduling problems. The NEHT
algorithm is improved by Taillard [23]. The NEH-Tailard algorithm works similarly to the
NEH algorithm but incorporates a different way of inserting jobs into the sequence. While
the original NEH algorithm used the “insertion strategy” to determine the position for each
job insertion, Tailard introduced a “tie-breaking” rule to break the ties between jobs with
equal makespan values during the insertion process. By carefully selecting the order of
job insertion, Tailard aimed to find better solutions and potentially improve the quality of
the resulting schedules. The NEH-Tailard algorithm has shown to outperform the original
NEH algorithm and has been widely cited in scheduling research as a more efficient and
effective approach to solving permutation flow-shop scheduling problems.

3.2. Heuristic or Meta-Heuristic Algorithms

The simulated annealing (SA) [24] algorithm is a classic pseudo-random search al-
gorithm, inspired by the annealing process in metallurgy. It is commonly used to solve
combinatorial optimization problems, especially those with a large search space and no
clear gradient-based approach to finding the global optimum. The algorithm is named after
the annealing process used in metallurgy, where a metal is heated to a high temperature and
then gradually cooled to reduce defects and obtain a more stable crystal structure. Similarly,
simulated annealing starts with a high “temperature” to allow the algorithm to explore a
wide range of solutions and then gradually decreases the temperature over time to con-
verge towards a near-optimal solution, which can produce satisfactory results for flow-shop
scheduling problems [25]. The key feature of simulated annealing is the acceptance of
worse solutions with decreasing probability as the temperature decreases. This enables the
algorithm to explore the search space broadly in the early stages and gradually converge
towards a better solution as the temperature cools down. By incorporating stochastic

Algorithms 2023, 16, 406 7 of 30

acceptance of worse solutions, simulated annealing is able to escape local optima and has
the potential to find near-optimal solutions for complex optimization problems. There are
simulated annealing based scheduling algorithms like [25–30] Particle swarm optimization
(PSO) describes a group of optimization algorithms where the candidate solutions are
particles that roam the search space iteratively. There are many PSO variants. The particle
swarm optimization 1 (PSO1) algorithm is a PSO that uses the smallest position value
(SPV) [31] heuristic approach and the VNS [32] algorithm to improve the generated permu-
tations [33]. The particle swarm optimization 2 (PSO2) algorithm is a simple PSO algorithm
proposed by Ching-Jong Liao [34]. This approach introduces a new method to transform
the particle into a new permutation. The combinatorial particle swarm optimization (CPSO)
algorithm improves the simple PSO algorithm to optimize for integer-based combinatorial
problems. Its characteristics differ from the standard PSO algorithm in each particle’s defi-
nition and speed, and in the generation of new solutions [35]. The hybrid adaptive particle
swarm optimization (HAPSO) algorithm uses an approach that optimizes every parameter
of the PSO. The velocity coefficients, iteration count of the local search, upper and lower
bounds of speed, and particle count are optimized during runtime, resulting in a new
efficient adaptive method [36]. The PSO with expanding neighborhood topology (PSOENT)
algorithm uses the neighborhood topology of a local and a global search algorithm. First,
the algorithm generates two neighbours for every particle. The number of neighbours
increases every iteration until it reaches the number of particles. If the termination criteria
are not met, every neighbour is reinitialized. The search ends when the termination criteria
are met. These steps ensure that no two consecutive iterations have identical neighbour
counts. This algorithm relies on two meta-heuristic approaches: variable neighborhood
search (VNS) [32] and path relinking (PR) [37,38]. VNS is used to improve the solutions of
each particle, while the PR strategy improves the permutation of the best solution [39]. The
ant colony optimization (ANS) [40] algorithm is a virtual ant colony-based optimization
approach introduced by Marco Dorigo in 1992 [41,42]. Hayat et al., in 2023 [43], introduced
a new hybridization of particle swarm optimization (HPSO) using variable neighborhood
search and simulated annealing to improve search results further.

3.2.1. Approaches Based on Genetic Algorithms

The simple genetic algorithm (SGA) is a standard genetic algorithm. It is similar to
the self-guided genetic algorithm (SGGA), except it is not expanded with a probability
model [44]. The mining gene genetic algorithm (MGGA) was explicitly developed for
scheduling resources. The linear assignment algorithm and the greedy heuristics are all
built-in [44]. The artificial chromosome with genetic algorithms (ACGA) is a newfound
approach. It combines an EDA (estimation of distribution approach) [45–48] with a conven-
tional algorithm. The probability model and the genetic operator generate new solutions
and differ from the SGGA [44]. The self-guided genetic algorithm (SGGA) belongs to
the category of EDAs. Most EDAs use the probability model explicitly to search for new
solutions without using genetic operators. They realized that global statistics and local
sets of information must amend one another. The SGGA is a unique solution for com-
bining these two types of information. It does not use a probability model but predicts
each solution’s fitness. This way, the mutational and crossover operations can produce
better solutions, increasing the algorithm’s efficiency [44]. Storn and Prince introduced the
differential equation (DE) algorithm in 1995 [49]. Like every genetic algorithm, the DE is
population-based. Floating-point-based chromosomes represent every solution. Traditional
DE algorithms are unable to optimize discrete optimization problems. Therefore, they
introduced the discrete differential equation (DDE) [33,50,51] algorithm, in which each
solution represents a discrete permutation. In the DDE, a job’s permutation represents
each individual. Since every permutation is treated stochastically, we treat every solution
uniquely [51]. The genetic algorithm with variable neighborhood search (GAVNS) is a ge-
netic algorithm that utilizes the VNS [32] local search [52]. Mehrabian and Lucas introduced
the invasive weed optimization (IWO) algorithm in 2006 [53]. It is based on a common

Algorithms 2023, 16, 406 8 of 30

agricultural phenomenon: spreading invasive weeds. It has a straightforward, robust
structure with few parameters. As a result, it is easy to comprehend and implement [54].
The hybrid genetic simulated annealing (HGSA) algorithm uses the local search capabilities
of the simulated annealing (SA) algorithm and integrates it with a genetic algorithm. This
way, the quality of the solutions and the runtimes are improved [55]. The hybrid genetic
algorithm (HGA) differs from the simple genetic algorithm by incorporating two local
search algorithms. The genetic algorithm works on the whole domain as a global search
algorithm. Furthermore, it uses an orthogonal-array-based crossover (OA-crossover) to
increase efficiency [56]. The hormone modulation mechanism flower pollination algorithm
(HMM-FPA) is a flower pollination-based algorithm. Flowers represent each individual in
the population; pollination occurs between them. They can also self-pollinate, representing
closely packed flowers of the same species [57].

3.2.2. DBMEA-Based Approaches

The simple discrete bacterial memetic evolutionary algorithm (DBMEA) is a specific
variant of the memetic algorithm used for optimization problems. Memetic algorithms
combine elements of both evolutionary algorithms (EAs) and local search to efficiently ex-
plore the solution space and find high-quality solutions. The “Bacterial” aspect in DBMEA
is inspired by the behavior of bacteria in nature. The algorithm uses a population-based
approach where each candidate solution (individual) is represented as a “bacterium”. These
bacteria evolve over generations using mechanisms similar to those found in evolutionary
algorithms, such as selection, crossover, and mutation. The “memetic” aspect indicates
that each bacterium undergoes a local search process to improve its quality within its
neighborhood. This local search is typically a problem-specific optimization procedure
that helps the algorithm fine-tune the solutions locally. The “discrete” in DBMEA suggests
that the problem domain is discrete in nature, meaning that the variables or components
of the solution are discrete and not continuous. According to our investigations, it could
not generate satisfactory results based on the Taillard [23] benchmark results. Therefore,
we combined it with other algorithms, producing hybrid solutions that use the DBMEA
as a global search algorithm. The discrete bacterial memetic evolutionary algorithm with
simulated annealing (DBMEA + SA) [3] uses the simulated annealing as a local search
algorithm, while the DBMEA poses as a global search algorithm to walk the domain space
similar to genetic algorithms.

3.2.3. Jaya-Based Approaches

The Jaya optimization algorithm is a parameter-less optimization technique that does
not require the tuning of any specific parameters or control variables. Its simplicity and
ability to strike a balance between exploration and exploitation make it effective at solving
various optimization problems. It may not guarantee a global optimum, but it often
converges to good-quality solutions in a reasonable amount of time for many real-world
applications. In 2022, Alawad et al. [58] introduced a discrete Jaya algorithm (DJRL3M) for
FSSP that improved its search results using refraction learning and three mutation methods.
This method is an improvement over the discrete Jaya (DJaya) algorithm proposed by
Gao et al. [59].

3.2.4. Social Engineering Optimizer

A social engineering optimizer (SEO) is described as a new single-solution meta-
heuristic algorithm inspired by the social engineering (SE) phenomenon and its techniques.
In SEO, each solution is treated as a counterpart to a person, and the traits of each person
(e.g., one’s abilities in various fields) correspond to the variables of each solution in the
search space. Ref. [60] introduces a novel sustainable distributed permutation flow-shop
scheduling problem (DPFSP) based on a triple bottom line concept. A multi-objective
mixed integer linear model is developed, and to handle its complexity, a multi-objective
learning-based heuristic is proposed, which extends the social engineering optimizer (SEO).

Algorithms 2023, 16, 406 9 of 30

3.2.5. Hybrid Approaches

In [61], the authors tackle the flow-shop scheduling problem (FSSP) on symmetric
networks using a hybrid optimization technique. The study combines the strengths of ant
colony algorithm (ACO) with particle swarm optimization (PSO) to create an ACO-PSO hy-
brid algorithm. By leveraging local control with pheromones and global maximum search
through random interactions, the proposed algorithm outperforms existing ones in terms
of solution quality. The ACO-PSO method demonstrates higher effectiveness, as validated
through computational experiments. Addressing the NP-hard nature of flow-shop schedul-
ing problems, ref. [62] presents a computational efficient optimization approach called
NEH-NGA. The approach combines the NEH heuristic algorithm with the niche genetic
algorithm (NGA). NEH is utilized to optimize the initial population, three crossover opera-
tors enhance genetic efficiency, and the niche mechanism controls population distribution.
The proposed method’s application on 101 FSP benchmark instances shows significantly
improved solution accuracy compared to both the NEH heuristic and standard genetic
algorithm (SGA) evolutionary meta-heuristic. Ref. [63] addresses the flexible flow-shop
scheduling problem with forward and reverse flow (FFSPFR) under uncertainty using
the red deer algorithm (RDA). The study employs the Fuzzy Jiménez method to handle
uncertainty in important parameters. The authors compare RDA with other meta-heuristic
algorithms, such as the genetic algorithm (GA) and imperialist competitive algorithm (ICA).
The RDA performs the best at solving the problem, achieving near-optimal solutions in a
shorter time than the other algorithms.

4. Discrete Bacterial Memetic Evolutionary Algorithm (DBMEA)

The pseudo-code for the memetic algorithm is defined in Algorithm 1 [2,64]. The first
step is to generate a random initial population in which each bacteria represents a solution,
i.e., job sequences. The description of the algorithm uses the following notations:

• Nind: the number of individual bacterium in the population;
• Iseg: the length of the mutation segments;
• Nin f : the number of infections in gene transfers;
• Itrans: the length of gene transfer segments;
• xi: a permutation of job schedules;
• P = {x1, x2, ..., xNind}: a population consisting of permutations;
• x∗: the global best solution;
• f : the objective function;
• Nterm: the termination criteria;
• NnotImp: the not improved counter;
• Nmutants: the number of mutants generated in a mutation operation.

The algorithm repeats bacterial mutation, local search, and gene transfer methods and
selects the best permutation until the termination criterion is met.

4.1. Steps of the Bacterial Mutation Procedure

The bacterial mutation operates on the whole population [64]. The number of segments
derives from the length of a bacterium and the length of the segment:

Nseg =

⌊
|P0|
Iseg

⌋
(8)

The number of segments equals the lower bound of a bacterium’s length divided by
the segment’s length. For all of the permutations of the population, a random number
r, r ∈ [0; 1] is chosen. If this random number is below the coherent segment loose rate
R, the bacterium undergoes a coherent segment mutation; if it is greater than or equal
to this value, the bacterium is operated on by a loose segment mutation. Each mutation
algorithm is called on a bacterium Nseg times. The segment length shifts the segments for
the coherent segment mutation in each iteration. Every part of the bacterium is mutated. No

Algorithms 2023, 16, 406 10 of 30

shifting is needed for the loose segment mutation since its random permutation generation
provides an even distribution of segments across the bacterium. The original bacterium
gets overridden if the mutation algorithm generates a better alternative.

• P: the population consisting of permutations;
• P0: the first bacterium of the population;
• Nmutants: the number of mutants generated for each mutation operation;
• Iseg: the length of the segment to be mutated;
• Nseg: the number of segments for each bacterium;
• R: the cohesive/loose rate;
• x: an element of P population;
• x′: a mutant of x;
• f : the objective function.

Algorithm 1 Discrete bacterial memetic algorithm

P = createRandomPopulation(Nind)
x∗ = min{ f (xi) : xi ∈ P}
NnotImp = 0
while NnotImp < Nterm do

P′ = bacterialMutation(P, Nmutants, Iseg)
P′′ = localSearch(P′)
P′′′ = geneTrans f er(P′′, Nin f , Itrans)

x = min{ f (xi) : xi ∈ P′′′}
if x < x∗ then

x∗ = x
else

NnotImp = NnotImp + 1
end if
P = P′′′

end while
return x∗

Figure 5 shows how cohesive segments are chosen for mutation. The segment gets
shifted across the entire bacterium without overlap. The starting index of the segment is
calculated with the following equation:

Sseg = i · Iseg (9)

The entire bacterium gets optimized locally. In Figure 5a, we see the first iteration
when the iteration counter is 0. The segment starts at the first element of the permutation
(index 0). Therefore, if the segment length is 3, the cohesive segment on which the algorithm
operates is the first three elements of the permutation. For the next segment, the iteration
counter is increased by one. Thus, the segment under mutation starts at the fourth element
of the permutation (index 3). We continue this process until we run out of whole segments
with Iseg lengths. Figure 5d illustrates all the cohesive segments chosen in Algorithm 2, if
|x| = 9 and Iseg = 3.

Algorithms 2023, 16, 406 11 of 30

Algorithm 2 Bacterial mutation process

Nseg = b |P0|
Iseg
c

for all x in P do
r = random number between 0 and 1
if r < R then

for i = 0 to Nseg do
Sseg = Iseg · i
x′ = coherentSegmentMutation(x, Sseg, Iseg, Nmutants)
if f (x′) < f (x) then

x = x′

end if
end for

else
for i = 0 to Nseg do

x′ = looseSegmentMutation(x, Iseg, Nmutants)
if f (x′) < f (x) then

x = x′

end if
end for

end if
end for
return P

1 2 34 5 678 9

Segment

|x| = 9

Sseg = 0

Iseg = 3

(a)

1 2 34 5 678 9

Segment

|x| = 9

Sseg = 3

Iseg = 3

(b)

1 2 34 5 678 9

Segment

|x| = 9

Sseg = 6

Iseg = 3

(c)

1 2 34 5 678 9

1st
Segment

2nd

Segment

3rd

Segment

(d)
Figure 5. Cohesive segments chosen in Algorithm 2. (a) Chosen segment, when Sseg = Iseg · i = 0;
(b) chosen segment, when Sseg = Iseg · i = 3; (c) chosen segment, when Sseg = Iseg · i = 6; and (d) all
the segments chosen throughout the algorithm.

Algorithm 3 depicts the process of coherent segment mutation. This operation is
applied to an individual element of the population. In total, the Nmutants number of
mutants is generated by changing the order of elements in a given coherent segment. Sseg
is the index where the segment starts. Iseg is the length of the segment. x is the bacterium
on which the mutation occurs. The first mutant has its segment reversed compared to
the original. All the other variations have this segment shuffled randomly. Out of all
the variations along with the original bacterium x, the best one according to the fitness
function f is chosen and returned. This operation is a simple local search applied to parts
of the bacterium.

• x: the bacterium to be mutated;
• Sseg: the index, where the segment starts;
• Iseg: the length of the segment;
• xr: the first bacterium, where the segment is reversed;

Algorithms 2023, 16, 406 12 of 30

• x′: a mutated bacterium;
• f : the objective function.

Algorithm 3 Coherent segment mutation

xr = reverseSegment(x, Sseg, Sseg + Iseg)
if f (xr) < f (x) then

x = xr
end if
for i = 0 to Nmutants − 1 do

x′ = shuffleSegment(x, Sseg, Sseg + Iseg)
if f (x′) < f (x) then

x = x′

end if
end for
return x

Figure 6 illustrates the generation of variations on a given bacterium. In the given
example, the length of the permutation is |x| = 9, the length of the segment is Iseg = 3, and
the starting index is Sseg = 0.

1 2 34 5 678 9

Segment

Original Bacterium

2 1 34 5 678 9

Reversed Segment

First variation

1 4 32 5 678 9

Shuffled Segment

Other variations

4 2 31 5 678 9

Shuffled Segment

|x| = 9

Sseg = 0

Iseg = 3

Figure 6. Cohesive segment process in Algorithm 3.

The loose segment mutation operates similarly to the coherent segment mutation
(Algorithm 3). The only difference is the non-cohesive segment selection. At the start of the
operation, a random segment with length Iseg is chosen from the bacterium x. The segment
is first reversed to generate the first mutant. All other mutants have the selected segment
shuffled randomly. According to the objective function f , the best one is chosen from all
mutants and the original bacterium. Algorithm 4 defines this process.

Algorithms 2023, 16, 406 13 of 30

Algorithm 4 Loose segment mutation

S = Iseg elements from S|x| random permutation
V = array of segment values
for all s of S do

V+ = x[s]
end for
for i = 0 to Nmutants do

x′ = x
if i = 0 then

reverse(V)
else

shuffle(V)
end if
for j = 0 to Iseg do

x′[S[j]] = V[j]
end for
if x′ is better than x then

x = x′

end if
end for
return x

Figure 7 illustrates how a loose segment might get chosen. In the example, the length of
the permutation is |x| = 9; the segment length is Iseg = 3; the random segment indexes are
S = 1, 3, 7; and the segment values are V = 1, 8, 7. Every time the loose segment mutation
operation is called, the segment is selected based on values given by a pseudo-random
generator. This random selection process ensures an even distribution of segments across
the bacterium. This way, non-cohesive parts of the bacterium can get optimized locally.

4 2 31 5 678 9

Segment elements

|x| = 9

Iseg = 3

S = {1,3,7}

V = {1,8,7}

Figure 7. Example for a segment chosen in loose segment mutation (Algorithm 4).

Figure 8 illustrates how a non-cohesive segment depicted in Figure 7 is calculated.
The segment elements get reversed to generate the first mutant. The segment gets shuffled
to generate all other variations until Nmutants mutants are reached.

The coherent segment mutation operation (Algorithm 3) operates on a sequence of
indexes, while the loose segment operation (Algorithm 4) breaks the sequence and samples
the entire bacterium. Both operations perform a local neighborhood search on their given
segment to further improve the bacterium.

Algorithms 2023, 16, 406 14 of 30

4 2 31 5 678 9Original Bacterium

First variation

Other variations

Segment elements

4 2 37 5 618 9

Reversed segment

4 2 38 5 671 9

Shuffled segment

4 2 37 5 681 9

Shuffled segment

|x| = 9

Iseg = 3

S = {1,3,7}

V = {1,8,7}

Figure 8. Loose segment mutation in Algorithm 4.

4.2. Gene Transfer

The gene transfer algorithm (Algorithm 5) operates on the entire population [64].
First, the elements are sorted by their fitness values, and then the population is split
in half into superior and inferior bacteria. In the next step, the gene transfer algorithm
is invoked Nin f times on a random superior and inferior bacterium. During the gene
transfer process, a randomly chosen coherent segment with Itrans length is taken from the
superior bacterium and inserted into the inferior bacterium, leaving no duplicates inside
the mutated permutation.

The parameters are:

• psrc: the superior source bacterium from which we choose our segment;
• pdst: the inferior destination bacterium, into which we insert our transfer segment.

The algorithm aims to take an attribute from the better-optimized superior bacterium
and transfer it to an inferior one, possibly creating a population with better fitness values.
This attribute is a randomly chosen coherent segment from the superior permutation. The
resulting mutated bacterium is the merge of the two input bacteria (Figure 9).

Algorithms 2023, 16, 406 15 of 30

Algorithm 5 Gene transfer method

sort the population according to fitness values
divide the population into superior and inferior parts
for i to Nin f do

select a random bacterium from the superior part (psrc)
select a random bacterium from the inferior part (pdst)
select a random segment from psrc with Itrans length
copy the segment into pdst in a random position
eliminate duplicates in pdst

end for
return P

1 2 83 5 249 6Source Bacterium

1 5 63 4 728 9

1 9 43 6 725 8

Destination Bacterium

Infected Bacterium

Figure 9. Gene transfer mutation.

5. Monte Carlo Tree Search (MCTS) Algorithm

The Monte Carlo tree search algorithm [65] can be effectively applied to board games.
It uses a search tree to model the problem: nodes represent the states of the board. Those
leaves may refer to as an initial state, whose sub-leaves are the potential replies of the
opponent. During the search procedure, the search tree is built using multiple steps.
Each leaf stores the number of games won, and the number of total attempts, and these
parameters are backpropagated to aid the traversal of the tree.

The algorithm repeats the following four steps [66]:

1. Selection: starting from the root node (top-down direction), a child node is selected
recursively; see (Figure 10a). When there is no unseen next node, the terminal state
is reached.

2. Expansion: a new random child node is added; see (Figure 10b).
3. Simulation: from the new node, a simulation is performed on the problem (game), see

(Figure 10c). No further child nodes are created in this step. When the terminal state
is reached, the outcome of the game is evaluated as win, lose or draw (+1, −1, 0).

4. Backpropagation: according to the evaluation of the simulation step, the score of the
nodes is updated, moving recursively up, so that nodes store an updated statistic
about games won/total number of games; see (Figure 10d).

Algorithms 2023, 16, 406 16 of 30

(a) Selection (b) Expansion

(c) Simulation (d) Backpropagation
Figure 10. Monte Carlo tree search.

In the selection step, the upper confidence bound (UCB) [67] Formula (10) is used to
select the child node.

UCBj =
Xj

nj
+ C ·

√
ln Nj

nj
, (10)

where Xj is the number of games won through the jth node, C is the exploration parameter
that adjusts the selection strategy, Nj is the number of games played through the jth parent
node, and nj is the number of games played through the jth child node. The execution of
the algorithm keeps asymmetrically expanding the tree; this requires balancing between
exploitation and exploration steps. The constant C can be considered a weight that balances
those strategies. exploitation allows the search space to be expanded randomly, and
exploration reuses the bet option found.

The MCTS algorithm was initially implemented for two-person board games to solve
scheduling problems. Each node represents a permutation, i.e., a possible scheduling
sequence. The child nodes are created from the parent nodes by modifying operators.
Each tree node is a possible solution, and the neighborhood relation exists between them.
Nodes having the same solution may appear multiple times in the tree—similar to board
game problems.

6. Hybrid Bacterial Memetic Algorithm

Combining multiple local search algorithms can significantly enhance the efficiency
of optimization algorithms. While the original DBMEA algorithm incorporated 2-opt
and 3-opt methods, these needed to be revised in some cases. This article introduces a
novel hybrid approach called HDBMEA, which combines the DBMEA [2] algorithm with a
modified Monte Carlo tree search (MCTS) and a simulated annealing (SA) algorithm.

The proposed HDBMEA approach achieves improved results compared to the original
DBMEA [2] algorithm and other existing methods in the literature by leveraging the
strengths of each of the three constituent algorithms. Specifically, MCTS enhances local
search by exploring the search space more efficiently, while SA further refine the search
results by effectively escaping from local optima.

To promote diversity, a mortality rate (Nmort) is also introduced, indicating the percent-
age of the population to be replaced by new random individuals in each iteration. Using a
mortality rate ensures that the search algorithm continues exploring the search space and
does not become trapped in local optima.

Overall, the proposed HDBMEA algorithm represents a promising approach to solving
complex flow-shop scheduling problems, with potential applications in various domains.

Algorithms 2023, 16, 406 17 of 30

7. Experimental Results

In this article, the performance of the proposed algorithm was evaluated on the Taillard
benchmark problems. The upper bound solution was chosen as the basis of comparison.
The quality of the results was measured as the relative signed distance from the upper
bound found in the original dataset. This distance was converted to a percentage using the
following formula:

ω =
CBS − CUB

CUB
· 100 (11)

where CBS represents the best Cmax value found by the algorithm, CUB refers to the upper
bound determined in the benchmark dataset, and ω indicates the goodness of the method.
The lower the value is, the closer the best makespan is to the theoretical upper bound; in
other words, it is the relative distance from the upper bound as a percentage. The results of
the benchmark dataset, which consisted of 120 problems, are presented in Tables A1–A3,
respectively, where the n×m columns denote the number of jobs and resources (machines),
respectively. The parameters used to obtain the results are listed in Table 1, and their
reasoning is detailed in Section 8.

Table 1. Parameters used for the HDBMEA algorithm.

Parameter Value

Maximum iteration count (SA) 100

Initial temperature (SA) 300

α (SA) 0.1

Iteration count (MCTS) 10,000

Nind 8

Maximum iteration count (DBMEA) 2

Nclones 8

Nin f 40

Iseg 4

Itrans 5

Nmort 0.05

This method allows for an easy comparison between metaheuristic algorithms. The
results show that the hybrid discrete bacterial memetic evolutionary algorithm introduced
by this paper provides outstanding scheduling performance regarding flow-shop problems.

8. Parameter Sensitivity Analysis

Since the proposed HDBMEA algorithm contains three distinct search algorithms, the
number of parameters adds up to eleven. The determination of each parameter must be
backed by an analysis. A subset of the Taillard benchmark set was used, where the number
of machines and jobs equals twenty, to visualize the impact of each parameter on the overall
scheduling performance and runtime. Each of the ten instances was run ten times for each
parameter set (100 runs total). We considered the mean and standard deviation. The formula
for obtaining the quality of each solution is detailed in Equation (11).

Each plot shows the overall set of values obtained (light blue ribbon), the standard
deviation (mid-blue ribbon), and the mean of all runs (dark blue line). Plots showing the
change in standard deviation are also included. These plots confirm our chosen set of
parameters for the final benchmark results.

The iteration count of the simulated annealing algorithm is the maximum number
of iterations since the last improvement in the makespan. This parameter dramatically

Algorithms 2023, 16, 406 18 of 30

impacts the results and runtime and their standard deviation (See Figure 11). The omega
and standard deviation decrease dramatically until our chosen iteration count of 100 (see
Figures 11b and 12d), after which the improvements are negligible while the runtime keeps
increasing linearly (See Figure 11a).

The starting temperature for the simulated annealing algorithm has little impact on
the results and runtime (Figure 12); however, there is a slight dip in ω at the 300 mark (See
Figure 12b), which is our chosen final value.

The α parameter of the simulated annealing algorithm is the temperature decrease in
each iteration. This method creates an exponential multiplicative cooling strategy, which
was proposed by Kirpatrick et al. [68], and the effects of which are considered in [69]. The
parameter did not significantly affect the overall performance of the algorithm, however
(Figure 13).

The iteration count of the MCTS algorithm is fixed; it does not take the number of
iterations elapsed since the last improvement into account. This parameter improves the
search results drastically (See Figure 14b), while the runtime increases only linearly (See
Figure 14a). A high value of 10,000 was maintained throughout our testing since this
proved to be a good middle-ground between scheduling performance (ω) and runtimes.
The benefit of a high iteration count is the decrease in the standard deviation of ω (See
Figure 14d), meaning that the scheduling performance is increasingly less dependent on
the processing times in the benchmark set. One downside of a high iteration count is the
increase in the standard deviation of runtimes (See Figure 14c) since the SA algorithm is
called every iteration, which has no fixed iteration count.

Max

Std. dev.

Mean

Min

0.0

0.5

1.0

1.5

2.0

0 250 500 750 1000
Iteration count

R
un

tim
e

(s
)

Iteration count − Simulated Annealing

(a) Time (s)

Max

Std. dev.
Mean

Min0.0

2.5

5.0

7.5

10.0

0 250 500 750 1000
Iteration count

ω

ω average

Iteration count − Simulated Annealing

(b) ω

0.0

0.1

0.2

0.3

0 250 500 750 1,000
Iteration count

S
ta

nd
ar

d
D

ev
ia

tio
n

Time standard deviation

Iteration count − Simulated Annealing

(c) Standard deviation of time (s)

0.3

0.6

0.9

1.2

1.5

0 250 500 750 1,000
Iteration count

S
ta

nd
ar

d
D

ev
ia

tio
n

ω standard deviation

Iteration count − Simulated Annealing

(d) Standard deviation of ω

Figure 11. Analysis of the maximum iteration count (SA) parameter.

Algorithms 2023, 16, 406 19 of 30

Max

Std. dev.

Mean

Min

0.10

0.15

0.20

0.25

0.30

0 2500 5000 7500 10,000
Initial temperature

R
un

tim
e

(s
)

Initial temperature − Simulated Annealing

(a) Time (s)

Max

Std. dev.

Mean

Min

0.0

0.5

1.0

1.5

2.0

0 2500 5000 7500 10,000
Initial temperature

ω

ω average

Initial temperature − Simulated Annealing

(b) ω

0.040

0.042

0.044

0.046

0 2,500 5,000 7,500 10,000
Initial temperature

S
ta

nd
ar

d
D

ev
ia

tio
n

Time standard deviation

Initial temperature − Simulated Annealing

(c) Standard deviation of time (s)

0.300

0.325

0.350

0.375

0 2,500 5,000 7,500 10,000
Initial temperature

S
ta

nd
ar

d
D

ev
ia

tio
n

ω standard deviation

Initial temperature − Simulated Annealing

(d) Standard deviation of ω

Figure 12. Analysis of the starting temperature (SA) parameter.

Max

Std. dev.

Mean

Min

0.10

0.15

0.20

0.25

0.30

0 0.25 0.5 0.75
α

R
un

tim
e

(s
)

α − Simulated Annealing

(a) Time (s)

Max

Std. dev.

Mean

Min

0.0

0.5

1.0

1.5

2.0

2.5

0 0.25 0.5 0.75
α

ω

ω average

α − Simulated Annealing

(b) ω

0.036

0.039

0.042

0.045

0.00 0.25 0.50 0.75
α

S
ta

nd
ar

d
D

ev
ia

tio
n

Time standard deviation

α − Simulated Annealing

(c) Standard deviation of time (s)

0.30

0.32

0.34

0.36

0.38

0.00 0.25 0.50 0.75
α

S
ta

nd
ar

d
D

ev
ia

tio
n

ω standard deviation

α − Simulated Annealing

(d) Standard deviation of ω

Figure 13. Analysis of the α parameter.

Algorithms 2023, 16, 406 20 of 30

Max

Std. dev.

Mean

Min

0

50

100

150

0 10,000 20,000 30,000 40,000 50,000
Iteration count

R
un

tim
e

(s
)

Iteration count − Monte Carlo Tree Search

(a) Time (s)

Max
Std. dev.
Mean
Min0

1

2

0 10,000 20,000 30,000 40,000 50,000
Iteration count

ω

ω average
Iteration count − Monte Carlo Tree Search

(b) ω

0

5

10

15

20

0 10,000 20,000 30,000 40,000 50,000
Iteration count

S
ta

nd
ar

d
D

ev
ia

tio
n

Time standard deviation

Iteration count − Monte Carlo Tree Search

(c) Standard deviation of time (s)

0.1

0.2

0.3

0.4

0.5

0 10,000 20,000 30,000 40,000 50,000
Iteration count

S
ta

nd
ar

d
D

ev
ia

tio
n

ω standard deviation

Iteration count − Monte Carlo Tree Search

(d) Standard deviation of ω

Figure 14. Analysis of the iteration count (MCTS) parameter.

The number of individuals (Nind) in an iteration of the Discrete Bacterial Memetic
Evolutionary Algorithm (the population size) dramatically affects both the scheduling
performance and the runtime (See Figure 15). A larger number of individuals means a
broader range of solutions that MCTS and SA can further improve. However, a lower
population count was maintained with a high iteration count in both MCTS and SA to
reduce runtimes while keeping omega values low.

Max

Std. dev.

Mean

Min

0

10

20

0 100 200 300 400 500
Number of Individuals

R
un

tim
e

(s
)

Number of Individuals − DBMEA

(a) Time (s)

Max

Std. dev.
Mean

Min
0.0

0.5

1.0

1.5

0 100 200 300 400 500
Number of Individuals

ω

ω average
Number of Individuals − DBMEA

(b) ω

0

1

2

3

4

0 100 200 300 400 500
Number of Individuals

S
ta

nd
ar

d
D

ev
ia

tio
n

Time standard deviation

Number of Individuals − DBMEA

(c) Standard deviation of time (s)

0.10

0.15

0.20

0.25

0 100 200 300 400 500
Number of Individuals

S
ta

nd
ar

d
D

ev
ia

tio
n

ω standard deviation

Number of Individuals − DBMEA

(d) Standard deviation of ω

Figure 15. Analysis of the Nind parameter.

The maximum iteration count (generation count) of the DBMEA algorithm is the
maximum number of iterations since the last improvement in makespan. This parameter

Algorithms 2023, 16, 406 21 of 30

impacts the scheduling performance and runtime significantly. ω and its standard deviation
keep decreasing as the number of iterations increases (see Figure 16b,d), while the runtime
is coupled linearly to the number of generations (see Figure 16a). Similarly to the population
size (Nind), the number of iterations was set to a lower value to keep MCTS and SA iteration
counts high while keeping runtimes manageable.

Max

Std. dev.

Mean

Min

0

10

20

30

40

0 250 500 750 1000
Number of generations

R
un

tim
e

(s
)

Number of generations − DBMEA

(a) Time (s)

Max
Std. dev.
Mean
Min

0

1

2

3

0 250 500 750 1000
Number of generations

ω

ω average

Number of generations − DBMEA

(b) ω

0

1

2

3

4

5

0 250 500 750 1,000
Number of generations

S
ta

nd
ar

d
D

ev
ia

tio
n

Time standard deviation

Number of generations − DBMEA

(c) Standard deviation of time (s)

0.1

0.2

0.3

0.4

0 250 500 750 1,000
Number of generations

S
ta

nd
ar

d
D

ev
ia

tio
n

ω standard deviation

Number of generations − DBMEA

(d) Standard deviation of ω

Figure 16. Analysis of the DBMEA maximum iteration count.

The number of clones (Nclones) parameter is the number of clones generated in each
bacterial mutation operation. An overly large number of clones creates many bacteria
with the same permutation; therefore, going over a certain amount yields negligible or no
improvement in overall scheduling performance (Figure 17b) while increasing runtimes
(Figure 17a).

The number of infections (Nin f) is the number of new bacteria created during the gene
transfer operation. This may increase diversity in the population with negligible runtime
differences (See Figure 18); therefore, a higher value of forty was chosen to increase the
chances of escaping local optima when scheduling larger problems.

The Iseg parameter is the length of the segment in the bacterial mutation operation.
This value determines the size of the segment to be mutated to generate new mutant
solutions. The larger the segment, the more varied the mutants will be. This parameter has
a lesser impact on overall performance and runtime (See Figure 19). However, a value of
four yielded the lowest standard deviation in runtime (See Figure 19c); therefore, it is the
final parameter value chosen for our testing.

Itrans is the length of the transferred segment in the gene transfer operation. A longer
segment may increase the variance in generated solutions. However, in our testing, it had
little impact on the quality of solutions (See Figure 20b,d) and runtimes (See Figure 20a,c).
A value of four was chosen since it is a good middle-ground and it illustrates the workings
of the operator well.

Algorithms 2023, 16, 406 22 of 30

Max

Std. dev.

Mean

Min

0.25

0.50

0.75

1.00

1.25

0 25 50 75 100
Number of clones

R
un

tim
e

(s
)

Number of clones − DBMEA

(a) Time (s)

Max

Std. dev.

Mean

Min0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Number of clones

ω

ω average
Number of clones − DBMEA

(b) ω

0.15

0.16

0.17

0.18

0.19

0.20

0 25 50 75 100
Number of clones

S
ta

nd
ar

d
D

ev
ia

tio
n

Time standard deviation

Number of clones − DBMEA

(c) Standard deviation of time (s)

0.18

0.19

0.20

0.21

0.22

0.23

0 25 50 75 100
Number of clones

S
ta

nd
ar

d
D

ev
ia

tio
n

ω standard deviation

Number of clones − DBMEA

(d) Standard deviation of ω

Figure 17. Analysis of the Nclones parameter.

The mortality rate of Nmort is the percentage of the population to be terminated at the
end of each iteration (generation) and replaced with random solutions to increase diversity
and escape local optima. A mortality rate of one creates a random population for each
generation; a low mortality rate keeps more from the previous generation. Therefore, the
mortality rate is an extension of elitism, where a portion of the population is kept instead
of just one individual. It is evident that a high mortality rate (above 0.1) decreases the
scheduling efficiency of the algorithm since the beneficial traits of previous generations
are not carried forward (See Figure 21b,d). Too low of a value may increase the chance of
the search being stuck in local optima. The mortality rate must be kept as high as possible
without negating the traits of previous iterations. The parameter has almost no impact on
the runtime of the algorithm (see Figure 21a,c). Considering the above, a mortality rate of
0.1 (10%) was chosen.

After our parameter analysis, a set of parameters were determined for the final testing
on the entirety of the Taillard benchmark set. Table 1 contains all of the parameters chosen.
These running parameters were used to obtain the results presented in Tables A1–A4.

Algorithms 2023, 16, 406 23 of 30

Max

Std. dev.

Mean

Min

0.25

0.50

0.75

1.00

1.25

0 50 100 150
Number of infections

R
un

tim
e

(s
)

Number of infections − DBMEA

(a) Time (s)

Max

Std. dev.

Mean

Min
0.0

0.4

0.8

1.2

0 50 100 150
Number of infections

ω

ω average
Number of infections − DBMEA

(b) ω

0.15

0.16

0.17

0.18

0 50 100 150
Number of infections

S
ta

nd
ar

d
D

ev
ia

tio
n

Time standard deviation

Number of infections − DBMEA

(c) Standard deviation of time (s)

0.20

0.21

0.22

0.23

0.24

0.25

0 50 100 150
Number of infections

S
ta

nd
ar

d
D

ev
ia

tio
n

ω standard deviation

Number of infections − DBMEA

(d) Standard deviation of ω

Figure 18. Analysis of the Nin f parameter.

Max

Std. dev.

Mean

Min
0.25

0.50

0.75

1.00

1.25

0 2 4 6 8
Bacterial mutation segment length

R
un

tim
e

(s
)

Bacterial mutation segment length − DBMEA

(a) Time (s)

Max

Std. dev.

Mean

Min0.0

0.3

0.6

0.9

0 2 4 6 8
Bacterial mutation segment length

ω

ω average

Bacterial mutation segment length − DBMEA

(b) ω

0.14

0.15

0.16

0.17

2 4 6 8
Bacterial mutation segment length

S
ta

nd
ar

d
D

ev
ia

tio
n

Time standard deviation

Bacterial mutation segment length − DBMEA

(c) Standard deviation of time (s)

0.21

0.22

0.23

0.24

2 4 6 8
Bacterial mutation segment length

S
ta

nd
ar

d
D

ev
ia

tio
n

ω standard deviation

Bacterial mutation segment length − DBMEA

(d) Standard deviation of ω

Figure 19. Analysis of the Iseg parameter.

Algorithms 2023, 16, 406 24 of 30

Max

Std. dev.

Mean

Min
0.25

0.50

0.75

1.00

1.25

0 2 4 6 8
Gene transfer segment length

R
un

tim
e

(s
)

Gene transfer segment length − DBMEA

(a) Time (s)

Max

Std. dev.

Mean

Min0.0

0.3

0.6

0.9

0 2 4 6 8
Gene transfer segment length

ω

ω average

Gene transfer segment length − DBMEA

(b) ω

0.15

0.16

0.17

0.18

2 4 6 8
Gene transfer segment length

S
ta

nd
ar

d
D

ev
ia

tio
n

Time standard deviation

Gene transfer segment length − DBMEA

(c) Standard deviation of time (s)

0.19

0.20

0.21

2 4 6 8
Gene transfer segment length

S
ta

nd
ar

d
D

ev
ia

tio
n

ω standard deviation

Gene transfer segment length − DBMEA

(d) Standard deviation of ω

Figure 20. Analysis of the Itrans parameter.

Max

Std. dev.

Mean

Min
0.4

0.8

1.2

1.6

0 0.25 0.5 0.75 1
Mortality rate

R
un

tim
e

(s
)

Mortality rate − DBMEA

(a) Time (s)

Max

Std. dev.

Mean

Min
0.0

0.5

1.0

1.5

0 0.25 0.5 0.75 1
Mortality rate

ω

ω average

Mortality rate − DBMEA

(b) ω

0.13

0.15

0.17

0.19

0.21

0.00 0.25 0.50 0.75 1.00
Mortality rate

S
ta

nd
ar

d
D

ev
ia

tio
n

Time standard deviation

Mortality rate − DBMEA

(c) Standard deviation of time (s)

0.20

0.24

0.28

0.00 0.25 0.50 0.75 1.00
Mortality rate

S
ta

nd
ar

d
D

ev
ia

tio
n

ω standard deviation

Mortality rate − DBMEA

(d) Standard deviation of ω

Figure 21. Analysis of the Nmort parameter.

9. Conclusions

In this paper, we have described our proposed novel hybrid (extended “memetic”
style) algorithm with a top-down approach and also provided details on the implemen-
tation. The results presented in this study demonstrate the efficiency of this new hybrid
bacterial memetic algorithm in solving the flow-shop scheduling problem. As shown
in Tables A1 and A2, the algorithm has achieved a quality of solution comparable to the
best-known results, with a difference of less than 1%. This comparison indicates that the
algorithm can efficiently explore the solution space and produce high-quality solutions for
many problems. Furthermore, our analysis of the algorithm’s performance on the Taillard

Algorithms 2023, 16, 406 25 of 30

benchmark set revealed that the hybrid bacterial memetic algorithm outperformed the
best-known solutions for nine benchmark cases. The algorithm’s ability to solve complex
scheduling problems has been made obvious.

To provide a comprehensive view of the algorithm’s performance, we have included
Table A4, which summarizes the new best solutions obtained by the algorithm, along with
their corresponding makespans. These results demonstrate the algorithm’s ability to find
high-quality solutions that surpass the performance of all published methods.

The advantage of our proposed algorithm is its black-box approach to optimization,
which implies that no assumption was made on the behaviour of the objective function. This
approach allows for problem agnostic search as long as the solution requires a permutation
as its solution. Therefore, we claim that our proposed algorithm can be used for the
optimization of problems, which are even closer related to real-world tasks, like hybrid
flow-shop scheduling with unrelated machines and machine eligibility [70] or extended
job-shop scheduling [71]. One limitation of the algorithm is the number of times the
objective function is called, increasing computation times drastically when more complex
models are to be computed. Due to space and time constraints, these extended problems
and respective solutions under increased complexity, like parallelization, have not been
considered here. Overall, the hybrid bacterial memetic algorithm has shown great promise
in solving the flow-shop scheduling problem, and it can potentially contribute to developing
more efficient scheduling algorithms in the future. In our future work, we would like to
investigate other use cases and refinements in performance, both in terms of scheduling
ability and of compute time.

Author Contributions: Conceptualization, L.T.K. and K.N.; methodology, L.F. and K.N.; software,
L.F. and K.N.; validation, L.F., K.N., B.T.-S. and O.H.; formal analysis, L.F. and K.N.; investigation, L.F.
and K.N.; resources, L.F. and K.N.; data curation, L.F. and K.N.; writing—original draft preparation,
L.F., K.N. and O.H.; writing—review and editing, L.F., K.N. and O.H.; visualization, L.F.; supervision,
K.N.; project administration, O.H.; and funding acquisition, L.T.K. and K.N. All of the authors have
read and agreed to the published version of the manuscript.

Funding: The described article was carried out as part of the 2020-1.1.2-PIACI-KFI-2020-00147
“OmegaSys—Lifetime planning and failure prediction decision support system for facility man-
agement services” project implemented with the support provided from the National Research,
Development, and Innovation Fund of Hungary. L. T. Koczy, as a Professor Emeritus at Budapest
University of Technology and Economics, was supported by the Hungarian National Office for
Research, Development, and Innovation, grant. nr. K124055.

Data Availability Statement: The data presented in this study are openly available at http://
mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html (accessed on
5 July 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Comparison of performance of 20 algorithms on 20 and 50 machine problems (average ω).

Algorithm Problem Size

20 × 5 20 × 10 20 × 20 50 × 5 50 × 10 50 × 20

HAPSO [36] 0.00 0.09 0.07 0.05 2.1 3.20

PSOENT [39] 0.00 0.07 0.08 0.02 2.11 3.83

NEHT [22] 3.35 5.02 3.73 0.84 5.12 6.26

SGA [44] 1.02 1.73 1.48 0.61 2.81 3.98

MGGA [44] 0.81 1.40 1.06 0.44 2.56 3.82

ACGA [44] 1.08 1.62 1.34 0.57 2.79 3.75

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html

Algorithms 2023, 16, 406 26 of 30

Table A1. Cont.

Algorithm Problem Size

SGGA [44] 1.10 1.90 1.60 1.52 2.74 3.94

DDE [49] 0.46 0.93 0.79 0.17 2.26 3.11

CPSO [33] 1.05 2.42 1.99 0.90 4.85 6.40

GMA [39,72] 1.14 2.30 2.01 0.47 3.21 4.97

PSO2 [34] 1.25 2.17 2.09 0.47 3.60 4.84

HPSO [43] 0.00 0.00 0.00 0.00 0.69 1.71

GA-VNS [52] 0.00 0.00 0.00 0.00 0.77 0.96

IWO [54] 8.69 39.51 40.44 10.87 15.85 42.21

HGSA [55] 5.89 7.35 6.48 1.14 5.40 7.66

HGA [56] 16.05 29.00 29.44 18.57 44.32 58.62

HMM-PFA [57] 20.78 31.44 32.18 19.63 44.36 58.69

DJaya [59] 0.00 0.71 1.38 0.00 1.98 2.29

DJRL3M [58] 0.00 0.65 0.24 0.00 1.96 2.28

SA [68] 0.20 0.80 0.66 2.89 0.51 3.21

MCTS + SA [65] 0.08 1.07 0.56 0.46 0.00 1.78

DBMEA + SA [3] 0.09 0.63 0.71 0.39 2.09 3.12

HDBMEA −0.1 0.03 0.07 0.02 0.17 0.80

Table A2. Comparison of performance of 20 algorithms on 100, 200, and 500 machine problems
(average ω).

Algorithm Problem Size

100 × 5 100 × 10 100 × 20 200 × 10 200 × 20 500 × 20

HAPSO [36] 0.14 1.17 4.13 1.06 4.27 3.43

PSOENT [39] 0.09 1.26 4.37 1.02 4.27 2.73

NEHT [22] 0.46 2.13 5.23 1.43 4.41 2.24

SGA [44] 0.47 1.67 3.80 0.94 2.73 –

MGGA [44] 0.41 1.50 3.15 0.92 3.95 –

ACGA [44] 0.44 1.71 3.47 0.94 2.61 –

SGGA [44] 0.38 1.60 3.51 0.80 2.32 –

DDE [49] 0.08 0.94 3.24 0.55 2.61 –

CPSO [33] 0.74 2.94 7.11 2.17 6.89 –

GMA [39,72] 0.42 1.96 4.68 1.10 3.61 –

PSO2 [34] 0.35 1.78 5.13 – – –

HPSO [43] 0.00 0.20 0.48 0.14 1.06 0.70

GA-VNS [52] 0.00 0.08 1.31 0.11 1.17 0.63

IWO [54] 6.30 18.11 51.64 8.48 35.93 17.92

HGSA [55] 0.99 3.56 3.95 2.22 4.55 2.80

HGA [56] 19.59 44.42 70.48 46.39 81.45 52.95

HMM-PFA [57] 17.80 43.37 69.41 40.99 75.56 75.66

SA [68] 0.06 0.66 1.22 0.48 0.63 0.71

DJaya [59] 0.00 0.00 2.59 0.43 2.39 1.09

DJRL3M [58] 0.16 3.16 2.58 0.42 2.37 1.05

MCTS + SA [65] 0.14 0.98 1.12 0.61 0.65 1.00

DBMEA + SA [3] 0.33 1.36 2.91 1.32 2.83 2.16

HDBMEA 0.07 0.32 0.55 0.35 0.36 0.60

Algorithms 2023, 16, 406 27 of 30

Table A3. Average performance (ω).

Algorithm Average ω

HAPSO [36] 1.63

PSOENT [39] 1.65

NEHT [22] 3.35

SGA [44] 1.93

MGGA [44] 1.82

ACGA [44] 1.84

SGGA [44] 1.85

DDE [49] 1.37

CPSO [33] 3.40

GMA [39,72] 2.35

PSO2 [34] 2.40

HPSO [43] 0.48

GA-VNS [52] 0.40

IWO [54] 24.66

HGSA [55] 4.33

HGA [56] 42.61

HMM-PFA [57] 44.16

SA [68] 1.22

DJaya [59] 1.13

DJRL3M [58] 1.02

MCTS + SA [65] 0.70

DBMEA + SA [3] 1.50

HDBMEA 0.28

Table A4. Nine cases outperforming best known solutions.

Benchmark File Task Jobs Machines Makespan Best Known

1tai20_5.txt 5 20 5 1235 1236

2tai20_10.txt 4 20 10 1377 1378

3tai20_20.txt 2 20 20 2099 2100

5tai50_10.txt 3 50 10 2863 2864

5tai50_10.txt 4 50 10 3063 3064

7tai100_5.txt 8 100 5 5098 5106

7tai100_5.txt 9 100 5 5448 5454

9tai100_20.txt 7 100 20 6342 6346

999tai200_20.txt 2 200 20 11,403 11,420

References
1. Onwubolu, G.C.; Babu, B. New Optimization Techniques in Engineering; Springer: Berlin/Heidelberg, Germany, 2013; Volume 141.
2. Tüű-Szabó, B.; Földesi, P.; Kóczy, L.T. An efficient evolutionary metaheuristic for the traveling repairman (minimum latency)

problem. Int. J. Comput. Intell. Syst. 2020, 13, 781–793. [CrossRef]
3. Agárdi, A.; Nehéz, K.; Hornyák, O.; Kóczy, L.T. A Hybrid Discrete Bacterial Memetic Algorithm with Simulated Annealing for

Optimization of the flow-shop scheduling problem. Symmetry 2021, 13, 1131. [CrossRef]
4. Balázs, K.; Botzheim, J.; Kóczy, L.T. Comparison of various evolutionary and memetic algorithms. In Integrated Uncertainty

Management and Applications; Springer: Berlin/Heidelberg, Germany, 2010; pp. 431–442.

http://doi.org/10.2991/ijcis.d.200529.001
http://dx.doi.org/10.3390/sym13071131

Algorithms 2023, 16, 406 28 of 30

5. Nawa, N.E.; Furuhashi, T. Bacterial evolutionary algorithm for fuzzy system design. In SMC’98 Conference Proceedings, Proceedings
of the 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 98CH36218), San Diego, CA, USA, 14 October
1998; IEEE: New York, NY, USA, 1998; Volume 3, pp. 2424–2429.

6. Moscato, P. On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. In Technical
Report, Caltech Concurrent Computation Program Report 826; California Institute of Technology: Pasadena, CA, USA, 1989.

7. Wolpert, D.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
8. Kóczy, L.; Zorat, A. Fuzzy systems and approximation. Fuzzy Sets Syst. 1997, 85, 203–222. [CrossRef]
9. Kóczy, L.T. Symmetry or Asymmetry? Complex Problems and Solutions by Computational Intelligence and Soft Computing,

Symmetry 2022, 14, 1839. [CrossRef]
10. Nawa, N.E.; Furuhashi, T. Fuzzy system parameters discovery by bacterial evolutionary algorithm. IEEE Trans. Fuzzy Syst. 1999,

7, 608–616. [CrossRef]
11. Botzheim, J.; Cabrita, C.; Kóczy, L.T.; Ruano, A. Fuzzy rule extraction by bacterial memetic algorithms. Int. J. Intell. Syst. 2009,

24, 312–339. [CrossRef]
12. Das, S.; Chowdhury, A.; Abraham, A. A bacterial evolutionary algorithm for automatic data clustering. In Proceedings of the

2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009; pp. 2403–2410.
13. Hoos, H.H.; Stützle, T. Stochastic Local Search: Foundations and Applications; Elsevier: Amsterdam, The Netherlands, 2004.
14. Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory. In Numerical Analysis; Springer: Berlin/Heidelberg,

Germany, 1978; pp. 105–116.
15. Gong, G.; Deng, Q.; Chiong, R.; Gong, X.; Huang, H. An effective memetic algorithm for multi-objective job-shop scheduling.

Knowl.-Based Syst. 2019, 182, 104840. [CrossRef]
16. Yamada, T.; Nakano, R. A fusion of crossover and local search. In Proceedings of the IEEE International Conference on Industrial

Technology (ICIT’96), Shanghai, China, 2–6 December 1996; pp. 426–430.
17. Muyldermans, L.; Beullens, P.; Cattrysse, D.; Van Oudheusden, D. Exploring variants of 2-opt and 3-opt for the general routing

problem. Oper. Res. 2005, 53, 982–995. [CrossRef]
18. Balazs, K.; Koczy, L.T. Hierarchical-interpolative fuzzy system construction by genetic and bacterial memetic programming

approaches. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2012, 20, 105–131. [CrossRef]
19. Pinedo, M. Scheduling: Theory, Algorithms, and Systems, 5th ed.; Springer: Cham, Switzerland, 2016.
20. Johnson, S.M. Optimal two-and three-stage production schedules with setup times included. Nav. Res. Logist. Q. 1954, 1, 61–68.

[CrossRef]
21. Garey, M.R.; Johnson, D.S.; Sethi, R. The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1976, 1, 117–129.

[CrossRef]
22. Nawaz, M.; Enscore, E.E., Jr.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983,

11, 91–95. [CrossRef]
23. Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [CrossRef]
24. Van Laarhoven, P.J.; Aarts, E.H. simulated annealing. In Simulated Annealing: Theory and Applications; Springer: Berlin/Heidelberg,

Germany, 1987; pp. 7–15.
25. Dai, M.; Tang, D.; Giret, A.; Salido, M.A.; Li, W.D. Energy-efficient scheduling for a flexible flow shop using an improved

genetic-simulated annealing algorithm. Robot. Comput.-Integr. Manuf. 2013, 29, 418–429. [CrossRef]
26. Jouhari, H.; Lei, D.; A. A. Al-qaness, M.; Abd Elaziz, M.; Ewees, A.A.; Farouk, O. Sine-Cosine Algorithm to Enhance simulated

annealing for Unrelated Parallel Machine Scheduling with Setup Times. Mathematics 2019, 7, 1120. [CrossRef]
27. Alnowibet, K.A.; Mahdi, S.; El-Alem, M.; Abdelawwad, M.; Mohamed, A.W. Guided Hybrid Modified simulated annealing

Algorithm for Solving Constrained Global Optimization Problems. Mathematics 2022, 10, 1312. [CrossRef]
28. Suanpang, P.; Jamjuntr, P.; Jermsittiparsert, K.; Kaewyong, P. Tourism Service Scheduling in Smart City Based on Hybrid Genetic

Algorithm simulated annealing Algorithm. Sustainability 2022, 14, 6293. [CrossRef]
29. Redi, A.A.N.P.; Jewpanya, P.; Kurniawan, A.C.; Persada, S.F.; Nadlifatin, R.; Dewi, O.A.C. A simulated annealing Algorithm for

Solving Two-Echelon Vehicle Routing Problem with Locker Facilities. Algorithms 2020, 13, 218. [CrossRef]
30. Rahimi, A.; Hejazi, S.M.; Zandieh, M.; Mirmozaffari, M. A Novel Hybrid simulated annealing for No-Wait Open-Shop Surgical

Case Scheduling Problems. Appl. Syst. Innov. 2023, 6, 15. [CrossRef]
31. Bean, J.C. Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 1994, 6, 154–160. [CrossRef]
32. Hansen, P.; Mladenović, N. Variable neighborhood search: Principles and applications. Eur. J. Oper. Res. 2001, 130, 449–467.

[CrossRef]
33. Tasgetiren, M.F.; Liang, Y.C.; Sevkli, M.; Gencyilmaz, G. A particle swarm optimization algorithm for makespan and total

flowtime minimization in the permutation flowshop sequencing problem. Eur. J. Oper. Res. 2007, 177, 1930–1947. [CrossRef]
34. Liao, C.J.; Tseng, C.T.; Luarn, P. A discrete version of particle swarm optimization for flowshop scheduling problems. Comput.

Oper. Res. 2007, 34, 3099–3111. [CrossRef]
35. Jarboui, B.; Ibrahim, S.; Siarry, P.; Rebai, A. A combinatorial particle swarm optimisation for solving permutation flowshop

problems. Comput. Ind. Eng. 2008, 54, 526–538. [CrossRef]

http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1016/0165-0114(95)00348-7
http://dx.doi.org/10.3390/sym14091839
http://dx.doi.org/10.1109/91.797983
http://dx.doi.org/10.1002/int.20338
http://dx.doi.org/10.1016/j.knosys.2019.07.011
http://dx.doi.org/10.1287/opre.1040.0205
http://dx.doi.org/10.1142/S021848851240017X
http://dx.doi.org/10.1002/nav.3800010110
http://dx.doi.org/10.1287/moor.1.2.117
http://dx.doi.org/10.1016/0305-0483(83)90088-9
http://dx.doi.org/10.1016/0377-2217(93)90182-M
http://dx.doi.org/10.1016/j.rcim.2013.04.001
http://dx.doi.org/10.3390/math7111120
http://dx.doi.org/10.3390/math10081312
http://dx.doi.org/10.3390/su142316293
http://dx.doi.org/10.3390/a13090218
http://dx.doi.org/10.3390/asi6010015
http://dx.doi.org/10.1287/ijoc.6.2.154
http://dx.doi.org/10.1016/S0377-2217(00)00100-4
http://dx.doi.org/10.1016/j.ejor.2005.12.024
http://dx.doi.org/10.1016/j.cor.2005.11.017
http://dx.doi.org/10.1016/j.cie.2007.09.006

Algorithms 2023, 16, 406 29 of 30

36. Marchetti-Spaccamela, A.; Crama, Y.; Goossens, D.; Leus, R.; Schyns, M.; Spieksma, F. Proceedings of the 12th Workshop on
Models and Algorithms for Planning and Scheduling Problems. 2015. Available online: https://feb.kuleuven.be/mapsp2015/
Proceedings%20MAPSP%202015.pdf (accessed on 23 August 2023).

37. Glover, F.; Laguna, M.; Marti, R. Scatter search and path relinking: Advances and applications. In Handbook of Metaheuristics;
Springer: Berlin/Heidelberg, Germany, 2003; pp. 1–35.

38. Resende, M.G.; Ribeiro, C.C.; Glover, F.; Martí, R. Scatter search and path-relinking: Fundamentals, advances, and applications.
In Handbook of Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 87–107.

39. Marinakis, Y.; Marinaki, M. Particle swarm optimization with expanding neighborhood topology for the permutation flowshop
scheduling problem. Soft Comput. 2013, 17, 1159–1173. [CrossRef]

40. Ying, K.C.; Liao, C.J. An ant colony system for permutation flow-shop sequencing. Comput. Oper. Res. 2004, 31, 791–801.
[CrossRef]

41. Colorni, A.; Dorigo, M.; Maniezzo, V. Distributed optimization by ant colonies. In Proceedings of the First European Conference
on Artificial Life, Paris, France, 11–13 December 1991; Volume 142, pp. 134–142.

42. Colorni, A.; Dorigo, M.; Maniezzo, V. A Genetic Algorithm to Solve the Timetable Problem; Politecnico di Milano: Milan, Italy, 1992.
43. Hayat, I.; Tariq, A.; Shahzad, W.; Masud, M.; Ahmed, S.; Ali, M.U.; Zafar, A. Hybridization of Particle Swarm Optimization

with Variable Neighborhood Search and simulated annealing for Improved Handling of the Permutation Flow-Shop Scheduling
Problem. Systems 2023, 11, 221. [CrossRef]

44. Chen, S.H.; Chang, P.C.; Cheng, T.; Zhang, Q. A self-guided genetic algorithm for permutation flowshop scheduling problems.
Comput. Oper. Res. 2012, 39, 1450–1457. [CrossRef]

45. Baraglia, R.; Hidalgo, J.I.; Perego, R. A hybrid heuristic for the traveling salesman problem. IEEE Trans. Evol. Comput. 2001,
5, 613–622. [CrossRef]

46. Harik, G.R.; Lobo, F.G.; Goldberg, D.E. The compact genetic algorithm. IEEE Trans. Evol. Comput. 1999, 3, 287–297. [CrossRef]
47. Mühlenbein, H.; Paaß, G. From recombination of genes to the estimation of distributions I. Binary parameters. In International

Conference on Parallel Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany, 1996; pp. 178–187.
48. Pelikan, M.; Goldberg, D.E.; Lobo, F.G. A survey of optimization by building and using probabilistic models. Comput. Optim.

Appl. 2002, 21, 5–20. [CrossRef]
49. Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
50. Tasgetiren, M.F.; Pan, Q.K.; Suganthan, P.N.; Liang, Y.C. A discrete differential evolution algorithm for the no-wait flowshop

scheduling problem with total flowtime criterion. In Proceedings of the 2007 IEEE Symposium on Computational Intelligence in
Scheduling, Honolulu, HI, USA, 1–5 April 2007; pp. 251–258.

51. Pan, Q.K.; Tasgetiren, M.F.; Liang, Y.C. A discrete differential evolution algorithm for the permutation flowshop scheduling
problem. Comput. Ind. Eng. 2008, 55, 795–816. [CrossRef]

52. Zobolas, G.; Tarantilis, C.D.; Ioannou, G. Minimizing makespan in permutation flow-shop scheduling problems using a hybrid
metaheuristic algorithm. Comput. Oper. Res. 2009, 36, 1249–1267. [CrossRef]

53. Mehrabian, A.R.; Lucas, C. A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 2006,
1, 355–366. [CrossRef]

54. Zhou, Y.; Chen, H.; Zhou, G. Invasive weed optimization algorithm for optimization no-idle flow shop scheduling problem.
Neurocomputing 2014, 137, 285–292. [CrossRef]

55. Wei, H.; Li, S.; Jiang, H.; Hu, J.; Hu, J. Hybrid genetic simulated annealing algorithm for improved flow shop scheduling with
makespan criterion. Appl. Sci. 2018, 8, 2621. [CrossRef]

56. Tseng, L.Y.; Lin, Y.T. A hybrid genetic algorithm for no-wait flowshop scheduling problem. Int. J. Prod. Econ. 2010, 128, 144–152.
[CrossRef]

57. Qu, C.; Fu, Y.; Yi, Z.; Tan, J. Solutions to no-wait flow-shop scheduling problem using the flower pollination algorithm based on
the hormone modulation mechanism. Complexity 2018, 2018, 1973604. [CrossRef]

58. Alawad, N.A.; Abed-alguni, B.H. Discrete Jaya with refraction learning and three mutation methods for the permutation
flow-shop scheduling problem. J. Supercomput. 2022, 78, 3517–3538. [CrossRef]

59. Gao, K.; Yang, F.; Zhou, M.; Pan, Q.; Suganthan, P.N. Flexible job-shop rescheduling for new job insertion by using discrete Jaya
algorithm. IEEE Trans. Cybern. 2018, 49, 1944–1955. [CrossRef]

60. Fathollahi-Fard, A.M.; Woodward, L.; Akhrif, O. Sustainable distributed permutation flow-shop scheduling model based on a
triple bottom line concept. J. Ind. Inf. Integr. 2021, 24, 100233. [CrossRef]

61. Baroud, M.M.; Eghtesad, A.; Mahdi, M.A.A.; Nouri, M.B.B.; Khordehbinan, M.W.W.; Lee, S. A New Method for Solving the
flow-shop scheduling problem on Symmetric Networks Using a Hybrid Nature-Inspired Algorithm. Symmetry 2023, 15, 1409.
[CrossRef]

62. Liang, Z.; Zhong, P.; Liu, M.; Zhang, C.; Zhang, Z. A computational efficient optimization of flow shop scheduling problems. Sci.
Rep. 2022, 12, 845. [CrossRef] [PubMed]

63. Alireza, A.; Javid, G.N.; Hamed, N. Flexible flow shop scheduling with forward and reverse flow under uncertainty using the red
deer algorithm. J. Ind. Eng. Manag. Stud. 2023, 10, 16–33.

https://feb.kuleuven.be/mapsp2015/Proceedings%20MAPSP%202015.pdf
https://feb.kuleuven.be/mapsp2015/Proceedings%20MAPSP%202015.pdf
http://dx.doi.org/10.1007/s00500-013-0992-z
http://dx.doi.org/10.1016/S0305-0548(03)00038-8
http://dx.doi.org/10.3390/systems11050221
http://dx.doi.org/10.1016/j.cor.2011.08.016
http://dx.doi.org/10.1109/4235.974843
http://dx.doi.org/10.1109/4235.797971
http://dx.doi.org/10.1023/A:1013500812258
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1016/j.cie.2008.03.003
http://dx.doi.org/10.1016/j.cor.2008.01.007
http://dx.doi.org/10.1016/j.ecoinf.2006.07.003
http://dx.doi.org/10.1016/j.neucom.2013.05.063
http://dx.doi.org/10.3390/app8122621
http://dx.doi.org/10.1016/j.ijpe.2010.06.006
http://dx.doi.org/10.1155/2018/1973604
http://dx.doi.org/10.1007/s11227-021-03998-9
http://dx.doi.org/10.1109/TCYB.2018.2817240
http://dx.doi.org/10.1016/j.jii.2021.100233
http://dx.doi.org/10.3390/sym15071409
http://dx.doi.org/10.1038/s41598-022-04887-8
http://www.ncbi.nlm.nih.gov/pubmed/35039598

Algorithms 2023, 16, 406 30 of 30

64. Kóczy, L.T.; Földesi, P.; Tüű-Szabó, B. An effective discrete bacterial memetic evolutionary algorithm for the traveling salesman
problem. Int. J. Intell. Syst. 2017, 32, 862–876. [CrossRef]

65. Agárdi, A.; Nehéz, K. Parallel machine scheduling with Monte Carlo Tree Search. Acta Polytech. 2021, 61, 307–312. [CrossRef]
66. Wu, T.Y.; Wu, I.C.; Liang, C.C. Multi-objective flexible job shop scheduling problem based on monte-carlo tree search. In

Proceedings of the 2013 Conference on Technologies and Applications of Artificial Intelligence, Taipei, Taiwan, 6–8 December
2013; pp. 73–78.

67. Kocsis, L.; Szepesvári, C. Bandit based monte-carlo planning. In European Conference on Machine Learning, Proceedings of the ECML
2006, Berlin, Germany, 18–22 September 2006; Proceedings 17; Springer: Berlin/Heidelberg, Germany, 2006; pp. 282–293.

68. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
69. Miliczki, J.; Fazekas, L. Comparison of Cooling Strategies in simulated annealing Algorithms for Flow-shop Scheduling. Prod.

Syst. Inf. Eng. 2022, 10, 129–136. [CrossRef]
70. Yu, C.; Semeraro, Q.; Matta, A. A genetic algorithm for the hybrid flow shop scheduling with unrelated machines and machine

eligibility. Comput. Oper. Res. 2018, 100, 211–229. [CrossRef]
71. Shi, L.; Ólafsson, S.; Shi, L.; Ólafsson, S. Extended Job Shop Scheduling. Nested Partitions Method, Theory and Applications; Springer:

Berlin/Heidelberg, Germany, 2009; pp. 207–225.
72. Marinakis, Y.; Marinaki, M. Hybrid Adaptive Particle Swarm Optimization Algorithm for the Permutation Flowshop Scheduling

Problem. In Proceedings of the 13th Workshop on Models and Algorithms for Planning and Scheduling Problems, Abbey,
Germany, 12–16 June 2017; p. 189.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/int.21893
http://dx.doi.org/10.14311/AP.2021.61.0307
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.32968/psaie.2022.3.10
http://dx.doi.org/10.1016/j.cor.2018.07.025

	Introduction
	The Flow-Shop Problem
	A Review of Classic and State-of-the-Art Approaches
	Classic Approaches
	Heuristic or Meta-Heuristic Algorithms
	Approaches Based on Genetic Algorithms
	DBMEA-Based Approaches
	Jaya-Based Approaches
	Social Engineering Optimizer
	Hybrid Approaches

	Discrete Bacterial Memetic Evolutionary Algorithm (DBMEA)
	Steps of the Bacterial Mutation Procedure
	Gene Transfer

	Monte Carlo Tree Search (MCTS) Algorithm
	Hybrid Bacterial Memetic Algorithm
	Experimental Results
	Parameter Sensitivity Analysis
	Conclusions
	Appendix A
	References

