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Abstract: With the development of electronic game technology, the content of electronic games
presents a larger number of units, richer unit attributes, more complex game mechanisms, and more
diverse team strategies. Multi-agent deep reinforcement learning shines brightly in this type of
team electronic game, achieving results that surpass professional human players. Reinforcement
learning algorithms based on Q-value estimation often suffer from Q-value overestimation, which
may seriously affect the performance of AI in multi-agent scenarios. We propose a multi-agent
mutual evaluation method and a multi-agent softmax method to reduce the estimation bias of Q
values in multi-agent scenarios, and have tested them in both the particle multi-agent environment
and the multi-agent tank environment we constructed. The multi-agent tank environment we have
built has achieved a good balance between experimental verification efficiency and multi-agent game
task simulation. It can be easily extended for different multi-agent cooperation or competition tasks.
We hope that it can be promoted in the research of multi-agent deep reinforcement learning.

Keywords: reinforcement learning; game AI; multi-agent Q-network mutual estimation; softmax
bellman operation; reinforcement learning environment

1. Introduction

The emergence and development of Artificial Intelligence in various key domains
has intrinsic ties with games. The earliest AI program was a draughts game written by
Christopher Strachey in 1951. It successfully ran for the first time on the Ferranti Mark
I universal electronic computer at the University of Manchester in the UK. Impressed
and influenced by Strachey and Turing, Arthur Samuel took on the draughts project’s
key points initiated by Strachey in 1952 and expanded it considerably over the years,
allowing the program to learn from experience. As one of the earliest cases of Artificial
Intelligence search technology, these advancements enabled the program to win a match
against a former draughts champion from Connecticut, USA. Samuel’s experiments and
accumulation in the game technology field helped him propose the concept of machine
learning in 1959.

In March 2016, Google’s Deep Mind developed the Alpha Go system, defeating the
then human world champion of Go, Lee Sedol, thus creating a global sensation. The Go
board is composed of 19 horizontal lines and 19 vertical lines, with a total of 19 × 19 = 361 in-
tersections. Each intersection on the Go board has three possibilities: a black stone, a white
stone, or empty. Therefore, Go has a staggering number of possible positions: 3 to the power
of 361. Each turn in Go has 250 possibilities, and a game can last up to 150 turns. As a result,
the computational complexity of Go is 250 to the power of 150, which is approximately 10
to the power of 170. However, the observable number of atoms in the entire universe is
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only 10 to the power of 80. This clearly demonstrates the complexity and variability of the
game of Go. In principle, AlphaGo uses a modified version of the Monte Carlo algorithm,
but more importantly, it enhances its learning effect by leveraging deep reinforcement
learning [1].

Reinforcement learning is a machine learning method that utilizes sequence informa-
tion consisting of actions from agents, states from the environment, and rewards through
interaction between agents and the environment [2]. The Q function is a fundamental con-
cept in reinforcement learning, which can output the value of action a in state s. Learning
an accurate Q function can help policy functions update in the correct direction. Due to
the influence of updated formulas, inflexible function estimation methods, and noise, the
Q function often has bias in estimating the true Q value [3,4]. The deviation in Q-value
estimation may lead to the algorithm converging to a suboptimal policy, resulting in a
decrease in algorithm performance.

Bright possibilities also exist for the application of deep reinforcement learning in
multi-agent systems like drone formation control, cooperative-control multi-robots, and
traffic vehicle control, all of which can significantly improve collective gains and enhance
the quality of human life. Multi-agent reinforcement learning can be seen as the expansion
of single-agent reinforcement learning algorithms in a multi-agent scenario. The migration
of policy gradient algorithms based on Q-function learning to multi-agent scenarios will
bring more severe impact due to the bias in Q-function estimation. The bias in the estimation
of the Q-function will increase the variance of the network gradient and affect the update
process of the policy network. In a multi-agent environment, with the increase in agents,
the difficulty of updating the policy network in the correct direction increases exponentially,
so such a bias will bring greater difficulties to policy learning in multi-agent scenarios.

This article primarily revolves around the research of the Q-value estimation bias
problem in Multi-Agent Deep Reinforcement Learning, and constructs a new multi-agent
experimental environment. The detailed research objectives are as follows:

1. The method of combining multiple Q networks to reduce the Q-value estimation
bias is further studied, according to the feature of all agents having the same structured Q
network in the architecture of centralized training with distributed execution in multi-agent
systems. In this research objective, we aim not to increase the network parameters of the
model, but to alleviate the problem of Q-value underestimation caused by dual Q networks
by organizing multi-agent systems.

2. The method of using softmax operation to reduce Q-value estimation bias is further
studied, and the softmax operation method is applied to multi-agent algorithms. This
research aims to utilize the characteristics of softmax to reduce the overestimation bias of
Q-value, and to simplify the action space used for computation in multi-agent systems,
thereby reducing computational load.

3. For scientific research on multi-agent reinforcement learning, we have developed
the multi-agent tank environment of the University of Electronic Science and Technology
of China (UESTC-tank). This is a tank simulation game environment with multiple units
and scenes, which can generate cooperative, adversarial, and mixed task scenarios. It can
achieve competitions of player vs. player, player vs. AI, AI vs. AI types, and collect battle
data for model training. It can support unit editing, map editing, and rule editing, and has
good scalability. We tested our proposed algorithm on UESTC-tank and achieved good
experimental results.

The rest of this paper is arranged as follows: Firstly, we introduced the research
context in Section 2. Then, in Sections 3 and 4, we introduced the multi-agent twin-delayed
deep deterministic policy gradient and multi-agent soft-maximization twin-delayed deep
deterministic policy gradient algorithms. In Sections 5 and 6, we introduced the multi-
agent particle environment and multi-agent tank environment, conducted experiments,
and analyzed the results. After summarizing our work so far, Section 7 provides limitations
and conclusions of the paper.
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2. Research Background
2.1. Deep Reinforcement Learning

Reinforcement learning can be modeled as an agent is faced with a sequential decision
making problem. At time t, the agent observes state st from the environment, and adopts
action at based on its policy. Due to the interaction of the agent, the environment transitions
from state st to the next state st + 1 and returns a reward r to the agent. If the environment
transitions to a termination state, we call it the end of an episode. The goal of reinforcement
learning is to enable agents to learn an optimal policy to obtain the maximum cumulative
reward (called return) from the entire episode.

Reinforcement learning algorithms can be classified into policy function-based [5]
and value function-based [6]. A common value function is the action value function, also
known as the Q function, which inputs the current state of the environment and the action
taken by the agent, and outputs an estimate of the expected return for that state–action
pair. When the agent learns the optimal Q function, the optimal policy can be to select
the action that can maximize the output value of the optimal Q-function in any state. In
deep reinforcement learning, we use deep neural networks to fit the policy function, value
function, and Q function, hence also known as policy networks, value networks, and
Q networks.

2.2. Deep Q-Learning Algorithms

Mnih and others [6] were the first to integrate deep learning and traditional reinforce-
ment learning algorithm, thus proposing the DQN algorithm. This pioneering piece of
work marked the first end-to-end deep reinforcement learning algorithm using only Atari
game pixel data and game scores for reinforcement learning state information. Finally, the
trained network could output action-value functions or Q-values for each action. From this,
the decision with the highest corresponding Q-value is selected. The entire structure of the
DQN algorithm is shown in Figure 1.

Figure 1. DQN Algorithm Flowchart. DQN uses deep neural networks to fit the Q function, selects
the action that maximizes the Q value through a ε-greedy policy, interacts with the environment,
and stores the obtained samples in replay memory. DQN continuously extracts samples from replay
memory, performs gradient descent based on the loss function, and updates the parameters of the
Q-network. The parameters of the Q-network are periodically copied to the target Q-network, which
participates in the calculation of the loss function and makes Q-learning more stable.

The DQN algorithm introduces the experience replay mechanism, which stores the
sample tuple (s, a, r, s′) of the agent at each time step into an experience replay pool. During
reinforcement learning training, a batch of samples is sampled from the experience replay
pool and the neural network is updated using gradient descent. The use of experience replay
mechanism greatly improves the data utilization of reinforcement learning algorithms and
to some extent reduces the correlation between training data and sequences.

Another important contribution of the DQN algorithm is the concept of the target
network, which achieves stable value estimation. The target value y for updating the Q
network by computing the loss function is represented as:
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y = r + γ max
â

Qθ′
(
s′, â

)
(1)

where Qθ′ represents the target network. γ is a discount factor (0 < γ < 1), used to give a
preference for rewards reaped sooner in time. â is the action that allows the Q function to
take the maximum value. The structure of the target network is the same as the Q network,
but its parameters are only copied from the Q network every certain number of iterations.

The Q network updates its parameters in each round by minimizing the loss function
defined in Equation (2):

L(θ) = E(s,a,r,s′)

[
(y−Qθ(s, a))2

]
(2)

E represents mathematical expectation, which is calculated using Monte Carlo esti-
mation method in practice, taking the average value of batch samples to estimate. The
neural network is updated to make the Q network approximate the target value y, which
essentially applies the Bellman equation. The use of target network helps improve the
stability of the algorithm, and experiments have shown that NPC controlled by DQN
algorithm can reach the level of professional players in many Atari games.

The DDPG [7] algorithm can be seen as a combination of Deterministic Policy Gradient
(DPG) algorithm and deep neural networks, and it can also be seen as an extension of DQN
algorithm in a continuous action space. It can solve the problem of the DQN algorithm’s
inability to directly apply to continuous action space, but there is still the problem of
overestimation of Q values. The DDPG algorithm simultaneously establishes a Q network
(critic) and a policy network (actor) [8]. The Q network is the same as the DQN algorithm,
updated using a temporal difference method. The policy network utilizes the estimation of
the Q network and is updated using policy gradient method.

In the deep deterministic policy gradient algorithm, the policy network is a determin-
istic policy function represented as πϕ(s), with the learning parameters represented as ϕ.
Each action is directly computed by a = πϕ(s), without sampling from a random policy.

2.3. Estimation Bias of Q-Learning Algorithms

When an agent executes action a in state s, the environment will transition to state s′

and return an immediate reward r. In the standard deep Q-learning algorithm, we update
the Q-function using Equation (1). When using neural networks and other tools as function
approximators to handle complex problems, there can be errors in the estimation of Q
values, which means:

Q
(
s′, â

)
= Q∗

(
s′, â

)
+ Y â

s′ (3)

where Yâ
s′ is a zero-mean noise term, Q∗ is a Q function that can output the real Q value, or

the optimal Q function.
However, when using the maximum operation to select actions, there can be errors

between the estimated Q values and the real Q values. The error is represented as ZS:

ZS
def
= γ

(
max

â
Q
(
s′, â

)
−max

â
Q∗

(
s′, â

))
(4)

Considering the noise term Yâ
s′ , some Q values may be underestimated, while others

may be overestimated. The maximization operation always selects the maximum Q value
for each state, which makes the algorithm overly sensitive to the high estimated Q values
of the corresponding actions. In this case, the noise term causes E[ZS] > 0, resulting in the
problem of overestimation of Q values.

The TD3 [9] algorithm introduces clipped Double Q-Learning on the basis of the
DDPG algorithm, by establishing two Q networks Qθ1 , Qθ2 to estimate the value of the next
state, and using the minimum estimated Q-value of two target networks to calculate the
Bellman equation:
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y = r + γ min
i=1,2

Qθ′i

(
s′, πϕ

(
s′
))

(5)

where y is the update target for Qθ1 and Qθ2 , and πϕ is the policy network.
Using clipped Double Q-Learning, the value estimation of target networks will not

bring excessive estimation errors to the Q-Learning target. However, this update rule
may cause underestimation. Unlike actions with overestimated Q values, actions with
underestimated Q values will not be explicitly updated.

Here is proof of the underestimation of the clipped Double Q-Learning, the two
outputs values (Q1 and Q2) of the Q network, and that Q∗i is the real Q value. The errors
brought by the fitting of the two networks can be defined as:

Yi = Qi
(
s′, πϕ

(
s′
))
−Q∗

(
s′, πϕ

(
s′
))

(6)

Assuming errors Y1 and Y2 are two independent random variables with nontrivial
zero-mean distributions, the minimization operation of the TD3 algorithm introduces an
error. The error denoted as D is as follows:

D = r + γ min
i=1,2

Qi
(
s′, πϕ

(
s′
))
−

(
r + γQ∗

(
s′, πϕ

(
s′
)))

= γ min
(

Y1, Y2
)

(7)

where r is the reward and γ is the discount factor. Let Z be minimum value between Y1,
Y2, and we have:

E[Z] = E[Y1] + E[Y2]− E[|Y1 −Y2|]/2 (8)

Obviously, there is E(Y1) = 0, E(Y2) = 0 and E[|Y1−Y2|] ≤ 0. Therefore, we can deduce
that E(D) ≤ 0, which means that the clipped Double Q-Learning usually has underestimation.

Specifically, in order to have a more intuitive perception of underestimation, we
can assume that the error follows an independent and uniform distribution in the range
[−ε, ε]. Since the estimated Q values and the true Q values have error Yi that follows a
uniform distribution, the probability density function and the probability distribution are
represented by f (x) and P

(
Yi > x

)
, respectively:

f (x) =
{ 1

2ε , x ∈ [−ε, ε]
0, x ∈ else

P
(

Yi > x
)
=


1, x ≤ −ε
ε−x
2ε , x ∈ (−ε, ε)

0, x ≥ ε

(9)

Also, since Y1 and Y2 are independent, it follows that:

P
(

min
(

Y1, Y2
)
> x

)
= ∏

i=1,2
P
(

Yi > x
)

=


1, x ≤ −ε(

ε−x
2ε

)2, x ∈ (−ε, ε)
0, x ≥ ε

(10)

Let Z be the minimum value between Y1, Y2. The probability density function and
cumulative distribution function of Z are represented as fZ(x) and FZ(x), respectively:

fZ(x) =
{ ε−x

2ε2 , x ∈ [−ε, ε]

0, x ∈ else

FZ(x) =


0, x ≤ −ε

1−
(

ε−x
2ε

)2, x ∈ (−ε, ε)
1, x ≥ ε

(11)
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Therefore, the expected value of Z can be calculated as follows:

E[Z] =
∫ ε

−ε
x fZ(x)dx =

∫ ε

−ε
x
(

ε− x
2ε2

)
dx = −1

3
ε (12)

Thus, it has been theoretically proven that the Q network update in the TD3 algorithm
will result in an underestimation error for the true Q values.

2.4. Multi-Agent Twin Delayed Deep Deterministic Policy Gradient (Matd3)

The training modes of multi-agent deep reinforcement learning include Decentralized
Training Decentralized Execution (DTDE), Centralized Training Centralized Execution
(CTCE), and Centralized Training Decentralized Execution (CTDE), as shown in Figure 2.

(a) (b) (c)
Figure 2. Multi-agent reinforcement learning training modes: (a) DTDE, each agent i makes decisions
based on its own observation information, and each agent is relatively independent, with no infor-
mation sharing between agents; (b) CTCE, which receives observation information from all agents
through a centralized policy function and outputs the joint probability distribution of all agent action
spaces; (c) CTDE, during the execution process of agents, each agent inputs its own local observation
information into the policy function and outputs the probability distribution of the action space.
However, during the training process, the agent can obtain additional information from other agents.

The MATD3 [10] algorithm extends the single-agent TD3 algorithm to a multi-agent
environment, adopting the centralized training decentralized execution reinforcement
learning framework. During the behavior execution process of the agents, each agent
inputs their local observation information into the policy network, outputs deterministic
actions, and during the training process, the agents can obtain additional information from
other agents to evaluate their own actions.

The problem of Q network estimation bias will have a more severe impact when
transferring policy gradient algorithms with Q-functions to a multi-agent scene, because
the estimation bias of the Q network can increase the variance of the neural network
gradient and affect the update process of the policy network neural network. In a multi-
agent environment, as the number of agents increases, the difficulty of updating the policy
function in the correct direction increases exponentially. The MATD3 algorithm simply
extends the TD3 algorithm to a multi-agent environment, and there are still problems with
the underestimation of Q values. In a multi-agent environment, this bias will have a greater
impact on the agent’s strategy learning.

3. Multi-Agent Mutual Twin Delayed Deep Deterministic Policy Gradient (M2ATD3)

In multi-agent scenarios, single Q network algorithms such as Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) have problems of overestimation. However, twin
Q network’s MATD3 algorithm, while resolving the overestimation of Q value, inevitably
leads to underestimation. The Multi-Agent Three Delayed Deep Deterministic Policy
Gradient (MATHD3) algorithm is proposed to create a third Q network. The overestimated
results from it, and the underestimated results from the minimization of the first two Q
networks, are added together by adjusting the weight hyperparameter α, and an unbiased
estimate of the actual Q value can be obtained. In multi-agent algorithms, we denote the
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observation received at runtime by agent i as oi, and the full state information as s, from
which the observations oi are derived. The Q network update target yi of the MATHD3
algorithm is as follows:

yi = ri + γα min
j=1,2

Qπ′
i,j
(
s′, a′1, · · · , a′n

)
+ γ(1− α)Qπ′

i,3
(
s′, a′1, · · · , a′n

)
(13)

where a′i is obtained by adding noise ϵ to the output of the target policy network πϕ′i
of

agent i based on its observation o′i , that is: a′i = πϕ′i

(
o′i
)
+ ϵ.

While the MATHD3 algorithm effectively reduces bias in Q value estimates, it requires
introducing a new Q network, leading to an increase in model parameters and increased
model training difficulty.

Psychological studies show that humans exhibit overconfidence, typically estimating
themselves beyond their actual abilities [11]. Introducing external evaluations can mitigate
this phenomenon. Weinstein suggests that people are unrealistically optimistic because
they focus on factors that improve their own chances of achieving desirable outcomes and
fail to realize that others may have just as many factors in their favor [12]. Inspired by this,
we propose the Multi-Agent Mutual Twin Delayed Deep Deterministic Policy Gradient
(M2ATD3) algorithm. The training mode of M2ATD3 algorithm is shown in Figure 3.

Figure 3. The training mode of M2ATD3. In this figure, rectangles represent networks, circles
represent values, and dashed boxes represent sets or processes. Under the CTDE framework, each
agent, equipped with Q networks of the same structure, can obtain shared information and make
estimates of the current action-state value. The Q network of other agents can act as external critics,
estimating the Q value of agent i and taking the average, denoted as the Qavg. Agent i obtains the
update objective yi of the Q network through weighted sum of min

(
Qi,1, Qi,2

)
and Qavg.

Single Q networks, affected by noise, always overestimate Q values. Averaging the
estimated Q values from each agent’s Q network results in a slightly overestimated mutual
Q value estimate. The mutual estimate of the Q value and the minimum value of two Q
network estimates for agent i are weighted together to obtain the Q network update target
yi of the M2ATD3 algorithm:

Qπ′
avg

(
s′, a′1, · · · , a′n

)
=

1
n ∑

i=1,··· ,n
Qπ′

i,1
(
s′, a′1, · · · , a′n

)
yi = ri + γα min

j=1,2
Qπ′

i,j
(
s′, a′1, · · · , a′n

)
+ γ(1− α)Qπ′

avg
(
s′, a′1, · · · , a′n

) (14)

The mutual estimate of the Q value is overestimated, and the minimization of the
twin Q network will lead to underestimation. By adjusting the weight hyperparameter
α, in theory, an unbiased estimate of the true Q value of agent i can be obtained. The
M2ATD3 algorithm reduces the Q value estimation bias without needing to introduce
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a new Q network. Moreover, the operation of taking the average of Q value estimates
can also reduce the variance of Q value estimate errors [13], making the training process
more stable.

We have maintained the delayed policy updates used in the TD3 algorithm. The TD3
algorithm proposes that the policy network should be updated at a lower frequency than
the value network, to first minimize error before introducing a policy update. This method
requires updating the policy and target networks only after a fixed number of updates d to
the critic.

The M2ATD3 algorithm pseudo code can be found in Algorithm 1.

Algorithm 1 Multi-Agent Mutual Twin Delayed Deep Deterministic policy gradient

initialize Replay buffer D and network parameters
for t = 1 to T do

Select action ai ∼ πi(oi) + ϵ
Execute action a = (a1, · · · , an) and get reward ri, transition to next state s′

Store the state transition tuple (s, a, r1, · · · rN , s′) into D
s← s′

for agent i = 1 to N do
A sample batch of size S is sampled from D

(
sb, ab, rb, s′b

)
Qπ′

avg = 1
n ∑i=1,··· ,n Qπ′

i,1

(
s′b, a1, · · · , an

)∣∣∣
ak=π′k(o′bk )+ϵ

yb = rb
i + γα minj=1,2 Qπ′

i,j

(
s′b, a1, · · · , an

)∣∣∣
ak=π′k(o′bk )+ϵ

+ γ(1− α)Qπ′
avg

Minimize the loss of two Q-functions, j = 1,2:

L
(
θj
)
= 1

S ∑b

(
Qπ

i,j

(
sb, ab

1, · · · , ab
n

)
− yb

)2

if t mod d = 0 (d is the policy delay update parameter) then
update πi:
∇ϕi J ≈ 1

S ∑b∇ϕπϕi

(
ob

i

)
∇ai Q

π
i,1

(
sb, ab

1, · · · , πϕi

(
ob

i

)
, · · · , ab

n

)
Update target network:
θ′ ← τθ + (1− τ)θ′

ϕ′ ← τϕ + (1− τ)ϕ′

where τ is the proportion of target network soft updates
end if

end for
end for

4. Multi-Agent Softmax Twin Delayed Deep Deterministic Policy Gradient (MASTD3)
4.1. Theory Related to Softmax Bellman Operation

The standard Bellman operator is defined as:

T Q(s, a) = R(s, a) + γ ∑
s′

P
(
s′ | s, a

)
max

a′
Q
(
s′, a′

)
(15)

We define the softmax Bellman operation symbol as:

Tsoft Q(s, a) = R(s, a) + γ ∑
s′

P
(
s′ | s, a

) exp(τQ(s′, a′))
∑ā exp(τQ(s′, ā))

Q
(
s′, a′

)
(16)

The optimal action-value function Q∗( s, a) outputs the maximum cumulative return
that can be obtained after choosing action a at state s. Q∗ is the fixed point of the standard
Bellman operator T Q; that is, starting from any starting Q0, we have:

lim
k→∞
T kQ0 = Q∗ (17)
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However, due to the noise of the function approximator, the maximization operation
of the standard Bellman operator always selects the maximum Q value for each state. This
makes the algorithm exceptionally sensitive to the overestimated Q value of the action,
and the overestimated Q value will be explicitly updated, which leads the Q value to the
overestimation problem.

Softmax operation is generally considered to result in suboptimal action-value function
and interfere with the convergence of the Bellman operator. Zhao Song et al. [14] proved
that the softmax Bellman operator can quickly converge to the standard Bellman operator,
and for any(s, a), when k approaches positive infinity, the difference between T k

soft Q0( s, a)
and Q∗( s, a) is bounded:

lim sup
k→∞

T k
soft Q0( s, a) ≤ Q∗( s, a)

lim inf
k→∞

T k
soft Q0( s, a) ≥ Q∗( s, a)− γ(m− 1)

(1− γ)
max

{
1

τ + 2
,

2Qmax

1 + exp(τ)

} (18)

Through experiments, Zhao Song et al. discovered that the combination of softmax
Bellman operator and Deep Q Network yields better results than the Double Q-learning
algorithm. They proved that the softmax Bellman operator can reduce the high estima-
tion bias of Q value and believe this is the key reason for the superior performance of
this method.

4.2. Multi-Agent Softmax Operation

The method of utilizing softmax operator to reduce overestimation of Q value can also
be applied in multi-agent deep reinforcement learning algorithms. However, as the number
of agents increases, the action space of the task will increase exponentially. It is impractical
to simply apply the softmax operator to every possible combination of multi-agent joint
actions, and the estimated Q value given by the Q network for the joint action, which is
rarely sampled, is unreliable.

Ling Pan and others proposed an approximate softmax operator in Regularized
Softmax Deep Multi-Agent Q-Learning (RES) [15]. Firstly, find the joint action â =
maxâ Qtot(s, a) that makes the joint Q value the greatest. For the agent i, fix the actions
of other agents â−i and only change the action of the agent a to obtain the corresponding
action subset Ai = {(ai, â−i) | ai ∈ A}. The approximate action space Â = A1 ∪ · · · ∪ An is
obtained by combining the action subsets of all agents. The approximate softmax operator
used in the RES algorithm is to use this approximate action space rather than the complete
action space for Q value softmax operation calculation. Ling Pan and others proved that
the difference brought by the calculation using the approximate action space and the com-
plete action space is bounded, and because the approximate softmax operator reduces the
dependence on unreliable joint Q values, this method performs better than the softmax
operator using the complete action space.

Inspired by the Softmax Deep Double Deterministic Policy Gradients (SD3) [16] and
RES, this paper applies the softmax operator to multi-agent algorithms and proposes the
MASTD3 algorithm. Firstly, the MASTD3 algorithm further reduces the action space used
for Q value softmax operation calculation in the choice of action space.

Suppose there are N agents in a multi-agent task, each agent action space is of size K,
the complete action space includes all permutations and combinations of the actions, and
the softmax operation requires computing K to the power of N Q values. The approximate
action space proposed in the RES algorithm, while traversing the action space of a single
agent, will fix the optimal action of the other agents, and then merge each agent’s sub
action space as the approximate action space, the softmax operation needs to calculate K
times N Q values. This article believes, within the structure of the MASTD3 algorithm, the
Q network of the agent i can make a reliable estimate of the (s, a) |a∈Ai state–action pair,
but the estimate of the (s, a) |a∈A−i state–action pair formed through changes in the actions
of other agents is not accurate. Therefore, in the simple softmax operator proposed in this
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article, when agent i performs the softmax operation calculation on the Q value, only the
sub-action space Ai containing all of its own actions, while the actions of other agents are
fixed, is considered, and each agent only needs to calculate Q values K times:

softmaxτ,i(Qi(s, ·)) = ∑
a∈Ai

exp(τQ(s, a))
∑a′∈Ai

exp(τQ(s, a′))
Qi(s, a) (19)

where τ is the temperature parameter in the softmax operation, controls the level of
exploration versus exploitation in decision-making.

The softmax operator will lead to underestimation of the Q value, and the high estimate
Q value obtained by using the twin Q network maximization operation to perform the
softmax operation can alleviate the impact of underestimation. Therefore, the Q network
update target yi of the MASTD3 algorithm is as follows:

A′i =
{(

a′i, π
(
s′−i

))
| a′i ∈ A

}
,

yi = ri + γ softmaxτ,i

(
max
j=1,2

Qπ
i,j
(
s′, a′

)
| a′ ∈ A′i

)
(20)

5. The Multi-Agent Particle Environment Experiment

The multi-agent particle environment was used as the experimental environment in
this study, proposed by Lowe et al. [17], and used for the verification of MADDPG algorithm.
The multi-agent particle environment is a recognized multi-agent reinforcement learning
environment [10,14,17], including different tasks, covering competition, cooperation, and
communication scenarios in multi-agent problems. The particle environment is composed
of a two-dimensional continuous state space, in which agents move to fulfill specific tasks.
The state information includes the agent’s coordinates, direction, speed, etc. The shape
of the agent is spherical, and actual collision between agents is simulated through rigid
body collision. Figure 4 displays the cooperative communication task and the cooperative
navigation task for the particle experiment.

Cooperative communication task: This task involves two types of cooperative agents
who play the roles of speaker and listener, respectively, and there are three landmarks with
different colors in the environment. In each round of the game, the listener’s objective is to
reach the designated color landmark, and the reward obtained is inversely proportional
to the distance from the correct landmark. The listener can obtain the relative position
and color information of the landmarks, but they cannot identify the target landmark on
their own. The observation information for the speaker is the color information of the
target landmark, and they send messages at every moment to help the listener reach the
designated landmark.

Cooperative navigation task: This task involves N cooperative types of agents and
N landmarks. The aim of the task is for the N agents to move to different N landmarks,
respectively, while at the same time avoiding collisions with other agents. Each agent’s
observation information comprises its own and the landmarks’ relative position information
and the relative position information with other agents. The reward function is calculated
based on the closeness of each agent to its landmark—the closer it is, the higher the reward.
Additionally, each agent actually occupies a certain physical volume and will be punished
when it collides with other agents.

Under the multi-agent particle environment, the M2ATD3 algorithm proposed in this
paper was compared with the MASTD3 algorithm, the previous MATD3 algorithm, and
the MADDPG algorithm. Below is a presentation of the hyperparameter settings for this
study. To ensure the fairness of the experiment, general parameters were set uniformly,
learning rate α = 0.01, batch sample size N = 1024. All algorithms share the same neural
network structure, i.e., two fully connected layers with a width of 64 serving as the hidden
layer of the policy network and Q network. The activation function of the neural network
used Rectified Linear Units (Relu), and all experiments employed Adam as the optimizer
of the neural network.
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(a) (b)

Figure 4. The Multi-Agent Particle Environment: (a) Cooperation Communication Task. In this
example, the speaker needs to inform the listener that the target landmark is red landmark M3, and the
listener needs to approach the correct landmark based on the speaker’s information. (b) Cooperation
Navigation Task. In this example, agent 1 needs to approach green landmark M1, agent 2 needs to
approach blue landmark M2, agent 3 needs to approach red landmark M3, and they should try to
avoid colliding with each other while moving.

5.1. Q Value Estimation Bias Experiment

This article conducted a Q-value estimation bias experiment based on a cooperative
navigation task in the particulate environment. By sampling from the experience replay
pool to obtain samples of actions, states, and reward information to calculate the real
Q-value and the estimated Q-value. In state s and action a, the average of 200 rounds of
100 steps’ cumulative rewards calculation is taken as the estimated value of the real Q-value.
The comparison of the approximate value obtained through the Q network output with the
real Q-value can reflect the situation of Q-function estimation bias of different algorithms.

As shown in Figure 5, the lines marked with crosses represent the Q-value estimated
by the neural network, and the lines marked with triangles represent the real Q-value.
In the MADDPG algorithm, the blue line with the triangle logo’s Q-value is higher than
the orange line, implying that the MADDPG algorithm has an over-estimation, which is
more apparent in the early training; under the MATD3 algorithm, the blue line with the
triangle logo’s Q-value is lower than the orange line, indicating that the MATD3 algorithm
actually has an under-estimation. Under the M2ATD3, MASTD3, and other algorithms,
the blue line with the triangle logo’s Q-value is lower than the orange line, which means
that M2ATD3, MASTD3, and other algorithms actually have an under-estimation, and
the degree of underestimation is similar to that of the MATD3 algorithm, and it can be
observed that the real Q-value of MATD3, M2ATD3, MASTD3, and other algorithms are
higher than the real Q-value of the MADDPG algorithm, reflecting from the side that these
three kinds of algorithms’ policies are better.

The Q-value estimation bias comparative experiment can qualitatively reflect whether
different algorithms have overestimation or underestimation. However, due to the complex-
ity, randomness, and instability of multi-agent games, it is difficult to accurately calculate
the true Q-values. Therefore, it is difficult for us to reliably compare the degree of Q-value
underestimation of MATD3, M2ATD3, and MASTD3 algorithms, and further research is
needed through performance experiments.
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(a) (b)

(c) (d)
Figure 5. Q-value estimation bias comparative experiment based on cooperative navigation task
in MPE. The Q-values estimated by the Q-network and the true Q-values are shown. The results
are averaged across 5 runs and 95% CIs of the mean are shown for the estimated values. (a) DDPG,
(b) MATD3, (c) M2ATD3, (d) MASTD3.

5.2. Algorithm Performance Experiment

In this section, the M2ATD3 algorithm and the MASTD3 algorithm are verified with
the cooperative communication task and the cooperative navigation task in the particulate
environment, and compared with the MADDPG algorithm and the MATD3 algorithm. All
the experiments were trained for 60,000 steps. The experiment results are as shown in
Figure 6.

(a) (b)
Figure 6. Comparative experiments using different Q-based multi-agent algorithms in MPE. Shown is
the mean episodic reward over the last 1000 episodes, shaded areas are the 95% confidence intervals
of the mean, averaged across 20 trials. (a) Cooperative Communication Task, (b) Cooperative
Navigation Task.



Algorithms 2024, 17, 36 13 of 18

As shown in Figure 6, in the Cooperative Communication Task and the Cooperative
Navigation Task, the performance of the MATD3 algorithm is superior to the MADDPG
algorithm, and both the M2ATD3 algorithm and the MASTD3 algorithm have achieved
higher total rewards than the MATD3 algorithm.

As shown in Equation (14), hyperparameters α determine the proportion of the clipped
double Q value to the average Q value when calculating the updated target value yi, and
select the appropriate hyperparameter α being able to balance the impact of underestimation
of clipped double Q and overestimation of average Q.

As shown in Figure 7, in the cooperative communication task and the cooperative
navigation task, the M2ATD3 algorithm receives lower rewards when the α is set to 0.2
or 0.8, indicating that the low estimation of Q value caused by the clipped Double Q-
Learning or the high estimation of Q value caused by the average Q value estimates will
have a negative impact on the algorithm. However, the M2ATD3 algorithm receives the
highest reward when the α is set to 0.5, indicating that by balancing the two Q-value
estimation methods, reducing the bias in Q-value estimation can improve the performance
of the algorithm.

(a) (b)
Figure 7. Comparative experiments using different hyperparameter α value on the M2ATD3 algo-
rithm in MPE. Shown is the mean episodic reward over the last 1000 episodes, shaded areas are the
95% confidence intervals of the mean, averaged across 20 trials. (a) Cooperative Communication
Task, (b) Cooperative Navigation Task.

6. Multi-Agent Tank Environment

Games have long been benchmarks and testbeds for AI research. Yunlong Lu et al. [18]
held two AI competitions of Official International Mahjong, and claim that Mahjong can
be a new benchmark for AI research. In order to further investigate the performance
of M2ATD3 and MASTD3 algorithms, we searched for existing reinforcement learning
game environments. The Atari gaming environment [19] is rich in content, but it is mainly
a single-agent gaming environment; StarCraft [20] and Honor of Kings [21] are multi-
agent environments, but the game state space is too large, the game randomness is too
much, and the game running mechanism is protected. This places high demands on
training resources and makes it difficult to set specific challenge scenarios according to
research needs. Therefore, this paper referred to the classic “Tank Battle” game content
and developed a multi-agent tank environment and its multi-agent reinforcement learning
framework based on pygame and pytorch. This experimental environment can reflect the
performance of different algorithms in real games, with suitable training scales, and can
easily create different types of challenge scenarios according to research needs.

6.1. Introduction to the Multi-Agent Tank Environment

The Multi-agent Tank Environment is a game that simulates a tank battle scenario. As
shown in Figure 8, the environment is divided into two types: the scoring task and the
battle task. In the scoring task, the goal is for the AI-controlled tanks to collide with as
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many scoring points as possible within a certain number of steps. In the battle task, the
two teams of tanks win by firing bullets to destroy enemy tanks or the enemy base.

(a) (b)
Figure 8. Multi-agent Tank Environment. (a) Scoring task, (b) battle task.

Common units in the game include: tanks, which have a certain amount of hit points
(HP). When hit by a bullet, the tank will lose HP, and when the HP drops to 0, it is
considered destroyed. Tanks can move and shoot. The shooting action will fire a bullet
in the current direction of the tank. The bullet will be destroyed when it collides with an
object or flies out of the map boundary. Bases also have a certain amount of HP. When hit
by a bullet, the base will lose HP, and when the HP drops to 0, it is considered destroyed.
The base cannot move. There are brick walls that can be destroyed by bullets, and stone
walls that cannot be destroyed by bullets. The game map can be created and edited using
xlsx format files.

Each agent in the game can obtain local observations, which include unit features and
image features. The unit features are given in the order of friendly base, friendly tank,
enemy base, and enemy tank, including each unit’s survival, HP, absolute position, relative
position, orientation, etc. These features are normalized. The image features use a six-
channel binary image to represent whether there are stone walls, brick walls, friendly units,
enemy units, friendly bullets, and enemy bullets within a 25 × 25 range near the agent. If
the corresponding unit exists, the value is assigned to 1; if not, the value is assigned to 0. By
using the six-channel binary image, the agent’s complete nearby situation can be depicted.
Figure 9 shows an example of graphical features of multi-agent tank environments. If the
positions where the channel value is 1 are drawn as the channel index, and the positions
where the value is 0 are not drawn, a complete image feature can be drawn as shown in
Figure 9b.

(a) (b)
Figure 9. Example of image features in Multi-agent Tank Environment. (a) Original image, (b) image
features. Draw the positions with a value of 1 for each channel as the channel index, and do not draw
the positions with a value of 0 to obtain a diagram of 6 channel combinations.

The deterministic policy of the reinforcement learning algorithm enables the agent
to make decisions in a continuous action space, which is more intuitive in video games.
For the deterministic policy of the reinforcement learning algorithm, we design the agent’s
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action space as shown in Figure 10. We received inspiration from the way characters are
controlled by the joystick in video games to design our action space for moving, as shown
in Figure 10a, where we use a 2D action to control the tank’s movement. Each movement
action ranges from −1 to 1, corresponding to the joystick’s movement from left to right
or from bottom to top. We determine the direction of the tank’s movement based on the
maximum absolute value of the action in the horizontal or vertical direction. If the absolute
value of the action in both the horizontal and vertical directions is less than 0.3, which is
analogous to the joystick being in the blind area, the tank will not move. Similarly, we use
a 1D action to control the tank’s shooting, as shown in Figure 10b. The shooting action
ranges from −1 to 1. When the value of the shooting action is greater than 0, the tank will
shoot; otherwise, it will not shoot. The tank itself has a shooting cooldown. During the
shooting cooldown, even if the agent issues a shooting action, the tank still cannot fire.

(a) (b)
Figure 10. Example of action space in Multi-agent Tank Environment. (a) Move action, (b) shot action.

6.2. Multi-Agent Tank Environment Experiment

The process of deep reinforcement learning training using the Multi-agent Tank En-
vironment is as follows: First, a corresponding model is created for each agent based
on the selected algorithm. The model obtains actions through the policy network and
interacts with the Multi-agent Tank Environment. The sequence samples obtained from the
interaction are sent to the sample pool. When the samples stored in the sample pool reach
a certain number, the training of the policy network and Q network of the model will start,
and the model parameters will be updated at certain step intervals.

All algorithms in the experiment use the same neural network structure. A two-
layer full connection layer with a width of 64 is used to process the unit features, and a
convolutional neural network (CNN) is used to process the image features. The processed
unit features and image features are concatenated and used as the input of the policy
network and Q network. A two-layer full connection layer with a width of 64 is used as
the hidden layer of the policy network and Q network. The network structure is shown in
Figure 11.

Figure 11. Neural network structure diagram of the Multi-agent Tank Environment experiment.
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We conducted an experiment on the performance of multi-agent deep reinforcement
learning algorithms in the scoring task. This task requires the AI to control three tanks
to collide with as many scoring points as possible within 500 steps. There are a total of
10 optional scoring point birth positions on the map, and three positions are randomly
selected each time to create scoring points. After the tank collides with a scoring point,
the tank will receive a reward of +2, and a new scoring point will be created at a random
other birth position. Since the reward for colliding with a scoring point is a sparse reward,
we also set a dense reward according to the change in the distance from the tank to the
nearest scoring point. In addition, in order to reduce the ineffective samples of the tank
still moving towards the wall after colliding with the wall, we set an action mask, and set
the action value in the direction of the wall to 0. The action mask effectively improves the
efficiency of training.

The hyperparameters of the scoring task experiment are set as follows: learning rate
α = 0.0005, discount factor γ = 0.95, batch sample size N = 512. All algorithms use the same
neural network structure, with the hidden layers of the policy network and Q network
using two full connection layers with a width of 128. Training is conducted every 5000 steps
using the current model to complete 20 evaluation rounds, and the average value of the
evaluation round rewards is calculated. A total of 120,000 steps are trained, and the results
are shown in Figure 12.

Figure 12. Comparative experiments using different Q-based multi-agent algorithms in the scoring
task of UESTC-tank. Shown is the mean episodic reward over the last 50 evaluation episodes, shaded
areas are the 95% confidence intervals of the mean, averaged across 20 trials.

The performance of the M2ATD3 algorithm and MASTD3 algorithm is better than that
of the MATD3 algorithm, and they can achieve higher rewards than the MATD3 algorithm.

7. Limitations and Conclusions
7.1. Limitations

As the policy function of the agent is even more difficult to update in the correct
gradient direction in the multi-agent scenario, the bias in the Q-function estimation in
the multi-agent scenario can have a greater impact on policy learning compared to the
single-agent scenario. Therefore, studying the bias in Q-function estimation in multi-agent
scenarios is very meaningful. The M2ATD3 and MASTD3 algorithms presented in this
study reduce the bias in Q-function estimation, but both algorithms have certain limitations
in their application scenarios. In the M2ATD3 algorithm, each agent should have similar
functions to ensure the reliability of the joint Q-value, while the application of MASTD3 in
continuous action space tasks has not been deeply explored. Expanding the application



Algorithms 2024, 17, 36 17 of 18

scenarios of these two methods to reduce Q-function estimation bias is a direction worth
further study. In addition, the unit types and task types provided by the multi-agent tank
environment are relatively simple, and the content of this environment can be further
enriched, providing a good experimental environment for more experiments, such as
multi-agent algorithm experiments, agent cooperation with human players experiments,
and so on.

7.2. Conclusions

This paper primarily studies the Q-learning of agents based on deep reinforcement
learning in multi-agent scenarios, and explores methods to reduce Q-value estimation
bias in multi-agent scenarios, from multi-agent reinforcement learning algorithm theory to
practical model deployment.

In the theory of multi-agent reinforcement learning algorithms, the focus is on solving
the bias problem of the Q-function estimation of the MADDPG algorithm and its derivative
algorithm, MATD3. In the MADDPG algorithm, the Q-function evaluates the policy
function, so an unbiased estimation of the Q-function helps to learn better agent strategies.
This research empirically demonstrates that the MADDPG algorithm overestimates the
Q-function, while the MATD3 algorithm underestimates the Q-function, and theoretically
proves that bias in the MATD3 algorithm. This is followed by the introduction of the
M2ATD3 and MASTD3 algorithms presented in this study to solve this problem. The
M2ATD3 algorithm combines the overestimation of the Q-value brought about by the
joint estimation and the underestimation brought about by the minimization operation to
reduce the bias in the Q-function estimation. The MASTD3 algorithm reduces the bias in
Q-function estimation by combining softmax operation with maximization operation. The
two algorithms have been tested in the multi-agent particle environment and the multi-
agent tank environment, proving that they can indeed solve the estimation bias problem
and that agents can learn better strategies to obtain higher rewards.

In the practice of multi-agent reinforcement learning, we constructed the UESTC-tank
environment. This is a tank simulation game environment with multiple units and scenes,
which can generate cooperative, adversarial, and mixed mission scenarios. We focused on
its scalability when building the environment, so it can support unit editing, map editing,
and rule editing. We hope it can become an open and effective benchmark in the field of
multi-agent reinforcement learning.
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