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Abstract: Artificial immune systems (AIS), as nature-inspired algorithms, have been developed to
solve various types of problems, ranging from machine learning to optimization. This paper proposes
a novel hybrid model of AIS that incorporates cellular automata (CA), known as the cellular automata-
based artificial immune system (CaAIS), specifically designed for dynamic optimization problems
where the environment changes over time. In the proposed model, antibodies, representing nominal
solutions, are distributed across a cellular grid that corresponds to the search space. These antibodies
generate hyper-mutation clones at different times by interacting with neighboring cells in parallel,
thereby producing different solutions. Through local interactions between neighboring cells, near-
best parameters and near-optimal solutions are propagated throughout the search space. Iteratively,
in each cell and in parallel, the most effective antibodies are retained as memory. In contrast, weak
antibodies are removed and replaced with new antibodies until stopping criteria are met. The CaAIS
combines cellular automata computational power with AIS optimization capability. To evaluate the
CaAIS performance, several experiments have been conducted on the Moving Peaks Benchmark.
These experiments consider different configurations such as neighborhood size and re-randomization
of antibodies. The simulation results statistically demonstrate the superiority of the CaAIS over other
artificial immune system algorithms in most cases, particularly in dynamic environments.

Keywords: artificial immune system; dynamic environment; dynamic optimization problem;
hypermutation; cellular automata

1. Introduction

Real-world optimization problems often exhibit a dynamic nature, which leads to
their modeling as Dynamic Optimization Problems (DOPs). In such problems, a model’s
parameters change over time due to the changing environment. Thus, finding an optimal
solution is challenging because the objective function and constraints vary with time. As a
result, although numerous successful optimization algorithms have been developed for
static optimization problems, traditional optimization algorithms could not be effective at
reaching an appropriate solution in such scenarios as they do not account for changes in
real-time data. Thus, researchers tried to develop suitable algorithms to adapt to changes
in dynamic environments.

Moreover, designing suitable optimization algorithms for solving real-world appli-
cations is not easy due to these environments’ limitations and constraints. To name a few
applications in dynamic environments, one can mention some examples of scheduling
problems. These problems are in such a way that stochastic jobs may be inserted/deleted
over time. Another example is routing problems, in which routers may fail or change status
(from on to off or vice versa) in the whole routing network.

Time-based pricing [1] is a common problem in financial planning. In this problem,
customers are divided into multiple groups based on their demand curves, and different
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prices are charged to each group at different times. This approach allows businesses to
optimize their revenue by charging higher prices when demand is strong and lower prices
when demand is weak. In channel assignment and multicast routing in multi-channel
wireless mesh networks [2], these networks require dynamically efficient multicast routing
protocols to ensure data delivery to multiple receivers simultaneously while minimizing
network congestion and delay. Dynamic optimization techniques can be applied to address
dynamic multicast problems in mobile ad hoc networks (MANETs) [3]. These networks
are characterized by their dynamic topology and mobility, which makes multicast routing
protocol optimization challenging. In dynamic multicast problems, the network topology is
changed frequently due to node mobility or link failures. This requires an adaptive routing
protocol to ensure reliable data delivery. Dynamic optimization techniques can improve
multicast routing protocols’ efficiency and adaptability in MANETs.

Dynamic optimization techniques can be applied to dynamic vehicle routing problems
(VRPs) [4] to improve routing solutions’ efficiency and adaptability. In dynamic VRPs, the
number and routes of vehicles change dynamically over time due to various factors such
as traffic conditions, weather, and customer demands. By using dynamic optimization
techniques, it is possible to achieve more efficient and cost-effective routing solutions,
reduce delivery times, and improve overall customer satisfaction. Dynamic job shop
scheduling [5] is a scheduling problem in which jobs are processed on different machines
in a factory. The goal is to determine the optimal sequence of jobs to be processed on each
machine. This is carried out while considering some factors such as machine availability,
job release times, and processing times. These problems are particularly challenging
because the optimal schedule may change with time due to job requirements or machine
availability changes. As a result, these problems require complex algorithms that adapt to
changing conditions in real time. For more applications, it can be addressed in aerospace
design [6], car distribution systems [7], object detection [8] and pollution control [7], electric
vehicle dispatch optimization [9], cold chain logistics scheduling [10], and railway junction
rescheduling [11].

The purpose of optimization in dynamic problems has shifted from simply identifying
the stationary optimal solution(s) to precisely monitoring the trajectories of the optimal so-
lution(s) over time [12–14]. As a result, it is crucial to adequately tackle the extra challenges
presented by this scenario to achieve promising results. Reacting to changes is critical to
maintaining optimization algorithms’ performance in dynamic environments. The first step
toward reacting to changes is to detect changes in the first place and then adopt a suitable
strategy to deal with them. Richter [15] discussed two major change detection types: popu-
lation based and sensor based. In population-based detection, statistical hypothesis testing
is performed at each generation to see whether the alteration in the fitness of the individuals
was not due to their convergence. In sensor-based detection, some measurements (so-called
“fitness landscape sensors”) are placed either randomly or regularly into the landscape. At
every generation, the environment changes if any of the sensors detect an altered fitness
value. Evolutionary algorithms (EAs) for addressing diverse applications characterized
by dynamic behavior have received significant attention in recent years [3]. Conventional
population-based algorithms can successfully solve static optimization problems but may
fail in dynamic environments since they cannot recognize environmental changes. Different
methods have been suggested to detect changes in the dynamic environment. Also, there
is no prior knowledge or standard criteria for dealing with changing environments. A
simple method can reset the optimization algorithm after detecting any environmental
change, which can often be performed correctly [16]. Before reaching optimal regions,
another change may occur through the evolution of an optimization algorithm. It is also
possible to track the peaks around the optimal instead of locating the optimal using DOP
algorithms as an alternative solution. Several techniques and improvements based on
the characteristics of each EA are suggested for dynamic optimization [17–19], among
which, the main approaches dealing with the dynamic environment can be categorized into
several groups, including: (1) increasing diversity methods [13], (2) diversity maintenance
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methods [20], (3) memory-based methods [21], (4) predicting the next optimum solution,
(5) self-adaptive mechanisms, (6) multi-population methods [22], and (7) hybridization of
the methods [23,24]. This study uses diversity control with parameter adaptation by CAs
for the distribution of parameters among the CA cells and their interaction.

A cellular automaton (CA) comprises numerous cells, each possessing a state that
evolves through a set of feasible states according to a local rule. CA is especially appropriate
for simulating natural systems that can be characterized as a vast collection of essential
components interacting locally with one another. The cellular automata-based artificial
immune system (CaAIS) proposed in this paper can be viewed as a stochastic cellular
automaton [25], where the size of the state set corresponds to the number of points in the
search space, and the cells update their states repeatedly until an appropriate predetermined
criterion is met.

This paper presents a novel hybrid model of AIS using the cellular automata called
cellular automata based on artificial immune system (CaAIS) for dynamic environments.
Antibodies are distributed throughout a cellular grid of search space in the proposed model
as nominal solutions. They are responsible for different solutions at different times. Based
on the local interactions between cells and their local rules, the appropriate parameters and
optimal solutions of cells are spread in the cell space. Due to CA properties, the CaAIS
inherits the computational power of cellular automata [26] and AIS optimization capability.

In summary, our main contributions are highlighted as follows:

• We proposed a hybrid model of AIS and CA called cellular automata based on the
artificial immune system (CaAIS) for dynamic environments.

• We proposed the CA local interactions in the CaAIS to adapt the parameters and
increase diversity.

• As the environment changes, we propose a replacement mechanism that incorporates
the near-best parameter of the cells and spreads to their neighbors.

The remainder of the paper is structured as follows: Section 2 provides an overview of
related work on several studies on dynamic optimization problems. Section 3 introduces
cellular automata in brief. The simple artificial immune algorithm is described in Section 4.
The proposed algorithm (CaAIS) is described in detail in Section 5. Section 6 reports on
the experimental results conducted on MPB and compares the CaAIS results with those of
state-of-the-art and selected algorithms. Finally, Section 7 concludes this paper.

2. Related Work

In the literature, there are several studies on dynamic optimization problems. For
example, Jin and Branke [27] tackled and deliberated on different forms of uncertainty in
evolutionary optimization. Cruz et al. [16] have furthered the progress of the domain by
achieving a dual objective, thereby enhancing its significance: (1) Their accomplishment
involved the establishment of a vast collection of pertinent references on the subject mat-
ter from the previous ten years, which they then classified according to various criteria,
including publication type, type of dynamism, dynamic optimization problem-solving
approaches, performance metrics, applications, and year of publication. (2) Afterward, they
conducted a comprehensive review of the research conducted on dynamic optimization
problems using the compiled collection. Nguyen et al. [28] conducted a comprehensive
investigation into the field of evolutionary optimization in dynamic environments, pre-
senting an in-depth survey of the field. This research analyzed the latest advancements in
the academic literature from four distinct perspectives, namely: (a) benchmark problems,
(b) performance metrics, (c) methodologies, and (d) theories. Although their work is very
valuable in studying and summarizing different methods for solving MPB, it does not
provide categorical information on how different methods work and which mechanisms
can improve the performance of different methods. In addition, it does not explain the
reasons for specific approaches’ superiority.

Yazdani et al. [29,30], in two parts of survey papers, presented a review of research
studies regarding DOPs. Since an efficient dynamic optimization algorithm consists of
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several parts to cope with dynamic optimization problems, they tried to provide a compre-
hensive taxonomy to identify the parts of dynamic optimization algorithms. In the second
part of this survey, they gave an overview of dynamic optimization problem benchmarks
and performance measures. Moser et al. provide another study [31]. In this work, the
authors surveyed the existing techniques in the literature for addressing MPB. They catego-
rize the diverse methods into four groups: swarm intelligence algorithms, evolutionary
algorithms, hybrid approaches, and other approaches.

In [22], Balckwell et al. introduced the concept of multi-swarms, which involves parti-
tioning the population of particles into multiple subgroups, each with its own information
sharing and exploration strategies. The researchers propose using an adaptive partitioning
technique that dynamically adjusts the number and size of multi-swarms based on the
characteristics of the problem and the environment. Then, they introduced the concept
of exclusion, which allows individual particles to temporarily avoid regions of the search
space that are not beneficial. By excluding certain areas, particles can avoid premature con-
vergence and explore other areas of the search space. Additionally, the authors addressed
the issue of anti-convergence, which occurs when all particles converge to a suboptimal
solution. To mitigate this problem, the authors propose a re-initialization mechanism,
which randomly disperses particles in the search space to encourage exploration.

In [32], Li et al. focused on improving particle swarm optimization (PSO) algorithms
in dynamic environments by incorporating both speciation and adaptation mechanisms.
Speciation is a process inspired by biological evolution, where particles are divided into
different sub-populations or species based on their similarities. This helps maintain diver-
sity and exploration, even in changing or dynamic environments. Adaptation, on the other
hand, enables particles to adjust their behavior and parameters in response to environment
changes. It allows particles to quickly react and update their positions and velocities to
find better solutions. Nasiri et al. [33] proposed the integration of speciation, a concept
from evolutionary biology, into the firefly algorithm. This is a widely used optimization
algorithm inspired by fireflies’ behavior. The algorithm partitions the population into
different species based on their similar solutions. Fireflies within the same species closely
cooperate and share information, while fireflies belonging to different species compete for
resources. This division allows for both exploration and exploitation of the search space,
improving the algorithm’s ability to adapt to changing environments.

The authors in [34] focused on studying the effectiveness of a multi-population heuris-
tic approach to solving non-stationary optimization tasks. The authors emphasize that
real-world optimization problems often have non-stationary characteristics, meaning that
the problem landscape changes over time. Thus, they introduced a multi-population heuris-
tic approach, which involves multiple populations working in parallel. Each population
adapts and evolves independently, making the approach suitable for solving non-stationary
problems where the landscape changes unpredictably.

An appropriate candidate for a nature-inspired algorithm dealing with the changing
environment components is an artificial immune system (AIS). An AIS [35] is an adap-
tive system inspired by vertebrate immune processes developed by researchers to solve
complex real-world problems [36]. In this regard, some achievements have been made
in AISs dealing with DOPs. Franca et al. have proposed modifications to the artificial
immune network (AIN) algorithm for dynamic environments [37]. They utilize particular
sub-populations for memory, linear search for parameter control, and novel operators for
mutation in AIN. The multi-population strategy of the artificial immune algorithm in a dy-
namic environment has been suggested by Xhua et al., which obtained relatively successful
results [38]. In [39], the authors focused on the improvement of adaptation in optimization
problems subject to time-dependent changes. The authors propose a hybrid approach
that combines genetic algorithms (GAs) and artificial immune systems (AIS) to enhance
optimization. The proposed hybrid approach incorporates a multi-objective optimization
framework, which combines exploration and exploitation objectives with AIS components.
Specifically, the authors introduce an immune-inspired strategy for maintaining a diverse
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population of solutions and adaptively reacting to changes in the optimization landscape.
The AIS components act as an additional mechanism for preserving diversity, increasing
adaptability, and improving the algorithm’s convergence rate.

Kelsey et al. [40] proposed a novel optimization technique called Immune-inspired
Somatic Contiguous Hypermutation (ISCH). This technique is inspired by the immune
system’s somatic hypermutation process, which generates diverse antibodies to combat
various pathogens. ISCH involves the creation of a population of candidate solutions,
represented as individuals or antibodies. Each candidate solution corresponds to a specific
state within the search space. The somatic contiguous hypermutation operator is then
applied to these individuals to generate mutated offspring. Unlike traditional mutation
operators, the contiguous hypermutation in ISCH selectively mutates contiguous regions
within the candidate solutions. This approach allows for more focused exploration of the
search space, potentially yielding better solutions in less time. In [41], De Castro et al.
discussed the clonal selection algorithm (CSA) and its various applications in engineer-
ing. CSA is a computational optimization technique inspired by the immune system’s
clonal selection process. This algorithm mimics the immune system’s ability to generate
antibodies to combat infections, and it has been successfully applied to a wide range of
engineering problems.

A comprehensive review and performance evaluation of some different mutation
behaviors for the clonal selection algorithm, artificial immune network, and B-cell algorithm
is reported in dynamic environments [42] by Trojanowski et al. There are some desirable
results in a dynamic environment for adaptive operators using learning automata to
increase diversity. This is developed for the immune algorithm immune network [13].
The dynamic T-cell algorithm, a novel immune algorithm inspired by the T-cell model,
was developed for DOP based on four populations [43]. Another multi-population-based
algorithm was introduced as an artificial immune algorithm for the dynamic environment
based on the principle of biological immune response [44]. Nabizedeh et al. utilized a
clonal selection algorithm as a local search for a search around the optima [45]. An adaptive
version of the immune system algorithm utilizing learning automata is presented in [46], in
which the hypermutation parameter is adjusted using learning automata as a successful
reinforcement learning approach.

However, nature-inspired methods for dynamic optimization problems have certain
limitations. One limitation is the exploration–exploitation trade-off. These algorithms
may struggle to balance between exploring new regions of the search space to find better
solutions and exploiting the current best solutions. In dynamic environments, where the
optimal solution may change over time, this trade-off becomes even more challenging.
Additionally, these methods may suffer from premature convergence, where they converge
to suboptimal solutions too quickly and fail to adapt to changing environments. The
lack of effective mechanisms to handle dynamic changes in the search space is another
limitation, as these algorithms may struggle to quickly adapt and track the changing
optimal solution. Overall, while nature-inspired methods have shown promise in solving
optimization problems, their limitations in dynamic environments call for further research
and development.

3. Cellular Automata

Cellular automata [47] is a dynamical system with discrete space and time. The CA is
a mathematical model with an array of cells with local interactions for investigating sophis-
ticated, complex phenomena. Each cell’s behavior is determined based on its neighbor’s
behavior. CA is a decentralized, discrete, self-organized, and parallel system that enables
one to create an ordered structure by starting from a random state. It is shown that the
property of CA by applying a CA to a set of structures could not affect the set entropy. In
this model, space is specified by a regular grid of cells, each representing a memory of states.
In each step, the cell considers neighboring cells, and based on the communication rules,
the next state is specified. In addition, each cell can work independently of the other cells.
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Cellular automata consider different neighborhood configurations. Each set of cells is
considered to be neighbors in a specific order. The two most well-known neighborhoods are
the Von Neumann and Moore neighborhoods. The Von Neumann neighborhood includes
four adjacent cells not diagonal to the central cell, while the Moore neighborhood includes
all eight surrounding cells. Each cell in the Von Neumann neighborhood has an equal
distance from the central cell. This model takes into account a wider range of neighboring
cells, allowing for more complex interactions and patterns within the cellular automaton.
These neighborhoods are commonly called the nearest neighbors and are illustrated in
Figure 1 [48]. For the CaAIS, the Von Neumann model may be more suitable for scenarios
where a more localized and restricted antibody spread is desired. In contrast, the Moore
model allows for a more extensive spread of antibodies across cells.
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The CaAIS is not the first evolutionary algorithm to use CA. In [49], CGA is a cellular
evolutionary algorithm that utilizes a decentralized population approach. In this method,
tentative solutions are introduced in overlapping neighborhoods. The hybrid CA with
particle swarm optimization (PSO), called CPSO, is presented in a study to optimize
functions [50]. The CPSO algorithm incorporates a CA mechanism into the velocity update
process to modify particle trajectories. The CaAIS is similar to CGA and CPSO in that it
is parameter dependent and hybridizes with CA. However, the CaAIS differs from CGA
and CPSO models in several aspects. 1: The main evolutionary algorithm is based on AIS.
2: Unlike CGA, the CaAIS model does not use crossover and mutation operators. Based
on the AIS algorithm, the CaAIS uses only hypermutation operators. 3: Unlike CGA, in
the CaAIS, each antibody interacts only with its pre-defined neighboring antibodies. 4: the
CaAIS focuses on optimization for dynamic environments.

Several hybridizations of CA and evolutionary algorithms are also reported in the
literature, including CLA-EC [51], Cellular PSO [52,53], Cellular DE [19,54], CLA-DE [55],
and Cellular fish swarm [56]. This paper proposes a hybrid model using cellular automata
and an artificial immune system for optimization in dynamic optimization.

4. Artificial Immune Algorithm

An artificial immune system [35] is a branch of computational intelligence that draws
inspiration from the natural immune system. It offers various algorithms for solving com-
plex real-world problems [36]. Several applications of AIS algorithms have been reported
by researchers, such as optimization [13], power systems [57], scheduling [58], pattern
recognition, bioinformatics [59], data mining [60], psychometric technology [61], sensor net-
works [62], intrusion detection [63], mobile robot control [64], and clinical diagnostics [65].
Taking inspiration from human immune systems, many AIS algorithms are generated.
These algorithms include negative selection algorithms (NCA), clonal selection algorithms
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(CLONALG), bone marrow, artificial immune networks (AINE), toll-like receptors (TLR),
danger theory, and dendritic cell algorithms (DCA) [36,60].

The immune network theory was presented by Jerne [66], while the artificial immune
network (AIN) algorithm was developed for multi-model optimization by de Castro and
Timmis [67]. This algorithm considers the immune cell as a population and its represen-
tation as a real value vector with Euclidian distance. One of the main properties of this
algorithm is affinity maturation after random initialization, after which cells suffer mutation
based on the affinity of cells to produce colonies according to Equation (1)

c′ = c +
exp(− f ∗)

β
× N(0, 1), (1)

where c′ is the mutated cell, β is a control parameter for the normalization of fitness value
f ∗, and N(0, 1) specifies a Gaussian distribution by mean and variance 0 and 1, respectively.
After the mutation of the clones, cells with maximum fitness values were retained, and cells
with fitness values smaller than others were replaced with random cells [37]. Indeed, the
AIN algorithm aims to attain a set of representations with the least redundancy. Although
the AIN algorithm looks like a clonal selection algorithm, the main difference is attributed
to the suppression mechanism for cell interaction. This eliminates certain sets of cells with
less fitness than others. Algorithm 1 presents the artificial immune network algorithm
pseudo-code [68].

Algorithm 1. Artificial immune network algorithm

1. Initialize the Ab population as antibodies, and β is a control parameter.
2. Repeat for each Ab.
3. Evaluate Ab.
4. Select the best Ab.
5. Clone and mutate Ab.
6. Retain the highest Ab as memories.
7. Remove weak memories.
8. Replace random Ab.
9. Until the termination condition is met

5. Proposed Model: Cellular Automata-Based on Artificial Immune System (CaAIS)

Parameters in the AIS algorithm play a critical role due to several parameters, such
as hypermutation. These parameters affect the AIS algorithm’s performance [35]. On the
other hand, there are local interactions between Abs in the immune system. Thus, in the
proposed algorithm, a CA is used for enhancing the parameter adaptations of the algorithm.
Each CA cell consists of antibodies denoted by Ab, and their parameters, such as β, are
control parameters. This concept preserves diversity in the search space through CA local
interaction. A general representation of the proposed model for CA deployment in a Von
Neumann model is depicted in Figure 2.

After initialization, the proposed algorithm iterates in parallel for each cell. Each step
is described in the following subsections. The pseudo-code of the proposed algorithm, the
CaAIS, is presented in Algorithm 2.
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Algorithm 2. Cellular automata-based artificial immune system (CaAIS)

1. (Initialization): Generate randomly the initial Abs population and initialize the parameters in
each cell
2. Repeat for each cell in parallel
3. Evaluate the Ab population
4. (Change Environment) If changing the environment is detected, do the following
operations on each Ab
5. (Replacement) Replace a set of Abs with the best of neighboring cells according
to Equation (3), and
the remainder set reinitializes the parameters randomly.
6. Generate clones and then perform Hypermutation clones with equal probability to each
clone according to the neighboring cells based on Equation (4).
7. Evaluate the fitness of every mutated clone, and select the best Abs using Equation (3) as
a member of the new generation and remove the others.
8. (CA Local interaction) Interact between cells and run local rules transition in each cell for
parameter selection value according to Equation (5).
9. Retain the best ABs as memory.
10. Remove a set of weak Abs and replace it with new Abs randomly.
11. Until (Stopping criteria) are met
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The description of each step of the CaAIS is given as follows.

5.1. Initialization

The initial Ab population was randomly generated using random distribution in the
corresponding range in each cell as follows

Ab(i,j) = lb + r(ub − lb), (2)

where r is a random number distributed in [0, 1], lb, ub are the lower and upper bound of
the real variable Ab(i,j) for cell (i, j), respectively. Additionally, in this step, the maximum
iteration, mutation probability Pm, and other parameters, such as the control parameter β,
are set.

5.2. Change the Environment

In the proposed algorithm, a change in environments is detected by re-evaluating
the BestAb as the best Ab in the population. So, a change is detected if the fitness value
of the BestAb has been changed since its last fitness evaluation. By detecting a change in
the environment, the fitness value of each Ab also should be re-evaluated. A local search
is performed around each individual as well. According to the proposed method, a local
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search is applied simply by interacting with neighbors. This idea helps Ab to track the
previous best search attempts to find the new optimal position quickly.

5.3. Replacement

In a time of changing environment, a set of antibodies in each cell is replaced by the
best neighbor. Other antibodies are reinitialized based on the last good neighbor in the
memory as CbestM(i,j) for cell (i, j), and the remaining are randomly initialized. Indeed,
it provides a global search by random search and local search by replacing the cells and
spreading in the neighbors. The replacement of antibodies is carried out using Equation (3).

Ab(i,j) = argmax
i,j

{ f (Ab)(p,q)
Ab(p,q)∈N(Ab(i,j))

}, (3)

where Abi,j is the antibody in the central cell, N(Ab(i,j)) returns the set of neighboring cells
for Abi,j in the central cell. Moreover, the best Ab of each cell as memory is considered as
CbestM(i,j).

5.4. Hypermutation

Since cloning and hypermutation are the main operators of AIS, they are performed on
the Ab population according to their fitness values. In this step, the Ab with a higher fitness
value suffers more clones because the better Abs are closer to optimal. Then, hypermutation
is applied as in Equation (4).

Ab(i,j) = Ab(i,j) +
exp(− f ∗(Ab(i,j)))

β
× N(0, 1), (4)

where β is a control parameter for the normalization of fitness value f ∗(Ab(i,j)) for Ab(i,j)
in cell (i, j), N(0, 1) specifies a Gaussian distribution by mean and variance 0 and 1,
respectively.

5.5. CA Local Interactions

In the proposed algorithm, the Ab is an N-dimensional real vector, where N is the
number of the dimensions of search space. In this discipline, the parameter of Ab is adjusted
via local interaction between Abs in the CA in a parallel manner. The relation between Abs
in a local grid in the Moore model is schematically presented in Figure 3.
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In the case of a dynamic environment, the parameters of AIS become different with
changing environments adaptively, and the diversity of population increases during the
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time based on CA. In this method, antibodies are distributed in the grid of cells so that each
cell can access its neighboring information by interaction among the cells.

Since the immune algorithm’s performance depends on mutation, values of β as
the control parameter are chosen adaptively through the algorithm evolution. The first
initialization of this parameter is randomly selected since there is no prior knowledge of
the environment. When the algorithm proceeds, the value of β is updated based on the
received feedback from the environment. While all antibodies in each cell are evaluated,
information interactions between neighboring cells are performed, and the central cell for
each window determines the best value of β using Equation (5),

βi,j = argmax
i,j

{ f (Ab)(p,q)
β(p,q)∈N(β(i,j))

}, (5)

where β(i,j) and β(p,q) are the control parameters of mutated antibodies in the central cell
and the control parameters of antibodies in neighboring cells, respectively.

The information interactions and the spread of parameters among cells in the 2D
model through the algorithm’s evolution schematically are shown in Figure 4.

Algorithms 2024, 17, 18 10 of 20 
 

 
Figure 3. Representation of deployment of antibodies 𝐴𝑏 in Moore model of CA. 

The information interactions and the spread of parameters among cells in the 2D 
model through the algorithm’s evolution schematically are shown in Figure 4. 

 
Figure 4. The representation of the local information interaction and its spread of parameters (i.e., 
control parameter 𝛽) among cells for the 2D model of Moore with s distance from the central cell. 

5.6. Stopping Criteria 
The process of evaluating the 𝐴𝑏 population, detecting the change in environment 

and re-initialization and replacement, generating clones and hypermutation clones, eval-
uating the mutated clones, performing CA local interaction, retaining the best 𝐴𝑏s, and 
removing the set of weak 𝐴𝑏s is repeated until the stopping criteria are met. The proposed 
algorithm stops when the maximum number of iterations is met. 

6. Experimental Study 
First, this section introduces (1) the performance measure, (2) MPB as a popular dy-

namic environment benchmark [67], and (3) an experimental setup that allows the CaAIS 
to be evaluated. Then, the CaAIS experimental results compared to some well-known al-
gorithms are reported in sub-Section 5.3. 

  

Figure 4. The representation of the local information interaction and its spread of parameters
(i.e., control parameter β) among cells for the 2D model of Moore with s distance from the central cell.

5.6. Stopping Criteria

The process of evaluating the Ab population, detecting the change in environment and
re-initialization and replacement, generating clones and hypermutation clones, evaluating
the mutated clones, performing CA local interaction, retaining the best Abs, and removing
the set of weak Abs is repeated until the stopping criteria are met. The proposed algorithm
stops when the maximum number of iterations is met.

6. Experimental Study

First, this section introduces (1) the performance measure, (2) MPB as a popular
dynamic environment benchmark [67], and (3) an experimental setup that allows the CaAIS
to be evaluated. Then, the CaAIS experimental results compared to some well-known
algorithms are reported in Section 5.3.
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6.1. Performance Measure

Offline error (OE) has been used to evaluate the CaAIS, a popular measure in the
literature for dynamic optimization. The average of the best value rather than the last
change from optima is indicated in OE, which is defined by Equation (6):

O f f lineError =
1

Nc
∑Nc

j=1

(
1

Ne(j)
∑Ne(j)

i=1

(
f ∗j − f ∗ji

))
, (6)

where Nc is the fitness evaluation of a changing environment, Ne(j) is the fitness evaluation
for the jth time of environment, f ∗j specifies the best value of the jth state (between j and
j + 1), and f ∗ji is the best current fitness value found up to now [16].

6.2. Dynamic Environment

Due to the dynamic nature of many real-world problems and the continuously chang-
ing environment, MPB, as a well-known dynamic environment, was developed as a means
of algorithm evaluation [69]. MPBs are being presented in the n-dimensional environment
with pre-defined peaks in X (location), H (height), W (weight). The peak functions are
defined below as Equation (7), and the highest value obtained over all of them specifies the
fitness landscape.

F
(→

x , t
)
= max

i=1,...N

Hi(t)

1 + Wi(t)∑D
j=1
(
xj(t)− Xij(t)

)2 , (7)

where Xij(t) is the coordination related to the location, Wi(t) is the width of the ith peak,
Hi(t) is the height of ith peak, all in time t. A uniform distribution is used to generate
the height randomly (Hi(t)) in the range [30, 70] and width (Wi(t)) in the range [1, 12] of
each peak.

The width Wi(t) and height Hi(t) are changed, respectively, as Equations (8) and (9)

Wi(t) = Wi(t − 1) + widthseverity.δ, (8)

Hi(t) = Hi(t − 1) + heightseverity.δ, (9)

where δ is a random number from a Gaussian distribution with a mean of 0 and variance of
1. The position of each peak is updated by vector

→
vi and it is formulated as follows:

→
Xi(t) =

→
Xi(t)(t − 1) +

→
vi(t), (10)

where
→
vi is defined as Equation (11)

→
vi(t) =

s∣∣∣→r +
→
vi(t − 1)

∣∣∣
(
(1 − λ)

→
r + λ

→
vi(t − 1)

)
, (11)

where
→
vi(t) as the shift vector is a linear combination of a random vector

→
r ∈ [0.0, 1.0]D

and the previous shift vector
→
vi(t) and is normalized by the length factor s. The sever-

ity of change is determined by parameter s, while the correlation between each peak’s
changes and the previous one is specified by λ. (i.e., λ = 0 specifies the change of peak
is uncorrelated).

An example of the landscape generated by the MPB is illustrated in Figure 5. The
peaks are distributed throughout the whole environment, while the peaks’ location, weight,
and height change over time.
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The default settings of MPB [70] to facilitate comparison with alternative algorithms
are given in Table 1.

Table 1. The default settings of MPB for experimentation.

Setting Default Value Other Tested Values

Number of peaks (m) 10 5, 10, 20, 30, 40, 50, 100, 200
Number of dimensions (D) 5 10, 50
Frequency of change (f) 5000 1000, 2000, 3000
Height severity 7.0
Width severity 1.0
Peak shape Cone
Shift severity (s) 1 2, 3, 4, 5, 6
Search space range (A) [0, 100]
Height range (H) [30, 70]
Width range (W) [1, 12]
Correlation coefficient (λ) [0.0, 1.0]

6.3. Experiments

In this section, the CaAIS performance is studied in numerous experiments and
compared with alternative algorithms reported in the literature. For each experiment, an
average offline error over 30 independent runs with a 95% confidence level is presented.
Moreover, each experiment contains its assumptions. Two groups of experiments are
designed in this section. The first group considered various configurations of the proposed
algorithm, and the other experiments employed comparisons with other algorithms with
varying MPB scenarios.

6.3.1. Effect of Various Numbers of Initial Antibodies

A first set of experiments is conducted by OE to examine the effect of the initial
antibody Ab size (initial population) on the MPB. Although the diversity values of anti-
body quantities can be considered for initialization, the population of AIS is increasing
dynamically, so using multiple values would not be reasonable. Hence, 2–10, 20, and
50 antibodies are selected for initialization in this experiment. The effects of the number of
initial antibodies in the proposed algorithm are depicted in Figure 6.

As evident from Figure 6, OE has been decreased by raising the initial Ab population
to 5–6, and it shows relative improvement. Although it has been further increased, the
result has been inversed, and the OE value has increased. By increasing the number of
antibodies, it seems that more populations will cooperate to interact with each other and
share the optimization solutions. In contrast, for the Ab population increased to more than
six, the results are not promising. According to these results of OE for the Ab populations
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of five to six and with a shorter run time, the initial size of the Ab population is set to five
antibodies for the rest of the experiments.
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6.3.2. Effect of Varying the Number of Neighborhood Sizes

Other experiments investigated the effects of several neighbor cells in CA. This experi-
ment avoids large neighborhood structures to avoid additional computational challenges
and a long run time. Therefore, the numbers of neighbor cells are studied from one to five
for the effects of cell neighborhood sizes. The effects of the different cell neighborhood sizes
are summarized in Figure 7.
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According to Figure 7, it can be observed that the cell neighborhood size has been
increased until size two has relatively improved. However, no more than three to five values
will be enhanced, and OE will be increased. Indeed, increasing the cell neighborhood size
causes more complexity, and the advantage of local search deteriorates during the changing
environment.
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6.3.3. Effect of Varying the Re-Randomization of Antibodies

One reaction mechanism for changing the environment is re-randomizing a set of
populations. The effects of varying the re-randomization of a set between 10 and 100% of
the total population for the proposed algorithm can be seen in Figure 8. As reflected in
Figure 8, the rate of re-randomization value replacement of the population has promising
results between 30 and 60% of the population. It implies that a lower or higher rate of
re-randomization would not be efficient. Smaller rates of replacement value (fewer than
30%) cause negligible effects on enhancing the results. It may due to a lack of diversity in
the search space. In comparison, greater replacement values (over 60%) cause significant
randomization, and the algorithm can not find a suitable solution, because it may be a
candidate solution far from the optimal peaks. Therefore, due to the received proper results
for the mid-range of the re-randomization rate, in the rest of the experiments, the rate of
re-randomization is set to 50–60 percent of the Ab population.
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6.3.4. Comparison of the CaAIS with Peer Immune Algorithms

In this experiment, the performance of the CaAIS is compared with several algorithms,
including the simple artificial immune system (SAIS) [39], artificial iterated immune algo-
rithm (AIIA) [34], B-cell algorithm (BCA) [40], clonal selection algorithm (CLONALG) [41],
artificial immune network (opt-aiNet) [67], learning automata-based immune algorithm
(LAIA) [46], and the cellular PSO based on clonal selection algorithm (CPSOC) [45]. A
statistical test is also applied to validate the significance of the results. The statistical
test results of comparing algorithms by one-tailed t-test with 28 degrees of freedom at a
0.05 level of significance are reported in Table 2. Table 2 consists of two main columns
for 5 peaks and 50 peaks as different environments. For each environment, the offline
error and standard errors are given along with the results of the statistical significance
test. The t-test result regarding the CaAIS with each alternative algorithm is shown as “+”,
“−”, and “~” when the CaAIS is significantly better than, significantly worse than, and
statistically equivalent to the alternative algorithm, respectively. According to Table 2, the
results of the proposed method are statistically equivalent to those of BCA. They show
better results than other general relativity algorithms. This is due to the cellular structure
and immune properties that provide an adaptive balance between local and global search
in changing environments.
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Table 2. Comparison of OE ± standard error for the CaAIS versus other AIS algorithms with
t-test results.

Algorithms
M = 5 M = 50

Offline Error t-Test Offline Error t-Test

AIIA 2.6098 ± 0.43 + 3.7534 ± 0.31 +
SAIS 12.1631 ± 0.12 + 11.5783 ± 0.13 +
BCA 2.2566 ± 0.49 ~ 3.1245 ± 0.66 ~
CLONALG 3.3376 ± 1.25 + 10.5300 ± 0.21 +
Opt-aiNet 2.3963 ± 0.05 + 4.7600 ± 0.06 +
LAIA 2.7813 ± 0.35 + 2.9497 ± 0.36 ~
CPSOC 2.1923 ± 0.13 ~ 2.9546 ± 0.15 −
CaAIS 2.2979 ± 0.12 ~ 3.0707 ± 0.19 ~

6.3.5. Effect of Various Severities of Shift

This experiment examines the effect of different values on shift severity. For compari-
son, it utilizes other methods, such as multi-swarm optimization methods [22], including
mPSO, mCPSO, mQPSO [22], PSO with speciation (SPSO) [32], and SFA [33]. Figure 9
shows the average offline error for different algorithms. As seen in Figure 9, an increase
in shift length leads to a corresponding increase in offline error across all algorithms. It
means that longer shift lengths pose challenges for the environment and thus algorithms
with less steep curves are preferred. Amongst these algorithms, the proposed algorithm
outperforms other algorithms such as mQSO, mPSO, mCPSO, and SPSO, but not SFA due
to its unique algorithm properties. It should be noted that all other methods are based on
particle swarm optimization.
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6.3.6. Effect of Various Numbers of Peaks

In an environment with moving peaks, the number of peaks is essential in determining
the results. The numbers of different peaks indicate the algorithm’s scalability in various
states. This experiment is designed to examine the performance of the proposed algorithm
when several peaks change. According to Table 1, the number of peaks changed within the
range from 1 to 200. In this experiment, the proposed algorithm the CaAIS is compared
with well-known algorithms such as multi-swarm optimization in two states, mCPSO and
mQPSO [22], PSO with speciation (SPSO) [32], cellular differential evolution (CLDE) [54],
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fast multi-swarm optimization (FMSO) [71], dynamic population differential evolution
(DynPopDE) [72], speciation-based firefly algorithm (SFA) [33], particle swarm optimization
with composite (PSO-CP) [73], learning automata-based immune algorithm (LAIA) [46],
cellular PSO (CLPSO) [53], multi-swarm cellular PSO with local search (CPSOL) [74],
and multi-population differential evolution (DE) algorithm with learning automata (Dyn-
DE+LA) [75]. The effect of the varying number of peaks is listed in Table 3. It should be
noted that the results of the compared algorithms are the same as those of their papers;
therefore, in some cases, the results are not presented. According to Table 3, the CaAIS
outperforms peer algorithms for 40 and 100 peaks, but for different numbers of peaks,
another algorithm may have been the best. Table 3 shows that the CaAIS delivers marginally
superior results for different numbers of peaks. The CaAIS produces better results as the
number of peaks rises.

Table 3. Comparing offline error and standard error for varying numbers of peaks.

Peaks

Algorithms SPSO

C
LPSO

C
LD

E

m
Q

SO

m
C

PSO

FM
SO

D
ynPopD

E

PSO
-C

P

LA
IA

C
PSO

L

D
ynD

E+LA

C
aA

IS

1

2.64
±

0.10

3.46
±

0.22

1.53
±

0.07

5.07
±

0.17

4.93
±

0.17

3.44
±

0.11

-

3.41
±

0.06

1.94
±

0.19

1.02
±

0.14

3.07
±

0.12

2.24
±

0.02

5

2.15
±

0.07

1.79
±

0.12

1.50
±

0.04

1.81
±

0.07

2.07
±

0.08

2.94
±

0.07

1.03
±

0.13

-

2.09
±

0.18

0.99
±

0.15

1.41
±

0.08

2.28
±

0.02

10

2.51
±

0.09

1.84
±

0.08

1.64
±

0.03

1.80
±

0.06

2.08
±

0.07

3.11
±

0.06

1.39
±

0.07

1.31
±

0.06

2.14
±

0.15

1.75
±

0.10

1.32
±

0.06

2.24
±

0.02

20

3.21
±

0.07

2.63
±

0.11

2.46
±

0.05

2.42
±

0.07

2.64
±

0.07

3.36
±

0.06

- -

2.97
±

0.21

1.93
±

0.11

2.60
±

0.07

2.51
±

0.03

30

3.64
±

0.07

2.91
±

0.10

2.62
±

0.05

2.48
±

0.07

2.63
±

0.08

3.28
±

0.05

-

2.02
±

0.07

2.98
±

0.23

2.28
±

0.10

3.05
±

0.10

2.63
±

0.03

40

3.85
±

0.08

3.16
±

0.11

2.76
±

0.05

2.55
±

0.07

2.67
±

0.07

3.26
±

0.04

- -

3.07
±

0.29

2.62
±

0.09

3.34
±

0.07

2.28
±

0.02

50

3.86
±

0.08

3.23
±

0.11

2.75
±

0.05

2.50
±

0.06

2.65
±

0.06

3.22
±

0.05

2.10
±

0.06

-

2.93
±

0.27

2.74
±

0.10

3.56
±

0.09

2.32
±

0.02

100

4.01
±

0.07

3.43
±

0.10

2.73
±

0.03

2.36
±

0.04

2.49
±

0.04

3.06
±

0.4

2.34
±

0.05

2.14
±

0.08

3.06
±

0.24

2.84
±

0.12

3.88
±

0.11

1.67
±

0.03
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Table 3. Cont.

Peaks

Algorithms SPSO

C
LPSO

C
LD

E

m
Q

SO

m
C

PSO

FM
SO

D
ynPopD

E

PSO
-C

P

LA
IA

C
PSO

L

D
ynD

E+LA

C
aA

IS

200

3.82
±

0.05

3.38
±

0.09

2.61
±

0.02

2.26
±

0.03

2.44
±

0.04

2.84
±

0.03

2.44
±

0.05

2.04
±

0.07

2.95
±

0.23

2.69
±

0.08

3.71
±

0.09

2.64
±

0.03

7. Conclusions

This paper presents a hybrid method using cellular automata and an artificial immune
system. Unlike conventional AIS algorithms for dynamic environments, antibodies are
distributed through a grid of cells in the proposed algorithm. They try to find environmental
peaks by local interaction with antibodies in neighbor cells. The information interaction
is implemented in two ways: one, the best value of control parameters and memory
in neighbor cells totally after the evaluation of antibodies is replaced in the central cell;
and later, during the changing environment, a set of the population is replaced with
neighbors’ antibodies. The proposed methods are enforced by both local and global search
due to the characteristics of AIS and CA. The results of experiments on the proposed
algorithm on MPB compared with well-known algorithms reveal relative improvements
in dynamic environments. The simulation results show the superiority of the CaAIS
statistically in comparison with peer artificial immune system algorithms in most cases in
dynamic environments. To address the potential applications of the CaAIS to real-world
dynamic optimization problems, one can optimize the allocation of resources in dynamic
environments, such as transportation logistics or energy management systems, or optimize
investment portfolios by adapting to changing market conditions and adjusting asset
allocations accordingly, to name a few. Finally, for future research directions, techniques
should be developed to improve the algorithm’s ability to adapt to rapidly changing
environments and handle complex dynamic scenarios. In addition, strategies should be
developed to enhance the scalability of the algorithm, particularly for large-scale dynamic
optimization problems to be considered.
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