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Abstract: Using spatial data in mobile applications has grown significantly, thereby empowering users
to explore locations, navigate unfamiliar areas, find transportation routes, employ geomarketing
strategies, and model environmental factors. Spatial databases are pivotal in efficiently storing,
retrieving, and manipulating spatial data to fulfill users’ needs. Two fundamental spatial query
types, k-nearest neighbors (kNN) and range search, enable users to access specific points of interest
(POIs) based on their location, which are measured by actual road distance. However, retrieving
the nearest POIs using actual road distance can be computationally intensive due to the need to
find the shortest distance. Using straight-line measurements could expedite the process but might
compromise accuracy. Consequently, this study aims to evaluate the accuracy of the Euclidean
distance method in POIs retrieval by comparing it with the road network distance method. The
primary focus is determining whether the trade-off between computational time and accuracy is
justified, thus employing the Open Source Routing Machine (OSRM) for distance extraction. The
assessment encompasses diverse scenarios and analyses factors influencing the accuracy of the
Euclidean distance method. The methodology employs a quantitative approach, thereby categorizing
query points based on density and analyzing them using kNN and range query methods. Accuracy
in the Euclidean distance method is evaluated against the road network distance method. The results
demonstrate peak accuracy for kNN queries at k = 1, thus exceeding 85% across classes but declining
as k increases. Range queries show varied accuracy based on POI density, with higher-density classes
exhibiting earlier accuracy increases. Notably, datasets with fewer POIs exhibit unexpectedly higher
accuracy, thereby providing valuable insights into spatial query processing.

Keywords: spatial query processing; open street map (OSM); map navigation; GIS; spatial data;
location processing; point of interest (POI)

1. Introduction

The utilization of spatial data in mobile applications has experienced significant
growth, thereby enabling users to search for locations easily, navigate unfamiliar areas,
identify transportation routes, employ geomarketing techniques, and model environmental
factors [1]. To illustrate, users can search for nearby hospitals using map applications or
GPS navigation (Figure 1). To meet users’ requirements, spatial databases play a vital
role in storing, retrieving, and manipulating spatial data. These databases are designed to
operate efficiently and effectively with spatial data, thereby ensuring that users can quickly
and accurately retrieve the data. There are two main types of spatial queries: k-nearest
neighbors (kNN) and range search. K-nearest neighbors aim to find a specific number of
nearest points of interest (POIs) based on the user’s location, while range search retrieves
objects within a certain distance radius. For instance, if a user searches for the six nearest
hospitals, the user’s location serves as a query point, and the map application will provide
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only six hospitals closest to the query point. On the other hand, range search differs from
kNN, as it is limited by distance rather than the number of spatial objects. For example, a
user can search for hospitals within a 10 km radius, and the application will return all the
hospitals within that range.

(a) (b)
Figure 1. Search for the nearest hospital. (a) Result from road network distance. (b) Result from
Euclidean distance.

As the use of map applications continues to increase, spatial databases encounter the
challenge of effectively managing a substantial amount of spatial queries. This poses a
considerable computational burden in retrieving spatial objects due to the need for the
database to measure the distance between the query point and all spatial objects, thus
identifying those that align with the user’s requirements. This process results in heightened
computational costs.

The road network distance method is employed to ensure the accuracy of retrieved
spatial objects. This method utilizes Dijkstra’s algorithm to find the shortest path based
on the actual road distance. The database can accurately retrieve the desired objects by
calculating the shortest route from the query point to the POIs. However, using Dijkstra’s
algorithm introduces high computational time due to the complexity of finding the shortest
distance. The time complexity of Dijkstra’s algorithm for cost functions based on vertices is
approximately O(|E|+ |V|log|V|) [2], where E represents the set of edges in the graph, and
V represents the set of vertices. Moreover, when dealing with an extensive road network,
the calculations required for determining the shortest paths can impose a considerable
demand on both time and memory resources [3]. In scenarios such as kNN, where the total
number of objects far exceeds k, computing the shortest paths for all objects to identify the
k-nearest neighbors becomes impractical [4]. This presents challenges, as it conflicts with
the primary objective of the database, which is to enhance the retrieval process by ensuring
efficiency and accuracy in data retrieval. The Euclidean distance method is a better choice
to address this issue and reduce the computational complexity of retrieving POIs from
spatial databases. This method calculates the straight-line distance between the query
point and spatial objects without finding the shortest path. As a result, the computational
complexity of calculating Euclidean distance is relatively simple, with a constant time
complexity of O(1) [2].

Additionally, Open Source Routing Machine (OSRM) has emerged as a high-performance
routing service designed for use with geographic data. As an open-source project, OSRM
provides routing functionality, thereby allowing users to extract and calculate the shortest
or fastest route between locations using Dijkstra’s algorithm. The capabilities of OSRM
further enhance the efficiency and accuracy of spatial query processing in spatial databases.

Therefore, the primary objective of this study is to assess the accuracy of the Euclidean
distance method for retrieving points of interest (POIs) by comparing it with the road
network distance method, which utilizes the OSRM to extract distances. The evaluation
will be conducted in various scenarios to observe the accuracy of the Euclidean distance
method and to analyze factors that may influence its accuracy rate. This analysis provides
valuable insights regarding the reliability and effectiveness of the Euclidean distance
method in spatial query processing.
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2. Related Work
2.1. Spatial Queries in Euclidean Distance

Spatial data objects represent a type of data that encompasses multiple dimensions.
Over the past few years, there has been a growing utilization of this data type in various
applications, including geographic information systems (GIS), computer-aided design, and
computer vision [5]. The commonly employed methods for searching for spatial objects
include k-nearest neighbors (kNN) and range query techniques.

2.1.1. K-Nearest Neighbor Queries in Euclidean Distance

The effective execution of nearest neighbor (NN) queries, which holds special signifi-
cance in the field of geographic information systems (GIS) [6], is essential when considering
the commonly used query type known as k-nearest neighbors (kNN). The kNN query
involves finding the potential neighbors closest to a given query point [6,7]. In retrieving
points of interest (POIs) using k-nearest neighbors, the distance between the query point
and the POIs is calculated by measuring the straight-line distance from the query point’s
coordinates to the coordinates of each POI. The resulting POIs are then ordered based on
their distance from the query point, thereby enabling the selection of only the top k-ranked
POIs from the results. To illustrate, Figure 2 depicts a map diagram with weighted lines
representing the actual distance of the road. The distances are measured using the Eu-
clidean distance method, as shown in Figure 3. As a result, the retrieved POIs from the
Euclidean distance method would be P6, P2, and P7, as indicated in Figure 4.

Figure 2. Road and locations with lines represent roads with nodes and the distance and locations.

Figure 3. Red lines show the measurement of the distance using the Euclidean distance method.

Figure 4. The result of kNN query using the Euclidean distance method.
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Fukunaga and Narendra [8] proposed an effective method for computing k-nearest
neighbors. Their approach involves a hierarchical decomposition of design samples into
disjoint subsets. To achieve this, they applied the branch and bound algorithm, which
is a well-regarded tree search technique [9–11]. This algorithm is known for efficiently
searching through the resultant groups.

Expanding the scope of k-nearest neighbors (kNN) query processing, Taniar and
Rahayu [7] discussed the extension of k-nearest neighbors (kNN) query processing to
include obstacles in Euclidean space, known as obstacle nearest neighbors (ONNs). ONNs
involve constructing a visibility graph, representing possible paths around obstacles, and
using a disk-based approach with a restriction method to process the kNN queries while
considering obstacle distances efficiently. The method iteratively refines search spaces
based on obstacle distances to optimize query processing.

Additionally, various types of nearest neighbor queries have been studied, including
aggregate nearest neighbor (ANN) [12], reverse nearest neighbor (RNN) [13], and group
nearest neighbor (GNN) [14]. However, our study focuses explicitly on the k-nearest
neighbor (kNN) queries.

2.1.2. Range Queries in Euclidean Distance

Range queries are an essential query method in database systems [15]. Building upon
the concept of a point query, the area around the query point is expanded in range queries,
thus forming an area of query scope. Range queries involve three primary components:
points of interest, the query point, and the query scope. To retrieve the relevant objects,
range queries utilize intersection and containment operations. The distance between the
query point and each point of interest is calculated by measuring the straight-line distance
based on their respective coordinates. The resulting distances are then compared with the
range specified by the query scope. Objects of interest that fall within this range become the
query result [16]. For example, considering an area of query scope as depicted in Figure 5,
the points of interest (POIs) located within that area, such as P6, P2, and P7, would be
retrieved as the results of the range query (Figure 6).

Figure 5. Red circle represent the area scope for range queries.

Figure 6. The result of range query using the Euclidean distance method.
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In the realm of range queries, a research study explored continuous range search
algorithms, thereby highlighting the limitations of traditional methods designed for static
points. The paper emphasizes the inadequacy of these approaches for mobile users in
motion. In response, the authors propose two methods for continuous range search, with
the first focusing on Euclidean distance [17].

Another research study by Pfoser, Jensen, and Theodoridis [18] evaluated three ac-
cess methods: the R-Tree, spatiotemporal R-tree, and trajectory bundle tree. The per-
formance study involved experiments with spatial range, as well as navigational and
combined queries.

2.2. Spatial Queries in Road Network Distance

According to [7], a spatial road network is fundamentally an interconnected system of
roads, which is illustrated as a network consisting of edges (links) and vertices (nodes). An
edge or link serves as a connection between two vertices or nodes. Each link connecting
two adjacent nodes forms a segment (an unbroken link from one node to another) without
passing through any additional nodes. The distance associated with each segment is
specified and referred to as the weight of that segment. The spatial road network can be
utilized for conducting k-nearest neighbor (kNN) and range queries using two different
approaches: restriction and expansion [7,19].

2.2.1. K-Nearest Neighbor Queries in Road Network Distance

The algorithm for kNN on spatial road networks employs two approaches, as afore-
mentioned. The first approach, focused on restriction kNN, is the incremental Euclidean
restriction (IER) algorithm. The IER approach involves setting an upper limit and reducing
the search area. The second approach, centered on expansion kNN, is called incremental
network expansion (INE). The algorithm initiates network expansion from the query point,
thus examining entities in the order they are encountered [19].

Abeywickrama, Cheema, and Taniar [4] experimented with evaluating kNN query al-
gorithms on road networks, including incremental network expansion (INE) [19], incremen-
tal Euclidean restriction (IER) [19], distance browsing [20], route overlay and association
directory (ROAD) [21,22], and G-tree [23,24].

In their research paper, Shahabi, Kolahdouzan, and Sharifzadeh [25] proposed a new
approach for handling kNN queries in road networks, thereby catering to stationary and
mobile query points. Their approach, named Road Network Embedding (RNE), involves
converting a road network into a higher-dimensional space, thus allowing the use of more
straightforward distance functions.

Kolahdouzan and Shahabi [26] introduced a novel approach to address the criteria
for spatial query in spatial network databases (SNDBs) by transforming the challenge
of distance computation in a vast network into the problem of computing distances in
numerous smaller networks, which are supplemented by additional table lookups. The
central concept behind their approach, Voronoi-based Network Nearest Neighbor (VN3),
involves initially partitioning an extensive network into smaller, more manageable regions.

In the research conducted by Mouratidis, Yiu, Papadias, and Mamoulis [27], the
focus was on continuous k-nearest neighbor (CkNN) queries in transportation networks,
where data objects and queries move within a road network. While existing methods have
addressed snapshot queries, continuous monitoring of CkNN queries in road networks has
not yet been explored. The study introduces incremental monitoring and group monitoring
algorithms to compute and update CkNN query results efficiently in real time, thereby
considering fluctuations in edge weights due to factors like changing traffic conditions. The
proposed algorithms aim to handle dynamic and unpredictable scenarios, such as finding
the k closest taxi customers for a free taxi in terms of traveling time.
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2.2.2. Range Queries in Road Network Distance

In the paper by [16], it is asserted that range queries, rooted in defining a region
according to a specified radius or distance, can be more broadly and flexibly referred
to as “region queries”. These queries involve three essential components: the object of
interest, the query point (representing the user’s query location), and the designated region.
Taniar and Rahyau [16] categorized region queries into six types: traditional region queries,
approximate region queries, constrained region queries, outer/inner fence object queries,
and inverse range queries.

Traditional regions establish boundaries to extract candidate objects. Approximate
region queries address situations where users may inaccurately specify the query radius
due to unfamiliarity with the area. A constrained region query incorporates additional
constraints, such as spatial, temporal, kNN, or others, along with the query radius. Clus-
tered objects region queries consider objects with spatial relationships, thereby aiming
to identify clusters or groups of objects within a specified region. Inverse range queries
involve multiple query points or objects and seek candidate objects that contain all query
points within a specified range.

Regarding range queries in road networks, two approaches are identified: restriction
and extension [19]. The restriction approach for range queries is called range Euclidean
restriction (RER). This method conducts a range query to find objects within a specified
Euclidean distance from the query point. While maintaining the Euclidean lower bound
property, it reduces false hits by performing a single network expansion. The algorithm
efficiently refines results using sorted lists, segment checks, and comparisons, thereby
considering boundary segments that may exceed the query threshold. On the other hand,
the expansion approach for range queries is called range network expansion (RNE). This
algorithm identifies qualifying segments within a specified network range from the query
point and retrieves associated data entities. It optimizes by dividing qualifying segments
(QSs) into sets corresponding to R-tree entries, thereby minimizing comparisons as it
descends the tree. The algorithm ensures I/O optimality and handles scenarios where the
QSs exceed memory capacity through efficient methodologies and optimizations.

A study in 2.1.2 [17] explored the continuous range search within mobile navigation,
thus explicitly focusing on user mobility. The study proposed a second approach empha-
sizing network distance over Euclidean distance, thereby aiming for enhanced efficiency
in practical applications. The outlined method involves selecting an arbitrary path from a
road map, segmenting it, and utilizing range network expansion (RNE) to identify entities
within a specified range while considering Euclidean distance.

2.3. Existing Research

One research study explored the relationship between transport costs and road dis-
tance. The researchers employed a correlation factor to estimate the actual road distance
by considering the Euclidean distance. They evaluated the accuracy of this approximation
by calculating the average difference between the estimated and actual distances [28].
The conclusion highlights the development of a linear regression model for Euclidean
distances, thereby demonstrating its superior reliability compared to existing literature
models. Two adjustment methods are discussed: one based on mean ratios and another
utilizing regression equations. While more computationally intensive, the latter provides
closer-to-reality results, but caution is urged regarding its constant, particularly for smaller
distances. Notably, the study did not provide explicit information regarding the precision
of the Euclidean distance. Instead, it introduced a regression model to approximate the
road distance and compared it with the actual distance.

In another research study, the accuracy of the Euclidean distance was compared
with the road network distance. The study investigated the performance of two query
processing methods: the benchmark method, which utilized the road network distance, and
the Euclidean decider, which employs the Euclidean distance [29]. The paper suggests using
Euclidean distance as a fast and computationally less intensive alternative for estimating
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road network distance. The authors argue that, despite potential differences, Euclidean
distance-based solutions can provide acceptable accuracy for specific queries, such as
group nearest neighbor (GNN) queries. Experiments involved comparing two GNN
query processing methods using road network distance as a benchmark and Euclidean
decider (using Euclidean distance). Actual road network graphs from cities were utilized,
thereby creating scenarios with scattered or clustered query points and points of interest
(POIs). Parameters such as the number of query points, POI density, the value of k,
and road network were varied to assess performance. Euclidean decider’s accuracy was
evaluated by comparing distances with the benchmark results. The experiments aimed to
determine the effectiveness of Euclidean distance in achieving a balance between accuracy
and computational efficiency for GNN queries in transportation services. The study’s
results [29] indicate that the Euclidean metric achieved an accuracy level exceeding 74.7%
for kNN queries and exhibited even higher accuracy for general group nearest neighbor
(GNN) queries, which ranged from 86% to 95% when considering two query points.

In a related work, Kim, A. Hossain, A.-A. Hossain, and Chang proposed the Hilbert-
order based star expansion cloaking algorithm (H-star) [30]. This algorithm is designed
to optimize query processing cost by considering cloaking regions for a group of queries,
thereby reducing the number of boundary points and, consequently, the query processing
cost. The proposed H-Star algorithm has been extended to include query processing
algorithms for k-nearest neighbor (kNN) and range queries.

Another research study proposed a method for road network extraction from high-
resolution synthetic aperture radar (SAR) images. The approach involved constructing road
networks using smooth, crosslinked curves with determined functions, thereby enabling
mathematical descriptions for road segments. The method employed a multiplicative Duda
operation for line feature responses, and nonroad detection techniques were introduced
to reduce false positives. Binary image decomposition and polynomial curve fitting were
then used to linearize road segments, and network optimization was achieved through
geometric constraints [31].

In a study by Arbelaez, Mehta, O’Sullivan, Quesada, and Sasmaz [32], a valuable
methodology was provided for classifying exchange sites and customers into three geotypes
(rural, suburban, and urban) based on precise customer locations rather than relying solely
on the number of connected customers. The classification was defined by household density
per square kilometer, with rural areas having up to 10 households/km², suburban areas
ranging from 11 to 500 households/km², and urban areas exceeding 501 households/km². A
distribution analysis in Ireland highlighted a predominance of rural and suburban regions,
thereby offering valuable insights for refining the classification of query points or locations
in diverse scenarios.

Lastly, Boyacı, Dang, and Letchford [3] studied vehicle routing problems (VRPs)
on road networks, called Steiner VRPs. Unlike traditional VRPs, where customers and
depots are nodes in a complete graph, Steiner VRPs consider road networks, thereby
introducing challenges in terms of distance computation. The authors proposed a three-
phase heuristic approach: (1) create an approximation using Euclidean distances multiplied
by a constant; (2) solve the approximated instance; and (3) convert the solution to the
original instance. Computational experiments were conducted on Steiner versions of the
travelling salesman problem (TSP) and capacitated VRP (CVRP) using global road network
data from twelve cities. The result of this research showed that the use of Euclidean
distances instead of acctual road distances was found to yield acceptable results for the
Steiner travelling salesman problem (TSP) and Steiner capacitated vehicle routing problem
(CVRP), particularly when only a tiny proportion of nodes require service.

3. Methodology

This research employed a quantitative approach to evaluate the accuracy of the Eu-
clidean distance method. Initially, a dataset was compiled, including hospital and ambu-
lance addresses as points of interest (POIs) and residential addresses as query points. After



Algorithms 2024, 17, 29 8 of 26

data collection, the dataset was divided into hospital and ambulance addresses. Subse-
quently, a data exploration process was undertaken, thereby revealing that only five cities
had sufficient points of interest to experiment. Therefore, 30 query points were randomly
selected from these five cities for the research. This careful process ensured a thorough
evaluation of the accuracy of the Euclidean distance method in the selected urban areas is
studied. The query points were further categorized based on quantitative criteria, primarily
the density of points of interest (POIs), which was determined using attribute weights for
precise calculations. This classification facilitated a systematic analysis of the data.

In the subsequent step, both Euclidean distance and the road network distance method
were employed for POI retrieval, thereby utilizing kNN and range search techniques. The
accuracy of the Euclidean distance method was then assessed by comparing its outcomes
with those derived from the road network distance method, which served as a reliable
quantitative benchmark. The road network distance method provided accurate distance
calculations based on actual road networks.

This study followed a systematic approach as depicted in Figure 7, where the method-
ology flow chart illustrates the step-by-step process. By conducting thorough quantitative
analyses and carefully comparing the results, this research aimed to evaluate the accuracy of
the Euclidean distance method in retrieving spatial data, thereby ensuring a comprehensive
and reliable assessment.

Figure 7. Methodology process with arrows representing the sequential flow of the process and the
process explanation shown in each box.

3.1. Data Source

The dataset for hospital and ambulance addresses was obtained from OpenStreetMap
(OSM), which is a comprehensive database containing information on hospitals and ambu-
lances across various Australian states. In contrast, a segment of the residential addresses
data originated from the Geoscape Geocoded National Address File (G-NAF) [33], which
adheres to the Australian Statistical Geography Standard (ASGS) [34] and encompasses
addresses located within the residential mesh blocks (MBs) framework. Specifically, resi-
dential addresses were randomized, and ten addresses from each Statistical Area Level 2
(SA2s) area were selected, thereby ensuring a representative sample for the study.

To classify the query points, the mesh blocks shapefile was employed to assess their
characteristics based on the density of the POIs. Mesh blocks, defined by the Australian
Bureau of Statistics [34], are small geographical areas designed for statistical and data
aggregation purposes. They offer a structured way to organize and analyze fine-grained
data. These mesh blocks served as a crucial framework for categorizing the query points,
thereby enabling the evaluation of POI density near these points.

In our research, the residential address dataset was deliberately structured by mesh
blocks, thereby ensuring the absence of duplicate addresses. This strategic alignment is
a precautionary measure to eliminate the potential bias that might arise from duplicate
addresses within the dataset. By selecting the query point in this manner, the experimental
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data were able to accurately evaluate the accuracy of the Euclidean distance method in
identifying the closest hospital to a given residential address.

3.2. Data Exploration

The POIs dataset was divided into two categories: hospitals and ambulances. The hos-
pital dataset exclusively comprised hospital-related information, while the ambulance
dataset contained data about ambulances. As a result, separate queries were performed for
each dataset type.

Due to the significant volume of POIs resulting from the dataset split, only five cities
were suitable for conducting the queries. As outlined in Table 1, specific areas exhibited a
limited number of POIs, whether hospitals or ambulances, thereby potentially affecting
the reliability of results. To ensure the robustness of our findings, we utilized a heatmap
graph (Figure 8) illustrating the density of POIs. This visualization provided valuable
insights into the spatial distribution of POIs, thereby guiding the selection of cities with a
sufficient concentration. The heatmap analysis, shown in Figure 8, represents the density of
point distribution through colored map areas, with a gradient from brighter to unshaded
indicating higher point concentrations. This informed the inclusion of cities where the
density of hospitals and ambulances met the experiment’s criteria. Consequently, the
experiment focused on cities with numerous POIs: Adelaide, Brisbane, Melbourne, Perth,
and Sydney.

Table 1. Number of hospitals and ambulances for each state.

State Hospital Ambulance

Northern Territory 6 2
Australian Capital Territory 2 8

Tasmania 3 34
New South Wales 168 237

Victoria 38 219
South Australia 14 111
West Australia 24 155

Queensland 26 250

Figure 8. POIs density heatmap.

Limiting our study to just five cities with a higher density of hospitals and ambulances
aimed to provide a more comprehensive and accurate assessment of the correctness of
the Euclidean distance method in identifying the nearest hospitals or ambulances to a
given residential address. This approach ensured that the experimental results were
comprehensive and accurate. Furthermore, including only five cities with a higher density
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of hospitals and ambulances introduced the necessary variance in the results, thereby
allowing for a comparison of the accuracy between the Euclidean and road network
distance methods. This methodological choice enhances the thoroughness and accuracy of
our assessment of the Euclidean distance method’s correctness in identifying the nearest
hospitals or ambulances for residential addresses, thereby ensuring our experimental
findings’ overall comprehensiveness and accuracy.

3.3. Classification

This section explains in detail the methodology for classifying query points based on
POI density.

3.3.1. Classification Criteria

The classification of query points involves four criteria: buffer creation, overlapping
with mesh block, weight calculation, and using the mode function in QGIS for query point
categorization based on the respective weights.

Buffer Creation

The first criterion is buffer creation, where spatial areas are generated around each
point of interest to classify the query points. Buffers are generated based on specified
distances. This study employed four different buffer distances: 1 km, 5 km, 10 km, and
15 km. These buffer distances were selected according to previous research on healthcare
accessibility and surveys [35–37]. These studies provide insights into acceptable distances
for accessing healthcare from households and examine the relationship between distance
and utilization of health services.

Overlapping with Mesh Block

After creating the POI buffer with the specified distances, the criterion of overlapping
with mesh block comes into play. Mesh blocks containing the query points are retrieved.
POIs buffers are overlaid with mesh block shapes (Figure 9 with the mesh block in red
shape inside the red square and POIs buffer in green and purple). This overlapping
process determines the number of weight attributes used in calculating the density of POIs.
The calculation involves counting the POIs buffer distances intersecting each mesh block,
thereby contributing to the overall density calculation. The resulting count is stored in the
database column (Figure 10).

(a)

Figure 9. Cont.
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(b)

(c)
Figure 9. Mesh blocks with overlaid POI buffer. (a) Mesh block with 1 km POI buffer; (b) Mesh block
with 1 km and 5 km POI buffers; (c) POI buffers (1 km, 5 km, 10 km, and 15 km).

Figure 10. The table in a database which contains the number of POIs buffer that overlaid with
mesh blocks.
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Weight Calculation and Query Point Classification Method

The weight attributes, securely stored in the database, play a crucial role in QGIS.
They are essential for calculating the density of POIs and creating a heatmap for each query
point. Values from overlapping POI buffer zones at various distances are combined to
ensure a comprehensive representation. This combined value is a crucial parameter in
the QGIS value function, which is necessary for creating both the heatmap and graduated
visualizations. The decision to combine all POI buffer weights is made to provide a clear
and consistent representation of the overall POI density. This aggregated weight, derived
from the intersect count, is also used with the data classification in QGIS, thus contributing
to the systematic classification of query points based on their weights.

In this research, quantile classification was employed to classify query points. This
approach offers several advantages, including its capacity to distribute query points uni-
formly across different classes, thereby providing a balanced representation. Additionally,
quantile classification is less sensitive to outliers, thereby ensuring that extreme values
do not disproportionately influence the classification results. This robustness makes it
particularly suitable for scenarios where the distribution of POI density exhibits variations,
thereby allowing for a more reliable and resilient classification process. Considering future
research directions, exploring alternative heatmap calculation methods, such as kernel
density estimation (KDE), may be valuable. Experimenting with different techniques could
offer insights into potential variations in heatmap results. Moreover, alternative data classi-
fication methods beyond quantile classification could be explored in future investigations,
thereby enhancing the methodology’s adaptability and addressing potential variations in
data distribution. Discussing these possibilities in the future work section can highlight
potential enhancements to the methods and acknowledge the continuous improvement
and refinement of research techniques.

3.3.2. Classification Process

To ensure comprehensive and accurate results, 30 query points were randomly selected
from the residential address dataset in each city under study, thereby preventing clustering
in a single location. This approach encourages a diverse representation of scenarios within
the sample, thus enhancing result variability. The categorization of each query point
into distinct groups based on the density of the surrounding POIs is a pivotal step in the
methodology. This categorization employs four varying buffer sizes to calculate density,
thereby assigning each point to the appropriate category.

The density calculation involves overlaying the buffer on the mesh block, thereby
incorporating weights derived from overlapping POI buffer zones at different distances.
The resulting values generate a heatmap (see Figures 11–15), thus categorizing density
into five distinct classes. Each class represents a unique density level, thus facilitating
the observation and analysis of different scenarios. This classification process aids in
evaluating the accuracy of Euclidean and road network distance methods under varying
POI density conditions.

Significantly, the characteristics of POI density varied between datasets, especially
in the ambulance and hospital datasets. Despite utilizing the same query points in each
dataset, the categorization may differ due to these density variations. The experiment
comprised 300 samples, with 30 query points randomly selected from each city in the
hospital and ambulance datasets. The cumulative count of query points in each category is
as follows: Class One (73 points), Class Two (58 points), Class Three (55 points), Class Four
(55 points), and Class Five (59 points). This ensures a reasonably equitable distribution,
thereby minimizing the impact of data imbalance on the results.

The balanced distribution of samples across categories enhances the reliability of exper-
imental results, thereby allowing for a robust evaluation of the accuracy of both Euclidean
and road network distance methods. This balanced approach minimizes potential biases
from unequal representations of different density levels, thus enabling a fair comparison
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between distance methods in diverse scenarios. The number of query points in each class
is summarized in Table 2, thus further substantiating the experimental outcomes.

Table 2. Number of query points in each class for each city.

Class Adelaide Brisbane Melbourne Perth Sydney Total Number of Points

One 15 18 13 15 12 73
Two 10 7 12 15 14 58

Three 13 14 11 7 10 55
Four 10 9 12 12 12 55
Five 12 12 12 11 12 59

Figure 11. Left heatmap and query points from ambulance dataset; right heatmap and query points
from hospital dataset in Adelaide.

Figure 12. Left heatmap and query points from ambulance dataset; right heatmap and query points
from hospital dataset in Brisbane.

Figure 13. Left heatmap and query points from ambulance dataset; right heatmap and query points
from hospital dataset in Melbourne.
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Figure 14. Left heatmap and query points from ambulance dataset; right heatmap and query points
from hospital dataset in Perth.

Figure 15. Left heatmap and query points from ambulance dataset; right heatmap and query points
from hospital dataset in Sydney.

3.4. Euclidean Search

To obtain results using the Euclidean distance method, distances were computed
based on the query point’s latitude and longitude and the POIs stored within the spatial
database, thereby measuring the straight-line distance between them. These calculated
distances were then organized in a dedicated column within the database. Subsequently,
by employing the precomputed Euclidean distances, both the kNN and range searches
were conducted on the spatial databases. This involved implementing kNN queries to find
the nearest neighbors and range queries to identify POIs falling within specific distance
thresholds. The detailed process of obtaining results for both query methods provides an
understanding of the research methodology.

3.4.1. K-Nearest Neighbors Search in Euclidean Distance

The kNN queries method searched for the nearest POIs to the query point based on
the number of points specified by the user, which was set to be limited to the first 20 data
points (k = [1, 20]). These points were sorted based on their distances from the query point.
The distances between query points and POIs were calculated on the database using the
SQL statement presented in Listing 1.

Listing 1. SQL statement for calculate Euclidean distance.

1 SELECT
2 ST_SETSRID(ST_MAKEPOINT(olon ,olat) ,4326)::geography <->geom:: geography
3 AS dist_eu
4 FROM hospital;

In this statement, the “geom” column contains the geographical coordinates of individ-
ual hospitals, while “olat” and “olon” denote the latitude and longitude of the designated
query point, respectively. Following the distance calculation, the results were ordered
according to distance in ascending order, and only the top 20 data points were selected
using the SQL statement shown in Listing 2.
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Listing 2. SQL statement for retrieving kNN result for Euclidean distance method.

1 SELECT *,
2 ST_SETSRID(ST_MAKEPOINT(olon ,olat) ,4326)::geography <->geom:: geography
3 AS dist_eu
4 FROM hospital_q1
5 ORDER BY dist
6 LIMIT 20;

The retrieved data from this SQL statement represents the kNN search results for
values of k between 1 and 20. For instance, the first row corresponds to the result of 1NN,
and the first to fifth rows collectively represent the result of 5NN.

3.4.2. Range Search in Euclidean Distance

Unlike the kNN query method, the range query method searched for POIs within
a specific distance range determined by the user. This method retrieves all POIs located
within the specified range, and the results are also sorted based on their distance from the
query point. Hence, the number of results is not limited. This study employed distance
thresholds of 1 to 150 km in 5 km increments for the range search method.

For the range search, measuring distances between query points and POIs is the same
as the kNN search method. However, the key distinction lies in the result limitation, which
is based on distance rather than a set number of rows. Consequently, the SQL statement
conditions are adjusted to limit the distance rather than restricting the number of rows. The
SQL statement in Listing 3 is provided for retrieving results within a 5 km range.

Listing 3. SQL statement for retrieving range query results within a 5 km for Euclidean distance.

1 SELECT *
2 FROM (SELECT *,
3 ST_SETSRID(ST_MAKEPOINT(olon ,olat) ,4326)::geography <->geom:: geography

dist_eu
4 FROM hospital_q1)
5 WHERE dist_eu < 5
6 ORDER BY dist_eu;

3.5. Road Network Search

The distance between query points and POIs is calculated using the road network
distance extracted from the Open Source Routing Machine (OSRM) API. OSRM is an
open-source software designed for rapid route calculations, thereby making it well suited
for real-time applications and scenarios involving large-scale road networks. It provides
accurate and efficient routing results, thereby delivering the shortest route in terms of
distance and duration time. The OSRM project is a collaborative effort, and the protocol
implemented by the service is version 1 for all OSRM 5.x installations. As of the latest
implementation, we are using OSRM version 5.27.1 (Open Source Routing Machine, Dennis
Luxen, http://www.project-osrm.org, accessed on 7 March 2023).

In this study, only the distance obtained from OSRM was utilized to derive results.
After extracting distances from OSRM, kNN and range queries were performed to obtain
results for each method.

3.5.1. K-Nearest Neighbors Search in Road Network Distance

The process of obtaining results through the kNN search using the road network
distance method closely aligns with the Euclidean distance method. However, a key
difference lies in the approach. While the Euclidean distance method calculates the direct
distance between a query point and points of interest using a spatial database, the road
network distance method acquires distances by utilizing the Open Source Routing Machine
(OSRM) API through Python code. This API extracts the shortest route, and the resulting
distances are then stored in a specified database table.

http://www.project-osrm.org
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When conducting kNN queries using the road network distance method, data are
sorted in ascending order based on the distances in the osrm_dist column. Following
this, the results are constrained to the first 20 data points, thereby aligning with the
range of k values from 1 to 20. This process reflects the Euclidean search method, where a
corresponding SQL query is employed, as shown in Listing 4.

Listing 4. SQL statement for retrieving kNN results for the road network distance method.

1 SELECT *
2 FROM hospital_q1
3 ORDER BY osrm_dist
4 LIMIT 20;

In this context, osrm_dist symbolizes the column containing distances measured
along the shortest routes on genuine road networks between the query point and POIs.
The constraint to the initial 20 data points is influenced by the range of k values, thereby
providing a comprehensive set of potential nearest neighbors for the given query.

3.5.2. Range Search in Road Network Distance

In the road network distance method, the objective of range queries was to retrieve
results within specific distance intervals utilizing actual road distance. The distance thresh-
olds ranged from 1 km to 150 km, with increments of 1 km, 5 km, and subsequent 5 km
intervals (1, 5, 10, 15, 20, 25, 30, . . . , 150). The process involved extracting distances from
the Open Source Routing Machine (OSRM) and executing SQL queries to limit the distance
for each interval. An illustrative example of a SQL statement for retrieving results within a
5 km interval is shown in Listing 5.

Listing 5. SQL statement for retrieving range query results within a 5 km for road network distance.

1 SELECT *
2 FROM hospital_q1
3 WHERE osrm_dist < 5
4 ORDER BY osrm_dist;

This SQL statement demonstrates the retrieval process for the 5 km interval. Similar
queries were executed for each distance threshold, thereby encompassing the 1 km to
150 km range. The osrm_dist column represents distances measured along the road network
between the query point and POIs.

3.6. Accuracy Calculation
3.6.1. K-Nearest Neighbor Queries Accuracy Calculation

To calculate the accuracy of the Euclidean distance method for each category of query
point and each number of k in the kNN search method, the following formula was used:

Accuracy =

(
Total number of correct results

Total number of retrieved results

)
× 100% (1)

The correct results were defined by comparing the set of POIs obtained from the
Euclidean distance method with the collection of POIs obtained from the road network
distance method. If the set of POIs obtained from the Euclidean distance method is different
in any way from the set obtained from the road network distance method, the result is
marked as incorrect.

3.6.2. Range Queries Accuracy Calculation

For the range query, this method retrieved all POIs within the specified distance range,
which was set to 5, 10, 15, 20, 25, 30, 35, . . . , and 150 km, and the results were sorted
based on their distance from the query point. As the number of retrieved POIs was not
limited in the range search method, the percentage of accuracy was calculated by following
these steps:
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Number of Incorrect results (Euclidean) = Total number of points retrieved from the
Euclidean distance method − Total number of points retrieved from the road network
distance method
Number of Correct results (Euclidean) = Total number of points retrieved from the
Euclidean distance method − Number of Incorrect results (Euclidean)
Accuracy = (Number of Correct Results (Euclidean)/Total number of points retrieved
from the Euclidean distance method) × 100%

4. Results
4.1. Comparison of k-Nearest Nighbors Search

This study compared the Euclidean distance method and the road network distance
method for each category. The comparison was conducted by retrieving the POIs using
both methods and comparing the results. For the kNN queries, if the POIs retrieved from
both methods were identical, the result would be marked as 1; otherwise, it was marked
as 0. This approach was applied to each classification, thereby allowing us to compute
accuracy using the following formula:

Accuracyk,c =
∑n

i=1 kNNc × 100%
total casesc

(2)

where:

k = the number of k-nearest neighbors

c = density category (1–5)

Each category’s accuracy results were plotted and presented in Figure 16. It is interest-
ing to observe that as the value of k increased, the classification accuracy decreased across
all categories. Even for query points with the highest density of POIs, the accuracy still
decreased. The results indicate that the accuracy remained high for Class One and Three,
with rates above 85%, as well as for the remaining classes, which had rates exceeding 90%.
This suggests that the Euclidean and road network distance methods consistently provide
accurate results, particularly for the first category of points of interest.

Figure 16. Accuracy of the Euclidean distance method using k-nearest neighbor queries for all samples.

The accuracy significantly dropped for all classes except for Class Two when the
number of k was set to two, thus maintaining an accuracy rate above 90%. Nevertheless,
the accuracy rate for these classes remained above 70%. It appears that increasing the
number of nearest neighbors beyond two further decreased the accuracy for all classes,
with the accuracy dropping below 70% across the board.
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As depicted in Figure 17, the box plot offers a thorough overview of accuracy dis-
tribution while drawing attention to any data points that fall outside the typical range
(outliers). It is clear that as the value of k exceeded two, the median accuracy dropped
below 70% across all categories. This implies that utilizing more than two nearest neighbors
results in a noticeable reduction in classification accuracy. Additionally, the presence of
outliers beyond the whiskers in specific categories points to situations where the accuracy
performance becomes notably poor or erratic.

Figure 17. Accuracy of the Euclidean distance method using k-nearest neighbor queries for all
samples and all classes.

Analyzing Figures 16 and 17, we observe the results obtained from queries in both
types of POIs. Considering the differences between two different dataset types is crucial,
since the number of POIs significantly differs. The hospital dataset contains fewer data
points than the ambulance dataset. Hence, the accuracy results for each value of k are
expected to differ between the two datasets. By taking into account these differences,
we can develop a more comprehensive insight into how dataset attributes influence the
accuracy of classification outcomes. This examination enables us to uncover the nuances
that distinguish the hospital dataset from the ambulance dataset, thereby offering valuable
insights for future enhancements and similar analyses.

Figure 18 shows line graphs that plot the accuracy separately for the hospital, ambu-
lance, and combined datasets. Each class is represented in its subplot. The purpose of the
graph is to observe the accuracy of each dataset of the Euclidean distance method result
compared with the benchmark as a result of the road network distance method.

(a)

Figure 18. Cont.
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(b)

(c)

(d)

(e)

Figure 18. Line graph plot with the different datasets (hospital, ambulance, and hospital and am-
bulance) for kNN queries. (a) Class 1—line graph plot with the different datasets. (b) Class 2—line
graph plot with the different datasets. (c) Class 3—line graph plot with the different datasets.
(d) Class 4—line graph plot with the different datasets. (e) Class 5—line graph plot with the differ-
ent datasets.

The observation from the graph is that as the value of k increased, the hospital dataset,
which has a smaller number of POIs than the ambulance dataset, tended to achieve higher
accuracy results. On the other hand, the ambulance dataset, with its large number of POIs,
exhibited lower accuracy results. This suggests that having a smaller number of POIs in the
dataset leads to higher accuracy in some classes and some values of k-nearest neighbors
when using the Euclidean distance method.
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4.2. Comparison of Range Search

The accuracy for the Euclidean distance method using range queries was calculated
based on the number of POIs retrieved from both methods, with the number of results from
the road network distance method serving as a benchmark. The following formula was
applied to calculate the accuracy:

Incorrect Eu = Total Eu − Total Rd

Correct Eu = Total Eu − Incorrect Eu

Accuracy =
Correct Eu × 100%

Total Eu

where:

Eu = The number of results from the Euclidean method

Rd = The number of results from the road network distance

Since the Euclidean distance method distances are equal to or shorter than the road
network distance method, we can subtract the total number of results from the road network
distance method from the total number of results from the Euclidean distance method to
determine the number of incorrect results. This approach allows us to assess the accuracy of
the Euclidean distance method in retrieving spatial data through range queries compared
to the benchmark provided by the road network distance method.

The accuracy of the range queries was determined for each query point within a range
of distances, including 1 km, 5 km, 10 km, 15 km, 20 km, and subsequent increments up to
150 km. We retrieved the sets of results for each specific distance range from the Euclidean
and the road network distance method. Subsequently, we calculated the accuracy using the
abovementioned formula, thereby considering the total number of results obtained from
each method. These accuracy results were then utilized to generate the graph presented in
Figure 19, which visually represents the accuracy of different values of k within each class
for the respective range distances. The graph indicates that only two categories exhibited
accuracy results for the 1 km range. The shaded region on the line graph represents the
confidence interval, which primarily lies above a 50% accuracy level. Due to the limited
number of cases within the 1 km range, no shading is present on the line corresponding
to this range. Despite Class One having the lowest point of interest density, some cases
demonstrated accuracy values comparable to the road network distance method within the
1 km range. Conversely, Class Five, which exhibited the highest point of interest density,
exhibited lower accuracy than Class One across the 1 km, 5 km, 10 km, and 15 km ranges.
Furthermore, the graph analysis reveals intriguing patterns regarding the relationship
between range and accuracy across different classes. Notably, all classes exhibited similar
trends: as the range increased, the accuracy initially decreased. However, as the range
continued to increase, an interesting pattern emerged. At a certain point, the accuracy began
to consistently and significantly improve for each class, thereby indicating the presence of
an optimal range beyond which accuracy starts to rise despite the increasing range. The
turning point at which accuracy started to improve varied across classes, with Class Five
exhibiting the earliest improvement at a relatively low range, followed by Class Four at a
slightly higher range, and so forth.

The accuracy analysis was conducted to compare the performance of the hospital
and ambulance datasets for each range and class. The accuracy difference between the
two datasets was plotted, following a similar process as the one used for kNN queries,
as shown in Figure 20. Interestingly, the hospital dataset exhibited higher accuracy than
the ambulance dataset, despite the latter having a higher number of POIs. In Class One,
for the range queries within 1 km and 5 km, there were no POIs within this range in the
hospital dataset. Similarly, in Class Five, only the ambulance dataset contained data within
the 1 km range. However, aside from these specific cases, the hospital dataset consistently
demonstrated higher accuracy across all ranges and classes. Additionally, it is essential
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to note that the shading area representing the accuracy for all ranges and classes in each
dataset consistently remained above the 50% threshold. However, a notable exception exists
in Class One, where the shaded region fell below 50% at specific ranges. This discrepancy
suggests that the accuracy of the range queries within those specific ranges was relatively
low for Class One. This observation concludes that the range queries’ accuracy values were
generally not uniformly high across all classes, as indicated by the shading area only above
50% accuracy.

Figure 19. Accuracy of the Euclidean distance method with range queries all samples.

(a)

(b)

(c)

Figure 20. Cont.
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(d)

(e)
Figure 20. Line graph plot with the different datasets (hospital, ambulance, and hospital and am-
bulance for range queries). (a) Class 1—line graph plot with the different datasets. (b) Class 2—line
graph plot with the different datasets. (c) Class 3—line graph plot with the different datasets.
(d) Class 4—line graph plot with the different datasets. (e) Class 5—line graph plot with the differ-
ent datasets.

5. Discussion

The primary objective of this research was to evaluate the accuracy of the Euclidean
distance method compared to the road network distance method. The Open Source Routing
Machine (OSRM) was utilized to extract the road network distances, which served as the
benchmark for comparison with the Euclidean distance method. OSRM provided a reliable
and efficient means of calculating the actual distances based on the road network topology.
By using OSRM as the benchmark, we were able to assess the accuracy of the Euclidean
distance method in capturing the actual distances along the road network. Furthermore,
the study aimed to comprehensively examine the unique characteristics associated with
each classification of query points and to rigorously evaluate the accuracy of each category.
Our analysis disclosed the accuracy rates of each query method when measured against the
Euclidean and road network distances, with the latter serving as the established benchmark.
In kNN queries, we observed a correlation between the accuracy and the number of k.
Specifically, we found that as the number of k increased, the accuracy for each class of query
points consistently decreased. This observation could be attributed to the intricate road
structure within the city. As the value of k rises, the algorithm considers a higher number of
nearby points, thus potentially leading to a greater diversity in road structures and terrain.
This diversity might introduce variations in the distances calculated, thereby impacting
the accuracy of the Euclidean distance method. The road network’s complexity, including
factors like one-way streets, intersections, and irregularities, could also contribute to this
phenomenon. This finding highlights the impact of the chosen value of k on the accuracy
of the Euclidean distance method. Regarding the range query, we identified a consistent
pattern across different classes, with each class exhibiting a similar trend except for the
turning point in the range value. The turning point, which represents the threshold where
the accuracy starts to increase, is influenced by the density of the POIs. Class Five showed
the earliest increase in accuracy, followed by Class Four, thus suggesting a relationship
between the class and the point at which accuracy begins to improve.
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However, the increased accuracy in this context may suggest that the distance range
adequately covers all surrounding points of interest (POIs). As previously mentioned in the
kNN case, where road structure influenced the decrease in accuracy, we saw a correlated
phenomenon here. The high-density class experienced a reduction in accuracy when
the range distance was less, thus indicating a potential interplay between road structure,
density, and range distance that impacts accuracy trends. Another insight gained from this
research is that many POIs do not necessarily guarantee high accuracy. Despite the hospital
dataset having fewer POIs than the ambulance dataset, the accuracy of the hospital dataset
was found to be higher. This observation suggests that when there are limited choices (few
POIs), the retrieved results using the Euclidean distance method may closely align with
those obtained from the road network. Nevertheless, as the number of available choices
increases, there is a likelihood of encountering slight differences in distances, thereby
potentially influencing the final results and impacting the overall accuracy. This significant
finding has the potential to contribute to future research endeavors substantially focused on
analyzing the conditions under which the Euclidean distance can be employed as a viable
trade-off between accuracy and computational time, particularly when considering the
classification of query points based on POI density. By highlighting the circumstances in
which this alternative metric performs acceptably across different density classes, our study
provides valuable insights for practical implementations. This understanding becomes
particularly crucial for scenarios where the computational efficiency gained from using
Euclidean distance outweighs the marginal decrease in accuracy, thereby offering a practical
solution for certain types of queries in real-world applications.

Previous studies have extensively investigated the Euclidean distance method’s accu-
racy and used the road network distance method as a benchmark. Notably, Hua, Xie, and
Tanin (2018) [29] employed Euclidean distance as a computationally efficient alternative for
estimating road network distance, specifically in group nearest neighbor (GNN) queries.
The experiments compared the Euclidean decider, which utilizes Euclidean distance, with
road network distance as a benchmark. Real road network graphs from various cities
created scenarios with different query points and POI distributions. The study varied
parameters such as the number of query points, POI density, value of k, and road net-
work structure. The results indicate that the Euclidean metric achieved high accuracy
levels, exceeding 74.7% for kNN queries and ranging from 86% to 95% for general GNN
queries, thereby showcasing its effectiveness in achieving a balance between accuracy and
computational efficiency in transportation services.

In comparison, our studies demonstrated high accuracy at certain values of k when
using kNN queries and achieved an accuracy rate above 50% for range queries. The results
from their approach for kNN queries showed significantly higher accuracy. This difference
may arise due to the influence of various parameters or variables affecting accuracy. The
substantial contrast in outcomes could be attributed to specific conditions, configurations,
or factors inherent in their approach compared to ours. Further investigation into the
particular variables or parameters contributing to this marked variation in accuracy would
be essential for a comprehensive understanding of the results.

Our study categorized the query points by utilizing the attribute weight derived from
counting the number of POI buffers overlaid with the mesh block containing the query
points. This approach enabled us to use the weight attribute to calculate the density using
a heatmap. However, it is important to acknowledge several limitations that may impact
the accuracy of the result. Firstly, the query point classification criteria, including the
weight attribute selection, the method employed for heatmap calculation, and geotypes,
can introduce variability into the results. Additionally, the road structure for each city
potentially affects the result of the POIs for the road network distance method, which
might impact the accuracy of the Euclidean distance. Furthermore, we recognize that there
may be an imbalance in the number of POIs across different cities. This could potentially
introduce bias in the analysis, as certain cities may have a higher concentration of POIs
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than others. This imbalance could influence the results, particularly when comparing the
accuracy of the Euclidean distance method across different cities.

By acknowledging these limitations, we demonstrate a critical awareness of the poten-
tial factors that could influence the accuracy and reliability of our study’s results.

6. Conclusions

In conclusion, our study aimed to evaluate the accuracy of the Euclidean distance
method compared to the road network distance method using kNN queries and range
queries, thus considering the classification of query points. The investigation brought
several significant insights.

Our findings unveiled several critical insights. Specifically, in kNN queries, peak
accuracy was achieved when k was set to one, thereby exceeding 85% across all classes.
However, with an increase in k, a consistent decrease in accuracy was observed, thereby
highlighting the sensitivity of results to the choice of k. Turning to range queries, a
uniform accuracy pattern emerged across classes, with the turning point influenced by the
varying range values. Notably, a higher density of POIs correlated with an earlier increase
in accuracy.

Furthermore, the comparative analysis between ambulance and hospital datasets
questioned the assumption that more POIs ensure superior accuracy. Despite containing
fewer POIs, the hospital dataset demonstrated higher accuracy, thus emphasizing the
complex interplay between dataset characteristics and method performance. Our study
contributes substantially by illuminating scenarios in which the Euclidean distance method
is a feasible compromise between accuracy and computational efficiency, particularly in
classifying query points based on POI density.

The discussion provides a detailed understanding of the relationship between accuracy
and the number of k in kNN queries. As k increased, the diversity in road structures and
terrain introduced variations, thus impacting accuracy. Similarly, the observed increase in
accuracy in range queries suggests that the distance range adequately covered surrounding
POIs. However, the study cautions about potential interactions between road structure,
POI density, and range distance influencing accuracy trends.

While our approach adds valuable insights to the existing body of research, we
acknowledge certain limitations. The query point classification criteria, the weight attribute
selection, the heatmap calculation method, and the consideration of different geotypes
introduce variability into our results. The impact of road structure on the accuracy of
POIs in the road network distance method and potential bias due to an imbalance in the
number of POIs across cities could influence the accuracy comparison of the Euclidean
distance method.

In future work, accounting for road structure in query point classification and address-
ing POI imbalances across cities will refine our understanding of the Euclidean distance
method’s performance. Additionally, exploring the impact of criteria for classification,
the number of samples, the road network algorithm for extracting the shortest route, the
weight attribute for heatmap calculation, and different geotypes (such as dense urban areas
and sparse rural areas) will provide a more comprehensive assessment. By doing so, we
aim to enhance the applicability of our findings to real-world scenarios while mitigating
potential biases and improving the robustness of our methodology.
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