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Abstract: In the current research, we consider the solution of dispersion relations addressed to solid
state physics by using artificial neural networks (ANNs). Most specifically, in a double semiconductor
heterostructure, we theoretically investigate the dispersion relations of the interface polariton (IP)
modes and describe the reststrahlen frequency bands between the frequencies of the transverse and
longitudinal optical phonons. The numerical results obtained by the aforementioned methods are in
agreement with the results obtained by the recently published literature. Two methods were used
to train the neural network: a hybrid genetic algorithm and a modified version of the well-known
particle swarm optimization method.
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1. Introduction

Due to the increasing needs for high-quality nanostructures, several advanced growth
techniques, e.g., molecular beam epitaxy (MBE), metal organic chemical vapor deposition
(MOCVD), and Stranski–Krastanow growth [1], have been used to manufacture qualita-
tive quantum structures constructed with dielectric materials. In polar dielectric crystals,
phonon polaritons, which are the result of the coupling of optical phonons with an elec-
tromagnetic field (photon), are of crucial importance in low-dimensional structures (LDS)
excitation processes. During recent decades, several theoretical and experimental results
have been reported in research areas like surface phonon polaritons, polariton–electron
interactions in semiconductor microcavities, phonon–polariton modes in superlattices, and
polariton modes in ferroelectric/graphene heterostructure systems [2–7], among others.
The studying of phonon polaritons and their coupling to electrons within a semiconductor
LDS (e.g., quantum wells and superlatices) play an important role to control and enhance
the quantum efficiency of infrared (IR) detectors, quantum witches (QWs), and semicon-
ductor lasing structures, among others [8]. Furthermore, numerical methods like finite
elements [9,10], direct diagonalization techniques [11], and integration methods are a few
methods that have been employed to solve numerical problems in research related to
phonon polariton processes. Many previous works (e.g., [3]) have used simple numerical
methods to calculate the phonon polariton modes. This work suggests the application of
artificial neural networks [12,13] to estimate the phonon polariton modes. More specifically,
for a quantum well structure, we have calculated the interface polariton frequencies as a
function of the polariton in-plane wavevector in order to describe the reststrahlen frequency
bands between the frequencies of the transverse and longitudinal optical phonons.

Neural networks have been used in a variety of cases, such as problems from
physics [14–16], as solutions of differential equations [17,18], agriculture problems [19,20],
chemistry problems [21–23], problems related to economics [24–26], medicine problems [27,28],
etc. Artificial neural networks are usually formulated as functions N(−→x ,−→w ). Vector −→x rep-
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resents the input pattern and vector −→w is called the weight vector. As suggested in [29], the
neural network can be expressed as the following summation:

N
(−→x ,−→w

)
=

K

∑
i=1

w(d+2)i−(d+1)σ

(
d

∑
j=1

xjw(d+2)i−(d+1)+j + w(d+2)i

)
(1)

Parameter K stands for the number of processing nodes, and parameter d represents
the dimension of the input pattern. The used function σ(x) is known as sigmoid function
in the relevant literature and is formulated as

σ(x) =
1

1 + exp(−x)
(2)

Recently, artificial neural networks have been applied to some solid state physics
problems, such as identification of quantum phase transitions [30], solving of the elec-
tronic Schrödinger equation [31], heat transfer problems [32], metal additive manufactur-
ing [33], etc.

The sections of this article are organized as follows: in Section 2, the objective problem
and the methods used to tackle it are presented in detail; in Section 3, the experimental
results are outlined, and, finally, in Section 4, some conclusions from the application of the
optimization methods are discussed thoroughly.

2. Materials and Methods

This section will begin by presenting the theoretical background of the present study
and the approximation model used, and continue by presenting the computational tech-
niques used to train the model.

2.1. Theory

In a semiconductor structure, the electron–polariton Hamiltonian can be described by
the following formula:

H = H0 + H f ree + Hint (3)

where the unperturbed electron Hamiltonian is approximated (effective mass approxima-
tion) to

H0 =
p2

2m∗ + VCB (4)

with VCB the conduction band profile, p the electron momentum, and m∗ the electron
effective mass.

The free field Hamiltonian has the form

H f ree =
ϵo

2 ∑
ω

(∫
∂(ωϵ(ω))

∂ω
E2 + cB2

)
(5)

where ϵ(ω) is frequency-dependent, ϵo is the permittivity of free space, and c is the velocity
of light in vacuum. The electric and the magnetic field, related to the polariton, are
respectively denoted by E and B. By ignoring higher-order processes, the electrons interact
with polaritons via the interaction Hamiltonian

Hint =
e

m∗ A · p (6)

where A is the vector potential that describes the polaritons.



Algorithms 2024, 17, 44 3 of 11

Let us consider a double heterostructure constructed with GaAs/AlAs with a well
width of d. The dielectric functions to describe the interface Fuchs–Kliewer (FK) polaritons
in the heterostructure are provided by [6]

ϵi = ϵ∞,i
ω2 − ω2

L,i

ω2 − ω2
T,i

(7)

where ϵ∞,i is the high-frequency dielectric constant, ωL,i and ωT,i are the zone center LO
and TO optical frequencies of the i-th material. The symmetric and the antisymmetric
interface mode dispersion relations are, respectively, provided by the following equations

ϵ2(ω)q1

ϵ1(ω)q2
= −coth

(
q2d
2

)
(8)

ϵ2(ω)q1

ϵ1(ω)q2
= −tanh

(
q2d
2

)
(9)

Wavevectors qi and the in-plane wavevector q|| are provided by

q2
i = q2

|| − ω2ϵi(ω)/c2 (10)

Hence, by combining Equations (8) and (9), the following optimization problem can
be formulated:

min
t1

∑
q||=t0

((
ϵ2(ω1)q1

ϵ1(ω1)q2
+ coth

(
q2d
2

))2

+

(
ϵ2(ω2)q1

ϵ1(ω2)q2
+ tanh

(
q2d
2

))2
)

(11)

Equation (11) should be minimized with respect to independent variables ω1, ω2, and
parameter q|| varies from t0 to t1. In the current implementation, the artificial neural net-

works N1

(
q||,

−→w
)

, N2

(
q||,

−→w
)

were used in place of variables ω1, ω2. Using Equation (1)
with d = 1, the final form of used neural network is

N
(

q||,
−→w
)
=

K

∑
i=1

w3i−2σ
(

q||w3i−1 + w3i

)
(12)

where K denotes the number of weights for the neural network. Hence, the optimization
problem of Equation (11) is transformed to the following one:

min
t1

∑
q||=t0


 ϵ2

(
N1(q||,

−→w1

)
q1

ϵ1(N1

(
q||,

−→w1

)
q2

+ coth
(

q2d
2

)2

+

 ϵ2(N2

(
q||,

−→w2

)
q1

ϵ1(N2

(
q||,

−→w2

)
q2

+ tanh
(

q2d
2

)2 (13)

For experimental purposes, the interval [t0, t1] is divided into NP equidistant points,
forming the set X = [x0 = t0, x1, . . . , xNP = t1], and hence the following equation will
be minimized:

min
NP

∑
i=0

( ϵ2
(

N1(xi,
−→w1
)
q1

ϵ1(N1
(

xi,
−→w1
)
q2

+ coth
(

q2d
2

))2

+

(
ϵ2(N2

(
xi,

−→w2
)
q1

ϵ1(N2
(

xi,
−→w2
)
q2

+ tanh
(

q2d
2

))2
 (14)

In the following subsection, two methods will be analyzed that were used to optimize
Equation (14) with respect to weight vectors −→w1, −→w2.

2.2. The Used Genetic Algorithm

The first algorithm used to optimize the problem of Equation (14) is a modification
of the genetic algorithm. Genetic algorithms suggested by John Holland [34] are inspired
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by biology, and the algorithm initiates by formulating an initial population of potential
solutions for any optimization problem. These solutions are also called chromosomes. The
chromosomes are iteratively altered using the biologically inspired operations of selection,
crossover, and mutation [35]. Genetic algorithms have been used in a variety of optimization
problems, such as aerodynamic optimization [36], steel structure optimization [37], image
processing problems [38], etc. Also, they have been used as the training methods of neural
networks in a variety of papers, such as the paper of Leung et al. [39] used to estimate
the topology of neural networks. Also, they have been used to construct neural networks
for daily rainfall runoff forecasting [40], evolving neural networks for the deformation
modulus of rock masses [41], etc.

The steps of the modified genetic algorithm are outlined below.

1. Initialization Step

(a) Set with NC the total number of chromosomes.
(b) Set with NG the total number of generations allowed.
(c) Define with K the number of weights for the neural networks.
(d) Produce randomly NC chromosomes. Every chromosome consists of two equal

parts. The first half represents the parameters of the artificial neural network
N1(x,−→w1 and the second half represents the parameters of the artificial neural
network N2(x,−→w2. The size of each part is set to 3K, where K is the number
of weights.

(e) Set as ps the selection rate, with ps ≤ 1.
(f) Set as pm the mutation rate, with pm ≤ 1.
(g) Set iter = 0.

2. Fitness calculation Step

(a) For i = 1, . . . , NG, do

i. Calculate the fitness fi of every chromosome gi. The chromosome consists
of two equal parts. The first part (parameters in range [1 . . . 3K] is used
to represent the parameters of the artificial neural network N1 and the
second part (parameters in range [3K + 1 . . . 6K] ) represents the parameters
of the artificial neural network N2. The calculation of the fitness has the
following steps:

A. Set w1 = gi[1 . . . 3K], the first part of chromosome gi
B. Set w2 = gi[3K + 1 . . . 6K], the second part of chromosome gi
C. Set fi the value for Equation (14)

(b) EndFor

3. Genetic operations step

(a) Selection procedure. After sorting according to the fitness values, the first
(1 − ps) × NC chromosomes with the lowest fitness values are copied to the
next generation and the rest are replaced by offsprings produced during the
crossover procedure.

(b) Crossover procedure: Two new offsprings z̃ and w̃ are created for every selected
couple of (z, w). The selection of (z, w) is performed using the tournament
selection. The new offsprings are produced according to the following:

z̃i = aizi + (1 − ai)wi

w̃i = aiwi + (1 − ai)zi (15)

The value ai is a random number, where ai ∈ [−0.5, 1.5] [42].
(c) Perform the mutation procedure: For every element of each chromosome, a

random number number r ∈ [0, 1] is drawn. If r ≤ pm, then this element is
altered randomly.
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4. Termination Check Step

(a) Set iter = iter + 1
(b) The termination rule used here was initially proposed in the work of Tsoulos [43].

The algorithm computes the variance of the best-located fitness value at every
iteration. If no better value was discovered for a number of generations, then
this is a good evidence that the algorithm should terminate. Consider f

(
gbest

)
as the best fitness of the population and σ(iter) as the associated variance at
generation iter. The termination rule is formulated as

iter≥ NG OR σ(iter) ≤ σ(klast)

2
(16)

where klast is the last generation where a new minimum was found.
(c) If the termination rule is not satisfied, go to step 2.

5. Local Search Step

(a) Set gbest the best chromosome of the population.
(b) Apply a local search procedure C∗ = L

(
gbest

)
to the best chromosome. In the

current implementation, the BFGS method published by Powell [44] was used
as a local search procedure.

2.3. The Used PSO Variant

Particle swarm optimization (PSO) [45] stands for a global optimization procedure that
evolves a population of candidate solutions. The members of this population are called parti-
cles. The PSO method utilizes two vectors: the current position of the particles, denoted as −→p ,
and the associated velocity, denoted as −→u . The method was used in many scientific problems
from areas such as physics [46,47], chemistry [48,49], medicine [50,51], economics [52], etc.
Also, the PSO method was used with success in neural network training [53,54]. In this work,
an implementation of the PSO method of Charilogis and Tsoulos [55] was used to optimize
the problem of Equation (14). The main steps of the utilized method are

1. Initialization Step

(a) Set iter = 0 the current iteration.
(b) Set as NC the total number of particles.
(c) Set as NG the maximum number of allowed generations.
(d) Set with pl ∈ [0, 1] the local search rate.
(e) Initialize the positions of the m particles x1, x2, . . . , xNC . Each particle consists of

two equal parts as in the genetic algorithm case.
(f) Perform a random initialization of the respected velocities u1, u2, . . . , uNC .
(g) For i = 1 . . . NC, do pi = xi. The pi vector holds the best located values for the

position of each particle i.
(h) Set pbest = arg mini∈1...NC f (xi)

2. Termination Check. Check for termination. The termination criterion used here is the
same in the genetic algorithm case.

3. For i = 1 . . . NC, Do

(a) Update the velocity ui as a function of ui, pi as

ui = ωui + r1c1(pi − xi) + r2c2
(

pbest − xi
)

(17)

where

i. The parameters r1, r2 are randomly selected numbers in [0,1].
ii. The parameters c1, c2 are in the range [1, 2].
iii. The value ω denotes the inertia value and is calculated as

ωiter = 0.5 +
r
2

(18)
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where r a random number with r ∈ [0, 1] [56]. With the above velocity
calculation mechanism, the particles have greater freedom of movement
and are not limited to small or large changes, more efficiently covering the
research area of the objective problem.

(b) Update the position of the particle as xi = xi + ui
(c) Pick a random number r ∈ [0, 1]. If r ≤ pl , then xi = LS(xi), where LS(x) is a

local search procedure. In the current work, the BFGS variant of Powell used in
genetic algorithm is also utilized here.

(d) Calculate the fitness of the particle i, f (xi), with the same procedure as in the
genetic algorithm case.

(e) If f (xi) ≤ f (pi), then pi = xi

4. End For
5. Set pbest = arg mini∈1...NC f (xi)

6. Set iter = iter + 1.
7. Go to Step 2

3. Results

The experiments were conducted using the freely available Optimus optimization
environment, downloaded from https://github.com/itsoulos/GlobalOptimus/ (accessed
on 7 December 2023). The execution machine was an AMD Ryzen 5950X with 128 GB
of RAM, running Debian Linux, and the programs were compiled using the GNU C++
compiler. The values for the parameters of the used methods are shown in Table 1. This table
describes the simulation parameters for the objective problem as well as the parameters for
the two global optimization techniques, previously described. The material parameters for
semiconductors AlAs and GaAs, related to the frequencies and high-frequency dielectric
constants, are taken from [3].

Table 1. This table contains the values for the parameters used in the conducted experiments.

PARAMETER MEANING VALUE

d Well width 5 nm

t0 Left bound of Equation (14) 0.1

t1 Right bound of Equation (14) 3.0

NP Number of points used to divide the interval [t0, t1] 100

h̄ ωL1 Longitudinal-optical phonon energy of material 1 (AlAs) 50.09 meV

h̄ ωT1 Transverse-optical phonon energy of material 1 (AlAs) 44.88 meV

h̄ ωL2 Longitudinal-optical phonon energy of material 2 (GaAs) 36.25 meV

h̄ ωT2 Transverse-optical phonon energy of material 2 (GaAs) 33.29 meV

ϵ∞,1 High-frequency dielectric constant of material 1 (AlAs) 8.16

ϵ∞,2 High-frequency dielectric constant of material 2 (GaAs) 10.89

NC Number of chromosomes/particles 500

NG Maximum number of allowed generations 200

pS Selection rate 0.90

pM Mutation rate 0.05

pl Local search rate 0.01

https://github.com/itsoulos/GlobalOptimus/
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The dispersion curves of the interface phonon modes in a symmetric quantum well
structure (GaAs/AlAs) are presented in Figures 1 and 2. It is clear that the two branches
correspond to the reststrahlen bands of the structure. It is obvious that the two different
numerical algorithms (genetic and PSO algorithms) converge.

To evaluate the difference in execution time of the two techniques, an additional
experiment was performed where the number of chromosomes/particles was varied from
100 to 500. The results of this experiment are illustrated graphically in Figure 3.

Figure 1. Experiments with the modified genetic algorithm and H = 10.

Figure 2. Experiments with the modified PSO algorithm and H = 10.

Figure 3. Experiments using different number of chromosomes (parameter NC) to evaluate the execu-
tion time.
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The PSO method significantly outperforms the genetic algorithm technique in execution
time, and indeed, as the experimental results show, the genetic algorithm requires a signifi-
cantly high execution time as the number of chromosomes increases. However, this problem
can be smoothed over since genetic algorithms can by nature be parallelized relatively easily,
as shown in a large number of related works [57–59]. Programming techniques that may
be used to parallelize genetic algorithms are, for example, the MPI technique [60] or the
OpenMP [61] programming library. For example, using the OpenMP library to parellelize
the genetic algorithm, the graph of Figure 4 is obtained.

Figure 4. Average execution time using the genetic algorithm and different number of processing
threads. The genetic algorithm was parallelized using the OpenMP programming library.

Furthermore, the logarithm of best values obtained by the two optimization methods
for the equation is shown graphically in Figure 5.

Figure 5. Logarithm function applied to the best obtained values for Equation (14) for both methods
and for different values of parameter NC.

From this graph, one can conclude that the genetic algorithm achieves significantly
low values even for a limited number of chromosomes. In addition, the genetic algorithm,
compared to the PSO technique, seems to maintain stability in its behavior regardless of
the number of chromosomes used each time. Finally, the value of the objective function
achieved using the genetic algorithm is significantly lower than the PSO technique.

Moreover, the logarithm for the best values obtained for Equation (13) for different
number of maximum allowed generations is outlined in Figure 6. As can be seen from the
graph, the error remains almost constant for more than 200 generations, which means that
this number is enough to achieve the goal.
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Figure 6. Logarithm function applied to the best obtained values for Equation (14) for different
number of maximum allowed generations for the genetic algorithm.

4. Discussion

In this paper, the IP modes in a heterostructure made with GaAs and AlAs were
estimated using two different numerical methods (genetic algorithms and the PSO algo-
rithm). The two branches denote the symmetric (S) and the antisymmetric (A) IP modes, as
presented in Figures 1 and 2. For small in-plane wavevectors, the difference between the
symmetric and antisymmetric branches received the largest value, in contradiction to the
case of large in-plane wavevectors, where the difference becomes small [3]. The IP modes
are of crucial importance in estimating the electron/hole relaxation rates, dephasing rates,
and decoherence processes in semiconductor quantum structures, among other quantum
processes [2–6].

As can be seen from the conducted experiments, both the genetic algorithm tech-
nique and the particle swarm optimization technique manage to train the proposed model
satisfactorily. However, after using a series of experiments with variation in the critical
parameter of the number of chromosomes, it was found that the genetic algorithm requires
significantly more computing time than the particle optimization technique, although it has
more accuracy in the final result. This kind of problem can be alleviated by using parallel
computing techniques since genetic algorithms by nature can be directly parallelized.
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