
Citation: Fan, Y.; Wang, M.

Specification Mining Based on the

Ordering Points to Identify the

Clustering Structure Clustering

Algorithm and Model Checking.

Algorithms 2024, 17, 28. https://

doi.org/10.3390/a17010028

Academic Editor: Piotr Kosiuczenko

Received: 19 December 2023

Revised: 8 January 2024

Accepted: 8 January 2024

Published: 10 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Specification Mining Based on the Ordering Points to
Identify the Clustering Structure Clustering Algorithm and
Model Checking
Yiming Fan and Meng Wang *

Cyberspace Security and Computer College, Hebei University, Baoding 071000, China;
fanyiming@stumail.hbu.edu.cn
* Correspondence: wangmenghbu@hbu.edu.cn

Abstract: Software specifications are of great importance to improve the quality of software. To
automatically mine specifications from software systems, some specification mining approaches
based on finite-state automatons have been proposed. However, these approaches are inaccurate
when dealing with large-scale systems. In order to improve the accuracy of mined specifications,
we propose a specification mining approach based on the ordering points to identify the clustering
structure clustering algorithm and model checking. In the approach, the neural network model is
first used to produce the feature values of states in the traces of the program. Then, according to
the feature values, finite-state automatons are generated based on the ordering points to identify
the clustering structure clustering algorithm. Further, the finite-state automaton with the highest
F-measure is selected. To improve the quality of the finite-state automatons, we refine it based on
model checking. The proposed approach was implemented in a tool named MCLSM and experiments,
including 13 target classes, were conducted to evaluate its effectiveness. The experimental results
show that the average F-measure of finite-state automatons generated by our method reaches 92.19%,
which is higher than most related tools.

Keywords: software; specification mining; model checking; OPTICS clustering algorithm; FSA;
formalization

1. Introduction

With the increasing demand for new functionalities in software, developers often
release multiple updates to meet the relevant needs. However, software is frequently
released without standard documentation, which leads to the software specification be-
coming outdated [1]. Moreover, software specification mining requires the expertise of
professional developers, since it is a task that requires highly specialized skills to analyze
the log documents. Nevertheless, specification mining is necessary as it enables us to
identify abnormal system behavior by analyzing system logs. In specification mining,
the linear-time temporal logic (LTL) formula and finite-state automaton (FSA) model are
generally used to represent software specifications.

Many methods have been proposed to extract system behavior specifications, which
allows developers to make informed decisions about the behavior of the system [2–4]. Hila
Peleg et al. proposed a static technique to mine software specifications directly from the
system source code without executing the system [5], but it is not applicable to large-scale
systems. Caroline Lemieux et al. proposed an approach to efficiently mine specifications
expressed as temporal logic formulas from the execution traces of a system [6]. However,
the quality of the mined specifications is not perfect. For instance, if the methods in the
input execution traces frequently occur in a particular order or the amount of input traces
is too small, the FSAs inferred by k-tails [7] and many other tools are often not generalized
and overfitted to the input execution traces. To solve this problem, Tien-Duy et al. proposed

Algorithms 2024, 17, 28. https://doi.org/10.3390/a17010028 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17010028
https://doi.org/10.3390/a17010028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a17010028
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17010028?type=check_update&version=1

Algorithms 2024, 17, 28 2 of 18

deep specification mining (DSM) [8,9], which combines an long short-term memory (LSTM)
neural network [10] with the K-means algorithm [11] to mine finite-state automatons (FSAs).
LSTM is used in DSM because LSTM is better at learning long-term dependencies and is
scalable for long sequences. DSM leverages deep learning techniques to effectively extract
the specifications of large-scale systems. It also utilizes clustering algorithms to generate
FSAs that more concisely capture the specifications of the systems. However, DSM still
faces challenges such as the problem of incorrect merging among states in FSAs generated
by clustering feature values and random parameter selection in the clustering process.

To address the above-mentioned issues, we improve DSM by generating FSAs with
the ordering points to identify the clustering structure (OPTICS) clustering algorithm [12],
and refining the FSAs based on model checking to improve the quality of the FSAs. The pro-
posed specification mining approach can briefly be described as follows:

1. DSM is employed to generate the feature values of states in the traces of the program;
2. The OPTICS clustering algorithm first generates a reachability plot based on the

feature values. Then, the range of the clustering radius is determined according to the
reachability plot, and several suitable radii are selected within this range to cluster
the feature values to obtain the FSAs;

3. A model selection algorithm is used to select the FSA with the highest F-measure from
the generated FSAs. Specifically, the F-measure is defined in Section 3.2;

4. Texada [6] is employed to generate LTL properties specifying the desired behaviors
of the system. Then, model checking of the FSA is performed to verify whether the
selected FSA satisfies these properties. If not, we refine the FSA by adding and deleting
the corresponding states and transitions in it according to the type of the property
which the FSA violates, so that the traces that violate the property are removed from
the FSA.

The three main contributions of this paper are as follows:

1. We propose a specification mining approach based on the OPTICS clustering algorithm
and model checking. Specifically, during the generation of FSAs, we employ the
OPTICS clustering algorithm to improve the clustering effect and solve the parameter
setting problem so that the parameters can be intuitively set. In addition, we refine
the generated FSAs based on model checking to alleviate the problem of incorrect
merging among states in FSAs generated by clustering feature values and improve
the quality of specifications;

2. We implemented our approach in a tool called MCLSM;
3. We conducted experiments on 13 target library classes from [8,9,13,14] to evaluate the

performance of our tool, and the results show that the average F-measure of the FSAs
generated by MCLSM reaches 92.19%, which is 175.85%, 197.67%, 66.95%, 177.17%,
233.41%, 367.49%, and 28.48% higher than that of FSAs generated by the most related
tools, i.e., 1-tails [7], 2-tails [7], SEKT 1 [13], SEKT 2 [13], CONTRACTOR++ [13],
TEMI [13], and DSM [8,9], respectively.

The remainder of the paper is structured as follows. Section 2 provides the background
information. Section 3 introduces the specification mining approach based on the OPTICS
clustering algorithm and model checking in detail. We evaluate our approach in Section 4.
Section 5 presents the related work and Section 6 concludes the paper.

2. Preliminary
2.1. Model Checking

Model checking is a formal verification technique that determines whether certain
properties are satisfied by a system model. In model checking, the system to be verified is
modeled as a state transition diagram or finite state automaton. The desired specifications
are usually expressed as a set of temporal logic formulas, such as LTL [15] and computing
tree logic (CTL) [16]. The basic idea of model checking is to check whether a given specifi-
cation is satisfied by automatically traversing all possible states of the system. If the system

Algorithms 2024, 17, 28 3 of 18

does not satisfy the specification, the model checker generates a counterexample that helps
the designer to fix defects in the design.

Here, we focus on model checking of LTL properties. An LTL formula ∅ over a
countable set Pr of atomic propositions is inductively defined as follows:

ϕ ::= p | ¬ ϕ | ϕ1 ∧ ϕ2 |X ϕ | ϕ1 ∪ ϕ2

where p ∈ Pr represents an atomic proposition, ϕ1 and ϕ2 are all well-formed LTL formulas.
For the semantics of these formulas, please refer to [15].

The abbreviations ∨ and→ are defined as usual. Some useful derived formulas are
given as follows:

F ϕ
def
= true ∪ ϕ G ϕ

def
= ¬ F ¬ ϕ

2.2. OPTICS Clustering Algorithm

In the past few decades, the research of clustering algorithms has undergone significant
development. Early, K-means [11] clustering algorithms provided a simple and intuitive
framework, but their applicability is limited by the data shape and cluster structure. Then,
the hierarchical clustering algorithm introduces a hierarchical structure, which provides
convenience for understanding the relationship between clusters at different levels. Next,
Martin Ester et al. [17] proposed the DBSCAN algorithm, which focuses on density, making
clustering more robust for data with an arbitrary shape and density distribution. In recent
years, K-means clustering, the Gaussian mixture model (GMM), and mixtures of multivari-
ate clustering algorithms have been applied to the field of chemistry, which has promoted
the application of unsupervised learning in other disciplines [18]. With the development of
technology, Mantas Lukauskas et al. [19] proposed a density clustering method based on
improved inverse formula density estimation. The new method has a good effect when
dealing with low dimensional data. In addition, Zhenzhou Wang [20] proposed a clustering
method based on morphological operations that worked well on 2D and 3D data.

The OPTICS clustering algorithm creates an augmented ordering of the database
representing its density-based clustering structure. Let the object set be O = {o1, o2, . . . , om}.
Some important definitions associated with the OPTICS clustering algorithm are defined
as follows:

1. ϵ − Domain: For oj ∈ O, its ϵ − Domain is a subset of O containing objects whose
distance from oj is not greater than ϵ. That is, Nϵ(oj) = { oi ∈ O | distance(oi, oj) ≤ ϵ }.
The number of objects in Nϵ(oj) is noted as | Nϵ(oj) |. Usually, eps is used to represent
the clustering radius ϵ;

2. Core object: for any oj ∈ O, oj is a core object if | Nϵ(oj) | ≥ min_samples, where
min_samples is an integer constant;

3. Core distance: the minimum radius that makes an object o a core object is called the
core distance of o;

4. Reachability distance: the reachability distance of an object p with respect to a core
object o denoted as rd(p, o) is the maximum value between the actual distance of o to
p and the core distance of o.

Let the clustering radius be infinite, i.e., eps = in f . OPTICS generates the reachability
plot as follows:

1. The core object queue Cq, ordered queue Oq, result queue Rq, and reachability distance
queue Rdq are initialized to empty;

2. All core objects in O are chosen based on min_samples and eps, and then added to Cq;
3. If there is an element in Cq that has not been processed, jump to 4, and otherwise 8.
4. An unprocessed object o is randomly taken out from Cq and placed in Rq. Then, it is

marked as processed. Further, each object p satisfying rd(p, o) ≤ eps is selected from
Cq and added to Oq in an ascending order of the reachability distance with respect
to o;

Algorithms 2024, 17, 28 4 of 18

5. If Oq is not empty, jump to 6, and otherwise 3;
6. The reachability distance of the first object p1 in Oq, with respect to the last object in

Rq, is stored in Rdq. Then, p1 is removed from both Oq and Cq, and added into Rq;
7. Each object whose reachability distance with respect to the last object r in Rq is not

greater than eps is selected from Cq. Then, these objects are sorted in ascending order
of the reachability distance with respect to r and replace the objects in Oq. Finally,
jump to 5;

8. The reachability plot is plotted based on Rq and Rdq.

The OPTICS clustering algorithm [12] is considered more effective than K-means [11] and
other clustering algorithms when dealing with high-level data because it can identify changes
in density. In terms of clustering parameter selection, OPTICS offers a more reasonable
approach compared to clustering algorithms like K-means and DBSCAN [17]. It generates a
reachability plot, as depicted in Figure 1, which allows for visual parameter selection. This
reduces the impact of randomly setting clustering parameters on the final clustering results.
In Figure 1, the horizontal axis represents the sequence of output objects, and the vertical axis
stands for the reachability distance of the current object with reference to the previous object,
i.e., the reachable distance between object A and object C is 1.5. By setting the value of eps to
3.9, all the objects can be effectively divided into two clusters: {A,C,D,F} and {B,E}.

Figure 1. Reachability plot.

2.3. DSM

DSM is a state-of-the-art specification mining tool [8,9], which applies deep learning
to specification mining in order to improve the accuracy of the mined automata. However,
it also experiences the merging of errors problem between states of the final obtained
automata. DSM involves six processes: test case generation and trace collection, model
training, trace sampling, feature extraction, clustering, and model selection. As shown in
Figure 2, the skeleton of the approach is briefly given as follows:

1. DSM uses Randoop [21] to generate a large number of test cases. Then, it executes
the target program with these cases and stores the traces (the methods calls) of the
program in a trace set;

2. The LSTM model is trained by all execution traces;
3. In order to improve the efficiency of specification mining, a subset STr of traces that

can cover all adjacent method pairs of execution traces is extracted;
4. Two types of features, i.e., Fi

m and Pi
m, are extracted in each state Si based on the subset

of traces and the LSTM model, where Fi
m captures information of previously invoked

methods before Si, and Pi
m captures information about methods immediately after

state Si using the LSTM model. For instance, suppose that all methods that appear
in the program are in a set M = {m1, m2, . . . , mn} and a trace is tr = ⟨mx1, . . . , mxk,

Algorithms 2024, 17, 28 5 of 18

. . . , mxl⟩, where mxi (1 ≤ i ≤ l and mxi ∈ M) in tr is the invoked method at state Si.
At state Sk, methods from mx1 to mxk in tr are invoked. Thus, Fk

mxi
= 1 (1 ≤ i ≤ k)

and for other methods mj in M, Fk
mj

= 0. All feature values of all states in all traces
belonging to the subset STr are stored in a set O = {o1=⟨B1, A1⟩, . . . , ol = ⟨Bh, Ah⟩},
where h is the number of states in all traces and for each 1 ≤ y ≤ h, By = ⟨Fy

m1 , . . . ,
Fy

mn⟩, and Ay = ⟨Py
m1 , . . . , Py

mn⟩;
5. The K-means [11] and hierarchical clustering algorithms are used to cluster the feature

values and generate FSAs. An FSA can be represented as a five-tuple D = (Q, Σ, δ, q0,
F), where Q is a finite set of states, Σ is a table of input characters, δ is a transition
function mapping Q × Σ to Q, q0 ∈ Q is the initial state, and F ⊂ Q is the set of
acceptable states;

6. The FSA with the highest F-measure is selected from the generated FSAs.

Figure 2. Overview of DSM approach.

3. Specification Mining Based on the OPTICS Clustering Algorithm and Model Checking

Our approach involves three key processes: clustering, model selection, and refine-
ment. As shown in Figure 3, the skeleton of the approach is briefly given as follows:

1. We cluster feature values obtained by DSM based on eps in the reachability plot, which
is drawn according to the OPTICS clustering algorithm [12];

2. The FSAs with the highest F-measure are selected during the model selection;
3. We perform model checking on the selected FSAs and refine the FSAs based on the

verification result to obtain the final FSAs.

Figure 3. Overview architecture.

Algorithms 2024, 17, 28 6 of 18

3.1. Clustering

In order to create an automaton that captures the specification of the target library
classes, the feature values in set O generated by DSM are clustered to generate FSAs, where
O = {o1 = ⟨B1, A1⟩, . . . , oh = ⟨Bh, Ah⟩} as defined in Section 2.2.

To do that, some variables used in the clustering algorithm are defined as follows:

1. Cq, Rq, and eps are defined as in Section 2.2;
2. Kq is used to store objects of the same class as a given object;
3. K is used to mark the category to which the current objects belong;
4. The map Labels is used to map the category K to the corresponding core objects at

one clustering;
5. All_labels is used to store Labels after each clustering;
6. The variable num is used to control the increment of eps at each clustering;
7. Plot represents the reachability plot generated by the OPTICS clustering algorithm.

In order to alleviate the influence of clustering parameters on the clustering results, we
first use the OPTICS clustering algorithm shown in Section 2.2 to generate the reachability
plot, and then determine the range of eps and the value of num based on the plot. Further,
we cluster objects in O according to eps and num to generate FSAs. Algorithm 1 shows
the clustering process. It takes the feature values in O extracted by DSM as the input,
and outputs a set All_labels storing well-classified feature values after multiple clustering.
In the algorithm, we first initialize Cq, Kq, Rq, Labels, and All_labels to ∅, and eps to in f
(Line 1). Then, the reachability plot Plot is generated based on OPTICS clustering algorithm
OPTICS_RPlot(O), the details of which are shown in Section 2.2 (Line 2). The purpose of
generating Plot is to observe the shape and trend in order to determine the appropriate
range [a, b] of eps and the increment value num of eps for each time of clustering (Line 3).
In order to obtain All_labels, which is required to generate FSAs, we cluster the feature
values in O with eps ranging from a to b (Lines 4–22). For each clustering time, we first find
all core objects needed for clustering from O and add them to Cq (Line 6). Then, we cluster
the core objects in Cq to obtain Labels. The following is the process of how we generate
Labels. We first find objects whose distances to Cq[0] are not greater than eps in Cq (except
Cq[0]), and add them to Kq, which stores objects of the same category as Cq[0]. Then, we
remove Cq[0] from Cq and put it in Rq. The distance is the Euclidean distance between two
feature values, i.e., two objects (Lines 9–10). Further, we find the core objects in Cq that
belong to the same class as each object in Kq, and add these objects to Kq until all objects in
Kq are processed. Each time the objects added to Kq should be deleted from Cq to avoid
duplication, and the objects that have been processed in Kq should also be removed and
added to Rq (Lines 11–14). When Kq is empty, we mark the objects in Rq as class K and
set Rq to empty in order to continue classifying the remaining objects in Cq (Lines 15–16).
When Cq is empty, a clustering of objects in Cq is completed. We add Labels to All_labels
and set Labels to empty for generating the next Labels (Lines 19–21). Finally, we construct
FSAs based on All_lables according to the method in [9].

Figure 4 shows an FSA generated based on the OPTICS clustering algorithm. In the
FSA, the start state is q0 = C1 and the set of acceptable states is F = {C4}. The input character
table Σ is a collection of methods, Q is a collection of all states, and each transition between
method and its connected states makes up the transition function δ.

Algorithms 2024, 17, 28 7 of 18

Figure 4. An FSA obtained by clustering.

Algorithm 1: Clustering Process
Input: O
Output: All_labels

1 Initialize: Cq, Kq, Rq, Labels, All_labels = ∅, eps = in f ;
2 Plot=OPTICS_RPlot(O) ;
3 Determine the range [a, b] of eps and the value of num according to Plot;
4 eps = a ;
5 while eps ≤ b do
6 Cq← Find all core objects in O based on eps and min_samples;
7 K = 0;
8 while Cq ̸= ∅ do
9 Rq← Take out Cq[0] from Cq;

10 Kq← Take out all objects o satisfying distance(o, Rq[n− 1]) ≤ eps from Cq ;
// n represents the number of objects in Rq

11 while Kq ̸= ∅ do
12 Kq← Take out all objects o′ satisfying distance(o′, Kq[0]) ≤ eps from Cq;
13 Rq← Take Kq[0] out of Kq;
14 end
15 Labels← Grouping objects in Rq into K category;
16 Rq = ∅;
17 K = K + 1;
18 end
19 All_labels← Labels;
20 Labels = ∅;
21 eps = eps + num;
22 end
23 return All_labels ;

3.2. Model Selection

DSM [8,9] often chooses the best FSA by predicting the Precision and Recall of all
generated FSAs. Here, we define Precision and Recall as follows:

Precision(D) =
|MPTR ∩ f sa_pairs(D)|
| f sa_pairs(D)| (1)

Algorithms 2024, 17, 28 8 of 18

where D is the FSA to be evaluated, MPTR represents all method pairs appearing in the
input trace set TR, and f sa_pairs(D) represents the method pairs appearing in D. Note that
we call a method pair (x, y) that appears in D if x and y are labeled at two adjacent edges in
D, respectively. In fact, we should consider the traces in TR as positive samples and the
traces in D as classified into positive samples. However, the number of traces in D usually
cannot be calculated. Thus, we consider the method pairs in TR as positive samples and
the method pairs in D as classified into positive samples. In Formula (1), | f sa_pairs(D) |
represents the data that are classified as positive, and | MPTR ∩ f sa_pairs(D) | represents
the data that are actually positive in the classification.

Recall =
|accepted_trace|

|TR| (2)

where | accepted_traces | represents the number of traces in the trace set that the generated
FSA can accept, and | TR | represents the number of all execution traces. Using just one of
Precision or Recall to evaluate an FSA cannot comprehensively evaluate the advantages
and disadvantages of the FSA. A higher Precision means an FSA accepts fewer traces that
should not be accepted, while a higher Recall means an FSA accepts more traces that should
be accepted. Thus, we combine Precision and Recall to obtain the F-measure (Formula (3))
as the actual scoring criteria.

F−measure = 2× Precision× Recall
Precision + Recall

(3)

3.3. FSA Refinement Based on Model Checking

The FSAs generated in Section 3.1 are prone to incorrect paths in the model due to
erroneous merging among states.

To mitigate this issue, we refine the FSAs based on model checking. Specifically, we
explore the FSA and check if it satisfies the LTL formulas. When a violation is detected,
we refine the automaton to eliminate the violation and improve the precision of the FSA.
We repeat this process until there is no violation or the number of times for the refinement
reaches a threshold value T.

In order to use the partial specification of the software (LTL formulas) to guide the
refinement of the overall specification of the software (FSA), we input the traces generated
in DSM [8,9], property templates, and confidence thresholds into Texada [6] to generate
the following three forms of LTL formulas, which were shown to specify the temporal
properties of automata by Beschastnikh et al. [22].

1. AIF(a, b): an occurrence of event a must be immediately followed by event b, i.e., G
(a→ X b);

2. AIP(a, b): an occurrence of event a must be immediately preceded by event b, i.e., F
(a)→ (¬ a ∪ (b ∧ X a));

3. NIF(a, b): an occurrence of event a is never immediately followed by event b, i.e., G
(a→ X (¬ b)).

The variables used in the refinement process are defined as follows:

1. D and D′ represent the FSAs before and after refinement, respectively;
2. K is a set of LTL formulas generated by Texada;
3. Trans is a set of tuples ⟨SM, q2, m2, q3, MS⟩, where SM is a set of tuples ⟨q1, m1⟩, MS

is a set of tuples ⟨m3, q4⟩, q1, q2, q3, and q4 are states, and m1, m2, m3, and m4 are
methods;

4. C′i(1 ≤ i ≤ num) represents newly added states in the FSA.

Algorithm 2 and Figure 5 show the refinement process based on model checking in
detail, where the initial FSA D and a set K of LTL formulas are taken as the input. In the
process, num and times are initialized to 0 and D′ is initialized to D (Line 1). We then verify
whether the number of times for refinement reaches the threshold value, and whether there

Algorithms 2024, 17, 28 9 of 18

exists a property violated by the FSA, i.e., whether the software behavior described by FSA
does not match that described by the LTL formula (Line 2). If so, FindErrTr returns the set
Trans of error segments in the FSA according to the type of violated property as follows:

Algorithm 2: Refinement Process
Input: D = (Q, Σ, δ, q0, F), K = {K1, . . . , Kt}
Output: D′= (Q′, Σ, δ′, q0, F)

1 Initialize: num = 0, times = 0, D′ = D;
2 while times ++ < T and there exists a property Kj ∈ K violated by D′ do
3 Trans = FindErrTr(Kj, D′);
4 for each ⟨SM, q2, m2, q3, MS⟩ ∈ Trans do
5 if Kj is NIF(a, b) then
6 Delete δ′ (q2, m2) = q3;
7 Q′ = Q′ ∪ {C′num};
8 Add transition rules to δ′: δ′ (q2, m2) = C′num and δ′ (C′num, m3) = q4 for

each ⟨m3, q4⟩ ∈ MS;
9 num = num + 1;

10 end
11 if Kj is AIP(a, b) then
12 Delete δ′ (q2, m2) = q3;
13 Q′ = Q′ ∪ {C′num};
14 Add transition rules to δ′: δ′ (q1, m1) = C′num for each ⟨q1, m1⟩ ∈ SM;
15 num = num + 1;
16 Q′ = Q′ ∪ {C′num};
17 Add transition rules to δ′: δ′ (C′num−1, a) = C′num and δ′ (C′num, m2) = q3;
18 num = num + 1;
19 end
20 if Kj is AIF(a, b) then
21 Delete δ′ (q2, m2) = q3 ;
22 Q′ = Q′ ∪ {C′num};
23 Add a transition rule to δ′: δ′ (q2, m2) = C′num;
24 num = num + 1;
25 Q′ = Q′ ∪ {C′num};
26 Add transition rules to δ′: δ′ (C′num−1, b) = C′num and δ′ (C′num, m3) = q4

for each ⟨m3, q4⟩ ∈ MS;
27 num = num + 1;
28 end
29 end
30 D′ = (Q′, Σ, δ′, q0, F);
31 end

Figure 5. FSA refinement method based on model checking.

1. If the violated property is NIF(a, b), it returns all segments ⟨SM, q2, m2, q3, MS⟩ that
satisfy m2 = a, δ′(q2, a) = q3, SM containing all tuples ⟨q1, m1⟩ satisfying δ′(q1, m1) =

Algorithms 2024, 17, 28 10 of 18

q2, MS containing all tuples ⟨m3, q4⟩ satisfying δ′(q3, m3) = q4, and there is ⟨m′3, q′4⟩ ∈
MS satisfying m′3 = b;

2. If the violated property is AIP(a, b), it returns all segments ⟨SM, q2, m2, q3, MS⟩ that
satisfy m2 = b, δ′(q2, b) = q3, MS containing all tuples ⟨m3, q4⟩ satisfying δ′(q3,
m3) = q4, SM containing all tuples ⟨q1, m1⟩ satisfying δ′(q1, m1) = q2, and for each
⟨q1, m1⟩ ∈ SM, m1 ̸= a;

3. If the violated property is AIF(a, b), it returns all segments ⟨SM, q2, m2, q3, MS⟩ that
satisfy m2 = a, δ′(q2, a) = q3, SM containing all tuples ⟨q1, m1⟩ satisfying δ′(q1, m1) =
q2, MS containing all tuples ⟨m3, q4⟩ satisfying δ′(q3, m3) = q4, and for each ⟨m3, q4⟩ ∈
MS, m3 ̸= b.

Further, we refine the FSA with different refinement rules depending on the type of
formula that the error segment ⟨SM, q2, m2, q3, MS⟩ violates as follows:

1. If it violates NIF(a, b), m2 = a, we first delete the transition rule from state q2 to state
q3 using method a, so that the traces violating NIF(a, b) are removed (Line 6). Then,
in order to prevent traces that do not violate NIF(a, b) from being deleted, we add a
state C′num and some transition rules. First, we add a transition rule from state q2 to
state C′num using method a. Next, we add transition rules from C′num to each q4 in MS
using the corresponding method (except b) in MS (Lines 7–8);

2. If it violates AIP(a, b), m2 = b, we first delete the transition rule from state q2 to state
q3 using method b, so that the traces violating AIP(a, b) are removed (Line 12). Then,
in order to increase the precision of the automaton, we add a state C′num and transition
rules from each state q1 in SM to C′num using the corresponding method in SM. Next,
we update the state subscript num and create another new state C′num. Further, we
add a transition rule from state C′num−1 to state C′num using method a and a transition
rule from state C′num to state q3 using method b (Lines 13–17);

3. If it violates AIF(a, b), m2 = a, we first delete the transition rule from state q2 to state
q3 using method a, so that the traces violating NIF(a, b) are removed (Line 21). Then,
in order to increase the precision of the automaton, we add a state C′num and some
transition rules. First, we add a transition rule from state q2 to state C′num using method
a. Next, we update the state subscript num and create a new state C′num. We then add
a transition rule from C′num−1 to C′num using method b and transition rules from C′num
to each state q4 in MS using the corresponding method in MS (Lines 23–26).

After performing a round of refinement, we generate a new FSA D′, and the next
round of refinement is performed on the basis of D′ (Line 30).

The example in Figure 6 shows the refinement process for an FSA that violates
NIF(isEmpty : TRUE, remove : TRUE). First of all, we use model checking with the
LTL formula to find an error segment ⟨SM = {⟨C0, ArrayList⟩}, q2 = C2, m2 = isEmpty :
True, q3 = C3, MS = {⟨remove : TRUE, C4⟩, ⟨add : All : TRUE, C4⟩, ⟨indexo f , C4⟩}⟩ vi-
olating NIF(isEmpty : TRUE, remove : TRUE). Next, we delete the transition rule
from C2 to C3 through isEmpty : TRUE, so that the trace that violates NIF(isEmpty :
TRUE, remove : TRUE) is removed. Further, in order to prevent traces that do not vi-
olate NIF(isEmpty : TRUE, remove : TRUE) from being deleted, we add a transition
rule from C2 to C′0 through isEmpty : TRUE and transition rules from C′0 to C4 through
addAll : TRUE and indexo f . After the above operation, we have refined model A, which
contained errors, into model B, which is error-free.

Algorithms 2024, 17, 28 11 of 18

Figure 6. Example of detection and refinement.

4. Empirical Evaluation

We implemented the proposed approach in a tool named MCLSM and evaluated our
approach to answer the following question: How effective is MCLSM compared with the
existing specification mining tools?

4.1. Dataset

In the experiment, we used all 13 target library classes from [8,9,13,14] as the bench-
mark to evaluate MCLSM.

In this benchmark, ArrayList serves as the implementation of a variable-size array of
list interfaces, while LinkedList is primarily employed for creating linked list data structures.
HashSet, implementing the set interface, ensures the absence of duplicate elements and
does not guarantee the order of elements. HashMap, functioning as a Hashtable, facilitates
key-value mapping with rapid access speeds. Hashtable, originating from the original
java.util, is a concrete implementation of a dictionary. The Signature class in Java is utilized
to provide a digital signature algorithm for applications, while the Socket class offers a
comprehensive set of network communication methods and properties. ZipOutputStream
allows direct content writing to the zip package. The StringTokenizer class implements
both the Iterator and Enumeration interfaces. These nine target class libraries are integral
components of the Java Development Kit. Additionally, four other class libraries are used,
namely, StackAr from the Daikon project, NFST (NumberFormatStringTokenizer) and
ToHTMLStream from Apache, and SMTPProtocol from Columba.ristretto.

Table 1 shows the information of these classes. The column “Target Library Class”
displays the names of the target classes. The column “M” lists the number of class methods
analyzed in the target classes. The column “Generated Test Cases” is the number of test
cases generated by Randoop, and the column “Recorded Method Calls” gives the number
of method calls recorded in all execution traces of the target classes. The data in Table 1
consist of 13 target classes, which are both complex and simple; thus, we chose to use these
data to evaluate the effectiveness of our method on different sizes of data.

Table 1. Target library classes.

Target Library Class1 M Generated Test Case Recorded Method Calls

ArrayList 18 42,865 22,996
LinKedList 7 13,731 4847

HashSet 8 23,181 257,428
HashMap 11 53,396 67,942

Algorithms 2024, 17, 28 12 of 18

Table 1. Cont.

Target Library Class1 M Generated Test Case Recorded Method Calls

Hashtable 8 79,403 89,811
Signature 5 79,096 205,386

Socket 21 80,035 130,876
ZipOutputStream 5 162,971 43,626

SringTokenizer 5 148,649 336,924
StackAr 7 549,648 132,826
NFST 5 158,998 95,149

ToHTMLStream 17 103,562 278,631
SMTPProtocol 15 57,281 136,271

4.2. Experience Setting

The experiments were carried out on a 64-bit Ubuntu 18.04 LTS with a 3.20 GHz Intel(R)
Core(TM) i5-10505 processor and 16 GB memory. MCLSM uses the OPTICS clustering
algorithm to cluster feature values. During the clustering process, we set min_samples to 5,
and selected the range of eps according to the reachability plot. In the clustering process,
eps represents the radius of the cluster and is used to determine whether one point can
reach another. By adjusting the size of the eps value, we can change the shape of the cluster.
Smaller eps may result in the formation of more and smaller clusters, while larger eps
may combine more points into one cluster. Therefore, it is very important to select the
appropriate eps in datasets with uneven densities. We determined the range of eps using
the reachability plot and adjusted the eps in this range to achieve the best clustering effect.
In a reachability plot, the boundaries of a cluster usually correspond to points with large
variation in reachable distance, that is, high or low points. First, we set a threshold. Then,
we found all the high and low points in the reachability plot and removed points larger than
the threshold. Next, we determined the range of eps using the maximum and minimum
values of these points. Finally, we selected the appropriate step size to cluster within the
defined range and obtained the most suitable eps value for the current data according to
the clustering effect. For example, Figure 7 shows the reachability plot generated for the
ArrayList class, where the horizontal axis represents each feature value and the vertical
axis stands for the reachability distance of the current feature value with reference to the
previous one. For this class, we selected the range of eps from 0.3 to 4.3, with eps increasing
by 0.5 for each cluster.

Figure 7. Reachability plot generated by clustering algorithm.

The MCLSM uses the LTL formulas to guide Algorithm 2 to refine the FSA. When
obtaining the LTL formula using Texada, we set the confidence thresholds in Texada [6] to
1.0 as we were only interested in properties that were never falsified. In the above process,
we obtained a total of 94 LTL formulas, and these LTL formulas were used to refine FSAs.

Algorithms 2024, 17, 28 13 of 18

4.3. Experimental Results and Analyses

We compared the effectiveness of MCLSM with the related tools, including k-tails [7],
SEKT [13], CONTRACTOR++ [13], trace-enhanced MTS inference (TEMI) [13], and DSM [8,9].
For k-tails and SEKT, we chose k ∈ {1, 2}. We followed the F-measure with the DSM method
to measure the F-measure of our proposed approach. Table 2 shows the F-measure (%) value
of each tool for 13 target library classes. In the table, tools “1-tail” and “2-tail” represent
traditional 1-tails and 2-tails, respectively [23], “SEKT 1” and “SEKT 2” stand for State-
Enhanced 1-tails and 2-tails, respectively, and “CON++” is short for CONTRACTOR++.
The result “-” indicates that the result is unavailable.

Table 2. Experimental results.

Class

Tools
1-Tail 2-Tail SEKT 1 SEKT 2 CON++ TEMI DSM MCLSM

ArrayList 13.96 13.13 36.03 13.86 13.07 16.87 22.27 81.94
LinKedList 27.15 25.72 86.02 26.67 24.52 07.51 32.76 98.49

HashSet 20.88 21.27 52.22 20.88 21.27 23.34 79.23 94.67
HashMap 25.41 08.71 68.94 - - - 83.53 97.02
Hashtable 42.39 33.58 92.78 - - - 76.82 91.42
Signature 61.54 64.25 66.88 62.05 63.98 39.06 100.00 86.44

Socket 35.89 31.52 55.15 34.73 28.37 - 51.78 100.00
ZipOutputStream 46.36 47.42 62.80 47.91 - - 87.62 91.80

SringTokenizer 52.88 52.97 21.30 52.15 - - 100.00 94.19
StackAr 16.54 16.54 34.91 16.54 16.54 - 76.27 96.55
NFST 24.57 25.52 30.40 24.56 25.78 11.80 80.16 100.00

ToHTMLStream - - - - - - 69.70 89.76
SMTPProtocol - - - - - - 72.69 82.63

Average 33.42 30.97 55.22 33.26 27.65 19.72 71.75 92.19

From the experimental results in Table 2, we can see that SEKT 2, CONTRACTOR++,
and TEMI failed to generate the FSA on 2, 4, 6 classes, respectively, while MCLSM suc-
cessfully produced the FSA for all classes. The F-measure values of FSAs generated by
MCLSM for most classes were higher than those of FSAs generated by other tools except
for classes Signature and SringTokenizer. In total, the average F-measure values with
reference to MCLSM reached 92.19%, which were 175.85%, 197.67%, 66.95%, 177.17%,
233.41%, and 367.49% higher than 1-tails, 2-tails, SEKT 1, SEKT 2, CONTRACTOR++, and
TEMI, respectively.

Specifically, MCLSM was higher than DSM by 28.48%. Because MCLSM uses the
OPTICS clustering algorithm to cluster feature values, it is not necessary to set the clustering
radius in advance. The OPTICS clustering algorithm generates reachability plots, which
adaptively captures density changes between feature values. Then, according to the
reachability plot, the appropriate radius is selected for feature value clustering. In contrast,
the DSM uses the K-means clustering algorithm, which requires a pre-set clustering radius.
This can result in a feature value being incorrectly assigned to an inappropriate cluster.
In addition, the FSA generated by the clustering algorithm of DSM may encounter cases
of false merging between states. To address this, our approach refines the FSA based on
model checking, reducing false merging between states and improving the FSA accuracy.
Note that by analyzing two classes, i.e., Signature and SringTokenizer, for which MCLSM
did not performs better than DSM, we found that in the the cluster process of MCLSM,
outliers are produced by the OPTICS clustering algorithm, so the F-measure is slightly
lower than for DSM.

This is because MCLSM generates outliers when clustering data in Signature and
SringTokenizer using the OPTICS clustering algorithm, while the K-means clustering
algorithm used in DSM does not generate outliers. As a result, the FSA F-measure generated
by MCLSM when processing these data was lower than that of DSM.

Algorithms 2024, 17, 28 14 of 18

To alleviate the impact of outliers on the accuracy of the FSA, we can choose larger
eps values, which help to treat outliers as part of a cluster. Therefore, on the premise of
ensuring the accuracy of clustering results, it is helpful to choose as large an eps value as
possible to solve the problem of outliers in clustering.

We obtained experimental statistics on the number of different method calls. When
experimenting with the HashSet, Signature, Socket, StringTokenizer, StackAr, ToHTML-
Stream, and SMTPProtocol classes, each class generated more than 100,000 method calls.
In this case, the average F-measure value of DSM was 78.52%, and the average F-measure
value of MCLSM was 92.03%. When experimenting with the ArrayList, LinkedList,
HashMap, Hashtable, ZipOutputStream, and NFST classes, each class generated less than
100,000 method calls. In this case, the average F-measure value of DSM was 63.86% and the
average F-measure value of MCLSM was 93.44%. These results indicate that MCLSM has a
more significant effect than DSM, and MCLSM exhibits excellent performance on different
data scales.

4.4. Threats to Validity
4.4.1. Threats to Internal Validity

Although we dealt with the outliers generated during the clustering process, the accu-
racy of the FSA generated by clustering various low-density eigenvalues using the OPTICS
clustering algorithm can still be further improved. In the future, we will use other clustering
algorithms in combination with the OPTICS clustering algorithm in order to deal with
possible outliers more efficiently.

4.4.2. Threats to External Validity

As shown in Section 4.1, although we made expanded upon the experimental data
compared with previous work, the amount of experimental data are still insufficient. This
situation may affect the generalizability of the experimental results. In the future, we will
collect more data to test the universality of our approach.

5. Related Work

Specification mining techniques have received a lot of attention due to the increasing
complexity of software systems and the high cost of manual analysis for these systems.
The proposed specification mining techniques can be broadly classified into two categories:
one generates specifications expressed in the temporal logic formulas that all execution traces
satisfy by taking execution traces and predefined property templates as inputs [6,24–29]; the
other produces models expressed by FSAs [2,7–9,13,23,30,31], which precisely specify the
whole system behavior.

5.1. Mining Specifications Expressed in Temporal Logic Formulas

In this class of methods, an instance of the property is first obtained by replacing each
event in the property template with a method in traces, and then all traces are checked to
see whether the property instance is satisfied. If so, the property instance is output.

Texada [6] can extract LTL expressions of arbitrary complexity. It takes LTL property
templates and traces as the input, and outputs property instances. In addition, Texada
supports properties with imperfect confidence by providing two controls: the confidence
threshold and support threshold, where the former refers to the minimum proportion of
the number of traces satisfying the property instance to the total number of traces, and the
latter refers to the minimum number of traces satisfying the property instance.

TRE [32] was developed for real-time systems. It extends the regular input expressions
by adding operators specifying the constraint time between events and synthesizes a timing
automaton for the given expression. Traces are then checked to see whether they satisfy
the timed automaton or not. TREM [27] separates the front and back ends based on TRE,
and provides a visual interface in the front end. Alessio Cecconi et al. [33] proposed
a comprehensive measurement framework to solve the problems of a lack of feedback

Algorithms 2024, 17, 28 15 of 18

and scalability in declarative process mining. Ezio Bartocci et al. [34] summarize the
existing methods for extracting specifications from cyber-physical systems (CPS) based on
supervised versus unsupervised learning.

5.2. Mining Specifications Expressed as Models Similar to FSAs

This class of specification mining methods generates models similar to FSAs. Usually,
an initial model is first generated based on the traces. The model is then refined using
different operations to obtain the final model.

The K-tails [7] algorithm first constructs a tree-like deterministic finite automaton
(DFA) that is consistent with the input traces and accepts all of them. It then merges the
states with the same sequence of calls in the next K step. Variants of K-tails refer to different
merge criteria that do not require the exact matching of call sequences [23]. Contractor [30]
generates a model like an FSA to describe the behavior of software based on program
invariants that need to be manually specified. In order to handle the invariants of dynamic
inference, Krka et al. improved it and established a new tool: Contractor++ [13], which
can handle inferred invariants and filter out meaningless invariants. They also proposed
four methods for dynamically inferencing FSA models for different types of inputs [35].
On the basis of these four methods, the tools SEKT and TEMI are implemented. DSM [8,9]
employs a recurrent neural network to extract the feature values and clusters the feature
values to generate FSAs. Gao et al. developed dynamic specification mining based on a
transformer (DSM-T) [31,36] to improve the accuracy of FSAs generated by DSM. MdRubel
Ahmed et al. [37] propose a disruptive method that utilizes the attention mechanism to
produce accurate flow specifications from system-on-chip (SoC) IP communication traces.

6. Conclusions

In this work, we propose an approach based on the OPTICS clustering algorithm and
model checking to mine specifications from software systems. Unlike previous approaches,
we employ the OPTICS clustering algorithm, which does not require the setting of pa-
rameters, but rather reads information from a reachability plot and sets eps. In addition,
we refine FSAs based on model checking to mitigate the problem of incorrect merging
among states in FSAs generated by clustering feature values. Further, we evaluated the
effectiveness of our approach by experimenting on 13 target library classes. Compared with
the related tools, our approach can generate better-quality FSAs. In the future, we plan
to study more technologies to further improve the accuracy of mined specifications and
conduct research on how to mine specifications expressed by more practical formal models.

Author Contributions: Conceptualization, M.W. and Y.F.; methodology, M.W. and Y.F.; validation,
M.W.; investigation, Y.F.; writing—original draft preparation, Y.F.; writing—review and editing, M.W.;
visualization Y.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no specific grant from any funding agency in the public, commercial
or not-for-profit sectors.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Algorithms 2024, 17, 28 16 of 18

Abbreviations
The list of abbreviations and symbols is shown below.

Symbols Definition
AIF(a, b) An occurrence of event a must be immediately followed by event b
AIP(a, b) An occurrence of event a must be immediately preceded by event b
NIF(a, b) An occurrence of event a is never immediately followed by event b
Trans The error segments in the FSA according to the type of the violated property
Q The finite set of states in FSA
Σ The table of input characters in FSA
δ The transition function mapping Q × Σ to Q
q0 The initial state in FSA
F The set of acceptable states in FSA
Acronyms Full Form
FSA Finite-state automaton
OPTICS Ordering points to identify the clustering structure
DBSCAN Density-based spatial clustering of applications with noise
CTL Computing tree logic
LTL Linear-time temporal logic
DSM Deep specification mining
LSTM Long short-term memory
DSM-T Dynamic specification mining based on transformer
CPS Cyber-physical systems
TEMI Trace-enhanced MTS inference
GMM Gaussian mixture model
SOC System-on-chip

References
1. Zhong, H.; Su, Z. Detecting API documentation errors. In Proceedings of the 2013 ACM SIGPLAN International Conference

on Object Oriented Programming Systems Languages & Applications, Indianapolis, IN, USA, 29–31 October 2013; pp. 803–816.
[CrossRef]

2. Beschastnikh, I.; Brun, Y.; Schneider, S.; Sloan, M.; Ernst, M.D. Leveraging existing instrumentation to automatically infer
invariant-constrained models. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, Szeged, Hungary, 5–9 September 2011; pp. 267–277. [CrossRef]

3. Lo, D.; Khoo, S.C. SMArTIC: Towards building an accurate, robust and scalable specification miner. In Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, Portland, OR, USA, 5–11 November 2006;
pp. 265–275. [CrossRef]

4. Lo, D.; Mariani, L.; Pezzè, M. Automatic steering of behavioral model inference. In Proceedings of the 7th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT symposium on the Foundations of Software Engineering,
Amsterdam, The Netherlands, 24–28 August 2009; pp. 345–354. [CrossRef]

5. Peleg, H.; Shoham, S.; Yahav, E.; Yang, H. Symbolic automata for static specification mining. In Proceedings of the Static Analysis:
20th International Symposium, SAS 2013, Seattle, WA, USA, 20–22 June 2013; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 63–83.

6. Lemieux, C.; Park, D.; Beschastnikh, I. General LTL specification mining (T). In Proceedings of the 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), Lincoln, NE, USA, 9–13 November 2015; IEEE: Piscataway,
NJ, USA, 2015; pp. 81–92. [CrossRef]

7. Biermann, A.W.; Feldman, J.A. On the synthesis of finite-state machines from samples of their behavior. IEEE Trans. Comput.
1972, 100, 592–597. [CrossRef]

8. Le, T.D.B.; Lo, D. Deep specification mining. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, Amsterdam, The Netherlands, 16–21 July 2018; pp. 106–117. [CrossRef]

9. Le, T.D.B.; Bao, L.; Lo, D. DSM: A specification mining tool using recurrent neural network based language model. In Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Lake Buena Vista, FL, USA, 4–9 November 2018; pp. 896–899. [CrossRef]

10. Mikolov, T.; Karafiát, M.; Burget, L.; Cernockỳ, J.; Khudanpur, S. Recurrent neural network based language model. In Proceedings
of the 11th Annual Conference of the International Speech Communication Association, Makuhari, Japan, 26–30 September 2010;
Volume 2, pp. 1045–1048.

http://doi.org/10.1145/2509136.2509523
http://dx.doi.org/10.1145/2025113.2025179
http://dx.doi.org/10.1145/505482.505488
http://dx.doi.org/10.1145/1595696.1595761
http://dx.doi.org/10.1109/ASE.2015.71
http://dx.doi.org/10.1109/TC.1972.5009015
http://dx.doi.org/10.1145/3213846.3213876
http://dx.doi.org/10.1145/3236024.3264597

Algorithms 2024, 17, 28 17 of 18

11. MacQueen, J. Classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on
Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965; University of California Press: Los Angeles, CA,
USA, 1967; pp. 281–297.

12. Ankerst, M.; Breunig, M.M.; Kriegel, H.P.; Sander, J. OPTICS: Ordering points to identify the clustering structure. ACM Sigmod
Rec. 1999, 28, 49–60. [CrossRef]

13. Krka, I.; Brun, Y.; Medvidovic, N. Automatically Mining Specifications from Invocation Traces and Method Invariants; Technical Report;
Citeseer; Center for Systems and Software Engineering, University of Southern California: Los Angeles, CA, USA, 2013.

14. Le, T.D.B.; Le, X.B.D.; Lo, D.; Beschastnikh, I. Synergizing specification miners through model fissions and fusions (t). In
Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), Lincoln, NE, USA,
9–13 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 115–125. [CrossRef]

15. Pnueli, A. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science
(sfcs 1977), Providence, RI, USA, 31 October–2 November 1977; IEEE: Piscataway, NJ, USA, 1977; pp. 46–57. [CrossRef]

16. Emerson, E.A.; Clarke, E.M. Characterizing correctness properties of parallel programs using fixpoints. In Proceedings of the
Automata, Languages and Programming: Seventh Colloquium, Noordwijkerhout, The Netherlands, 14–18 July 1980; Springer:
Berlin/Heidelberg, Germany, 1980; pp. 169–181.

17. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.
In Proceedings of the KDD, Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231.

18. Mahmood, H.; Mehmood, T.; Al-Essa, L.A. Optimizing Clustering Algorithms for Anti-Microbial Evaluation Data: A Majority
Score-based Evaluation of K-Means, Gaussian Mixture Model, and Multivariate T-Distribution Mixtures. IEEE Access 2023, 11,
79793–79800. [CrossRef]

19. Lukauskas, M.; Ruzgas, T. A New Clustering Method Based on the Inversion Formula. Mathematics 2022, 10, 2559. [CrossRef]
20. Wang, Z. A new clustering method based on morphological operations. Expert Syst. Appl. 2020, 145, 113102. [CrossRef]
21. Robinson, B.; Ernst, M.D.; Perkins, J.H.; Augustine, V.; Li, N. Scaling up automated test generation: Automatically generating

maintainable regression unit tests for programs. In Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), Lawrence, KS, USA, 6–10 November 2011; IEEE: Piscataway, NJ, USA, 2011;
pp. 23–32. [CrossRef]

22. Beschastnikh, I.; Brun, Y.; Abrahamson, J.; Ernst, M.D.; Krishnamurthy, A. Using declarative specification to improve the
understanding, extensibility, and comparison of model-inference algorithms. IEEE Trans. Softw. Eng. 2014, 41, 408–428. [CrossRef]

23. Lorenzoli, D.; Mariani, L.; Pezzè, M. Automatic generation of software behavioral models. In Proceedings of the 30th International
Conference on Software Engineering, Leipzig, Germany, 10–18 May 2008; pp. 501–510. [CrossRef]

24. Wu, W.; Zhang, Z. Combinatorial Optimization and Applications: 14th International Conference, COCOA 2020, Dallas, TX, USA, 11–13
December 2020, Proceedings; Springer Nature: Cham, Switzerland, 2020; Volume 12577.

25. Bingham, J.; Hu, A.J. Empirically efficient verification for a class of infinite-state systems. In Proceedings of the Tools and
Algorithms for the Construction and Analysis of Systems: 11th International Conference, TACAS 2005, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, 4–8 April 2005; Proceedings 11; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 77–92.

26. Yang, J.; Evans, D.; Bhardwaj, D.; Bhat, T.; Das, M. Perracotta: Mining temporal API rules from imperfect traces. In Proceedings
of the 28th International Conference on Software Engineering, Shanghai, China, 20–28 May 2006; pp. 282–291. [CrossRef]

27. Gabel, M.; Su, Z. Javert: Fully automatic mining of general temporal properties from dynamic traces. In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, Atlanta, GA, USA, 9–14 November 2008;
pp. 339–349. [CrossRef]

28. Gabel, M.; Su, Z. Symbolic mining of temporal specifications. In Proceedings of the 30th International Conference on Software
Engineering, Leipzig, Germany, 10–18 May 2008; pp. 51–60. [CrossRef]

29. Gabel, M.; Su, Z. Online inference and enforcement of temporal properties. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1, Cape Town, South Africa, 1–8 May 2010; pp. 15–24. [CrossRef]

30. De Caso, G.; Braberman, V.; Garbervetsky, D.; Uchitel, S. Automated abstractions for contract validation. IEEE Trans. Softw. Eng.
2010, 38, 141–162. [CrossRef]

31. Gao, Y.; Wang, M.; Yu, B. Dynamic Specification Mining Based on Transformer. In Proceedings of the Theoretical Aspects of Soft-
ware Engineering: 16th International Symposium, TASE 2022, Cluj-Napoca, Romania, 8–10 July 2022; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 220–237.

32. Asarin, E.; Caspi, P.; Maler, O. Timed regular expressions. J. ACM 2002, 49, 172–206.
33. Cecconi, A.; De Giacomo, G.; Di Ciccio, C.; Maggi, F.M.; Mendling, J. Measuring the interestingness of temporal logic behavioral

specifications in process mining. Inf. Syst. 2022, 107, 101920. [CrossRef]
34. Bartocci, E.; Mateis, C.; Nesterini, E.; Nickovic, D. Survey on mining signal temporal logic specifications. Inf. Comput. 2022, 289,

104957. [CrossRef]
35. Krka, I.; Brun, Y.; Medvidovic, N. Automatic mining of specifications from invocation traces and method invariants. In

Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, Hong Kong, China,
16–22 November 2014; pp. 178–189.

http://dx.doi.org/10.1145/304181.304187
http://dx.doi.org/10.1109/ASE.2015.83
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/ACCESS.2023.3288344
http://dx.doi.org/10.3390/math10152559
http://dx.doi.org/10.1016/j.eswa.2019.113102
http://dx.doi.org/10.1109/ASE.2011.6100059
http://dx.doi.org/10.1109/TSE.2014.2369047
http://dx.doi.org/10.1145/1368088.1368157
http://dx.doi.org/10.1145/1134285.1134325
http://dx.doi.org/10.1145/1453101.1453150
http://dx.doi.org/10.1145/1368088.1368096
http://dx.doi.org/10.1145/1806799.1806806
http://dx.doi.org/10.1109/TSE.2010.98
http://dx.doi.org/10.1016/j.is.2021.101920
http://dx.doi.org/10.1016/j.ic.2022.104957

Algorithms 2024, 17, 28 18 of 18

36. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Advances in Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2017; Volume 30.

37. Rubel Ahmed, M.; Zheng, H. Deep Bidirectional Transformers for SoC Flow Specification Mining. arXiv 2022, arXiv:2203.13182.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Preliminary
	Model Checking
	OPTICS Clustering Algorithm
	DSM

	Specification Mining Based on the OPTICS Clustering Algorithm and Model Checking
	Clustering
	Model Selection
	FSA Refinement Based on Model Checking

	Empirical Evaluation
	Dataset
	Experience Setting
	Experimental Results and Analyses
	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity

	Related Work
	Mining Specifications Expressed in Temporal Logic Formulas
	Mining Specifications Expressed as Models Similar to FSAs

	Conclusions
	References

